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Abstract

Within a semiparametric framework we propose a test of shape invariance of Engel curves,
which is a necessary condition for base independence. Using Canadian family expenditure
data for 1996 we reject shape invariance for the fuel and clothing share equations.
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1 Introduction

Equivalence scales constitute a useful conceptual tool for designing economic

policy such as an equitable tax and benefit system that would put on equal

footing (bring into equivalence) the living standards of families of different

size and composition. Preferences that obey the property that equivalence

scales will not vary across household income levels are said to follow base

independence. This is an important restriction on preferences that allows

for a meaningful interpretation of equivalence scales for policy purposes, (see

Blackorby and Donaldson (1993) and Blundell and Lewbel (1991)).

In parametric demand systems base independence is many times rejected.

However, it is not clear whether this rejection reflects a genuine dependence of

the equivalence scale function on total expenditures, or is the result of restric-

tive parametric assumptions about the functional form of the share equations.

Recently, to deal with this issue Gozalo (1997) and Pendakur (1999), Wilke

(2003) and Stengos, Sun and Wang (2006) have introduced nonparametric

and semiparametric models of equivalence scales. Gozalo (1997) treats both

the share equations and the equivalence scale function as purely nonpara-

metric in the context of a system of Engel curves, whereas Pendakur (1999),

Wilke (2004) and Stengos, Sun and Wang (2006) allow for general unspec-

ified share equations that can be estimated nonparametrically, whereas the

equivalence scale is estimated as a parameter in each equation and as a re-

sult it is directly comparable with parametric estimates. In this paper we

will propose a simple test for shape invariance which is a necessary condition

for base-independence. This condition simply states that under base inde-



pendence the (nonparametric) share equation curves for different household

types will have the same curvature. As in Gozalo (1997) we use bootstrap-

ping to construct confidence intervals. We find that shape invariance holds

for food shares, but not for fuel and clothing shares.

The paper is organized as follows. In the next section we present our test

of shape invariance between nonparametric Engel curves. We then proceed

to present the results of the estimation of a system of Engel Curves using the

1996 Canadian Family Expenditure Survey.

2 Testing for Shape-Invariant equivalence scales

Base independence implies shape invariance for a system of the equations

that belong to a demand system. The same holds true if one looks at the

system without temporal variation as a system of Engel curves. The lat-

ter are linked through shape invariance for each household type and they

have the same curvature. This restriction constitutes the testable part of the

base-independence hypothesis. Shape invariance is only a necessary but not

sufficient condition for base independence. Hence, rejection of shape invari-

ance is useful since it would directly invalidate base independence, whereas

acceptance of shape invariance would not necessarily imply the validity of

base independence.

In the analysis below we restrict our attention to a single good in a system

of Engel expenditure share equations, where price remains constant. As in

Pendakur (1999) for exposition purposes we consider two household types,

type a and type b. Let x be the log of total expenditure and let y = f(x)

be the share of the single good purchased by the household. Under base-
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independence, the expenditure shares of type a and type b are related by

fb(xb)− η = fa(xb − δ) (1)

where ft(xt) is the share of a single good by household type t = a, b, δ is

the log of base-independent equivalence scales and η is the elasticity of the

equivalence scale function with respect to price. If δ and η are independent

of x, then they are said to be base independent. We consider a system of

Engle curves where prices are given and hence under base independence both

δ and η are constants.

Suppose we have nt observations for household type t, t = a, b on x and

y, xt,j and yt,j for j = 1, 2, · · · , nt. A nonparametric estimate of ft(x) based
on (xt,j, yt,j) for j = 1, · · · , nt is defined by

f̂t(x) =
rt(x)

dt(x)
(2)

where r(x) and d(x) are given by

rt(x) =
1

ntht

ntX
i=1

yt,iK

µ
xt − xt,i

ht

¶
(3)

dt(x) =
1

ntht

ntX
i=1

K

µ
xt − xt,i

ht

¶
(4)

K (.) is the kernel function and ht is the bandwidth. We use the Gaussian

kernel, K
³
xt−xt,i

ht

´
= 1√

2π
e
− 1
2(

xt−xt,i
ht
)
2

. We will determine the optimal band-

width by cross-validation method over the range (0, 2sn
− 1
5

t ), where s is the

standard deviation of x.

We will estimate the parameter δ, the log of base-independent equivalence
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scale, using the loss function introduced by Stengos, Sun and Wang (2006)

that is an improved variant of the one suggested by Pendakur (1999). If the

two households have similar preferences under base independence, we would

expect that the ranges of the two sample sets (xa, ya) and (xb − δ, yb − η) to

overlap and the nonparametric regressions based on (xa, ya) and (xb− δ, yb−
η) should be the same. We will define ĝb(x) as nonparametric estimates

based on points (xb,j − δ, yb,j) for j = 1, · · · , nb, compared to f̂b(x) based on
points (xb,j, yb,j) for j = 1, · · · , nb. The points (xa, f̂a(xa)) and (xb−δ, ĝb(xb))
determine the shape of expenditure share curves of household type a and type

b. Since x =

⎛⎝ xa

xb − δ

⎞⎠ and n = na + nb, the sets of points (x, f̂a(x)) and

(x, ĝb(x)) can be used to construct a measure of the closeness of the two

curves. We run the following artificial regression

ĝb(x) = η + βf̂a(x) + u (5)

The hypothesis of shape invariance is given as β = 1. We let a and b

denote the OLS estimates of η and β respectively from equation (5) above.

To compute the standard error of b, we use a wild bootstrap procedure sim-

ilar to the one presented in Gozalo (1997)). Using the notation introduced

above, under the null hypothesis of shape invariance of the share equations,

(x, ĝb(x)−a) should be similar to (x, f̂a(x)). Let us define the vector of resid-
uals u0 = (ĝb(x) − a) − b bfa(x), and let y∗0 denote ĝb(x) − a and let y∗0(i)

be the i − th element of y∗0. Similarly we define u0(i) as the i − th element

of u0 and we also define ū =
Pn

i=1 u0(i). The jth bootstrap observation is

produced by the following:
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For each i from 1 to n, we

1. randomly generate the bootstrap residual u(i) from a distribution Fi

such that for Z ∼ Fi,

EFiZ = 0

EFiZ
2 = (u0(i)− ū)2

EFiZ
3 = (u0(i)− ū)3

2. set y∗j (i) to be y
∗
0(i) + (u(i) + ū)

We use a distribution Fi defined in Gozalo (1997), which has a density func-

tion piφai,κ+ (1− pi)φbi,κ, where φc,κ is the density function of N(cκ, c2(1−
κ2)), and pi, ai, and bi are defined as following:

pi =
³
5 +
√
5
´
/10

ai = u0(i)
³
1−
√
5
´
/2

bi = u0(i)
³
1 +
√
5
´
/2

κ = (
√
3− 1)/2

The bootstrap procedure produces a series of y∗j , for j = 1, · · · , B, where
B is the number of bootstrap replications. Using the series y∗j , we obtain the

empirical distriution of b, using equation (7) above, which gives the bootstrap

standard error of b. We proceed to test the hypothesis H0 : β = 1, using the

bootstrap standard error in the construction of the t−ratio for H0.

3 Empirical Results
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We now apply the test for shape invariance to data taken from the 1996

Canadian Family Expenditure Survey to estimate expenditure share curves

for cloth and fuel. The data set we examine covers 8741 households. Af-

ter controlling for regional characteristics we define the household type HT

by the number of seniors (ns), the number of adults(na), the number of

youths(ny), and the number of children(nc) as

HT = 1000ns+ 100na+ 10ny + nc.

For example HT = 211 refers to a household with two adults, one youth

and one child, while HT = 1200 refers to a household with one senior and

two adults. We will focus on those types of household with more than 50

observations in the survey. There are 23 such household types, the most

popular being the one with two adults, which will serve as the reference

household. For a description of the data, see Stengos, Sun and Wang (2006).

The distribution of the household types is summarized in Table1.

It is worth noting that using the above classification scheme to select

data into different cells allows for controls for age affects, household size and

the number of children which are among the most important characteristics

in consumer demand. In effect our approach is similar in spirit to the par-

tial linear semiparametric model of Blundell, Duncan and Pendakur (1998),

Lyssiotou, Pashardes and Stengos (1999) and Yatchew, Sun and Deri (2003),

where characteristics enter the linear part of partial linear specification.1

1Note that since we are only using one-dimensional kernels our estimates do not suffer
from the curse of dimensionality problem that typically plagues multidimensional kernel
estimates. That is true even in the case of the smallest cell of 50 observations.
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Table 1: Distribution of Household Types
HT Members Obs HT Members Obs
10 1 youth 52 210 2 adults, 1 youth 442
20 2 youths 91 211 2 adults, 1 youth, 1

child
249

100 1 Adult 1064 212 2 adults, 1 youth, 2
children

100

101 1 adult, 1child 182 220 2 adults, 2 youths 352
102 1 adult, 2 children 128 221 2 adults, 2 youths, 1

child
122

110 1 adult, 1 youth 254 300 3 adults 142
111 1 adult, 1 youth, 1

child
99 1000 1 senior 907

120 1 adult, 2 youths 66 1100 1 senior, 1 adult 350
200 2 adults 1542 1200 1 senior, 2 adults 84
201 2 adults, 1 child 566 2000 2 seniors 678
202 2 adults, 2 children 861 2100 2 seniors, 1 adult 67
203 2 adults, 3 children 343

We use the loss function introduced by Stengos, Sun and Wang (2006) to

estimate δ of the reference household of two adults (HT=200) and the other

household types. We then proceed to test for shape invariance for the system

of fuel and clothing share equations. Table 2 presents the results of these

tests. It is clear that the hypothesis of shape invariance and consequently

of base independence is rejected in most cases, except for a few categories

for fuel.2 This suggests that shape invariance and hence base independence

does not hold for these share equations and as such equivalence scales will

be dependent on expenditures.

2To compute standrad error of the coefficient estimate b we use 999 bootstrap
replications.
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Table 2: The bootstrap testing results contain the mean of b and p-values
for the null hypothesis of shape invariance

HT bcloth p− value for bcloth bfuel p− value for bfuel
10 -0.0326 0.0000 -0.0053 0.0000
20 0.0661 0.0000 0.1978 0.0000
100 0.0088 0.0000 1.0130 0.74345
101 0.1164 0.0000 0.1637 0.0000
102 0.0426 0.0000 0.1956 0.0000
110 0.2413 0.0000 0.5219 0.0000
111 0.0269 0.0000 -0.3654 0.0000
120 0.1043 0.0000 0.1336 0.0000
201 0.2251 0.0000 0.8950 0.0000
202 0.0904 0.0000 1.0885 0.2378
203 -0.2112 0.0000 1.0820 0.2846
210 0.0195 0.0000 0.5607 0.0000
211 0.1294 0.0000 0.7432 0.0000
212 0.1646 0.0000 0.4066 0.0000
220 0.0098 0.0000 0.8348 0.1123
221 0.1387 0.0000 0.5108 0.0000
300 0.0958 0.0000 0.8896 0.2223
1000 -0.0726 0.0000 0.8516 0.1423
1100 -0.0437 0.0000 0.9893 0.7135
1200 0.1352 0.0000 0.5794 0.0000
2000 0.1513 0.0000 0.7365 0.0000
2100 0.0395 0.0000 0.2192 0.0000

8



References

[1] Blackorby C. and D. Donaldson, 1993, Adult-equivalence scales and the

economic implementation of interpersonal comparisons of well-being, So-

cial Choice and Welfare 10, 335-361.

[2] Blundell R. and A. Lewbel, 1991, The information content of equivalence

scales, Journal of Econometrics 50, 49-68.

[3] Blundell R., Duncan, A. and K. Pendakur, 1998, Semiparametric estima-

tion and consumer demand, Journal of Applied Econometrics 13, 453-461.

[4] Gozalo, P., 1997, Nonparametric bootstrap analysis with applications to

demographic effects in demand functions, Journal of Econometrics 81,

357-393.

[5] Lyssiotou, P., Pashardes, P. and T. Stengos, 1999, Preference Heterogene-

ity and the Rank of Demand Systems, Journal of Business and Economic

Statistics, 17, 248-252.

[6] Pendakur, K., 1999, Estimates and tests of base-independent equivalent

scales, Journal of Econometrics 88, 1-40.

[7] Stengos, T., Sun, Y. and D. Wang, 2006, Estimates of Semiparametric

Equivalence Scales, Journal of Applied Econometrics,21, 629-639.

[8] Wilke, R., 2003, Semiparametric Estimation of Regression Functions un-

der Shape Invariance Restrictions. ZEW -Discussion Paper 03-64.

9



[9] Yatchew, A., Sun, Y. and C., Deri, 2003, Efficient estimation of semi-

parametric equivalence scales with evidence from South Africa. Journal

of Business and Economic Statistics, 21, 247-257.

10


