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Abstract

Motivated by a central banker with a symmetric but non-quadratic loss function, we show in
this note that the approximations of two plausible loss functions of this type will include a
quartic term. For skewed distributions, we establish that such a loss function implies a
systematic inflation bias even when the bank targets the natural rate. Moreover, we show that
the weights in an optimal combination of forecasts will differ from that under quadratic loss.
We illustrate these differences using simulated data and data from the Livingston Surveys of
Professional Forecasters.
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1 Introduction

We consider some of the implications of the assumption that the loss function of a policy maker
is symmetric, but non–quadratic. Two loss functions which exhibit this property have been
proposed in the literature. The first is a target zone loss function where deviations outside a
band from target are penalized at an increasing rate. This objective function might represent
that of agents who are particularly concerned to avoid large forecast errors. This might apply
to some central bankers, who have a symmetric, but non–quadratic, inflation zone target.
For instance, in case of the U.K. the Bank of England Governor is obliged to write an open
letter to the Chancellor, if inflation deviates more than 1.0% on either side of the 2.0% target.
Boinet and Martin (2006) show that Taylor rules based on such a formulation can explain UK
monetary experience. Alternatively, Bray and Goodhart (2002) suggest that the policy makers’
loss function is symmetric, but may be bounded from above, as “the worst penalty which can
be applied to these agents is to sack them, if they are perceived to have failed. To be publicly
sacked as a failure is painful, often severely so, but the pain is finite”.

We show below that a quartic term appears in the approximation of both these loss functions.
As a consequence, when the distribution of the target variable is non–normal and skewed, an
optimal inflation bias can occur. Consistent with the rest of the literature, we define bias
as the difference between the average inflation rate and the target. Elliott and Timmermann
(2004) offer a general proof of the proposition that, if forecast errors are normally distributed,
the weights on the forecasts in an optimal combination will be the same under a variety of
symmetric and asymmetric loss functions. We offer a more direct proof of this for the quartic
loss function. Moreover, by means of a simulation exercise and data on inflation forecasts
we show how the optimal bias and the weights in the optimal combination of forecasts under
quartic loss differ from that under quadratic loss.

2 Analysis

Consider the target zone loss function L, as suggested by Boinet and Martin (2006):

L =
eαc2 − αc2 − 1

2α2
=

1

4
c4 + O

(
c6

)
, (1)

where c equals the outcome of c̃ = π̃ − π∗, with π̃ being a random variable, e.g., inflation, and
π∗ the forecast or target. As seen in Figure 1, this loss function describes a target zone model,
and from formula (1) it can be approximated by a quartic function to order five.

Consider the Bell shaped loss function of Bray and Goodhart (2002):

L =
1− e−kc

k
= c2 − 0.5kc4 + O

(
c6

)
, (2)

We draw this loss function in Figure 2. As can be seen from formula (2), this loss function
can also be approximated to order five. For simplicity, we concentrate from now on the target
loss function. Note, however, that our conclusions on the loss function proposed by Bray and
Goodhart (2002) are qualitatively similar, with the important caveat that skewness of the error

1



term will imply an alternative bias to that in the target zone approximation.
From formula (1), the expected loss, E(L̃), will be minimized at:

E(c̃3) = E[(π̃ − E(π̃)) + (E(π̃)− π∗)]3 (3)

= σ3 + 3σ2[E(π̃)− π∗] + [E(π̃)− π∗]3 = 0, (4)

where E(π̃), σ2, and σ3 are the expected value, the variance, and the skewness of π̃, respectively.
In the context of modelling central bank outcomes, we observe from formula (4) that, if

the inflation distribution exhibits positive (negative) skewness, then a central bank will exhibit
a systematic negative (positive) inflation bias even when it targets the natural rate. In this
context, it is interesting that Ruge-Murcia (2000) has documented a deflationary bias of central
banks who have an inflation zone target. Further prominent central bankers have suggested
that their own banks do not target output above the natural rate, as assumed in the standard
model (see, e.g., Svensson, 1997). For instance, see Vickers (1998, p.369) or Blinder (1998, p.48)
for such sentiments. However, if the inflation distribution exhibits skewness, an inflationary
bias can result under quartic loss. In this context, Goodhart’s (2001) comments on the Bank
of England Monetary Committee are interesting. He writes: “But in either case the existence
of a skew would affect our decision on the appropriate interest rate. Unlike uncertainty and
variance, skew and risk mapped directly into the interest rate decision.”

Moreover, if the errors are non–normal, the optimal combination of forecasts will exhibit
weights which differ from those obtained under quadratic loss. To illustrate this, assume we have
two forecasts of a variable π̃, f1 and f2. These forecasts have the properties that π̃ = f1 + ẽ
and π̃ = f2 + ṽ, where ẽ and ṽ are two mean zero, serially uncorrelated error terms. We
denote the variances of ẽ and ṽ by σ2

ẽ and σ2
ṽ , respectively, and the covariance by σẽṽ. The

optimal combination weights of these two forecasts under quartic loss minimize the following
loss expectation:

E(L̃) = E[(π̃ −Π∗)4] = E[(π̃ − δ − λ1f1 − λ2f2)
4] = E[(π̃(1− λ1 − λ2)− δ + λ1ẽ + λ2ṽ)4] (5)

where Π∗ is the combination forecast, λ1 and λ2 are the combination weights and δ is the degree
of bias. By inspection, λ1 + λ2 = 1.

Consequently, formula (5) simplifies to:

E[(−δ + λ1ẽ + (1− λ1)ṽ)4]. (6)

For simplicity but without loss of generality, we assume that the errors are non–skewed, so
that δ = 0.1 As a result, we require to minimize formula (6) with respect to λ1. Clearly, the

1Whenever this assumption does not hold, we also need to set the derivative w.r.t. δ equal to zero:

∂E(L̃)
∂δ

∝ −E[(−δ + λ1ẽ + (1− λ1)ṽ)3] (7)

= δ3 − 3δ2E[(λ1ẽ + (1− λ1)ṽ)] + 3δE[(λ1ẽ + (1− λ1)ṽ)2]− E[(λ1ẽ + (1− λ1)ṽ)3] (8)
= δ3 + 3δE[(λ1ẽ + (1− λ1)ṽ)2]− E[(λ1ẽ + (1− λ1)ṽ)3] = 0. (9)

Clearly, this equation holds for δ = 0, if ẽ and ṽ exhibit no skewness. Moreover, in case of normality the solution
for λ1 is identical to the one shown later in the text, as the inclusion of δ in the other first–order condition
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optimal weight will depend on the relative kurtosis of the respective errors as well as other cross
products. Intuitively, if one of the errors has relatively high kurtosis, one will, ceteris paribus,
wish to give it lower weight in the combination.

Under quadratic loss, the optimal combination, which was first obtained by Bates and
Granger (1969), is given by:

λ1 =
σ2

ṽ − σẽṽ

σ2
ẽ + σ2

ṽ − 2σẽṽ

(10)

Now consider the same scenario under a quartic loss function. Intuition suggests that, while
in general the optimal combination weights, λ1 and λ2, should be different than under quadratic
loss, we should still obtain the above outcome, if the error terms are normally distributed. This
arises, as in the latter case the optimal combination weights do not depend on moments above
the second. Elliott and Timmermann (2004) proof this claim in a slightly different and more
general setting. We offer a more direct proof of this claim in the following.

Differentiating the expected loss (6) with respect to λ1 and setting to zero (with δ = 0), we
obtain:

dE(L̃)

dλ1

∝ E[(λ1ẽ + (1− λ1)ṽ)3(ẽ− ṽ)] = E[(λ1ẽ + (1− λ1)ṽ)3ẽ]−E[(λ1ẽ + (1− λ1)ṽ)3ṽ]. (11)

As ẽ and ṽ are mean zero and as E(x̃ỹ) = E(x̃)E(ỹ) + cov(x̃, ỹ), this can be written as:

cov[(λ1ẽ + (1− λ1)ṽ)3, ẽ]− cov[(λ1ẽ + (1− λ1)ṽ)3, ṽ] = 0. (12)

Using a multivariate version of Stein’s lemma, which states that

cov[x̃, h(ỹ, z̃)] = E[hỹ(ỹ, z̃)]cov(x̃, ỹ) + E[hz̃(ỹ, z̃)]cov(x̃, z̃), (13)

if x̃, ỹ , and z̃ are multivariate normal and the function h is differentiable in its two arguments
(see, e.g., Balvers, 2001), we can rewrite equation (12) as:

3E[(λ1ẽ + (1− λ1)ṽ)2][λ1σ
2
ẽ + (1− λ1)σẽṽ − λ1σẽṽ − (1− λ1)σ

2
ṽ ] = 0 (14)

Solving the term in parenthesis for λ1 yields a solution identical to that shown in equation (10).
Note that our conclusion also applies to the approximation of the bounded loss function sug-
gested by Bray and Goodhart (2002). In this case, the first–order condition can be written
as:

2[λ1σ
2
ẽ + (1− λ1)σẽṽ − λ1σẽṽ − (1− λ1)σ

2
ṽ ] (15)

−6kE[(λ1ẽ + (1− λ1)ṽ)2][λ1σ
2
ẽ + (1− λ1)σẽṽ − λ1σẽṽ − (1− λ1)σ

2
ṽ ] = 0.

Obviously, the former solution also sets this equation equal to zero.

does not alter the second term in parentheses on the left–hand side of (14). If the combination forecast error is
instead positively (negatively) skewed, then δ > (<) 0.
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3 Simulation and Real Data Examination

We analyze both simulated data with varying degrees of non–normality and real inflation fore-
casts to examine the differences that the assumption of quartic loss relative to quadratic loss can
make. Following Elliott and Timmermann (2004), we simulate data using a mixture of normals
model with two states of nature. The mean realizations of the three simulated variables, i.e.,
the variable to forecast, π̃, and the two forecasts, f1 and f2, are zero in the first and 0.5 in the
second state of nature. A property of their method is that we can easily control the degree of
non–normality the forecast errors exhibit by varying the switching probability between the two
states of nature. More specifically, while setting p = 0 generates normally–distributed forecast
errors, increasing p leads to more negatively skewed forecast errors with more positive excess
kurtosis.

Table 1 indicates that, since both forecast errors are mean zero by construction, the optimal
bias under quadratic loss is also always zero. When p > 0, the optimal bias under quartic loss
is negative to counterbalance the effect of extreme realizations caused by negative skewness.
Similarly, the optimal combination weights are only equivalent in case of normality. With
increasing p, moments above the second become progressively more important. Thus, the
optimal combination weights can differ by up to 17% between quadratic and quartic loss.
When p > 0, the variance of the absolute forecast combination error is smaller under quartic
than under quadratic loss.

While Table 1 suggests that under non–normality the optimal bias and combination weights
under quadratic and quartic loss can differ substantially, we now ask whether the forecast
errors of real economic variables show sufficient non–normality to justify this distinction. We
thus investigate 6–month and 12–month inflation forecasts from the Livingston Surveys of
Professional Forecasters. Since there is a large number of individual forecasters, we only consider
pairs of forecasts obtained from survey participants whose ID numbers follow each other, given
we obtain at least 40 observations. Most forecasts are neither unbiased nor efficient. We thus
considered outcomes based on ‘corrected’ forecast errors, which are the residuals from OLS
regressions of π̃ on f .

Our results, available on request, show that real inflation forecast errors can exhibit sub-
stantial skewness and kurtosis. As a result, the optimal combination weights often differ by up
to 20% to 30%. However, the difference in the optimal bias hardly ever exceeds 1%. Finally, for
both forecasting horizons the range of the absolute combination forecast error is smaller under
quartic than under quadratic loss.

4 Conclusions

For central bankers who have a symmetric but non–quadratic loss function, we show that
skewness of inflation can create a deflationary bias. In this regard, Goodhart’s (2001) comments
that skewness matters for policy decisions are interesting. Second, we also illustrate that due
to the quartic term the weights in the optimal combination of forecasts will in general differ
from that under quadratic loss depending on the higher moments of the distribution of forecast
errors. We examine these differences employing simulated and real data from the Livingston
Survey of Professional Forecasters.
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Figure 1: Approximation of the Boinet and Martin (2006) Target Zone Loss Function

Figure 2: Approximation of the Bray and Goodhart (2002) Bounded Loss Function
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Table 1: Simulation

This table shows the optimal weights, δ and λ1, for the simulated variables, π̃, f1 and f2, under both quadratic
(quad) and quartic (quar) loss. The simulated variables are generated through a mixture of normals model,
with means equal to zero in the first and equal to 0.5 in the second state. The two covariance matrices are:

σ2
1 =

 1.000
0.200 2.500
0.150 0.125 2.000

 , σ2
2 =

 0.100
0.050 0.500
0.300 0.200 3.200


The switching probability between the two states of nature equals p. In total, we generate 1, 000, 000 values
for each random variable in each set. The forecast errors are the residuals from OLS regressions of π̃ onto
each forecast. We also report the skewness and the kurtosis of the forecast errors (fct err). Finally, we show
the variance of the absolute (Var(abs)) and the minimum (Min) and maximum (Max) of the raw forecast
combination error under both loss functions.

Optimal weights (δ and λ1) Skewness Kurtosis Combination forecast error

quad quar quad-quar Fct Fct Fct Fct Var(abs) Min Max
p δ λ1 δ λ1 δ λ1 err1 err2 err1 err2 quad quar quad quar quad quar

0.0 0.00 0.59 0.00 0.59 0.00 0.00 0.00 0.00 3.00 3.00 35.57 35.57 -4.93 -4.93 5.16 5.16
0.1 0.00 0.53 -0.04 0.56 0.04 -0.03 -0.12 -0.12 3.16 3.17 33.85 33.61 -4.70 -4.66 4.55 4.60
0.2 0.00 0.49 -0.08 0.54 0.08 -0.05 -0.24 -0.25 3.40 3.43 32.42 31.51 -4.65 -4.57 4.92 4.99
0.3 0.00 0.46 -0.11 0.52 0.11 -0.06 -0.36 -0.38 3.69 3.74 30.98 29.24 -4.85 -4.73 4.28 4.41
0.4 0.00 0.43 -0.14 0.50 0.14 -0.07 -0.50 -0.53 4.12 4.21 29.55 26.93 -4.74 -4.60 4.40 4.52
0.5 0.00 0.41 -0.17 0.49 0.17 -0.08 -0.65 -0.69 4.68 4.83 27.56 24.34 -4.57 -4.39 4.49 4.65
0.6 0.00 0.38 -0.20 0.47 0.20 -0.09 -0.80 -0.87 5.48 5.75 24.84 21.47 -5.00 -4.79 4.40 4.63
0.7 0.00 0.35 -0.21 0.45 0.21 -0.10 -0.97 -1.08 6.60 7.08 21.16 18.29 -4.84 -4.60 4.56 4.78
0.8 0.00 0.30 -0.22 0.43 0.22 -0.13 -1.16 -1.33 8.15 9.11 16.36 14.56 -4.99 -4.80 3.83 4.04
0.9 0.00 0.22 -0.20 0.39 0.20 -0.17 -1.26 -1.55 10.17 12.40 10.19 9.93 -4.61 -4.46 3.76 3.92
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