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Abstract

Since the seminal work of Pareto, many empirical analyses suggestedthat the distribution of
firms size is characterized by an asymptoticpower like behavior. At the same time, several
investigations showthat the distribution of annual growth rates of firms displays aremarkable
double-exponential shape. Recently it has been suggestedthat both these statistical properties
can be explained by assuming abivariate Marshall-Olkin power-like distribution for the size
of firmsin subsequent time steps. Through analytical investigation, I showthat the marginal
distribution of growth rates implied by thisassumption does not possess, in general, a Laplace
shape and becomesdegenerate when subsequent size levels are perfectly correlated. Assuch,
the bivariate Marshall-Olkin distribution is unable to properlyaccount for the observed
regularities. The original suggestion isfaulty as it treats firm size levels as stationary
stochasticvariables and neglects their integrated nature.
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1 Introduction

Since the seminal work of Pareto on wealth distribution of households, many em-
pirical studies suggested that, at least above some minimal size threshold, the
distribution of a number of economic relevant variables (like wealth, income, rev-
enues or capital assets) follow a power like behavior (see Kleiber and Kotz (2003)
for an extended review). This statistical fact is commonly named, after his early
discoverer, “Pareto Law”. At the same time, recent investigations show that the
distribution of annual growth rates of business firms displays a remarkable double-
exponential shape, called “Laplace” distribution (see Bottazzi and Secchi (2006)
and reference therein). This result is robust to different levels of aggregation and
to the use of different variables (revenues, number of employees, value added, etc.)
to proxy firm size.

The question naturally arises if these two distinct “stylized facts” can be somehow
reconciled so that a more “unifying” theoretical view of the dynamics of firms is re-
covered. This is certainly a relevant issue, since, as vigorously pointed out in Brock
(1999), moving the analysis from “unconditional” quantities, like distributions of
random variables, to more “conditional” (if not causal) relationships between the
different regularities will obviously improve our understanding of the underlying
drivers of the observed dynamics.

A recent letter (Palestrini, 2007) tries to directly address the “unifying” question by
proposing a possible relationship between the power-like nature of the distribution
of firm sizes and the Laplace character of the firm growth rates distribution. The
author assumes a joint Pareto distribution for the size of firms in two different
time steps, shaped according to the bivariate distribution proposed in Marshall
and Olkin (1967). Then, he derives the tail behavior of the implied distribution
of growth rates. From his asymptotic analysis, he wrongly concludes that the
implied distribution does, in general, “belong to the Laplace family” (Palestrini,
2007, p.370). After briefly reviewing, in Section 2, the property of the Marshall-
Olkin bivariate distribution, in Section 3 I will show how to derive, under the
same hypothesis of Palestrini (2007), the exact distribution of growth rates. As
my computation reveals, the implied distribution is not, in general, Laplacian nor
everywhere continuous, having a finite atomic component for null growth rates.
In Section 4 I will briefly discuss the implication of my findings on the possibility
to reconcile the Pareto distribution of size and the observed Laplace density of
growth rates.
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2 The Marshall-Olkin bivariate distribution

Abstracting from precise economic definitions, let S1 and S2 be the size of a firm in
two successive time steps. If the distribution of firm size is Paretian, the distribu-
tion of its logarithm follows an exponential distribution. Then, taking s1 = log(S1)
and s2 = log(S2), the validity of the Pareto laws implies that s1 and s2 are expo-
nentially distributed

log (Prob {si > x}) ∼ x i = 1, 2 .

Consider the joint distribution of the couple of random variables (s1, s2). For the
Pareto Law to be valid, this distribution should possesses exponential marginals.
As suggested in Palestrini (2007), a natural candidate for a distribution of this kind
is constituted by the multivariate exponential distribution proposed in Marshall
and Olkin (1967), which in the bivariate case reads

Prob {s1 > s1, s2 > s2}=1 − F (s1, s2) (1)

= exp {−λ1s1 − λ2s2 − λ12 max{s1, s2}} .

It is immediate to see that, according to (1), the marginal distribution for the
random variables s1 and s2 are exponential with parameter λ̄1 = λ1 + λ12 and
λ̄2 = λ2 + λ12, respectively. Hence, the expression for expected value and the
variance of the two random variables immediately follow. The covariance between
s1 and s2 is given by

Cov(s1, s2) =
λ12

λ λ̄1 λ̄2

, (2)

where λ = λ1 +λ2 +λ12. Thus, the associated correlation coefficient becomes equal
to λ12/λ and is different from zero as long as λ12 6= 0. As discussed in Marshall
and Olkin (1967), the distribution F defined in (1) is not everywhere continuous.
The atomic component comes from the presence of the discontinuous “max” term
in the exponential argument. The presence of this term will play a major role in
the subsequent analysis. For easy of reference I report here the expression for the
generating function (Laplace transform) of the distribution F derived in Marshall
and Olkin (1967). I will use it in the first Theorem of the next Section. It reads
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ψ(ω1, ω2) =

+∞
∫

0

+∞
∫

0

e−s1ω1−s2ω2dF (s1, s2) (3)

=
λ̄1λ̄2(λ+ ω1 + ω2) + ω1ω2λ12

(λ+ ω1 + ω2)(λ̄1 + ω1)(λ̄2 + ω2)
.

3 The distribution of growth rates

In this Section the analytical expression of the distribution of the (logarithmic)
growth rate is derived under the assumption that the firm log size is distributed, in
two successive time steps, according to the bivariate Marshall-Olkin distribution
defined in (1). The firm growth rate r over a given period of time is, by definition,
the difference of the logarithm of the size at the end and at the beginning of said
period. Then, using the notation introduced above, one has r = s2−s1. Let G(r) =
Prob {r ≤ r} be the probability distribution of growth rates and g̃(k) = E[exp i k r]
the associated characteristic function. Using the generating function in (3) one can
easily derive the expression for g̃(k). One has the following

Theorem 1 If s1 and s2 follow a bivariate Marshall-Olkin distribution the char-

acteristic function g̃(k) of their difference r = s2 − s1 is given by

g̃(k) =
λ λ̄1 λ̄2 + λ12 k

2

λ
(

λ̄1 − ik
) (

λ̄2 + ik
) . (4)

PROOF. Considering the distribution function G(r) one has

G(r)= Prob {r ≤ r} = Prob {s2 − s1 ≤ r}

=

+∞
∫

0

+∞
∫

0

θ(r − s1 + s2)dF (s1, s2)

where θ is the right continuous Heaviside theta function, which is equal to 1 if its
argument is positive or null and zero otherwise. From the definition of characteristic
function it is

g̃(k) =

+∞
∫

−∞

eikr dG(r) ,
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Fig. 1. Left: Complex plane for the anti-transform of the characteristic function. The

poles are shown together with the paths of the Cauchy integral l1 and l2 used when

r < 0 and r > 0, respectively. Right: Growth rates distribution function G for λ1 = 1,

λ2 = 1 and λ12 = .5.

substituting the previous expression and inverting the order of integrations one
has

g̃(k) =

+∞
∫

0

+∞
∫

0

eik(s1−s2) dF (s1, s2)

which, remembering (3), gives g̃(k) = ψ(−ik, ik). Finally, direct substitution of
(3) proves the assertion. 2

The term proportional to k2 in the numerator of g̃(k) in (4) is what makes the
implied growth rate distribution not Laplacian. Only in the case in which λ12 = 0
the expression in (4) reduces to the characteristic function of an asymmetric (or
symmetric, if λ1=λ2) Laplace distribution (Kotz et al., 2001, p.141). As shown in
the next Theorem, the effect of this term is to introduce a finite probability for the
occurrence of zero growth rates, that is an atomic component in the point r = 0.
In general, one has the following

Theorem 2 If s1 and s2 follow a bivariate Marshall-Olkin distribution the distri-

bution function G(r) of their difference r = s2 − s1 is given by

G(r) =











eλ̄1r λ2

λ
if r < 0 ,

1 − e−λ̄2r λ1

λ
if r ≥ 0 .

(5)
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PROOF. Consider the formal definition of the density g(r) = G′(r) as the anti-
Fourier transform of the characteristic function

g(r) =
1

2π

+∞
∫

−∞

dk e−ikr g̃(k) .

Since limk→∞ |g̃(k)| = 0 on the whole complex plane, for Jordan’s lemma the
previous integral, and consequently the density function, exists for any r 6= 0. The
characteristic function g̃(k) possess two simple poles on the imaginary axis, in iλ̄1

and −iλ̄2. Then, the previous expression can be written as a Cauchy integral on
the upper or lower half plane when the value of r is respectively lower or greater
then zero. The two closed curves are depicted in Fig. 1 (left panel). According to
Cauchy integral theorem, in each case the value of the integral is proportional to
the residue of the function computed in the internal pole. After a little algebra one
has

g(r) =











λ̄1λ2

λ
eλ̄1r if r < 0 ,

λ̄2λ1

λ
e−λ̄2r if r ≥ 0 .

Using the previous expression, the distribution function G can be computed as

G(r) =

r
∫

−∞

dr′ g(r′) if r < 0

or

G(r) = 1 −

+∞
∫

r

dr′ g(r′) if r > 0 .

Since the distribution function is by definition right continuous, the assertion fol-
lows. 2

An example of the shape of the distribution G is reported in Fig. 1 (right panel).
Notice that the finite weight at r = 0 can be easily computed using (5). Indeed
one has

Prob {r = 0} = lim
δ→0+

G(δ) −G(−δ) =
λ12

λ
, (6)
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that is the discontinuity in zero of the distribution function is proportional to the
correlation coefficient of the two variables s1 and s2.

4 Conclusions

The exact distribution function G(r) and probability density g(r) of firm growth
rates have been obtained under the assumption that firm size follows, in two sub-
sequent time steps, a bivariate Marshall-Olkin distribution. Contrariwise to what
reported in Palestrini (2007), this assumption implies, in general, a growth rates
distribution which is not compatible with a Laplace, symmetric or asymmetric,
shape. The source of this incompatibility is the discontinuous nature of the distri-
bution function G(r), which possesses an atomic probability weight in zero. The
discontinuity at the origin is proportional to the correlation coefficient between
the size levels s1 and s2. This implies that a bivariate Marshall-Olkin distribution
for the logarithm of firm sizes could generate a Laplace distribution of growth
rates only in the very particular case in which firm sizes at subsequent time steps
were uncorrelated. However, as many empirical studies have shown, the correlation
coefficient of subsequent size levels is in general very near (and often statistically
equal) to one. Consequently, in real cases, the assumption that logarithmic sizes
follow a Marshall-Olkin distribution would give a sort of degenerate growth rates
density, having almost the entire probability weight in the origin. This fact greatly
reduces the possibility of this distribution to ever provide an effective statistical
description of empirical data.

Summarizing, the unification of the two “stylized facts” concerning the Pareto
distribution of firms size and the Laplace density of growth rates proposed in
Palestrini (2007) would be possible only disregarding the integrated (or unit-root)
nature of firm’s growth process, which constitutes an extremely robust regularity.
In general, indeed, one cannot consider the logarithm of the size of the firm at
subsequent time steps as generated by a stationary random process. It is the dif-
ference 1 of these logarithms, rather than their levels, which are likely to display,
at least some degree of, stationarity.

The lesson to be learned is that in order to obtain a reliable phenomenological
description of the growth dynamics of firms, or, to that extent, of any economic

1 Or some other more complicate manipulation of the original variables in the case of

fractional integration. The discussion of this point is outside the scope of the present

note.
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process, one has to start from data and carefully investigate their regularities while,
at the same time, abstaining himself, as far as possible, from introducing untested
theoretical hypothesis.
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