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1 Introduction

We allow environmental quality to exert a positive e�ect on the productivity

of labor in research and development (R&D) and study the implications of

this assumption for the properties of the socially optimal dynamic path of the

economy.

Our hypothesis is plausible since a clean and life-supporting environment is

an essential factor for human activity in general. In this perspective the envi-

ronment is an essential input for most creative economic activities and R&D

in particular.

Our approach di�ers from common assumptions in the literature. Models of

growth with environmental constraints emphasize the crucial role of R&D for

allowing the economy to overcome the limits imposed by these constraints

(Aghion and Howitt, 1998 ch.5). In the context of mounting pressure for en-

vironmental protection, R&D experiences a boom for two reasons. First, the

value of innovations increases to the extent that these are relatively clean (a

demand pull e�ect) (e.g. Hart 2004, Ricci 2007). Second, the (relative) pro-

duction costs fall as factors of production exit relatively dirty sectors to the

bene�t of R&D (a favorable cost shift e�ect) (e.g. Elbasha and Roe, 1996).

In our opinion an additional aspect should be considered: Environmental

degradation may increase R&D costs (an unfavorable cost shift). According to

the hypothesis that we advance in this paper, a worsening state of ecosystems

will call for a re-allocation of R&D e�ort. 2

In a number of sectors, ecosystems provide valuable services not only to pro-

2 Closest to our approach is the paper by van Ewijk and van Wijnbergen (1995).
But whereas they consider human capital accumulation as the engine of growth
and assume that pollution, as a ow, reduces the productivity of time devoted to
education, we focus on non-rival knowledge as the growth engine and consider the
damage from the stock of pollution.
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duction processes but also at the stage of design and conception. In the phar-

maceutical industry, for instance, biodiversity is a crucial asset, source of in-

spiration, and provider of test opportunities (Craft and Simpson, 2001). In

general, an environment in a stable state provides potential access to a wealth

of information and of possibilities to test theories and improve both fundamen-

tal and applied research. Environmental degradation may limit this function

of ecosystems.

Our study assumes that the environment plays two distinct roles in the eco-

nomic system. First it provides material inputs to production. Accordingly we

assume that a non-renewable natural resource is a necessary input in manu-

facturing. Second, environmental quality is supposed to be a necessary input

in R&D.

There is a trade-o� between these two functions of the environment. The use

of the natural resource implies polluting emissions that stock up and worsen

the environmental quality. This impacts R&D negatively and thus potentially

decreases economic growth.

Given that the polluting natural resource is non-renewable, its use must ul-

timately decline and the ow of polluting emissions shrink. Environmental

quality will thus ultimately recover and approach some upper bound. Such

an environmental Kuznets-curve suggests that there is scope for intertempo-

ral substitution of the R&D e�ort, leading to richer dynamics than in related

literature (e.g. Schou 2000).

To be able to study in isolation the role of environmental quality as a research

asset, we abstract from any direct e�ect of environmental quality on social

welfare, since in this case there is additional room for intertemporal substitu-

tion (e.g. Michel and Rotillon, 1995). For the same reason, we also abstract

from any direct e�ect of environmental quality on total factor productivity in

manufacturing.
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With this framework, we obtain a �ve-dimensional dynamic system with R&D

e�ort, depletion rate, resource stock, environmental quality, and the relative

shadow price of environmental quality as endogenous variables. After present-

ing the model we derive the necessary conditions for optimality and study

both local and global dynamics of the implied dynamic system.

We �nd that, as compared to the case where R&D is not directly a�ected by

environmental quality, it is optimal to postpone extraction of the resource and

that the optimal time path of R&D is non-monotonic. R&D starts above its

asymptotic level but later undershoots it.

2 The model

Let L denote the constant size of population (and labor force). Consider the

social planner's problem: choose (LY t; Rt)
1
t=0 so as to

maxU0 =
Z 1

0

c1��t � 1
1� � Le��tdt s.t. (1)

ct = Yt=L = A
�
t L

�
Y tR

1��
t =L; 0 � LY t � L; Rt � 0; (2)

_At = AtE
"
t (L� LY t); At � 0; A0 > 0; given, (3)

_St = �Rt; St � 0; S0 > 0 given, (4)

_Et = b
�
�E � Et

�
� aRt; 0 < Et � �E; E0 given, (5)

where L; �; �; �; ; "; a; b; �E > 0 and � 2 (0; 1) : The criterion function, (1),

discounts future utility from per-capita consumption, c; by the rate of time

preference, �. Production of a homogeneous manufacturing good, Y , employs

two inputs: labor, LY , and a ow of an extracted resource, R; under constant

returns to scale. Total factor productivity, A�, is increasing in the stock of

technical knowledge, A, which grows through R&D according to (3).

The productivity of R&D is a�ected by two public goods: the stock of knowl-
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edge, proxied by cumulative R&D output, A, (see Romer, 1990); and the state

of environmental quality, E.

The stock of the non-renewable resource is denoted by S and decreases over

time, due to resource extraction, according to (4). Together with St � 0 this

implies the restriction Z 1

0
Rtdt � S0; : (6)

Environmental quality evolves according to (5): it falls with extraction, R, and

regenerates spontaneously at rate b. The maximum environmental quality is

a given positive constant, �E. An ecological threshold, E = 0, exists which, if

transgressed, implies disaster

3 Optimal dynamics

Until further notice, all variables (but not growth rates) are assumed positive.

We suppress explicit dating of the variables. Let gx � _x=x denote the growth

rate of any variable x.

The current-value Hamiltonian for problem (1)-(5) is

H =
c1�� � 1
1� � L+ �1AE

"(L� LY )� �2R + �3
h
b
�
�E � E

�
� aR

i
;

where �1, �2, and �3 are the shadow prices of the state variables, A; S; and E;

respectively. Necessary �rst-order conditions for an interior optimal solution

are:
@H

@LY
= c���

Y

LY
� �1AE" = 0; (7)

@H

@R
= c�� (1� �) Y

R
� �2 � a�3 = 0; (8)

@H

@A
= c���

Y

A
+ �1E

"(L� LY ) = ��1 � _�1; (9)

@H

@S
= 0 = ��2 � _�2; (10)
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@H

@E
= �1"

_A

E
� �3b = ��3 � _�3: (11)

De�ning h � �3=�2 (the shadow price of environmental quality in terms of

the resource) and u � R=S (the depletion rate), we can derive the following

dynamic system from the optimality conditions (7)-(11) and equations (2)-

(5): 3

_S = �uS; (12)

_h = bh� " �uS

(1� �)LYE
(1 + ah)(L� LY ): (13)

_E = b( �E � E)� auS: (14)

_u=

(
�u� (1� �) �"b(

�E

E
� 1) +

"
1� �(1� �)
1� �

L

LY
� �

1� �

#
�"a

uS

E
(15)

+ (1� �)�E"L� [1� �(1� �)] b ah

1 + ah
� �

)
u

�
;

_LY =

(
�
�

�
E"LY � [� + (1� �)�] "b(

�E

E
� 1) +

�
(1� �) � L

LY
+ �

�
"a
uS

E
(16)

+ (1� �)�E"L� (1� �) (1� �)b ah

1 + ah
� �

)
LY
�
:

Equations (12)-(16) constitute a �ve-dimensional dynamic system in S; h; E;

u; and LY : There are two pre-determined variables, S and E; and three jump

variables, LY ; u; and h:

A viable path (ensuring that Y > 0 for all t) is incompatible with a steady

state. In fact constancy of E requires, by (5), R = b( �E�E)=a constant, which

contradicts (6) unless R = 0, thus Y = 0. We study instead a viable path that

converges towards an asymptotic steady state (S�, h�, E�, u�, L�Y ) for t!1.

3 Detailed derivation of the results of this article can be found in Groth and Ricci
(2009).
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If the following parametric restriction is satis�ed

(1� �)� �E"L < � < � �E"L; (A)

the system admits an asymptotic steady state where

S� = h� = 0; E� = �E; u� =
1

�

h
(� � 1)� �E"L+ �

i
> 0; (17)

L�Y =
�

�� �E"

h
(� � 1)� �E"L+ �

i
2 (0; L); (18)

g�R = g
�
S = �u� < 0; (19)

g�A =
1

�

(
[� + (1� �)�]  �E"L� �

�
�

)
> 0; (20)

g�c = g
�
Y =

1

�
(� �E"L� �) > 0: (21)

Linearizing the system we �nd that the Jacobian matrix evaluated at the

asymptotic steady state has two negative and three positive eigenvalues. Hence,

there exists a neighborhood of (S�; E�) such that when (S0; E0) belongs to this

neighborhood, there is a unique path (St; ht; Et; ut; LY t) converging towards

the steady state.

To study the qualitative features of the global dynamics, we have run simu-

lations for system (12)-(16) using the relaxation algorithm (Trimborn et al.,

2008). Figures 1-2 show results from a simulation, based on the following pa-

rameter values: � = 2:5, L = 1, � = :75, � = :8,  = 1:0; S0 = 1:0, E0 = �E

= 1:0; a = :05, b = :01, and � = :02. The qualitative features of the results

hold for alternative values of parameters. The case with a productive role of

E in R&D (" = :25) is compared with the case where labor productivity in

R&D is independent of environmental quality (" = 0).

As expected, resource depletion implies an environmental Kuznets curve, with

an initial degradation of environmental quality followed by a recovery phase
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(left-hand panel of Figure 1). Similar dynamics for environmental quality hold

in the case " = 0. As indicated by the left-hand panels of Figure 2, this

non-monotone evolution of E does not a�ect the optimal dynamics of con-

trol variables if " = 0. When instead E is a productive asset in R&D, its

non-monotone optimal path has implications for the optimal dynamics of the

control variables u and LY as it can be seen from the right-hand panels of

Figure 2.

First, notice from Figure 2 that with " > 0; the resource depletion rate is

persistently lower than in the case with " = 0. This is due to extraction

having a greater social cost when " > 0. Not only does extraction now

imply less resource availability in the future. It also lowers productivity of

R&D.Interestingly, the optimal R&D e�ort evolves non-monotonically over

time. As shown in the right-hand panel of Figure 1, R&D e�ort starts above

its asymptotic level but then it undershoots it. This is the way the system

strikes a balance between the incentive to take advantage of research oppor-

tunities when they are favorable and the desire for consumption smoothing.

When environmental quality is worst, R&D has not yet reached its trough.

This lag is due to the time-consuming nature of changes in the stock variable

A (which governs total factor productivity in production).

4 Conclusion

Sustained growth is feasible and optimal even though the R&D sector rests on

the natural capital. This is due to the fact that services from the environment

to R&D are modeled as a renewable resource. The presence of this non-rival

input to R&D a�ects the optimal policy. First, the rate of extraction of the

polluting resource should be relatively low during the entire adjustment pe-

riod. Second, R&D e�ort should evolve non-monotonically: given that resource

exploitation implies �rst a deterioration and then a recovery of environmental

quality, R&D e�ort adapts to changes in labor productivity in this sector.

8



References

Aghion, P. and P. Howitt, 1998, Endogenous Growth Theory (The MIT Press,
Cambridge MA).

Craft, A. and D. Simpson, 2001, The Value of Biodiversity in Pharmaceuti-
cal Research with Di�erentiated Products, Environmental and Resource Eco-
nomics 18, 1-17.

Elbasha E, and T. Roe, 1996, On Endogenous Growth: The Implications of
Environmental Externalities, Journal of Environmental Economics and Man-
agement 31, 240-268.

Groth, C. and F. Ricci, 2009, Environmental quality as a research asset in
an optimal growth model with polluting non-renewable resources, paper pre-
sented at the EAERE Conference in Amsterdam.

Hart, R., 2004, Growth, Environment and Innovation: A Model with Produc-
tion Vintages and Environmentally Oriented Research, Journal of Environ-
mental Economics and Management 48, 1078-1098.

Michel, P. and G. Rotillon, 1995, Disutility of Pollution and Endogenous
Growth, Environmental and Resource Economics 6, 279-300.

Romer, P., 1990, Endogenous Technological Change, Journal of Political Econ-
omy, 98, S71-102.

Ricci, F., 2007, Environmental Policy and Growth when Inputs Are Di�er-
entiated in Pollution Intensity, Environmental and Resource Economics 38,
285-310.

Schou, P., 2000, Polluting Non-Renewable Resources and Growth, Environ-
mental and Resource Economics, 16, 211-227.

Trimborn, T., K-J. Koch and T. Steger, 2008, Multidimensional transitional
dynamics: A simple numerical procedure, Macroeconomic Dynamics 12, 301-
319.

van Ewijk, C. and S. van Wijnbergen, 1995, Can Abatement Overcome the
Conict Between Environment and Economic Growth?, Economist 143, 197-
216.

9



0 10 20 30 40 50 60
0.95

0.96

0.97

0.98

0.99

1

1.01

t

E

15 20 25 30 35 40 45 50 55
0.9995

1

1.0005

1.001

1.0015

t

(L
L

y)
/(L

L
y*

)

Fig. 1. Optimal time path of E (-x-) and R&D (L�LYL�L�Y
).

0 20 40 60
0

0.5

1

1.5

2

t

u/
u*

0 20 40 60
0

0.5

1

1.5

2

t

(L
L

y)
/(L

L
y*

)

0 20 40 60

0.97

0.98

0.99

1

1.01

t

u/
u*

0 20 40 60

1

1.01

1.02

1.03

t

(L
L

y)
/(L

L
y*

)

Fig. 2. Optimal time path of extraction (u=u�) and R&D (L�LYL�L�Y
): case " = 0

left-hand panels; case " = :25 right-hand panels.

.

10



Appendix not for publication

This appendix contains the detailed derivation of the results presented in the main

text. This appendix will be available in the working paper version published on the

internet sites of our departments. We �rst show how the dynamic system (12)-(16)

is derived, next we consider the asymptotic steady state, and then the linearization

of the system around the steady state in order to study the local dynamics. Finally

we address the question how to establish that our candidate for an optimal solution,

the unique converging path, is in fact optimal.

Dynamic system. Two growth accounting conditions obtained from the model are

useful. First, (2) implies

gc = gY = �gA + �gLY + (1� �) gR: (22)

Second, (3) gives

gA = E
"(L� LY ): (23)

Ordering (7) and log-di�erentiating wrt. time, using gc = gY ; gives

(1� �)gY � gLY = g�1 + "gE + gA; (24)

Ordering (9) yields

g�1 = �� c���
Y

�1A
� E"(L� LY ) = ��

�E"LY
�

� gA; (25)

by (7) and (23). Now substitute (25) into (24) to get

gLY = (1� �)gY � �+
�E"LY
�

� "gE: (26)

Combining (7) and (8) gives

(1� �)LY
�R

=
�2 + a�3
�1AE"

=
1 + ah
�1
�2
AE"

: (27)

Log-di�erentiating (27) wrt. time and ordering, using (9) and (10), leads to

gR = gLY �
�E"LY
�

+ "gE �
a

1 + ah
_h: (28)

Considering the stock value ratio �1A=(�3E); we have

�1A

�3E
�

�1
�2
A

hE
=

�R(1 + ah)

(1� �)LY hEE"
; (29)

in view of (27). Using R � uS, (4), and (5) immediately yield (12) and (14),
respectively.
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By (10) and (11),

gh = g�3 � g�2 = b� "
�1A

�3E
gA = b� "

�R(1 + ah)

(1� �)LY hE
(L� LY ); (30)

in view of (29) and (23). This explains (13). From (22) and (28),

gY = �gA + gLY + (1� �)
 
��E

"LY
�

+ "gE �
a

1 + ah
_h

!
: (31)

Substituting this into (26) yields

gLY =(1� �)
"
�gA + gLY + (1� �)

 
��
�
E"LY + "gE �

a

1 + ah
_h

!#

��+ �
�
E"LY � "gE

=(1� �)
"
�E"(L� LY ) + gLY �

�

�
E"LY + �E

"LY

+ (1� �)
�
"gE �

a

1 + ah
_h
��
� �+ �E

"LY
�

� "gE (by (23))

=(1� �)
�
�E"L+ gLY � (1� �)

a

1 + ah
_h
�
� �+ ��

�
E"LY

+ [(1� �)(1� �)� 1] "gE:

Solving for gLY gives

gLY =
1

�

�
(1� �)

�
�E"L� (1� �) a

1 + ah
_h
�

(32)

��+ ��
�
E"LY � [� + �(1� �)] "gE

)
:

Log-di�erentiating u � R=S wrt. t gives

gu= gR � gS = gR + u = gLY �
�E"LY
�

+ "gE �
a

1 + ah
_h+ u (from (28))

=
�

�
E"LY � (�=� + 1� �)"gE +

1� �
�
�E"L� 1� �

�
(1� �) a

1 + ah
_h� �

�

��
�
E"LY + "gE �

a

1 + ah
_h+ u (from (32))

=u� (�=� � �)"gE +
1� �
�
�E"L� (1� �

�
(1� �) + 1) a

1 + ah
_h� �

�
;
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from which follows

_u =

 
u� 1� �

�
�"gE +

1� �
�
�E"L� 1� �(1� �)

�

a

1 + ah
_h� �

�

!
u:

Taking into account (13) and (14) this can be written as (15). Finally, (32) can be

written

_LY =

"
�

�
E"LY � (

�

�
+ 1� �)"gE +

1� �
�
�E"L

�1� �
�
(1� �) a

1 + ah
_h� �

�

#
LY :

Taking into account (13) and (14) one obtains (16).

Asymptotic steady state. By the parameter restriction (A) follows u� > 0; and so
the asymptotic steady state has S� = 0; in view of (12). Since S� = 0, _h = 0
requires h� = 0; in view of (13), and _E = 0 requires E� = �E according to (14).

The remainder of (17) follows from (15). Further, by (16), L�Y must satisfy

�

�
�E"L�Y =

1

�

h
(� � 1)� �E"L+ �

i
= u�: (33)

This can be rearranged, using (17), to obtain (18). Given that u� is constant, (19)
follows from (12). Then, by (22), (17), (18), and (19) we get

g�c = g
�
Y = � �E

"(L� L�Y ) + (1� �) g�R = � �E"(L� L�Y )� (1� �)u�

=� �E"L� � �E"L�Y � (1� �)u� = � �E"L� u�

=� �E"L� 1
�

h
(� � 1)� �E"L+ �

i
;

which can be reduced to (21). Finally, (20) is obtained using (18) in (23).

Linearization. The system can be approximated around the asymptotic steady state

by a linearized system. The Jacobian matrix of the system (12)-(16), evaluated at

the asymptotic steady state, is given by

S h E u LY

_S �u� 0 0 0 0

_h �(L� L�Y ) "�u�

(1��)L�Y �E
b 0 0 0

_E �au� 0 �b 0 0

_u f[1� �(1� �)]L� �L�Y g "�au�2

(1��)� �EL�Y
� [1� �(1� �)] bau�

�
j43 u� 0

_LY [� (1� �)L+ �L�Y ] "au
�

�E�
�1��

�
(1� �)baL�Y j53 0 u�
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where j43 =
1��
�

�
�b+ � �E"L

�
"u�
�E
and j53 = f[� + (1� �)�] �b+ [� (1� �)L

+ �L�Y ]� �E
"
o
"L�Y
�� �E

.

We see the Jacobian matrix is triangular so that the eigenvalues are the entries in

the main diagonal. Two eigenvalues are negative and three are positive. This corre-

sponds to the number of pre-determined variables (S and E) and jump variables (h;
u; and LY ); respectively. 4 Yet, since the linearized system is recursive, one should

check whether also each of the subsystems in the causal ordering has a number of

negative eigenvalues equal to the number of predetermined variables in that sub-

system. Inspection of the Jacobian shows this to be the case. Thus, there exists a

neighborhood of (S�; E�) such that when (S0; E0) belongs to this neighborhood,
there is a unique path (St; ht; Et; ut; LY t) converging towards the steady state.

Checking su�cient conditions. The transversality conditions of problem (1)-(5) are

given by

lim
t!1

�1tAte
��t=0; (TVC1)

lim
t!1

�2tSte
��t=0; (TVC2)

lim
t!1

�3t( �E � Et)e��t� 0: (TVC3)

Indeed, along the converging path, �1Ae
��t grows ultimately at the rate

g�1 + g
�
A � � = �

�

�
�E"L�Y < 0;

by (25). Thus, the �rst transversality condition is satis�ed. Along the converging

path the second transversality condition also holds since �2Se
��t grows ultimately

at the rate

g�2 + g
�
S � � = �u� < 0;

by (10) and (12). The third transversality condition is stated in a more general

(and less common) form than the two others. This is because, seemingly, we can-

not be sure that our candidate solution satis�es the more demanding condition

limt!1 �3tEte
��t = 0. On the other hand, (TVC3) de�nitely holds, since Et � �E

and �3t > 0 (and this is su�cient for our present purpose).

If only the maximized Hamiltonian were jointly concave in (A;E); our candidate
solution would now satisfy a set of su�cient conditions for optimality according to

Arrow's su�ciency theorem. 5 Unfortunately, however, the maximized Hamiltonian

is not jointly concave in (A;E): Indeed, the maximized Hamiltonian is

4 Interestingly, the eigenvalues appear in a symmetric way. In a pairwise manner
they are of the same absolute size, but with opposite signs.
5 See pp. 235-36 in Seierstad, A., and K. Sydsaeter (1987), Optimal Control Theory
with Economic Applications, North-Holland: Amsterdam.
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Ĥ(A; S;E; �1; �2; �3; t)=max
LY ;R

H(A; S;E; LY ; R; �1; �2; �3; t)

=C1A
��(1��)

� E�"
�(1��)

� + �1LAE
"

�C2A�[
�(1��)

�
+�]E�"

�(1��)
� � C3;

where C1; C2; and C3 are positive coe�cients not depending on A or E. We know
the function f(x; y) = x�y� is concave if and only if

0�� � 1; (34)

0� � � 1; and (35)

�+ �� 1: (36)

Thus, we come closest to concavity if � = 1: But even then, the term �1LAE
"

implies lack of joint concavity in (A;E). We therefore need to go via existence of
an optimal solution.

Existence of an optimal solution. Given the parametric restriction (A), we can es-

tablish existence of an optimal solution by appealing to the existence theorem of

d'Albis et al. (2008). 6 To apply this theorem, consider c and R as control variables
and substitute LY = A

��=�c1=�R�(1��)=� into (3). Then the required joint concav-
ity in the control variables of u(�) as well as the right-hand sides of (3), (4), and
(5) is satis�ed. And given (A), � > (1� �)g�c holds and so the utility integral U0 is
bounded from above. As an implication, an optimal solution exists. Above we found

that among the dynamic paths satisfying the necessary �rst-order conditions, there

is only one converging path, all other paths being divergent. This leaves us with the

converging path as the unique optimal solution.

6 d'Albis, H., P. Gourdel and C. Le Van (2008), Existence of Solutions in
Continuous-time Optimal Growth Models, Economic Theory 37: 321-333.
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