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Analytic Hierarchy Process (AHP) is one of the most popular multi-attribute decision 
aid methods. However, within AHP, there are several competing preference 
measurement scales and aggregation techniques. In this paper, we compare these 
possibilities using a decision problem with an inherent trade-off between two criteria. 
A decision-maker has to choose among three alternatives: two extremes and one 
compromise. Six different measurement scales described previously in the literature 
and the new proposed logarithmic scale are considered for applying the additive and 
the multiplicative aggregation techniques. The results are compared with the standard 
consumer choice theory. We find that with the geometric and power scales a 
compromise is never selected when aggregation is additive and rarely when 
aggregation is multiplicative, while the logarithmic scale used with the multiplicative 
aggregation most often selects the compromise that is desirable by consumer choice 
theory. 
 
Keywords: Decision Analysis, Multiple criteria analysis, Utility theory, Additive 
AHP, Multiplicative AHP, Logarithmic scale 

1. Introduction 

Analytic Hierarchy Process (AHP) (Saaty, 1977; Saaty, 1980) is a multi-criteria 
decision method applied to a wide variety of situations with impressive results. The 
Journal of the Operational Research Society has recently reported several successful 
applications in different areas: Information Systems (Ahn and Choi, 2008), Supply 
Chain Management (Sha and Che, 2006; Akarte et al, 2001; Yeo et al, 2009), Public 
services (Mingers et al, 2007; Fukuyama and Weber, 2002), Health (Lee1 and Kwak, 
1999; Li and al., 2008), Strategy (Leung and al., 2006), E-learning (Tavana, 2006), 
Defence (Wheeler 2006) and Manufacturing (Bañuelas and Antony, 2007). There are 
also several surveys on the success of AHP (Forman and Gass, 2001; Golden et al., 
1989; Ho, 2008; Kumar and Vaidya, 2006; Liberatore and Nydick, 2008; 
Omkarprasad and Sushil, 2006; Vargas, 1990; Zahedi, 1986).  

Although AHP is widely used, the literature has proposed different variants for the 
measurement scale and the aggregation of the local priorities, which may lead to 
different final results. This may be an advantage as each of the different ways to 
model the problem may be suited for a different application. However, unaware users 
may apply AHP incorrectly which may result in a suboptimal recommendation.  
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In this paper, we describe a decision problem with an inherent trade-off between 
two criteria. For instance, a job may require two unrelated skills and workers tend not 
to be adept at both. We compare the additive AHP and its variant the multiplicative 
AHP (MAHP) with the utility theory to evaluate the choice among three alternatives: 
two extremes and one compromise. The utility theory has a normative approach and 
AHP a descriptive or a practical orientation (Winkler, 1990). In this paper, we aim to 
demonstrate that the aggregation method of local priorities and the measurement scale 
in AHP has a strong influence on the selection of the compromise and therefore on the 
degree of concordance with the utility theory.  

2. AHP  

2.1. General description of the method 

At the heart of the AHP method are the comparison matrices A = (ai,j), i,j = 1,…, n, 
where ai,j are pairwise comparisons from alternatives/criteria given by the decision-
maker on a verbal scale of nine levels (Table 1). Local priorities l l = l i, i = 1,…, n are 
then calculated from these comparison matrices. Finally, the local priorities are 
weighted with the criterion priority and aggregated to give the global priority pi of the 
alternatives. 

 
Levels Definitions 

A Equal importance 
B Equal - weak importance 
C Weak importance 
D Weak – strong 
E Strong importance 
F Strong - very strong importance 
G Very strong importance 
H Very strong - absolute importance 
I Absolute importance 

Table 1: The nine levels of the comparison scale, including the intermediate levels B, 
D, F, and H. 

 
An AHP matrix is said perfectly consistent if for all comparison ai,j respect the 

following transitivity (1) and reciprocity (2) rules: 

ai,j = ai,k · ak,j  where i, j and k are any alternatives of the matrix  (1) 
 

ai,j = 
ija ,

1
 (2) 

However, AHP accepts some inconsistencies in the entries, which happens in practice. 
A consistency check must be applied. Saaty (1977, 1980) has proposed the 
consistency index (CI): 
 

 CI = 
1

max

−

−

n

nλ
, (3) 

 where  n  :  dimension of the matrix 
  λmax :  maximal eigenvalue 
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The calculated priorities are plausible only for slightly inconsistent matrices: if the 
CR (4), ratio of CI and RI (the average CI of 500 randomly filled matrices), is less 
than 10%. 
 

 CR =  
RI

CI
, (4) 

 where  CR: Consistency Ratio 
  RI:  Random Index (Table 2) 
 
Saaty (1977) calculated the following random indices: 
 

N 3 4 5 6 7 8 9 10 
RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Table 2: Random indices 
 

2.2 Measurement scales 

One of AHP’s strengths is the possibility to evaluate quantitative and also 
qualitative criteria and alternatives on the same preference scale, namely a verbal 
scale. The use of verbal responses is intuitively appealing, user-friendly and more 
common in our everyday lives than numbers. It may also allow some ambiguity in 
non-trivial comparisons. To derive priorities, the verbal comparisons must be 
converted into numerical ones. In Saaty’s AHP the verbal statements are converted 
into integers from one to nine. Theoretically there is no reason to be restricted to these 
numbers. Therefore, other scales have been proposed (Table 3). Harker and Vargas 
(1987) have evaluated a quadratic and a root square scale in only one simple example 
and argued in favour of Saaty’s 1 to 9 scale. However, one example seems not enough 
to conclude the superiority of the 1-9 linear scale. The entered comparisons are not 
unique: they depend on the decision-maker. Lootsma (1989) argued that the geometric 
scale is preferable to the 1-9 linear scale. Salo and Hämäläinen (1997) point out that 
the integers from one to nine yield local weights, which are unevenly dispersed, so 
that there is lack of sensitivity when comparing elements, which are preferentially 
close to each other. Based on this observation, they propose a balanced scale where 
the local weights are evenly dispersed over the weight range [0.1, 0.9]. Earlier, Ma 
and Zheng (1991) have calculated an inverse linear scale, which also gives more 
uniformly distributed priorities than the 1-9 scale. For our study, we will also propose 
a logarithmic scale, which is smoother for high values. Figures 1 and 2 show the used 
scales in the study.  
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Scale  Definition Parameters 
Linear  
(Saaty, 1977) 

c = a · x a > 0 ; x = 1, 2, …, 9 

Power 
(Harker and Vargas, 1987) 

c = xa a > 1 ; x = 1, 2, …, 9 

Geometric  
(Lootsma, 1989) 

c = a x-1 a > 1 ; x = 1, 2, …, 9 

Logarithmic 
 

c = log a(x+1) a > 1 ; x = 1, 2, …, 9 

Root square 
(Harker and Vargas, 1987) 

c = a x  a > 1 ; x = 1, 2, …, 9 

Inverse linear 
(Ma and Zheng, 1991) 

c = 9/(10-x) x = 1, 2, …, 9 

Balanced 
(Salo and Hämäläien, 1997) 

c = w/(1-w) w = 0.5, 0.55, 0.6,…, 0.9 

Table 3:  Different scales for comparing two alternatives (for the comparison of A and 
B, c=1 indicates A≈B; c>1 indicates A>B; when A<B, the reciprocal values 
1/c are used). 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

Values

R
at

in
g

s

Linear

Power

Geometric

Logarithmic  

Root square  

Inverse linear  

Balanced  

 
Figure 1:  Graph of the judgement scales used in the study, a = 1 for the linear scale 

and a = 2 for all other scales. 
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Figure 2:  Graph of the judgement scales without the geometric and power scales, a = 
1 for the linear scale and a = 2 for all other scale 

 
Among all the proposed scales, the linear scale with the integers one to nine and 

their reciprocals has been used by far the most often in applications. Saaty (1980; 
1991) advocates it as the best scale to represent weight ratios. Combined with cluster 
techniques the upper limit scale problem can be avoided (Saaty 1991; Ishizaka 2004a, 
2004b). However, the cited examples deal with objective measurable alternatives like 
the areas of figures, whereas AHP treats mainly decision processes on subjective 
issues. We understand the difficulty of verifying the effectiveness of scales through 
subjective issues. Salo and Hämäläinen (1997) demonstrate the superiority of the 
balanced scale when comparing two elements. The choice of the “best” scale is a very 
heated debate. Some scientists agree that the choice depends on the person and the 
decision problem (Harker and Vargas, 1987; Pöyhönen and al., 1997). Our paper aims 
to shed some light on the choice of the appropriate scale and aggregation technique 
(see section 2.3). We will run a complete enumeration with the different type of scales 
for the additive and multiplicative AHP and then draw a parallel with the consumer 
choice theory. 

2.3 Aggregation 

 
The calculation of global priorities pi results from the aggregation of the local 

priorities l ij and the weight wj of the criterion j. Saaty (1977, 1980) has proposed an 
additive approach (5). This method has been attacked by Belton and Gear (1983) and 
Holder (1990; 1991) because the introduction of a copy of an alternative or a near 
copy (Dyer, 1990) would change the ranking. This phenomenon is called in the 
literature “rank reversal”. Saaty (1990), Harker and Vargas (1990) have defended the 
method saying that it is legitimate that the introduction of new information (even a 
copy of the existing one) is able to change the ranking.  

 
Barzilai and Golany (1994), Barzilai (1997), Triantaphyllou (2001) argued that the 

rank reversal problem in the AHP is due to an erroneous use of the additive 
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aggregation method. Instead the multiplicative method (6) (Lootsma et al., 1990; 
Lootsma, 1993; Leskinen and Kangas, 2005) should be used. Contrary to the additive 
AHP, where the sum of the criteria weights is equal to the unity ∑ =

j
jw 1, the 

multiplicative AHP does not require this normalisation. 

∑ ⋅=
j

jiji lwp ,   (5) 

∏=
j

w
jii

jlp ,  (6) 

where pi:  global priority of the alternative i 
  l i,j: local priority of the alternative i, with respect to the criterion j 
  wj: weight of the criterion j  
 
In response, Vargas (1997) gives an example where the exact weight of objects can 

be retrieved only by an additive aggregation of the local comparisons. Due to its rank 
reversal preservation and its non-linear properties (Triantaphyllou and Baig, 2005), 
the multiplicative AHP (MAHP) seems to receive a growing attention. In particular 
Stam and Duarte Silva (2003) notice that the additive AHP tends to overweight 
extreme alternatives, which seems not to be the case for the MAHP. He suggests that 
further research should be done to confirm these observations. It is the aim of this 
paper. 

3. Theory of consumer choice 

3.1 Description of the problem 

For our study, we choose a simple multi-criteria decision problem. This simple 
problem is not only easy to study but it also captures the essence of the choice 
problem for which AHP and MAHP is used. Moreover, if AHP fails to handle 
adequately this simple problem, it is doubtful that it will be able to handle a more 
difficult one.  

The problem is as follows. A company has to hire a new sales engineer. The 
position requires both engineering and sales skills. Three candidates with different 
profiles are available (see Table 4).  

Candidates Engineering skills Sales skills 
A High Low 
B Medium Medium 
C Low High 

Table 4: Candidates A, B, C with their respective knowledge.  

Which candidate will be selected? The consumer choice theory sets three main 
axioms about the preferences of the consumer: 

- Rationality: The consumer preferences are complete (no preferences are undefined) 
and consistent (satisfying equations (1) and (2)).2   

- Monotonicity: The consumer prefers to hire a candidate who has more skill than 
less, where skill is being considered as a normal aptitude or attribute. For example, 

                                                 
2 AHP only partially requires this hypothesis 
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if two candidates have the same skill in sales but the first has more ability in 
engineering than the second one, the first candidate will be preferred. The 
hypothesis implies that the indifference curves have a negative slope like in the 
Figure 3. 

- Convexity: Simply, the consumer prefers a mix to the extremes. For instance, if a 
consumer is indifferent to either 10 apples or 10 oranges, then the consumer prefers 
5 apples and 5 oranges to either of these options. The hypothesis is discussed in 
introductory economic textbooks as the “law of diminishing marginal rates of 
substitution”. It implies that the indifference curves are upward bowed (all points on 
a line between two points on an indifference curve must be on a higher indifference 
curve) like in the Figure 3.  

 
Indifference curves connect all alternatives (represented by vectors of attributes) 

which leave the consumer indifferent. In Figure 3, the set of curves U1, U2 and U3 
have three different inclinations. They represent the utility of three different people. 
Curves U1 are the indifference curves for a person having symmetric preferences 
between the importance of criteria skill in sales and skill in engineering for the 
position to fill. Curves U2 correspond to a big importance in the criterion skill in 
engineering and curves U3 indicate a preference for the skill in sales.  
 
 

 
 
 
 
 
 
 

 
 

 

Figure 3: Three types of indifference curves. 

The employer will choose the candidate on the highest indifference curve. For 
example, in Figure 4, the candidate B is preferred because he lies on a higher 
indifference curve than A and C. 
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Figure 4:  The candidate B is preferred because he lies on a higher utility curve of the 
employer. 

3.2 Decision with the consumer choice theory 

We consider the problem of Table 4, where a decision-maker has to decide 
between three candidates A, B, and C for a position to fulfil. They have different 
skills in engineering and sales. Let eng

Is  and sales
Is  be the objectives measures of their 

engineering and sales skills for I, one of the three candidates. From Table 4: 

 eng
As  > eng

Bs  > eng
Cs  (7) 

 sales
As  < sales

Bs  < sales
Cs  (8) 

In addition we assume that the compromise alternative is symmetric with respect to 
both skill variables, so 

 eng
Bs  = sales

Bs  (9) 

We assume the decision-maker to have a standard utility function u (
eng
Is ,

sales
Is ) 

which satisfies the assumptions of Table 4 and depends only on the two engineering 

and sales skills. The candidate I with the highest utility u (
eng
Is ,

sales
Is ) will be 

preferred. 
 

In order to use AHP, the decision-maker has to estimate the relative skill  

x
J

x
Ix

JI
s

s
c =,  

of candidate I in comparison to candidate J with respect to his ability in skill x. We 

are aware that the x JIc ,  are subjective and potentially inaccurate estimates which must, 

moreover be mapped into a measurement scale, for example the 1/9, 1/8, …1/2, 1, 2, 
…,8 ,9 Saaty scale. Hence, we use an inverse mapping that goes from the 
measurement scale into the ratio of skills. We denote this inverse mapping as z(x) 
with the requirement that z(x)>0, z'(x)>0 and z(x)=1/z(1/x) (which implies z(1)=1). 
For most of the analysis, we use the function z(x)=x. 
 
The inequalities (7) and (8) for the absolute skill measures imply: 

S
ki

ll 
in

 s
al

es
 

C 

B 

A 

Skill in engineering 
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 eng
CAc ,  > eng

CBc ,  > 1, eng
BAc ,  >1 (10)  

sales
CAc ,  < sales

CBc ,   < 1, sales
BAc ,  < 1 (11) 

Since (1), the transitivity ruleeng
CAc ,  = eng

BAc ,  · eng
CBc ,  holds for known skills and since 

both factors in the product are larger than one, we obtain  
eng

CAc , > max{ eng
BAc , ; eng

CBc ,  } (12) 

As the transitivity rule is too rigid in our inconsistent world, we will throughout 
impose the weak consistency requirement (12).  

Identically for the criterion skill in sales, we can deduce the weak consistency 
requirement: 

sales
CAc , < min{ sales

BAc , ; sales
CBc , } (13) 

For our study, we assume that the skill in engineering and in sales have the same 
utility. In AHP this means that the criteria skill in sales and skill in engineering are of 
equal weight. 

The comparison x JIc , between candidate I and J as regards to the criterion x can 

take seventeen values (Table 1). If we evaluate three alternatives with AHP, 173 = 
4913 different matrices are possible. This result must then be squared because we 
have two criteria. However, most of these matrices would be highly inconsistent and 
do not reflect the problem described in Table 4. To be consistent with our setup, we 
include the conditions (9), (10), (11), (12), (13) and we consider only acceptable 
inconsistent matrices (consistency ratio C.R.< 0.1).  

Moreover, the number of cases where the compromise B is selected depends on the 
utility function. We now describe four special cases: the Cobb-Douglas utility 
function, the perfect complements, perfect substitutes, and the geometric mean.  

In accordance with standard consumer theory, we would expect that in most cases 
the consumer would prefer the compromise alternative B.  
 

a) Cobb Douglas  

The Cobb Douglas utility function is the most widely used utility function in 
applied and theoretical economics. Cobb-Douglas preferences have convex 
indifference curves and are represented by the utility function 

( ) dcxxxxu 2121, = ,  (14) 

where c and d are strictly positive numbers. 

In our study, we assume that the skill in engineering and in sales have the same 
weight in the consumer’s preferences, that is, c = d. We can also normalize c = d  = 1 
without loss of generality. 

With the Cobb Douglas utility function, the compromise candidate B will be 
preferred by the decision-maker if: 

[ ][ ] [ ][ ] [ ][ ][ ]sales
C

eng
C

sales
A

eng
A

sales
B

eng
B ssssss ;maxf  (15) 

The condition (15) can be decomposed in two equations, one for each candidate: 

[ ][ ] [ ][ ]sales
A

eng
A

sales
B

eng
B ssss f  AND [ ][ ] [ ][ ]sales

C
eng
C

sales
B

eng
B ssss f  



 10

and by grouping the same skills, we obtain: 

















eng
B

eng
A

sales
A

sales
B

s

s

s

s
f  AND 
















sales
B

sales
C

eng
C

eng
B

s

s

s

s
f . 

For any particular inverse mapping z(c12 )=s1/s2 from measurement scales to ratio of 
skills these become: 

)()( ,,
eng

BA
sales

AB czcz 〉  AND )()( ,,
sales

BC
eng

CB czcz 〉 .  

Since z is positive and increasing, we have: 
eng

BA
sales

AB cc ,, 〉  AND sales
BC

eng
CB cc ,, 〉  (16) 

These conditions are the same for any interpretation the user may have for the 
comparisons entered into AHP (represented by different z functions). For the above, 
we do not need the symmetry assumption in (9).  This is because the Cobb Douglas 
utility function is the only utility function where the preference can be expressed 
solely in terms of the relative skills Xjic , . Because AHP only works with these ratios, 

the Cobb Douglas utility function is hence fully compatible with the AHP approach.  
Under the conditions (10-13) and (16), the compromise B would be selected 2379 

times (using code similar to Figure 5).  
 
b) Perfect complements 

Perfect complements are goods that are always consumed together in fixed 
proportions. For example, we buy a left and a right shoe. The indifference curves are 
L-shaped. The utility function describing perfect complement preferences is given by: 

( ) [ ]2121 ,min, xbxaxxu ⋅⋅= ,  (17) 

where a and b are positive numbers that indicate the proportions in which the goods 
are consumed (e.g., if a=1 and b=2, then one would consume two of good x1 for 
every one of good x2). 

 
If the decision-maker has perfect-complement preferences (with a=b), then he 

would strictly prefer compromise candidate B over the other candidates if  

[ ] [ ] [ ][ ]sales
C

eng
C

sales
A

eng
A

sales
B

eng
B ssssss ,min,,minmax,min > ,  (18) 

Condition (18) can be easily separated into two conditions, one for each 
alternative:  

[ ] [ ]sales
A

eng
A

sales
B

eng
B ssss ,min,min >  AND [ ] [ ]sales

C
eng
C

sales
B

eng
B ssss ,min,min >  (19) 

Because of condition (9), condition (19) is weaker than conditions (7) and (8). We 
therefore use solely the (10-13) and the consistency (C.R. < 0.1) conditions as 
requirement for the selection of candidate B (Figure 5). With the perfect complements 
condition, the candidate B is preferred in all possible 12650 scenarios.  
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winB = 0 // counter B wins 
FOR eng

BAc ,  = 2 TO 8 // eng
BAc ,  > 1 

  FOR eng
CBc ,  = 2 TO 8 // eng

CBc ,  > 1 

    FOR eng
CAc ,  = 3 TO 9 

      FOR sales
BCc , =2 TO 8 // sales

BCc ,  > 1 

        FOR sales
ABc , = 2 TO 8 // sales

ABc ,  > 1 

          FOR sales
ACc , =3 To 9 

      IF eng
CAc , > eng

BAc ,  AND eng
CAc , > eng

CBc ,  AND // equation (12) 

     sales
ACc , > sales

ABc , AND sales
ACc , > sales

BCc ,  THEN // equation (13) 

  IF CR< 0.1 THEN 
        winB = winB + 1 
         END IF 

            END IF 
          END FOR  
        END FOR 
      END FOR 
    END FOR 
  END FOR 
END FOR 

Figure 5:  Pseudo code for the calculation of the maximum numbers of B wins. 

c)  Perfect substitutes  

As both skills have the same importance, indifference curves of two perfect 
substitutes goods are all parallel straight lines with slope of -1. Candidate B is 
preferred if and only if  

[ ]eng
C

sales
C

eng
A

sales
A

eng
B

sales
B ssssss ++>+ ;max  (20) 

Using condition (7) – (9) we can express this condition as 

2<+ eng
AB

sales
AB cc   and 2<+ eng

CB
sales
CB cc  (21) 

With the conditions (10-13), (21), the consistency condition, and the inverse mapping 
function z(x)=(A-1+x)/A for (x>1) and A/(A-1+(1/x)) for x<1 (where A=2, 3, 4, ...), 
B is selected in 225 cases for A=2, 484 cases for A=3 and 729 cases for A=4 (see 
Figure 6 for the pseudo code).  
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winB = 0 // counter B wins 
FOR eng

BAc ,  = 2 TO 8 // eng
BAc ,  > 1 

  FOR eng
CBc ,  = 2 TO 8 // eng

CBc ,  > 1 

    FOR eng
CAc ,  = 3 TO 9 

      FOR sales
BCc , =2 TO 8 // sales

BCc ,  > 1 

        FOR sales
ABc , = 2 TO 8 // sales

ABc ,  > 1 

          FOR sales
ACc , =3 To 9 

      IF z( eng
CAc , )>z( eng

BAc , ) AND z( eng
CAc , )>z( eng

CBc , ) AND // equation (12) 

      z( sales
ACc , )>z( sales

ABc , )AND z( sales
ACc , )>z( sales

BCc , ) AND  // equation (13) 

    z( sales
ABc )+z( eng

ABc )<2 AND z( sales
CBc )+z( eng

CBc )<2 THEN // equation (21) 

  IF CR< 0.1 THEN 
        winB = winB + 1 
         END IF 

            END IF 
          END FOR  
        END FOR 
      END FOR 
    END FOR 
  END FOR 
END FOR 

Figure 6:  Pseudo code for the calculation of the maximum numbers of B wins. 

 
d) Geometric mean  

While the Geometric mean does not have a direct relationship to a utility function, 
it has a nice intuitive property as a compromise level. In the problem of Table 4, if the 
advantage of candidate A over B in engineering is small compared to that of B over C 
is, we can write the inequality:  

eng
BAc ,  < eng

CBc ,   (22) 

If the corresponding statement holds with respect to sales skill (23), then B is a 
very attractive compromise candidate. 

sales
BCc ,  < sales

ABc ,   (23) 

In terms of absolute skills we get: 

eng
C

eng
B

eng
B

eng
A

s

s

s

s
<  

or 

eng
C

eng
A

eng
B sss ⋅> , where eng

As  > eng
Cs  

Similarly for the sales skill, 
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sales
C

sales
A

sales
B sss ⋅> , where sales

Cs  > sales
As . 

Thus B’s skill must be better than the geometric mean of the skills of the others. 
Note that for such comparisons we do not need the assumption of symmetry in (9). 

 
With the conditions (10-13), (22), (23) and the consistency condition, B is selected 

in 2115 cases (see Figure 7 for the pseudo code).  
 

winB = 0 // counter B wins 
FOR eng

BAc , = 2 TO 8 // eng
BAc ,  > 1 

  FOR eng
CBc , = 2 TO 8 // eng

CBc ,  > 1 

    FOR eng
CAc , = 3 TO 9 

      FOR sales
BCc , =2 TO 8 // sales

BCc ,  > 1 

        FOR sales
ABc , = 2 TO 8 // sales

ABc ,  > 1 

          FOR sales
ACc , =3 To 9 

            IF eng
BAc , < eng

CBc , AND sales
BCc , < sales

ABc , AND eng
CAc , >max{ eng

BAc , ; eng
CBc , }AND 

 sales
ACc ,  > max{ sales

ABc , ; sales
BCc , } AND CR< 0.1 THEN 

 winB = winB+1 
            END IF 
          END FOR  
        END FOR 
      END FOR 
    END FOR 
  END FOR 
END FOR 
Figure 7: Pseudo code for the calculation of the number of times that B is selected 
with the geometric mean condition.   

4. Decision with AHP and MAHP 

4.1 Introduction 

In this paragraph, we describe and discuss the hiring decision problem from Table 
4 solved with AHP and MAHP. All the possible matrix combinations with an 
acceptable consistency are used with each preference scale. For the MAHP four 
different weights normalisations are applied. Then, we compare the results of the 
AHP and MAHP with the consumer choice theory. The final position of the 
compromise candidate, B, is our particular interest. 

4.2 Description 

All matrices modelling our problem (i.e. respecting conditions (10), (11), (12), (13) 
and C.R.<0.1) are considered with the seven measurement scales (Table 3) and the 
two different aggregation methods. Table 5 indicates the parameters used in our study. 
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Scale type Parameters 
Linear a = 1 
Geometric a = 2 
Power a = 2 
Logarithmic a = 2 
Root square a = 2 

Table 5: Parameters used with the different scales. 
 

The priorities are calculated with the normalised geometric mean, namely, 

 =il n

n

j
jic∏

=1
, /∑

=

n

j
jl

1

 (24) 

where l i is the priority of the alternative i 
   ci,j is the comparison between i and j 
   n  is the dimension of the matrix 
 
This calculation provides similar results to the eigenvalue method for matrices of 

dimension three (Saaty and Vargas, 1984b; Ishizaka, 2004b, 2006). 

4.3 Results 

We have seen with the standard consumer theory in section 3.2, that we would 
expect that in many cases the consumer would prefer the compromise alternative B. 
The choice of a power or geometric scale excludes definitely (for AHP) or almost 
definitely (for MAHP) the compromise alternative (see Table 6). These scales are too 
extreme. With the other scales, the MAHP captures the obvious cases where B should 
win (higher scores than the geometric mean and the Cobb-Douglas). However it is 
still below the result of the perfect complements. The normalisation of the criteria 
weights has little impact on the final result. The selection of B with the traditional 
AHP is much more difficult.  

 
Scale type Additive AHP Multiplicative AHP 

5.0=∑ jw  

 # of times B 
wins 

% of times B 
wins 

# of times B 
wins 

% of times B 
wins 

Geometric 0 0 1 0 
Power 0 0 129 1 
Linear 1-9 84 1 4904 39 
Logarithmic 444 4 6745 53 
Root square 845 7 6197 49 
Inverse linear 1179 9 4021 32 
Balanced 1213 10 5828 46 
Perfect substitutes 225-729 2-6 225-729 2-6 
Geometric mean  2115 17 2115 17 
Cobb Douglas 2379 19 2379 19 
Perfect complements 12650 100 12650 100 
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Scale type Multiplicative AHP 
1=∑ jw  

Multiplicative AHP 
2=∑ jw  

Multiplicative AHP 
4=∑ jw  

 # of times 
B wins 

% of times 
B wins 

# of times 
B wins 

% of times 
B wins 

# of times 
B wins 

% of times 
B wins 

Geometric 0 0 0 0 0 0 
Power 130 1 128 1 128 1 
Inverse linear 4021 32 4040 32 4039 32 
Linear 1-9 4918 39 4877 39 4908 39 
Balanced 5871 46 5888 47 5954 47 
Root square 6227 49 6242 49 6260 49 
Logarithmic 6750 53 6760 53 6772 54 

Table 6:  Number of combinations where the compromise alternative is selected under 
AHP. 

Saaty’s linear scale 1 to 9 gives few chances for the alternative B to be selected. 
Only 84 possibilities out of 12650 would yield B, which appears to be an 
unreasonable result. Furthermore, in all the 84 cases, B yield a special configuration 

with the necessary but non sufficient condition c
eng

BA,
= 2 and c

sales

CB,
= 1/2 (see section 

4.4).  
The root square scale (845 selections for B), the balanced scale (1213) and the 

inverse linear scale (1179) offer more possibilities that the compromise alternative 
will be selected but still under the geometric mean and Cobb Douglas criteria given 
by the consumer choice theory. 

4.4 Example of compromise selection with Saaty’s scale 

The compromise will be selected only in a few cases with the linear scale 1 to 9 

and under the non sufficient condition that c
eng

BA,
= 2 and c

sales

CB,
= 1/2. Figure 8 gives 

one example of them. 

 
  Matrix for the engineering skill Matrix for sales skill  
            (C.R. = 0.01)    (C.R. = 0.03) 
  
Figure 8:  Example where the compromise candidate B is the best alternative (A = 

0.329; B = 0.343; C = 0.328). The consistency ratios (C.R.) are acceptable. 

 
The global priorities are the average of the priorities across both skills: 

A = 1/2·0.606 + 1/2·0.061 = 0.329 

B = 1/2·0.333 + 1/2·0.353 = 0.343 (winner)  

C = 1/2·0.061 + 1/2·0.585 = 0.328 

 A B C priorities 
A 1 2 9 0.606 
B ½ 1 6 0.333 
C 1/9 1/6 1 0.061 

 A B C priorities 
A 1 1/7 1/8 0.061 
B 7 1 1/2 0.353 
C 8 2 1 0.586 
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4.5 Surprising example of compromise rejection with Saaty’s scale 

AHP with Saaty’s linear scale 1 to 9 prefers the extremes even if a compromise 
offers a better solution. We have three candidates: 

• A is very good in sales but very poor in engineering 

• C is very good in engineering but very poor in sales 

• B is very good in sales but not as good as A and he is very good in engineering 
but not as good as C. 

With the theory of consumer choice (see Section 3), the candidate B offers a 
clearly higher utility (under convex or linear preferences) and should be chosen. 

One plausible representation in matrix comparisons could be given by Figure 9.  

 
Matrix for the engineering skill  Matrix for sales skill  
            (C.R. = 0.08)                 (C.R. = 0.08)  

 

Figure 9: Example where the compromise candidate B should be the best alternative 
but is the worst classified (A=0.0.355; B=0.290; C=0.355). The consistency 
ratios (C.R.) are acceptable. 

 
The global priorities of this example are: 

1. A with 0.355      
2. C with 0.355  
3. B with 0.290  

AHP does not classify the candidate B in first place but in last place! In order to 
verify the robustness of the results, a sensitivity analysis was performed (Figure 10). 
The compromise alternative B was never selected in this sensitivity analysis.  
 
 
 
 
 

 A B C priorities 
A 1 1/7 1/9 0.055 
B 7 1 1/3 0.290 
C 9 3 1 0.655 

 A B C priorities 
A 1 3 9 0.655 
B 1/3 1 7 0.290 
C 1/9 1/8 1 0.055 
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Figure 10: Sensitivity analysis. The left vertical axis represents the weight of the 
criteria and the right vertical axis gives the priority of each alternative. 
The candidate B is never selected: his line is never on top across any part 
of the graph. 

5. Conclusion 

In this paper we have shown that the additive AHP will overrate alternatives with 
extreme ratings and penalize balanced ones. In some cases it may be mathematically 
impossible for AHP to select a compromise that achieves the highest overall ratings. 
This makes little sense from a practical point of view.  

The impact of the preferences scales is different with additive AHP from 
multiplicative AHP. Using additive AHP, the linear scale 1 to 9 offers very few 
possibilities for the compromise to be selected. These scales should be avoided unless 
we face a highly concave utility function. 

The logarithmic scale, root square scale, inverse linear scale and balanced scale 
offer more possibilities for the compromise alternative to be selected, albeit they may 
ignore some superior compromises. 

We do not suggest any fixed scale as a standard tool for AHP. This is because the 
interpretation of verbal expressions varies from one person to another; however, our 
observations confirm the work of Pöyhönen and al. (1997), who do not support 
Saaty’s scale and prefer a more harmonised scale such as the balanced scale or the 
inverse linear scale.  

The multiplicative AHP, independently of the measurement scale (apart from the 
geometric scale and the power scale) and the normalisation of the weights criteria, 
ensures due consideration to the compromise alternative when compared with 
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alternatives extremely attractive with respect to one criterion and extremely 
unattractive with respect to the other. This observation is particularly true for the new 
proposed logarithmic scale. 

The examples presented here are typical of decision problems and must hence be 
taken very seriously. From the perspective of economists, decision making is almost 
always about making compromises. Trying to reach a better outcome in one 
dimension is often at the expense of achieving a worse outcome in another dimension. 
For instance, the production cost of a firm can often only be lowered at the expense of 
producing lower quality output. It is obvious to most consumers that if one chooses a 
lower-priced product (superior in the price dimension), it is usually at a lower quality 
(the other dimension): one gets what one pays for. A good decision-maker will 
typically have to correctly trade off one dimension against another. If a decision aid 
like the additive AHP tends to recommend extremes, which are good in only one 
respect, it will fail in its purpose. Thus, in addition to its property of rank reversal 
preservation, there appear to be another important advantage to using the 
multiplicative AHP. 
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