
Can A Turing Player Identify Itself? 

David Levine Balázs Szentes
UCLA University of Chicago

Abstract

We show that the problem of whether two Turing Machines are functionally equivalent is
undecidable and explain why this is signif− icant for the theory of repeated play and
evolution.

We thank National Science Foundation Grants SES−03−14713 and SES−05−18762 for financial support.
Citation: Levine, David and Balázs Szentes, (2006) "Can A Turing Player Identify Itself?." Economics Bulletin, Vol. 1, No. 1
pp. 1−6
Submitted: January 29, 2006.  Accepted: March 23, 2006.
URL: http://www.economicsbulletin.com/2006/volume1/EB−06A00001A.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6481102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.economicsbulletin.com/2006/volume1/EB-06A00001A.pdf


1. INTRODUCTION

The wide empirical prevalence of cooperation in prisoner’s dilemma type situations where free-
riding is possible has long fascinated economists, game theorists and biologists. The possibility
of punishing free-riding in repeated situations is central to the theory of repeated games, but the
folk-theorem leaves open the possibility of coordination failure and Pareto inferior equilibria. A
key question addressed in the evolutionary literature is whether cooperation is merely possible,
or whether in fact there are evolutionary forces that push in the direction of cooperation. There
are a number of affirmative answers to the question: central to evolutionary forces that lead to
cooperative outcomes is the ability to identify free-riders so they can be punished.1

There are three basic mechanisms through which “deviant” free-rider strategies can be detected:
indirectly by observing behavior, through some sort of “cheap talk” in the form of a “secret hand-
shake,” or directly by observing the strategies themselves. The “secret handshake” is a signal that
is secret from free-riders and is discussed by Robson [1990]. In the setting of play between finite
state machines “secret handshakes” take place through observing play as described in Rubinstein
[1986], for example. The possibility of directly observing strategies is examined in Levine and Pe-
sendorfer [2002] - they show a strong result that the only strategies to survive a stochastic process
of evolution and imitation are strategies that cooperate when they meet themselves, and punish
opponents who use different strategies.

Here we take up the issue of directly observing the strategies used by opponents. In other
words, we envisage a setting where players exchange descriptions of their strategies prior to play.
There are several reasons why this is interesting. First, whether information is generated through
cheap-talk or through observation of behavior, it is not possible to have more information about an
opponents intentions than through direct observation of her strategy. So direct observation gives
an upper bound on how well a player can be informed about an opponent’s intentions - any limita-
tions when direction observation is used must also be limitations when intentions must be inferred
indirectly. Second, there are interesting circumstances where direct observation of strategies is
possible. For example, in a biological setting, strategies are encoded in DNA, and direct detec-
tion of DNA or its attributes is possible. A good example of this is the immune system which is
based on detecting “free-riders” through their chemical attributes rather than their behavior. In the
economic setting, institutions that make it easy to observe opponents strategic rules - for exam-
ple, implementation by third parties, or the ability to credibly reveal the rules that are being used
through institutions such as bureaucracies - are possible and indeed frequent.

Technically, a strategy is simply an algorithm that responds to certain inputs. Computer sci-
entists conjecture that all algorithms that can be implemented and that meet certain minimal re-
quirements are Turing machines,2 so this is a natural way in which to discuss strategic algorithms.3

Economists such as Binmore [1990] and Anderlini [1990] have explicitly modeled player strate-
gies as Turing Machines: they have focused on showing that there does not exist a machine which

1In the literature on positive assortive matching, discussed, for example in Berstrom [2002], the matching mech-
anism implicitly identifies free-riders by matching players based on their play. This can be interpreted as indirectly
detection through observed behavior.

2This is known as Church’s Thesis.
3An alternative would be to consider finite state machines, also know as automata, a subclass of Turing Machines

with finite memory. This would lead to a different set of issues: how much success could we expect a machine with n
states to have in identifying the strategy of a machine with some larger number m > n states?

1



always gives a best-response to the opponent’s strategy.4 The issues can be illustrated through the
example of matching pennies. Suppose that each player designs a Turing machine that takes as
input the Turing machine designed by the other player. An obvious strategy would be to simulate
the opponent’s Turing machine, using your own Turing machine as input. The problem with this
is that when both players use such Turing machines, we get an infinite regress in which I simulate
you simulating me simulating you...and there is an infinite loop. In technical terms, these Turing
machine do not halt when given each other as input, and so are useless in practice.

In the setting of punishing free-riders, the situation is less difficult. It is easy to design a machine
that when given opposing Turing machine as input checks to see if that machine is the same or
different.5 The strategy is then to cooperate if the opposing machine is the same and punish if it
is different. This is the basis for the Pesendorfer-Levine [2002] result, for example. However, the
same strategy may be described by many different Turing machines. For example, one machine
might engage in some irrelevant preliminary calculations that are later discarded, while another
does not. This raises the question whether it is possible to identify an opponent not by the details
of how their strategy is described, but according to the strategy or function that their algorithm
implements. That is the question addressed in this note. It is important for three reasons. First, the
interesting question about opponent play is how they will behave, not how their code is written.
The question we would like to know from examining an opponent’s strategy are of the type: Is my
opponent going to cheat, so I should do likewise? Is he going to engage in a strategy that leaves
him open to exploitation? Second, there is an obvious social disadvantage if machines that differ
merely in external appearance engage in costly punishment against one another. Third, if strategies
can only be determined through observing behavior, then it is evident that only the function of a
machine can be identified.

The questions we will examine, then, is the extent to which it is possible to identify an algorithm
based on its function, rather than on its description.6 We are not going to require Turing Machines
to predict the strategies of their opponents, but focus on the narrower question at issue in sus-
taining cooperation: can Turing Machine recognize whether their opponents are computationally
equivalent to themselves?

2. THE QUESTION

We let τ denote a Turing Machine, and τ(x) denote the output of τ on input the integer x,7
where τ(x) is an integer, or τ(x) = ∞ if τ does not halt on input x. By convention, since there are
countably many Turing Machines, we identify their descriptions with integers. We let 〈τ〉 denote
the description of the Turing Machine τ. In other words τ′(〈τ〉) is the output of the Turing Machine
τ′ when the input is the description of the Turing Machine τ. If we have two Turing Machines τ1
and τ2 we say that they are equivalent if they compute the same function, that is τ1 (x) = τ2 (x) for
all x. We say that a Turing Machine is finite if it halts on every input. A problem with a yes/no

4Canning [1992] shows that if the domain of possible players and games are appropriately restricted then Turing
Machines will play Nash Equilibria. These restrictions are fairly severe.

5This is obvious for Turing Machines. Since a program that checks an input to see if it is identical to itself requires
only enough memory to store itself and the input, it is also true for finite state machines.

6An alternative approach is to consider Bayesian priors as in Nachbar [1997].
7Occasionally we refer to Turing machines that take as input pairs of integers; since there is a computable 1-1 map

from pairs of integers to integers, such a machine can be understood as taking as input the single integer generated by
a fixed map of this type.

2



answer is decidable if there is a Turing machine that provides the output zero if the answer is no
and the output one if the answer is yes.

We consider a series of questions about the decidability of the functional equivalence of two
Turing machines. In each case, we ask if there is a Turing machine that can determine whether two
Turing machines are computationally equivalent. The answer to each question is no: the problem
is not decidable, or in other words, no Turing machine can determine equivalence in any of these
cases.

Question 1: Is it a decidable problem whether two Turing Machines are equivalent?
Question 2: Is it a decidable problem whether two finite Turing Machines are equivalent?
Question 3: Is there some Turing Machine τ for which it is a decidable problem whether a

Turing Machine is equivalent to τ?
Question 4: Is there some finite Turing Machine τ for which it is a decidable problem whether

another finite Turing Machine is equivalent to τ?
We should emphasize that the problem of functional equivalence of Turing machines has not

escaped the notice of computer scientists. For example, Question 1 is essentially a restatement of
Rice’s Theorem.8 Since the proofs are short, and the terminology of “index sets” used in Rice’s
Theorem may not be familiar, we give simple direct proofs that the answers to all of these questions
is “no.”

3. THE ANSWER

Our point of departure is the famous Halting Lemma that determining whether or not a Turing
Machine halts is not a decidable problem - that is, there is no Turing Machine which can take as
input the description of a Turing Machine and an integer n and compute 1 if it halts on n and 0 if
it does not. In other words, whether τ(〈τ〉) halts or not is not decidable. For expositional purposes
we provide a proof for this result from which the answers to Questions 1-4 will follow.
Halting Lemma. Whether a Turing Machine halts on itself is undecidable.

Proof. Suppose by contradiction, that there exists a Turing Machine τ∗ such that τ∗ (〈τ〉) = 1 if
τ(〈τ〉) halts and zero otherwise. Construct the Turing Machine τ′ as follows.

τ′ (〈τ〉) =

{
0 if τ∗ (〈τ〉) = 0
∞ if τ∗ (〈τ〉) = 1.

Then τ′ (〈τ′〉) = 0 ⇔ τ∗ (〈τ′〉) = 0 by the construction of τ′. However, by the definition of τ∗,
τ∗ (〈τ′〉) = 0 is true if and only if τ′ does not halt, that is, τ′ (〈τ′〉) = ∞. So τ′ (〈τ′〉) = 0 ⇔ τ′ (〈τ′〉) =
∞ an obvious contradiction. �

We now answer each question in the negative by showing that if it had a positive answer then
we could find a Turing Machine that determines whether τ(〈τ〉) halts for any Turing Machine τ,
contradicting the fact that this problem is undecidable.

In addition to the Halting Lemma, the other key ingredient in our proofs will be the idea of one
Turing machine simulating another. That is, if we are given as input the description of a Turing
machine 〈τ〉 and an input x we can as part of our design simply execute τ(x) to see what the input
Turing machine τ would do on the input x. Of course, τ(x) might not halt, in which case the
machine we are designing would not halt either.

8See Corollary 6.1.5 in Cutland [1980].
3



Answer to Question 1: Is it a decidable problem whether two Turing Machines are equivalent?
No. Fix a Turing Machine τ. Define τ′ as follows. If x 6= 〈τ〉 then τ′ (x) = τ(x). If x = 〈τ〉 then
τ′ (〈τ〉) = ∞. To construct τ′ is easy. It is almost identical to τ, except that first it checks whether
the input is 〈τ〉 or not. If it is, it runs forever, otherwise it simulates τ. Notice, that in order to define
τ′ one does not need to know whether τ(〈τ〉) halts or not. Observe, that τ and τ′ are equivalent if
and only if τ(〈τ〉) does not halt. Hence, if there was a Turing Machine which determines whether
τ and τ′ are equivalent, it could also determine whether τ(〈τ〉) halts or not.

Answer to Question 2: Is it a decidable problem whether two finite Turing Machines are equiv-
alent? No. Fix a Turing Machine τ. Define the Turing Machine τ̂ as follows: τ̂(n) = 1 if τ(〈τ〉)
did not halt after n steps, and zero otherwise. Let τ̃ be a Turing Machine such that τ̃(n) = 1 for all
n. Notice that τ̂ and τ̃ are finite, and in addition they are equivalent if and only if τ(〈τ〉) does not
halt. Hence a machine that could determine if two finite machines are equivalent could determine
if τ(〈τ〉) halts.

Answer to Question 3: Is there some Turing Machine τ for which it is a decidable problem
whether a Turing Machine is equivalent to τ? No. Before we start to answer the question, note
that there is a Turing Machine τs such that if τ halts on at least one input, then τs(〈τ〉) is an input
on which τ halts. The way to construct τs is the following. First τs simulates the first step of τ on
1. Then if τs simulated the nth step of τ on k, for n 6= 1, it will simulate the n− 1th step of τ on
k +1, while for n = 1 it will simulate the (k +1) th step on input 1. In other words

step input
1 1
2 1
1 2
3 1
2 2
1 3
4 1

and so forth. Once τs finds a step where τ halts, it stops and its output is the input of τ on which it
halted.

Let τ be some arbitrary Turing Machine, and let τ∞ denote a Turing Machine which does not
halt on any input. Suppose by contradiction that there exists a Turing Machine τ̂ such that it is
decidable whether or not τ̂ is equivalent to another Turing Machine. This would mean that there
exists a Turing Machine τ∗ such that τ∗ (〈τ′〉) = 1 if τ′ is equivalent to τ̂ and zero otherwise.

We now construct a Turing Machine τ̃ as follows. The construction depends on which of the
following two cases holds.

Case 1: τ∗ (〈τ∞〉) = 1. Then define τ̃ as follows. If x 6= 1, τ̃(x) = τ̂(x). If x = 1, then τ̃ simulates
τ on 〈τ〉. Thus τ̃(1) halts if and only if τ(〈τ〉) does.

Case 2: τ∗ (〈τ∞〉) = 0. Since this means that τ̂ is not equivalent to τ∞, it implies that τ̂ halts
for some input. Hence τs (〈̂τ〉) is well-defined. This enables us to define τ̃(x) = τ̂(x) whenever
x 6= τs (〈̂τ〉). If x = τs (〈̂τ〉), then

• First: τ̃ simulates τ on 〈τ〉. If it halts then
• Second: τ̃ simulates τ̂ on x = τs (〈̂τ〉) and provides the same output as τ̂.

So τ̃(τs (〈̂τ〉)) halts if and only if τ̃ is functionally equivalent to τ̂.
We conclude that τ(〈τ〉) halts if and only if (τ∗ (τ∞) ,τ∗ (̃τ)) ∈ {(1,0) ,(0,1)}. So τ∗ can deter-

mine if τ(〈τ〉) halts.
4



Answer to Question 4: Is there some finite Turing Machine τ for which it is a decidable problem
whether another finite Turing Machine is equivalent to τ? No. Suppose by contradiction that there
exists a finite Turing Machine τ̂ such that it is decidable whether or not τ̂ is equivalent to another
finite Turing Machine. Fix a Turing Machine τ and construct a Turing Machine τ̃ as follows. On
input n, τ̃ simulates the first n steps of τ on 〈τ〉. Then τ̃ computes τ̂(n) . If τ halts before the nth
step on 〈τ〉 then τ̃(n) 6= τ̂(n) , otherwise τ̃(n) = τ̂(n). Obviously, τ̃ is finite because τ̂ is also finite.
Furthermore, τ̃ and τ̂ are equivalent if and only if τ(〈τ〉) does not halt.

REFERENCES

[1] Anderlini, L. [1990], “Some Notes on Church’s Thesis and the Theory of Games,” Theory and Decision 29, 19-52.
[2] Bergstrom, T. [2002], “Evolution of Social Behavior: Individual and Group Selection,” The Journal of Economic

Perspectives 16, 67-88.
[3] Binmore, K. [1990], Essays on the Foundation of Game Theory. Oxford: Basil Blackwell.
[4] Canning, D. [1992], “Rationality, Computability, and Nash Equilibrium,” Econometrica 60, 877-888.
[5] Cutland, N. J. [1980], Computability: An introduction to Recursive Function Theory, Cambridge University Press.
[6] Levine, D. K. and W. Pesendorfer [2002], “Evolution of Cooperation Through Imitation,” UCLA.
[7] Nachbar, J. [1997], “Prediction, Optimization, and Learning in Repeated Games,” Econometrica 65, 275-309.
[8] Robson, A. J. [1990], “Efficiency in evolutionary games: Darwin, Nash and the secret handshake,” Journal of

Theoretical Biology 144, 379-96.
[9] Rubinstein A. [1986], “Finite Automata Play the Repeated Prisoner’s Dilemma,” Journal of Economic Theory 39,

83-96.

5


