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Abstract 

We use a mixed-frequency regression technique to develop a test for cointegration under 

the null of stationarity of the deviations from a long-run relationship. What is noteworthy 

about this MA unit root test, based on a variance-difference, is that, instead of having to 

deal with non-standard distributions, it takes testing back to the normal distribution and 

offers a way to increase power without having to increase the sample size substantially. 

Monte Carlo simulations show minimal size distortions even when the AR root is close to 

unity and that the test offers substantial gains in power against near-null alternatives in 

moderate size samples. An empirical exercise illustrates the relative usefulness of the test 

further. 
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1. Introduction 

 Non-standard distributions are a common feature of many tests for unit-roots and 

cointegration that are currently available.1 The main problem with non-standard 

distributions is that when the true data generating process is unknown, which is the case 

in general, it is not easy to engage in a specification search because the distribution 

changes as the specification changes, especially with respect to deterministic 

components. As Cochrane (1991, p. 202) expressed: “To a humble macroeconomist it 

would seem that an edifice of asymptotic distribution theory that depends crucially on 

unknown quantities must be pretty useless in practice.” Some reprieve to this has been 

offered by Phillips (1998, 2002) who showed that the limiting forms of autoregressive 

unit root processes can be expressed entirely in terms of deterministic trend functions. 

The implication of this finding is that “one might mistakenly ‘reject’ a unit root model in 

favour of a trend ‘alternative’ when in fact the alternative model is nothing other than an 

alternative representation of the unit root process itself.” (Phillips, 2002, p.324). 

Considering the complexities involved in the specification of deterministic trend models 

his recommendation is, especially on grounds of parsimony and forecasting, to use pure 

autoregressions. Nevertheless, economic reasoning may necessitate some deterministic 

components in the model that will take us back to the same problem of multitude of non-

standard distributions.2 

 

                                                 
1  See Maddala and Kim (1998) for an extensive survey of the unit root literature.  
2 See for example, Hamilton and Flavin (1986) for a deterministic term of the form (1 where r is a 

constant real interest rate.   

)tr+
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 In this exercise we re-visit the problem with the objective of presenting a test for 

cointegration based on the null of stationarity of the deviations from a long-run 

relationship. The test brings the distribution back to the normal distribution and at the 

same time offers a substantial improvement in power. The importance of tests based on 

the null of stationarity need not be overemphasized. Although a disproportionate amount 

of research has gone into I(1) processes, the I(1) characterization of economic time series 

may be too restrictive in many practical situations.  What is of general interest is whether 

the regression provides stable parameters with stationary residuals regardless of the 

nature of the non-stationarity of the individual series. For example, two variables which 

are causally related may have structural breaks in them and the usual unit root tests may 

perceive them to be I(1) processes. In a regression relationship, however, the structural 

break may disappear and the regression may deliver stationary residuals. Moreover, 

economic theory leads us to using many ratios like consumption share of income, 

investment share of GDP and the average tax rate; the meaning of a unit root in them is 

not very clear. Therefore, forming a null of stationarity will allow us to test it against 

different alternatives such as autoregressive (AR) unit roots, fractional integration, 

structural breaks and policy interventions. The relevant alternative has to depend on the 

particular empirical analysis carried out. In this exercise we consider only the AR unit 

root alternative and defer the evaluation of other alternatives to future work.  

 
 The test presented here focuses on a moving average (MA) unit root. Although the 

idea of testing for an MA unit root is not new (see Table A.1) the importance of such 

tests need to be re-emphasized. Being a behavioral outcome an AR unit root could be 
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somewhat illusive (Hamilton, 1994, Sec. 15.4) whereas an MA unit root can be created 

by over-differencing a stationary process, therefore, easier to pin down. The basic idea 

underlying our test procedure emanated from a mixed-frequency regression presented in 

Abeysinghe (1998, 2000) and temporal aggregation and dynamic relationships studied in 

Rajaguru and Abeysinghe (2002, 2008) and Rajaguru (2004). The test procedure involves 

a simple data transformation to obtain a mixed frequency regression and focuses on the 

difference in error variances of the original model and the transformed model.  

 

2. Power of Existing Unit Root Tests 

 As can be seen later in a Monte Carlo simulation, our proposed test entails substantial 

gains in power at near null alternatives. For comparison Table A.1 in Appendix provides 

a non-exhaustive summary, extracted from the cited studies, of the power of both AR and 

MA unit root tests near the null at a sample size 100 (or 200 in a few cases). Panel (a) in 

the table is for the non-stationary null (AR unit root) and panel (b) for the stationary null 

(MA unit root or its variants). Panel (a) also includes a representative citation of power 

under structural breaks. The literature on unit roots under structural breaks has also 

grown rapidly and we do not digress into this literature. The reference model given in the 

table involves an over-simplification for some simulation exercises. A general 

specification of the stationary null is given in models (1) and (2) of the paper.  
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 The summary in Table A.1 highlights the low power of unit root tests in general 

although some test procedures produce reasonably large power at a sample of size 100.3 

As stated earlier, most of these tests have to deal with non-standard distributions and 

increasing the power requires increasing the sample size. These are the problems that we 

try to address by the proposed test procedure. 

  

3. Methodology 

 Consider the following model that Leybourne and McCabe (1994) extended from 

Harvey (1989) and Kwiatkowski et al. (1992) to test the null of stationarity against an 

alternative of difference stationarity: 

1 0

( )

      ,  
t t t

t t t

L y tφ α β ε
α α η α−

= + +
= + = α

              (1) 

where 2~ (0,t iid )εε σ , 2~ (0,t iid )ηη σ

p

, both of which are independent of each other, and 

11 ... p( )L Lφ φ= − − − Lφ  with roots outside the unit circle. This has the following 

ARIMA(p,1,1) representation: 

1 1 ...t t p t p t 1ty y y uΔ β φ Δ φ Δ θ− −= + + + + − u −

)

            (2) 

where 2~ (0,tu iid σ  with 2 2 /εσ σ θ= ,  and 2 1/ 2( ( 4 ) 2) /θ λ λ λ= − + + 2 22 /η ελ σ σ=  is 

the signal-to-noise ratio. The so-called hyper-parameter 2
ησ  is a measure of the size of the 

random walk in (1). If , 2
η 0σ λ= = 1θ =  and model (2) collapses to a stationary AR(p) 

                                                 
3 It should be noted that Monte Carlo results by Gonzalo and Lee (1996) show that the size and power 
properties of Dickey-Fuller type unit root tests in many situations are better than the standard t-tests for 
stationary roots of autoregressive processes. 
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process. Alternatively, tyΔ  in (2) has a non-invertible ARMA(p,1) representation.  To 

test the null of stationarity a number of researchers formulated tests based on 2
0 : 0H ησ =  

vs . These are in effect tests of an MA unit root and the distributions involved 

are in general non-standard. As 

2
1 :H ησ > 0

λ  increases, θ  approaches zero and we get a standard 

unit root autoregression. In this exercise the ARIMA model in (2) forms the basis of our 

test.   

 
3.1 Null of Stationarity (MA Unit Root) 

 As stated earlier our test is based on a mixed frequency regression procedure 

(Abeysinghe, 1998, 2000) that helps in increasing the power of the test at a given sample 

size. To illustrate the idea, (2) can be written as 

1t tu u ( )L tyθ β φ Δ+ .              (3) −= −

tuIf  is assumed to be observed at intervals , 2 ,...,t m m T= , where  is a positive 

integer, and 

2m ≥

tyΔ  is observed at intervals 1,2,..,t T= , the basic idea of the mixed 

frequency regression is to transform 1tu −  in (3) to t mu −  such that all the observations of 

tyΔ  are retained in the regression. This transformation is easily obtained by multiplying 

(3) through by the polynomial 1 1m mLθ( ) 1θ θ ...L L − −+= + + . The transformed model can 

be written as 

( ) ( )L L y (1)t tVθ φ Δ θ β= +               (4) 

where ( )(1 ) m
t t tV L L u u uθ θ θ t m−= − = − . 

 

 6



 Now note that under the null 0 : 1H θ = , 2( ) 2tVar V σ=  and under the alternative 

1 :| | 1H θ < , 2 2( ) (1 )m
tVar V 22θ σ= + σ< . Therefore, Va 22( )tr V σ−  forms the basis of our 

test. By transforming the test of θ  into a test of (Var  can arbitrarily increase the 

distance between the null and the alternative simply by increasing m whereby extra gains 

in power is made possible. For example, a test of 1

)tV  we

θ =  when 0.9θ =  translates into 

comparing 22σ  nst (Var Vagai )t
21.43σ=  for m=4 and (Var V 21.08)t σ=  for m=12. This 

transformation allows us to formulate a number of test statistics that follow standard 

distributions. 

 We denote  by ( )tVar V 2
mσ  to indicate its dependence on m. Given that we can obtain 

consistent estimates of the parameters in (2), we can compute 2σ̂  and  2ˆmσ  (see below 

and also Appendix) and then form the test statistic 2ˆ 2( )mT ˆ2σ σ−  to test 1θ =  against 

| | 1θ < . Using the subscript T to indicate the dependence on the sample size, the 

following theorem establishes the asymptotic distribution of the test statistic.  

 

Theorem  

Given that 2~ (0,tu iid )σ  and assuming 4
4( )tE u μ= < ∞ , under the null hypothesis of 

1θ = , 2 2
,ˆ ˆ( 2 ) d

m T T
4 )(0,4T Nσ σ σ⎯→− ⎯ .  

Proof: see Appendix.  

  

  The test procedure in practice is the following. Assuming p+1 pre-sample values 

0,...,py y−  in (2) by ML and obtain θ̂   are available, estimate the ARMA(p,1)  for tyΔ
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and e

m

2

1

ˆ t
t

σ
=

=

procedures). Then obtain 

2ˆ /( 2)
T

u T p− −∑  (these are provided by  standard computer softwar  

ˆˆ ˆ ˆm
t t tV u uθ −= − and 2 2

1

ˆ ˆˆ ( ) /( 1)m t a
t m

V V Tσ
= +

T

= − −∑ , where 

aT T m= −  is the effective sample size and V̂  is the sam e 

of 

ple mean of . (Note that th t̂V

subtraction V̂  is not essential in large samples.) Then compute 

2 2 2ˆ ˆ ˆ( 2 ) /mz T 2σ σ σ= −  and reject the null hypothesis 1θ =  if z c≤  where c is a left-

 the standard normal distributio e t this z(MA) test to 

differentiate it from a z(AR) test that can be obtained by extending our test procedure to 

the AR unit root case.

hand critical value m

e

 fro

5

n.4 W erm 

 

 Although the ML stimator of θ  under the null is T-consistent (see Davis and 

Dunmuir, 1996, and reference therein) there are two problems in relation to using 

estimated θ in the test statistic that we have to be concerned about. One is the well known 

pile-up problem of the ML estimator at the invertibility boundary (see Breidt et al., 2006, 

for references). The pile-up problem is an issue that is being addressed by a number of 

researchers. In particular Davis and Dunmuir (1996) have explored the possibility of 

using a Laplace likelihood with a local maximizer to estimate an MA(1) model with a 

unit root or a near unit root. It is very likely that an estimator of θ  that will overcome the 

pile-up problem will emerge in due course. From a practical point of view, the pile-up 

                                                 
4  We obtained a small sample version of the variance of the test statistic that depends on m, but Monte 
Carlo simulations showed that there was no much gain in using such an elaborate formula. 
5 We extended the test procedure to the AR unit root case, which provides a generalization to the variance-
ratio test developed by Lo and MacKinlay (1988, 1989). Although the extension works very well (better 
power)  in the AR(1) case, we still need further work on the AR(p) case. 
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problem of the Gaussian likelihood may not be a serious problem. Although over-

differenced stationary series produce 1θ = , AR unit-root series are likely to produce a θ  

well away from unity.    Many empirical estimates of θ  from non-stationary series hardly 

exceed 0.9 and do not exhibit the presence of the pile-up problem. As we shall see, our 

test offers sufficient power against the alternative of θ =0.9 in moderate-sized samples.  

 The other difficulty is the near common factor problem; an AR factor with a root 

close to unity may render a highly unreliable estimate of θ  in certain samples. The near 

common factor problem can easily be spotted by fitting an AR(p) model to ty  and 

ARMA(p,1) to tyΔ  (see the application in Section 4). If ty  is stationary with an A  root 

near unity and i is not well estimated in the  ARMA model then it is important to re-

estimate the model using different starting values for 

 

R

f it 

θ  including θ =1.  

 

3.2 Monte Carlo Results 

en  Monte Carlo experiment to highlight the 

t

 In this section we pres t the results of a

size and power properties of the test under near unit root alternatives. Since our primary 

interest is in cointegrating relationships we use the following model for the simulation 

exercise. 

0t 1

1 .
t

t t t

y x z
x x

δ δ
ε−

+
= +
= +

               (5) 

1(1 ) (1 )t tL z L uφ Δ β θ− = + −               (6) 

where  and tu tε  ated from independent (0,1)N  distributions. If 1δ  is known are gener

then (6) represents the case of testing for the stationarity of a known long run 
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relation ip. If 0sh δ  and 1δ  are estimated then (6) r nts the case of testing for the 

stationarity of regression residuals. The size of the test is obtained when 1

eprese

θ = . For this 

we set 1 0.5,  9,  0.90. 5φ = . For power, we use 0.8,  0.9θ =  with 1 0.5φ = . In the case of 

known   tz  1β =  and when tz  is estimated residuals 0β =  and 0 1 1δ δ=

10,12 

= . We 

obtained sults for m=2,4,6,8,10,12 and the size and power of the test are 

reported in Tables 1 and 2 respectively. We exclude the results for m=  the 

tables because they do not add much new information. When 1

 the si tion mula re

from

θ =  and 1φ   large, it was 

difficult to get the computer program running due to convergence problems in small 

samples, so we obtained only the large sample results for these cases in Ta e 1.  

 Table 1 shows that some size distortions occur as m increases especially when 

regression residuals are involved. Nevertheless, these distortions are rather m

bl

inimal. 

Although the test relies on the T-consistency of θ̂ , the use of estimated θ  tends to 

produce size distortions when m increases. We observe that such size distortions do not 

occur if we set θ =1 in the computation of 2ˆmσ  from residuals obtained from  pure AR 

fit. Careful examination of individual replications showed that the problem emanates 

from non-convergence of ˆ

a

θ  in some replications even after 200 iterations.6  

 Table 2 shows that the power of the test is quite impressive in relation to those 

reported in Table A.1. However, the gain in power when m increases beyond 4

s to be an optim

 is rather 

small. Therefore, based on both size and power properties an al m=4 seem

                                                 
6 We used SAS proc arima procedure for model estimation by removing the default boundary constraint. 
Although we can address the problem of non-convergence by modifying the computer program to exclude 
all the non-convergent cases, we find that our program is extremely time consuming and we stopped using 
it after a few test runs. 
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choice. We also examined the results by over-fitting the AR order upto p=3; the results 

remain very much unaffected by this over-fitting.   

 It is worth making a comparison of the results in Tables 1 and 2 with the variance-

difference (VD) test that Breitung (1994) developed. This asymptotically normal VD test, 

derived based on the assumption of an MA(q) process,  produces desirable small-sample 

size and power properties for finite order MA processes. However, when the process 

involved was an ARMA(1,1) that needed to be approximated by a finite order MA 

process, Breitung observed substantial size distortions. For example, when 1φ =0.9 (θ =1), 

T=100, α =5%,  Breitung reported empirical size of 0.907 for MA(4) approximation and 

0.215 for MA(12) approximation. This problem does not arise in our test as we can see in 

Table 1. The table also shows that near AR unit root cases which mani st with low 

power in AR unit root tests come under the control of type I error in this MA unit root 

test. 

====================== 

Insert Table 1, Table 2 

fe

====================== 

 We also considered an al  that avoids using estimated ternative formulation of the test

θ  in the estimation of . N ( )tVar V ote that under the null ( 1θ = ) model (4) can be written 

as ( ) m tL y m t t mu uφ βΔ = + −− . Therefore, we can fit an ARMA(p,1) model to tyΔ  as 

before and obtain (L 2ˆ ˆ ˆ),  ,  φ β σ  (ignore θ̂ ) and obtain  

ˆ ˆˆ ( )t m tV L y mφ β= Δ −           (7) 
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and tic. Note that under the alternative, model (4) changes to 

( ) ... 1 )m t tL y m L L uφ β θΔ = + + − =

 compute the test statis

, where u1 1( ) (1 )( ( )m m m
tL L m L uθ β ϕ− −+ + + ( )t tV Lϕ=  

and 2
1( ) (1L Lϕ ϕ= + 2 ...)Lϕ+ + .  Therefore, ( )tVar V  could be on either side of 22σ  

depending on m and the test has to be a two-tailed test. We observe that this formulation 

sed earlier but it does of the test does not create the size distortion problem that we discus

not do well in terms of power. For example, when 1 0.5φ = , 0.8θ = , m

power of this test is about 1/3 of that of our main z(MA) test.  

 

4. Some Empirical Results 

 As empirical illustrations, we present two sets of results. The first is a representative 

group of variables from Abeysinghe and Choy (2007) who present a 62-equation 

macroeconometric model (ESU01 model) of the Singapore economy and the second is a 

test of stationarity of the average propensity to consume (APC) in OECD countries.  

 Abeysinghe and Choy (2007) estimated all the key behavioral equations in their 

model individually in the form of error correction models by crafting out the underlying 

long-run (cointegrating) relationships, paying careful attention to specific features of the 

Singapore economy, economic theory, and parameter stability. Table 3 presents test 

results for two groups of cointegrating relationships: (i) cointegrating regression 

residuals  and (ii) relations with known coefficients. In the latter group, the oil price 

=4, and T=100 the 

7

                                                 
7  Readers interested in the regression equations and data are referred to Abeysinghe and Choy (2007). 
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equations were designed to check the extent of exchange rate pass-through.8 Relative unit 

business cost (RUBC) and the real exchange rate (RER) are both measures of 

competitiveness. Although the RER presented in the table is not a variable in the ESU01 

model, we use it here for further illustration of the performance of the test.  

============= 

Insert Table 3 

============= 

 In Table 3, all series except fo lify as AR(1) processes and it is 

o

ADF test to test for 

r RER clearly qua

w rth noting that the estimates of ρ from AR model and ARMA(1,1) model for the first 

differences are very close. Therefore, first estimating an AR(p) model provides a good 

check against the ARMA(p,1) estimation for the MA unit root test. It is also useful to 

note that when over-differencing is not involved as in the RER case (also those in Table 4 

below) the MA root is likely to be a distance away from unity in many practical cases and 

as a result our test carries a lot of power against such alternatives.   

 The test results in Table 3 show that if we were to use the 

cointegration  only three equations (consumption, exports and oil export price) qualify as 

cointegrating relationships (the null of AR unit root is rejected). Our z(MA) test, on the 

other hand, does not reject the null of stationarity (and cointegration) in all the cases 

except the last one. The RER series with ρ̂ =0.98 clearly comes out as a non-stationary 

process. Since Abeysinghe and Choy (2007) have already studied these cointegrating 

                                                 
8 As the third largest oil refining center and trading hub in the world Singapore may have some price 
setting power on its oil market in which case the stationarity of the long-run relationship with unity 
restriction has to be rejected. Note that short-run pass through is well below unity. 
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relationships in detail, and the fact that the z(MA) test results concur with their findings 

represents a strong case in favor of the new test.  

 As a further illustration of the test, Table 4 presents the test results from three popular 

tests and the z(MA) test on APC for 21 OECD co

 

untries.9 Because of the non-availability 

of sufficiently long data series on non-durable consumption and disposable income we 

measure APC by the ratio of total consumption expenditure to GDP. Although the APC is 

expected to be stationary for developed economies on the grounds that long-run 

departures of consumption expenditure from income is less likely, some countries show 

local trends in their APCs over the sample period. This is reflected in large values of ρ̂  

(the sum of AR coefficients) in Table 4. This is where many tests may misconstrue the 

APC to be an I(1) process.  

 As in Table 3, we notice in Table 4 the close correspondence between AR(p) 

coefficients and ARMA(p,1) coefficients in identifiable stationary cases. It is also worth 

noting that in stationary cases θ̂  turns out to be almost unity. This means that the size 

distortion we noticed in the Monte Carlo experiment resulting from under estimation of θ 

may not be a serious problem in practice.  

 Again the ADF test turns out to be the least powerful against near unit root 

alternatives, as it renders an I(1) verdict for 18 of the 21 APC series. The KPSS test and 

                                                

the Johansen test fair better, recognizing eight cases as cointegrating relationships. 

Unfortunately the eight cases do not necessarily overlap. Our z(MA) test, on the other 

 
9  Data for this exercise are from the IFS database except for France. IFS data for France show some 
irregularities; therefore, France data were taken from the OECD database which covers a shorter time span 
than the IFS database. 
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hand, takes 15 of the APC series to be stationary. It rejected stationarity only when 

ρ̂ ≥0.97 and when the local trend dominated the series; see the cases of Canada and 

Korea for a comparison, both with ρ̂ =0.97, while one is assessed to be I(0), the other 

1). Like many fast growing developing economies Korea experienced a falling APC till 

the mid 1980s before stabilizing to fluctuate around a constant mean. Rejecting the null 

of stationarity of APC is, therefore, an indication of the interplay of other variables that 

need to be considered instead of taking APC to be an I(1) process.  

================== 

Insert Table 4 

I(

5. Conclusion 

 This exercise addresses three , it highlights the importance of 

ts based on the null of stationarity. Unfortunately the profession has not 

important aspect of the exercise is that the 

=============== 

 important issues. First

formulating tes

paid enough attention to this. What is of general importance is whether a regression 

relationship produces stationary residuals regardless of the nature of non-stationarities of 

the individual series. Moreover, an AR unit root in an individual series is hard to pin 

down because an apparent unit root could be a manifestation of some other forms of non-

stationarity. We present an MA unit root test based on the null of stationarity. Unlike the 

AR unit root which is a behavioral outcome, the MA unit root is created by over-

differencing and therefore easier to pin down.  

 Although testing for an MA unit root is not new to the literature the existing tests 

require non-standard distributions.  The second 
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proposed test brings us back to the normal distribution and makes specifications searches 

easier. The third aspect of the exercise is that the test procedure entails a mechanism to 

increase power without necessarily having to increase the sample size. This addresses the 

problem of low power at near null alternatives of many AR unit root tests that are 

currently available.  

 An important objection one could raise against our test is the difficulty of estimating 

an MA root on or near the unit circle. Some researchers are actively working on this 

roof of the Theorem  

e derive the asymptotic distribution of 

problem and a better estimation method is likely to emerge in due course. Nevertheless, 

as our empirical exercise highlights, the estimation problem may not be that serious in 

cases encountered in practice. An alternative would be to devise a method that avoids 

using estimated θ. One such alternative that we tried under the formulation in (7) did not 

improve power much. Therefore, based on size, power and simplicity the proposed test is 

quite promising.  

 

Appendix 

P
2 2

,ˆ ˆ( 2m T TTHere w )σ σ−  under the null 

hypothesis 1θ = . Assuming (p+m) pre-sample values are available we can run the model 

in (

and comput

2) to obtain consistent estimates of the parameters, obtain the estimated residuals û , 

1

T

t=

ˆˆ

t

e  σ 2 2ˆ ˆ(1/ )T tT u= ∑ , ˆ ˆm
t t tV u uθ m−= − , 2 2

1

ˆ
T

t=
,ˆ (1 / )m T tT Vσ = ∑ . We have to work o  

the expression: 

n
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2 2 2 2 2 2
,ˆ ˆ( 2 .m T TT σ σ−     (A1) 

It is well established that 

,ˆ ˆ) [( 2 ) 2( )]m T TT σ σ σ σ= − − −       

2 2 4
4ˆ( ) (0, ( )).d

TT Nσ σ μ σ− ⎯⎯→ −

 can establish a similar result for 

 (See, for example, 

Hamilton, 1994, p. 212.)  We 2 2
,( 2m TT ˆ ).σ oweve−  σ H r, 

since ou 1) we can derive its asympt

direct manner.  

Given the T-consistency of 

r interest is in the difference in (A otic distribution in a 

θ̂  under the null 1θ = , in large samples the aggregation 

polynomial ( )Lθ  can be  written as  and model (4) can be written 

as  

1( ) (1 )mL L Lθ −= + ,...,+

1 1 ...m t m t p m p ty m y y Vβ φ φ−Δ = + Δ + + Δ +       (A2) 

where  and m t t t mz z z −Δ = − t t t mV u u −= − . Now defining p1(1, ,..., )t t ty y− − ′= Δ Δx , 

1,...,m t m ty y− −= Δ Δ(1, )at p ′x  and 1, ,..., )( pβ φ φ ′+=β , where mβ β , we can write (A2) + =

as m t at ty V′Δ = +x β  or in full observation matrix format as 

a a= +y X β V           (A3) 

where ay is  the observation vector of m tyΔ  and the other terms defined conformably.  

Now we can obtain 

ˆˆ ( )a= − −V V X β β              (A3) 

and using the subscript T to indicate the dependence on sample size we get 

′2
,

ˆˆ ˆˆ (1/ ) (1/ ) (2 / )( )

                             

m T T T T T T aT T

T aT aT T

T T Tσ ′ ′ ′= = −V V V V β - β X V
ˆ ˆ( ) ( / )( )T′ ′+ β - β X X β - β       (A4) 

2     2 .p σ⎯⎯→
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This result holds because ˆ( ) p
T ⎯⎯→β - β 0

 matrix, and as show

 and it is assumed that , 

a finite positive definite n below

( / ) p
aT aT aT′ ⎯⎯→X X Q

 / p
aT T T′ ⎯⎯→X V c , a (( 1) 1)p + ×  

vector of constants. This vector  

at t at t m pT V T u o−= = − +∑ ∑x x
 

and m t ty LΔ φ

 can be derived easily by noting 

( )−

/aT T T′X V

1 ( )tV L Vψ= = , where 

1−

1 1− −

−

(1)

1 2
1 2( ) ( ) 1 ...L L L Lφ ψ ψ ψ= = + + +  The first term of at t mT u −∑ x

 
 leads to

1 0p
t mT u−
− ⎯⎯→∑

1 1
m t p t mT y u TΔ− −

− −∑

. The p

1( )( tL uψ −= ∑

th term of 

m

1
a atT u− ∑ x

(1)po

t m−  is 

1)t m t mu u− − −− 1 2
m p tT uψ−
− −= +∑ 2

m pσ ψp
−⎯⎯→ . 

If p>m, 0pψ− = . 

er 2 2
,ˆ( 2m TT )σ σ− . Multiplying (A4) through by T Now consid  shows that the last 

A4) converges in probability zero and provides  term of (

2 2 2
,

2

( 2 ) ) 2 ( ) ( / )m T T aT T
 (A5)   

ˆˆ ( / 2

                         ( / 2 ) (1).p

T T T T T

T T o

σ σ σ

σ

′ ′ ′− = − − −

′= − +

T T

T T

V V β β X V

V V
  

Note  that ˆ( )T −β β  is and  (1)po
 

( / ) is (1).pO  aT T T′X V

In a similar way we get 

2 2 2

2

ˆˆ( ) ( / ) 2 ( ) ( /

                     

)

/ ) (1)

T T T

T T p

T T T

T T oσ

′′ ′− −

′= − +

β β X u

u u  
  (A6) 

Now from (A5) and (A6) we get 

(

T T TT Tσ σ σ− = −u u

( )2 2 2 2
,

2 2

ˆ ˆ( 2 ) (1/ ) ( ) 2

                         (1/ ) ( 2 ) (1)

m T T t t m t p

t t t m t m p

T T u u u

T u u u u o

σ σ −

− −

− = − − +

= − − + +

∑ ∑
∑

(1)o
     (A7) 
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2 2
,ˆ ˆ( 2 ) p

m T TT σ σIt is easily seen from (A7) that 0− ⎯⎯→ . To derive its variance,  

let m
2 22t t t t m tu u u uξ − −= − − +  

and obtain 

1
2 2

1 1 1

((1/ ) ) (1/ )[ ( ) ] (1/ )[ ( ) 2 ( )]
T T t

t t t
t t k

Var T T E T E Eξ ξ ξ
−

−
= = =

= = +∑ ∑ ∑ ∑∑ t t kξ ξ . (A8) 

     (
2 2 2 2 2

4
4

( )= [( 2 )( 2 )]

         =2 2 .

t t t t m t m t t t m t mE E u u u u u u u uξ

μ σ
− − − −− − + − − +

+
A9) 

2 2 2 2
2 2

4
4

( ) [( 2 )( 2 )],  for 

              ,  for 

              0,  for .

t t k t t t m t m t m t m t m t mE E u u u u u u u u k m

k m
k m

ξ ξ

μ σ
− − − − − − −= − − + − − + =

= − + =
= ≠

   (A10) 

and  

4 4
4 4((1/ ) ) (1/ )[2 ( ) 2 ( )] 4tVar T T T T 4ξ μ σ μ σ σ= + + − +∑ = .   (A11) 

fore, from (A7) and A(11) we can see that 2 2
,ˆ ˆ( ( 2 )) 4p

m T TVar T 4σ σ σ− ⎯⎯→ . There

Furthermore, above results show that 2 2
,ˆ ˆ( 2m T TT )σ σ−  is a stationary ergodic process 

with covariance converging to  4
4μ σ− +

t

 at lag m and to zero at othe

the central limit theorem for stationary s ses (Hamilton, 1994, Proposition 

7.11, White, 2001, Section 5.3) we can establish that 

r lags. Therefore, by 

ochastic proces

2 2 4
,ˆ ˆ( 2 ) (0,4 ).d

m T TT Nσ σ σ− ⎯⎯→   

QED 
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Table 1  

Size of the z(MA) test for an MA unit root (2000 replications) 
 

Known long-run relation or single series 
 m=2 m=4 m=6 m=8 

1φ =0.5, θ =1 

T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
100 0.010 0.028 0.058 0.022 0.048 0.087 0.027 0.050 0.088 0.030 0.052 0.085
200 0.008 0.030 0.055 0.020 0.042 0.076 0.028 0.056 0.086 0.031 0.059 0.091
300 0.008 0.028 0.068 0.017 0.050 0.096 0.032 0.076 0.121 0.038 0.066 0.103
500 0.002 0.030 0.068 0.013 0.054 0.095 0.022 0.060 0.096 0.027 0.061 0.104

1φ =0.9, θ =1 

200 0.010 0.035 0.076 0.011 0.039 0.079 0.013 0.042 0.083 0.015 0.045 0.077
300 0.007 0.034 0.079 0.008 0.040 0.089 0.011 0.052 0.097 0.009 0.038 0.075
500 0.005 0.035 0.080 0.009 0.037 0.084 0.011 0.044 0.080 0.008 0.038 0.087

1φ =0.95, θ =1 

300 0.009 0.044 0.090 0.005 0.040 0.082 0.008 0.038 0.087 0.005 0.047 0.101
500 0.006 0.038 0.078 0.006 0.048 0.089 0.008 0.040 0.095 0.011 0.049 0.097

 
Regression  residuals 

1φ =0.5, θ =1 

100 0.014 0.050 0.083 0.041 0.081 0.113 0.056 0.094 0.137 0.075 0.111 0.150
200 0.007 0.032 0.060 0.026 0.064 0.103 0.041 0.088 0.132 0.062 0.105 0.149
300 0.009 0.030 0.056 0.024 0.057 0.095 0.040 0.080 0.130 0.053 0.091 0.132
500 0.006 0.028 0.055 0.015 0.057 0.093 0.023 0.069 0.122 0.047 0.093 0.140

1φ =0.9, θ =1 

200 0.019 0.059 0.099 0.035 0.085 0.130 0.055 0.103 0.149 0.074 0.118 0.163
300 0.012 0.048 0.096 0.025 0.073 0.117 0.051 0.100 0.145 0.062 0.118 0.165
500 0.009 0.037 0.084 0.016 0.054 0.106 0.033 0.082 0.137 0.037 0.085 0.142

1φ =0.95, θ =1 

300 0.020 0.064 0.114 0.038 0.085 0.135 0.050 0.104 0.153 0.065 0.114 0.169
500 0.012 0.056 0.099 0.027 0.070 0.117 0.038 0.092 0.142 0.048 0.095 0.142
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Table 2 
Power of the z(MA) test for an MA unit root (2000 replications) 
 

Known long-run relation or single series 
 m=2 m=4 m=6 m=8 

1φ =0.5, θ =0.8 

T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%
100 0.432 0.518 0.553 0.556 0.595 0.618 0.579 0.604 0.630 0.582 0.600 0.624
200 0.756 0.826 0.851 0.867 0.885 0.893 0.881 0.888 0.897 0.887 0.892 0.899 
300 0.911 0.946 0.957 0.969 0.973 0.977 0.972 0.974 0.976 0.972 0.974 0.977 
500 0.988 0.994 0.994 0.997 0.997 0.997 0.996 0.997 0.997 0.998 0.998 0.998 

1φ =0.5, θ =0.9 

100 0.162 0.242 0.288 0.286 0.346 0.384 0.334 0.359 0.395 0.339 0.367 0.402
200 0.350 0.508 0.584 0.618 0.678 0.702 0.665 0.696 0.718 0.688 0.706 0.727 
300 0.566 0.714 0.785 0.813 0.855 0.872 0.854 0.876 0.884 0.866 0.879 0.890 
500 0.828 0.924 0.952 0.970 0.980 0.983 0.982 0.987 0.987 0.984 0.988 0.990 

 
Regression  residuals 

1φ =0.5, θ =0.8 

100 0.421 0.494 0.530 0.529 0.558 0.581 0.546 0.559 0.581 0.550 0.568 0.589
200 0.732 0.790 0.809 0.817 0.837 0.852 0.829 0.843 0.856 0.834 0.845 0.856 
300 0.888 0.927 0.937 0.942 0.951 0.955 0.948 0.953 0.959 0.950 0.955 0.960 
500 0.988 0.993 0.994 0.995 0.996 0.996 0.995 0.996 0.996 0.995 0.995 0.996 

1φ =0.5, θ =0.9
      

100 0.169 0.241 0.272 0.276 0.310 0.347 0.305 0.332 0.357 0.310 0.341 0.370
200 0.358 0.494 0.553 0.561 0.622 0.657 0.613 0.643 0.674 0.630 0.653 0.675 
300 0.575 0.717 0.775 0.792 0.827 0.848 0.831 0.855 0.866 0.842 0.856 0.864 
500 0.850 0.912 0.929 0.947 0.957 0.959 0.955 0.958 0.963 0.959 0.961 0.963 
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Table 3 
Cointegration test for selected equations from the ESU01 model of the Singapore 
economy (Abeysinghe and Choy, 2007) 
 

Equation in the model T ρ̂  ARMA(1,1) ADF z(MA) 
(i) Regression Residuals      
   Consumption 104 0.67 0.70, 0.99 -4.48* -0.77 
   Exports (non oil domestic) 96 0.54 0.56, 0.99 -5.27* 0.63 
   Employment 96 0.86 0.88, 0.99 -2.41 0.51 
   Wages  96 0.89 0.87, 0.99 -2.94 0.49 
   CPI 96 0.93 0.95, 0.99 -2.01 0.05 
(ii) Known coefficients (log form)      
   Oil import price in S$ 104 0.89 0.85, 0.99 -2.43 -1.49 
   Oil export price in S$ 104 0.76 0.79, 0.99 -3.68* 0.42 
   RUBC 96 0.91 0.93, 0.99 -2.17 0.25 
   RER 336 0.98 0.00, -0.25 -2.39 -9.03* 
RUBC=relative unit business cost. RER=real exchange rate (S$/US$, CPI based). Oil price relationships 
are: oil price in Singapore dollars equals oil price in US$ times the Sin/US exchange rate. The first eight 
series are quarterly from 1978Q1 or 1980Q1 to 2003Q4. RER is monthly over 1975-2003. The null for 
z(MA) is stationarity (MA unit root) and that for ADF is non-stationarity (AR unit root). * significant at 
the 5% level (left-tail test). 
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Table 4 
Cointegration test on APC 
 

 28

ˆCountry 

Sample 
period 

(quarterly) T 
AR 

Lags 
AR 

Coefficients ρ ARMA(p,1) ADF
Johansen 
VAR(4) 

 
 

KPSS
z(MA)
m=4 

Australia 1960-2007 192 1 0.92 0.92 0.94, 0.99 -2.71 yes 0.21 0.39 
Austria 1965-2007 172 1,2,3 0.55,0.18,0.18 0.91 0.56, 0.19, 0.20, 0.99 -2.33 no 0.14 0.34 
Belgium 1980-2007 111 1 0.98 0.98 0.00, 0.12 -0.77 no 1.09* -5.37*
Canada 1957-2007 204 1 0.97 0.97 0.97, 0.99 -1.97 no 0.73* -0.30
Denmark 1978-2007 124 1,4 0.75, 0.21 0.96 0.75, 0.17, 0.99 -1.71 yes 1.02* -0.57
Finland 1970-2007 152 1,4 0.71, 0.21 0.92 0.72, 0.19, 0.99 -2.21 no 1.00* -1.41
France 1978-2007 120 1 0.94 0.94 0.97, 0.99 -2.1 yes 0.49* 0.48 
Germany 1961-2007 188 1,3 0.71, 0.23 0.94 0.72, 0.23, 0.99 -1.99 yes 0.87* -1.13 

Italy 1970-2007 151 1,4 0.70, 0.12 0.82 0.66, 0.99 -2.98* yes 0.95* -0.5 
Japan 1965-2007 172 1 0.94 0.94 0.95, 0.99 -2.45 no 0.18 -1.29
Korea, South 1965-2007 172 1 0.97 0.97 0.00, 0.20 -2.45 no 1.38* -6.51*
Mexico 1981-2007 108 1 0.88 0.88 0.88, 0.99 -2.62 no 0.40 -0.14
Netherlands 1977-2007 124 1,2 0.51, 0.46 0.97 0.35, 0.25 -0.78 no 1.03* -5.75*
New Zealand 1987-2007 82 1 0.72 0.72 0.75, 0.99 -3.69* yes 0.09 0.58 
Norway 1961-2007 188 1,2 0.75, 0.23 0.98 0.00, 0.25 -0.83 no 1.31* -6.52*
Spain 1970-2007 152 1,4 0.79, 0.20 0.99 0.00, 0.24 -0.06 no 1.41* -6.66*
Sweden 1980-2007 112 1,2,4 0.66, 0.39, -0.17 0.88 0.61, 0.41, -0.17, 0.99 -2.21 no 0.43 -0.81
Switzerland 1970-2007 152 1,2,3 0.60, 0.51, -0.18 0.94 0.59, 0.53, -0.16, 0.99 -1.81 no 0.16 -1.11
Turkey 1987-2007 83 1 0.62 0.62 0.57, 0.99 -4.23* yes 0.49* 0.36 
UK 1957-2007 204 1,3 0.73, 0.24 0.97 0.73, 0.25, 0.99 -1.55 yes 0.44 1.21 
US 1957-2007 204 1,2 0.83, 0.17 1.00 0.00, 0.17 -0.18 no 1.62* -7.29*
Note that some data series end in Q2 or Q3 in 2007. Tests are based on log(APC) = log(C/Y), where C is 
total consumption expenditure and Y is GDP, both in nominal terms and seasonally adjusted. For the 
Johansen test “yes” means acceptance of cointegration between log(C) and log(Y) with the cointegrating 
vector (1, -1). For the KPSS test the default settings in Eviews were used. * Significant at the 5% level. 



Table A.1 
 Power of unit root tests at the 5% level and T=100. Reference model: 2

1 1 ,  ~ (0, )t t t t ty t y iidα β ρ ε θε ε σ− −= + + + −   

(When T=100 is not available 200 is used and marked with an asterisk against author’s name) 
 
(a) Non-stationary null (ρ = 1) 
Name of Authors Year Model Type Test Type ρ = 0.80 0.85 0.90 0.95 0.975 Remarks 
Dicky & Fuller 1979 θ=0, β=0 ρ̂  0.86  0.30 0.10  

DF test, AR(1) process   θ=0, β=0 t 0.73  0.18 0.06  

Bhargava  1986 θ=0, β=0 DW  0.73 0.49 0.25 0.10   

Phillips & Perron 1988 θ=0, β=0 t  0.47    ADF, Said & Dicky 1984 

  θ=0.8, β=0 t  0.30    ADF 

  θ=0, β=0 Z(t)  0.69    PP 

  θ=0.8, β=0 Z(t)  0.35    PP 

Pantula & Hall* 1991 θ=0, β=0 IV     0.09-0.33 Range of IV estimates. In 
general power > 0.05   θ=0.8, β=0 IV     0.01-0.35

DeJong et al. 1992 θ=0, β≠0 τ(ρ) 0.75 0.49 0.24 0.10  For starting value 0. Power 
drops slightly as starting value 
increases.    F(β,ρ) 0.65 0.39 0.19 0.08  

Blough 1992 θ=0, β=0 ADF, IV      
Graphical presentation. Power 
drops to 5% for ρ>0.5. 

Schmidt & Phillips 1992 θ=0, β≠0 LM   0.27 0.108  
Reported is highest power 
under different specifications 

Choi 1992 θ=0, β≠0 DH 0.97 0.84 0.54 0.24  Durbin-Hausman 

Lee & Schimidt 1994 θ=0.8, β=0 IV    0.22  Compares Hall-IV with SP-IV 

Pantula et al. 1994 θ=0, β=0 WS   0.602 0.261  Compares OLS, MLE as well. 

Yap & Reinsel * 1995 θ=0, β=0 LR 1.00  0.82 0.33   

  θ=0.8, β=0 LR -  0.74 0.56   

Leybourne 1995 θ=0, β=0 DFmax 0.88  0.34    
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Table A.1 continued 
Name of Authors Year Model Type Test Type ρ = 0.80 0.85 0.90 0.95 0.975 Remarks 

Park & Fuller 1995 θ=0, β=0       

Graphical. For intercept  model: 
WS>SS>OLS. For interceptless 
model: OLS>SS>WS. 
(SS=simple symmetric, 
WS=weighted symmentric) 

Perron & Ng * 1996 θ=0.8, β=0 MZ(ρ)   0.75 0.42  

Modified PP 

   MSB   0.79 0.46  

   MZ(t)   0.63 0.30  

Elliot et al. 1996 θ=0.8, β=0 t 0.51  0.30 0.15  
Power at ρ=0.95 not very 
different across models  

Hwang & Schmidt 1996 θ=0, β≠0 GLS 0.28 0.18    
Power is roughly similar across 
different tests reported 

          

Non-stationary null: Structural breaks
Lanne & Lutkepohl 2002 Perron    0.21   

Known break, level shift. Power 
is very similar for slope change. 
See the article for model 
specification. 

  Perron & Vogelsang   0.14   

  Amsler & Lee   0.12   

  Schmidt & Phillips   0.09   

  Lanne et al   0.23   

Lanne et al. 2003 Test 1, drift   0.28   
Unknown break, level shift. 
Power is very similar for slope 
change. See the article for 
model specification. 

  Test 2, drift   0.20   

  Test 3, trend   0.23   

  Test 3, trend   0.18   
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(b) Stationary null (ρ = 1, θ = 1) 
Name of Authors Year Model Type Test Type θ* = 0.80 0.85 0.90 0.95 0.975 Remarks
Park 1990  J1 test      No simulation results 

Kwiatkowski et al. 1992 β=0 η(μ) l0   0.59  0.17 

KPSS test. The test basically 

involves testing 2
ησ  = 0 in 

model (1) in Section 3. 

  β=0 η(μ) l4   0.51  0.15 

  β=0 η(μ) l12   0.38  0.10 

  β≠0 η(τ) l0   0.35  0.05 

  β≠0 η(τ) l4   0.28  0.05 

  β≠0 η(τ) l12   0.17  0.04 

Saikkonen & Luukkonen 1993 β=0 R2 0.81 0.71 0.56 0.32  
Authors also consider non-
white errors. 

Breitung 1994 β=0 Spectral 0.04  0.03 0.03   

   Var diff 0.87  0.43 0.16   

   Tanaka 0.86  0.62 0.32   

Leybourne and McCabe 1994 
Extended 

KPSS  
 

s(α) p=1   0.61  0.17 
Show that KPSS is subject to 
severe size distortions in 
general ARIMA cases. 

  s(α) p=2   0.59  0.17 

  s(α) p=3   0.56  0.16 

Choi 1994 β=0 w1 l=2 0.47     

Power remains low for other 
lags on w2 test 

   w1 l=3 0.38     

   w1 l=4 0.27     

   w1 l=5 0.06     

  β≠0 w2 l=1 0.08     

Note: * θ values given here are implicit of many of these models.  

Table A.1 continued 


