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Abstract

For a given null hypothesis and its reformulation, the associated Wald statistics are shown to
be members of a wider family of statistics where all members are asymptotically equivalent
under the null hypothesis. Therefore, the non-invariance of a Wald statistic (to a
reformulation of a null hypothesis) is equivalent to using different members of the wider
family and, in addition, this non-invariance implies that these members use different
estimators of an appropriate variance-covariance matrix.
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1. INTRODUCTION

It is well known that, in general, a Wald statistic is not invariant to a reformulation of a null

hypothesis where a vector of restrictions r(θ) = 0 is rewritten in an algebraically equivalent

form q(θ) = 0 with θ being a vector of unknown parameters. Initially, Gregory and Veall

(1985) provided Monte Carlo evidence of the effect of a reformulation and, subsequently, La-

fontaine and White (1986) and Breusch and Schmidt (1988) showed how this non-invariance

could be exploited to obtain a desired numerical value for a Wald statistic, Phillips and Park

(1988) examined the effect of a reformulation on the small sample distribution of a Wald

statistic, and Kemp (2001) provided a justification for ruling out certain reformulations.

In contrast to the explanations provided by Davidson (1990) and Critchley, Marriott, and

Salmon (1996), which apply the methods of differential geometry, this note provides a simple

explanation for the non-invariance of a Wald statistic.

Using the terminology in Dastoor (2003), the original family of Wald statistics for testing

H0 : r(θ) = 0 is a family where all members are asymptotically equivalent under H0, and

each member (called an original Wald statistic) is a quadratic form in
√
nr(θ̂n) with all

components of its weighting matrix evaluated at θ̂n, the (unrestricted) maximum likelihood

estimator of θ based on n observations. Then, the extended family of Wald statistics is a

wider family where all members are asymptotically equivalent under H0, and each member

(called an extended Wald statistic) is a quadratic form in
√
nr(θ̂n) with all components of

its weighting matrix not necessarily evaluated at θ̂n. In both these families, the weighting

matrix of any member is (under H0) a consistent estimator of the inverse of the asymptotic

variance-covariance matrix of
√
nr(θ̂n). Similarly, the original and extended families of Wald

statistics for testing H∗
0 : q(θ) = 0 are families whose members are appropriate quadratic

forms in
√
nq(θ̂n) and asymptotically equivalent under H∗

0 or, equivalently, under H0. In

general, the two original families differ, but it can be shown that the two extended families

are identical. Therefore, an original Wald statistic for testing H0 and an original Wald

statistic for testing H∗
0 are members of the extended family for testing H0. This provides a
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simple explanation for the non-invariance of a Wald statistic; i.e., when H0 is replaced with

H∗
0 , the non-invariance of a Wald statistic is equivalent to replacing one extended statistic

for testing H0 with a different extended statistic for testing H0, and it can be shown that

this non-invariance implies that the two extended statistics use different estimators of the

asymptotic variance-covariance matrix of
√
nr(θ̂n) under H0.

The next section presents the original and extended families for testing each of H0 and

H∗
0 . Section 3 derives the simple explanation, and some concluding remarks are stated in

Section 4.

2. ORIGINAL AND EXTENDED FAMILIES

Let θ be a p × 1 vector of unknown parameters, Ω ⊆ Rp be the parameter space, Ln(θ)

be a log-likelihood function for n observations, and r(θ) = 0 be an r × 1 vector of known

restrictions with r ≤ p. Then, θ̂n = argmaxθ∈Ω Ln(θ) is the (unrestricted) maximum

likelihood estimator of θ, and the null and alternative hypotheses are H0 : θ ∈ Ω0 and

H1 : θ ∈ Ω1, respectively, where Ω0 = {θ | r(θ) = 0, θ ∈ Ω} and Ω1 constitute a partition of

Ω. Also, let R(θ) = ∂r(θ)/∂θ> be the r × p matrix of derivatives with rank r for all θ ∈ Ω,

R0 = R(θ0), R̂ = R(θ̂n), and Jn(θ) be a p× p symmetric nonsingular matrix such that Ĵn =

Jn(θ̂n)
p→ J0 where θ0 is the true value of θ, J0 = − plimn−1∂2Ln(θ0)/∂θ∂θ

> is the (positive

definite) limiting information matrix under H0, and
p→ denotes convergence in probability

under H0. Throughout, θ0 ∈ Ω0, all asymptotic results are obtained under H0, the usual

regularity conditions are assumed to hold, and standard results will be used. Rigorous

statements of the appropriate conditions required and formal derivations of standard results

can be found in, for example, Davidson and MacKinnon (1993) and Newey and McFadden

(1994). Therefore, under H0 and appropriate conditions, θ̂n
p→ θ0,

√
n(θ̂n−θ0)

a∼ N(0, J−1
0 ),

and
√
nr(θ̂n)

a∼ N(0, R0J
−1
0 R>0 ). Then, an original Wald statistic for testing H0 is

Wn(Ĵn) = nr(θ̂n)>{R̂Ĵ−1
n R̂>}−1r(θ̂n), (1)

which is asymptotically distributed as a χ2(r) variate under H0.
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Henceforth, as all asymptotic results are obtained under H0, the terms ‘consistent estima-

tor’ and ‘family of asymptotically-equivalent Wald statistics’ will mean ‘consistent estimator

under H0’ and ‘a family of Wald statistics where all members are asymptotically equivalent

under H0’, respectively. Let Ĵ = {Ĵn | Ĵn = Jn(θ̂n) = Jn(θ̂n)>
p→ J0, Ĵ

−1
n exists}, a set of

consistent estimators of J0 that are evaluated at θ̂n. Then,

W =
{
Wn(Ĵn) | Wn(Ĵn) is given by (1), Ĵn ∈ Ĵ

}
is the original family of asymptotically-equivalent Wald statistics for testing H0. In this

family, one member is distinguished from another only by the choice of Jn(θ) and all members

evaluate their chosen Jn(θ) at θ̂n. Therefore, an original Wald statistic is a quadratic form

in
√
nr(θ̂n) where all components of its weighting matrix are evaluated at θ̂n. Now, let

J = {Jn | Jn = J>n
p→ J0, J

−1
n exists} and R = {Rn |Rn

p→ R0, Rn has rank r} be sets of

consistent estimators of J0 and R0, respectively. Then, replacing Ĵn and R̂ in Wn(Ĵn) with

the more general estimators Jn and Rn, respectively, gives a statistic that is asymptotically

equivalent to Wn(Ĵn) under H0. Therefore, an extended Wald statistic is

Wn(Jn, Rn) = nr(θ̂n)>{RnJ
−1
n R>n }−1r(θ̂n), (2)

which corresponds to W1n in Newey and McFadden (1994, Table 2, p. 2222) and which

is a special case of ξw
n in Gourieroux and Monfort (1989, equation (37), p. 75) where the

restrictions are written in a more general form than r(θ) = 0. Then,

E W =
{
Wn(Jn, Rn) | Wn(Jn, Rn) is given by (2), Jn ∈ J , Rn ∈ R

}
is the extended family of asymptotically-equivalent Wald statistics for testing H0; the sets

Ĵ , J , R, W , and E W correspond to Â , A , R, W̄ , and Ē1, respectively, in Dastoor

(2003). In this extended family, one member is distinguished from another by the choice

of Jn and Rn and, for each member, the chosen Jn and Rn need not necessarily be matrices

evaluated at θ̂n. Since Ĵ ⊂ J , R̂ ∈ R, and Wn(Ĵn) = Wn(Ĵn, R̂), any original Wald

statistic is an extended Wald statistic so W ⊂ E W .
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Let Ω∗
0 = {θ | q(θ) = 0, θ ∈ Ω}, Q(θ) = ∂q(θ)/∂θ> be the r× p matrix of derivatives with

rank r for all θ ∈ Ω, Q̂ = Q(θ̂n), and Q0 = Q(θ0) where q(θ) is such that q(θ) = 0 if and only

if r(θ) = 0. Then, Ω∗
0 = Ω0 so H∗

0 : θ ∈ Ω∗
0 is a reformulation of H0 : θ ∈ Ω0; cf. Dagenais

and Dufour (1991, p. 1605) where ψ(θ) and ψ̄(θ) correspond to r(θ) and q(θ), respectively.

For testing H∗
0 , an original Wald statistic is

W ∗
n(Ĵn) = nq(θ̂n)>{Q̂Ĵ−1

n Q̂>}−1q(θ̂n), (3)

which is asymptotically equivalent to Wn(Ĵn) under H0,

W ∗ =
{
W ∗

n(Ĵn) | W ∗
n(Ĵn) is given by (3), Ĵn ∈ Ĵ

}
is the original family of asymptotically-equivalent Wald statistics,

W ∗
n(Jn, Qn) = nq(θ̂n)>{QnJ

−1
n Q>

n }−1q(θ̂n) (4)

is an extended Wald statistic, and the extended family of asymptotically-equivalent Wald

statistics is

E W ∗ =
{
W ∗

n(Jn, Qn) | W ∗
n(Jn, Qn) is given by (4), Jn ∈ J , Qn ∈ Q

}
where Q = {Qn |Qn

p→ Q0, Qn has rank r} and W ∗
n(Ĵn) = W ∗

n(Ĵn, Q̂) ∈ W ∗ ⊂ E W ∗.

For later reference, it is useful to note the following results, which are proved in the

appendix. First, in general, there exist two r× r nonsingular matrices P0 and P̄n such that

Q0 = P0R0, (5)

q(θ̂n) = P̄nr(θ̂n), (6)

and P̄n
p→ P0. Second, consider the special case of q(θ) = Pr(θ) where P is an r × r non-

stochastic nonsingular matrix whose elements do not depend on θ; i.e., q(θ) is a nonsingular

linear transformation of r(θ). In this special case,

q(θ̂n) = Pr(θ̂n), Q̂ = PR̂, Q0 = PR0, and P̄n = P0 = P . (7)
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3. A SIMPLE EXPLANATION

The original families W and W ∗ differ, unless q(θ) = 0 is a particular type of reformulation of

r(θ) = 0. For example, if q(θ) is a nonsingular linear transformation of r(θ), then W = W ∗

as (1), (3), and (7) yield Wn(Ĵn) = W ∗
n(Ĵn); cf. Davidson and MacKinnon (1993, p. 469).

Although W 6= W ∗ in general, it can be shown that

E W = E W ∗, (8)

which is proved in the appendix. Basically, the extended Wald statistics use estimators of

J0, R0, and Q0 that have the flexibility to exploit the relationship between r(θ̂n) and q(θ̂n)

in (6), which results in the equality of the extended families, whereas, the estimators used

by the original Wald statistics are only those evaluated at θ̂n, which cannot always exploit

(6) so the original families differ in general. The equality of the extended families shows

that, for a given sample, any extended Wald statistic for testing H∗
0 is identical to some

extended Wald statistic for testing H0 (and vice versa) so (8) implies (but is not implied

by) the asymptotic equivalence of Wn(Jn, Rn) and W ∗
n(Jn, Qn) under H0. Therefore, the

original Wald statistics will now be viewed as members of E W ; i.e., Wn(Ĵn) = Wn(Ĵn, R̂)

and

W ∗
n(Ĵn) = Wn(Ĵn, R

∗) = Wn(J∗n, R̂) (9)

where R∗ = P̄−1
n Q̂ ∈ R and J∗n ∈ J is a particular matrix whose form is given in the proof

of (9) in the appendix. Also, it can be shown that R∗Ĵ−1
n R∗> = R̂(J∗n)−1R̂>.

Let V̂n = R̂Ĵ−1
n R̂>

p→ V0 and V ∗
n = R∗Ĵ−1

n R∗>
p→ V0 where V0 = R0J

−1
0 R>0 is the

asymptotic variance-covariance matrix of
√
nr(θ̂n) under H0. Then, Wn(Ĵn) and W ∗

n(Ĵn)

are quadratic forms in
√
nr(θ̂n) with weighting matrices V̂ −1

n and (V ∗
n )−1, respectively. Here,

the estimation of V0 (instead of just R0 or just J0) is relevant since (9) shows that W ∗
n(Ĵn)

can be obtained from (2) by setting either Rn = R∗ with Jn = Ĵn or Jn = J∗n with Rn = R̂.

Since Wn(Ĵn) = W ∗
n(Ĵn) if V̂n = V ∗

n , a Wald statistic is invariant if a reformulation of H0 as

H∗
0 does not result in Wn(Ĵn) and W ∗

n(Ĵn) using different consistent estimators of V0. For
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example, if q(θ) is a nonsingular linear transformation of r(θ), then (7) holds and R∗ = P̄−1
n Q̂

reduces to R∗ = R̂ so V̂n = V ∗
n . In this case, Wn(Ĵn) and W ∗

n(Ĵn) use the same consistent

estimator of V0 so a Wald statistic is invariant or, equivalently, these two statistics are

identical extended statistics for testing H0. However, if Wn(Ĵn) 6= W ∗
n(Ĵn), then V̂n 6= V ∗

n .

This provides a simple explanation for the non-invariance of a Wald statistic; i.e., when H0

is replaced with H∗
0 , the non-invariance of a Wald statistic is equivalent to replacing one

extended statistic for testing H0 with a different extended statistic for testing H0 and, in

addition, this non-invariance implies that Wn(Ĵn) and W ∗
n(Ĵn) use different estimators V̂n

and V ∗
n , respectively, as consistent estimators of V0. Also, in the case where r = 1 with

r(θ̂n) 6= 0, it is easily seen that Wn(Ĵn) = W ∗
n(Ĵn) if and only if V̂n = V ∗

n . Therefore, when

testing a single restriction, the non-invariance of a Wald statistic is also equivalent to using

different consistent estimators of V0.

4. CONCLUDING REMARKS

Given the simple explanation, the results of Lafontaine and White (1986) and Breusch and

Schmidt (1988) can be interpreted as showing how an estimator of V0 can be easily chosen

such that W ∗
n(Ĵn) has a desired numerical value. In principle, some criterion could be used

either to choose among estimators or to rule out certain estimators of V0; indirectly, this

would either provide an optimal formulation of the restrictions or rule out certain formula-

tions, respectively. For example, the results of Phillips and Park (1988) and Kemp (2001)

could be interpreted as providing some guidance on choosing an estimator and on ruling out

certain estimators of V0, respectively. Now, if two extended Wald statistics for testing H0

use different consistent estimators of V0, then it is reasonable to expect (if not require) the

statistics to be different for a given sample. Therefore, since the non-invariance of a Wald

statistic implies the use of different consistent estimators of V0, this non-invariance should

(contrary to econometrics folklore) not be viewed as an undesirable property of a Wald sta-

tistic, and especially in the case of testing a single restriction where the non-invariance is

equivalent to using different consistent estimators of V0.
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APPENDIX

Proof of Equation (5). Let R(θ) = [R1(θ), R2(θ)] and Q(θ) = [Q1(θ), Q2(θ)] be com-

formably partitioned with θ = (θ>1 , θ
>
2 )> where θ1 is an r × 1 vector, and R1(θ) and Q1(θ)

are r × r nonsingular matrices for θ ∈ Ω0. Then, as shown by Dagenais and Dufour (1991,

p. 1606), the implicit function theorem ensures that (for θ ∈ Ω0) there exists a differentiable

function h such that θ1 = h(θ2) so

∂θ1

∂θ>2
=

∂h

∂θ>2
= −R1(θ)

−1R2(θ) = −Q1(θ)
−1Q2(θ)

where the last equality follows as q(θ) = 0 if and only if r(θ) = 0. This last equality provides

Q2(θ0) = Q1(θ0)R1(θ0)
−1R2(θ0), which can be substituted into Q0 = [Q1(θ0), Q2(θ0)] to yield

(5) where

P0 = Q1(θ0)R1(θ0)
−1 (A.1)

is an r × r nonsingular matrix.

Proof of Equation (6). Let sn(θ) = ∂Ln(θ)/∂θ, λ be an r × 1 vector of Lagrange

multipliers, and R̃ = R(θ̃n) where θ̃n is the restricted estimator of θ under H0. Then,

from the Lagrangean L(θ, λ) = Ln(θ)− λ>r(θ), the first-order condition ∂L(θ̃n, λ̃n)/∂θ = 0

gives sn(θ̃n) = R̃>λ̃n. Another equation for sn(θ̃n) can be obtained from a mean-value

expansion of sn(θ̃n) at θ̂n so, as sn(θ̂n) = 0, sn(θ̃n) = nJ̄n(θ̂n − θ̃n) where J̄n is the matrix

−n−1∂2Ln(θ)/∂θ∂θ> with each of its rows evaluated at a (possibly different) mean value

given by a convex combination of θ̂n and θ̃n. Assuming that J̄n is nonsingular, the two

equations for sn(θ̃n) provide

θ̂n − θ̃n = n−1J̄−1
n R̃>λ̃n. (A.2)

Since r(θ̃n) = 0, a mean value expansion of r(θ̂n) at θ̃n gives r(θ̂n) = R̄(θ̂n − θ̃n) where

R̄ is the matrix R(θ) with each of its rows evaluated at a (possibly different) mean value

given by a convex combination of θ̂n and θ̃n. Then, assuming that R̄J̄−1
n R̃> is nonsingular,
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substituting (A.2) into r(θ̂n) = R̄(θ̂n − θ̃n) gives λ̃n = n{R̄J̄−1
n R̃>}−1r(θ̂n) so (A.2) can be

written as

θ̂n − θ̃n = J̄−1
n R̃>{R̄J̄−1

n R̃>}−1r(θ̂n). (A.3)

Since q(θ̃n) = 0, a mean value expansion of q(θ̂n) at θ̃n gives q(θ̂n) = Q̄(θ̂n− θ̃n) where Q̄

is the matrix Q(θ) with each of its rows evaluated at a (possibly different) mean value given

by a convex combination of θ̂n and θ̃n. Finally, substituting (A.3) into q(θ̂n) = Q̄(θ̂n − θ̃n)

gives (6) where

P̄n = Q̄J̄−1
n R̃>{R̄J̄−1

n R̃>}−1 (A.4)

is an r × r nonsingular matrix (assuming that Q̄J̄−1
n R̃> is nonsingular) and P̄n

p→ P0 as

Q̄
p→ Q0 = P0R0, J̄n

p→ J0, R̃
p→ R0, and R̄

p→ R0.

Proof of the equations in (7). Since q(θ) = Pr(θ) and Q(θ) = PR(θ), the first three

equations in (7) are obvious, and the last two equalities are easily seen as, in this special

case, Q1(θ0) = PR1(θ0) and Q̄ = PR̄ so (A.1) and (A.4) reduce to P0 = P and P̄n = P ,

respectively.

Proof of Equation (8). It will be shown that E W ∗ ⊆ E W and E W ⊆ E W ∗, which

imply (8); throughout this proof, Rn ∈ R, Qn ∈ Q, and Jn ∈ J . Let RQn = P̄−1
n Qn where

P̄n is as in (6). Then, RQn has rank r with RQn
p→ P−1

0 Q0 = R0 as Q0 = P0R0. Therefore,

RQn ∈ R so Wn(Jn, RQn) ∈ E W . Now, (2), (4), and (6) show that

Wn(Jn, RQn) = W ∗
n(Jn, Qn), (A.5)

which provides E W ∗ ⊆ E W as W ∗
n(Jn, Qn) is an arbitrary member of E W ∗. Similarly, let

QRn = P̄nRn. Then, QRn ∈ Q so W ∗
n(Jn, QRn) ∈ E W ∗. Here, (2), (4), and (6) show that

W ∗
n(Jn, QRn) = Wn(Jn, Rn) so E W ⊆ E W ∗ as Wn(Jn, Rn) is an arbitrary member of E W .

Hence, E W = E W ∗.
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The equality in (8) can also be obtained by showing that there exist two matrices JQn ∈

J and JRn ∈ J such that Wn(JQn, Rn) = W ∗
n(Jn, Qn) and W ∗

n(JRn, Qn) = Wn(Jn, Rn).

To see this, let RQn be as above and MRn = Ip −R>n {RnJ
−1
n R>n }−1RnJ

−1
n . Then,

Dn = J−1
n R>n {RnJ

−1
n R>n }−1RQnJ

−1
n R>Qn{RnJ

−1
n R>n }−1RnJ

−1
n + J−1

n MRn (A.6)

is a symmetric matrix such that Dn
p→ J−1

0 . A proof by contradiction shows that D−1
n

exists. Therefore, suppose that Dn is singular. Then, there exists a p× 1 vector ξ 6= 0 such

that Dnξ = 0, which (using (A.6)) can be written as

J−1
n R>n {RnJ

−1
n R>n }−1RQnJ

−1
n R>Qn{RnJ

−1
n R>n }−1RnJ

−1
n ξ + J−1

n MRnξ = 0. (A.7)

Since {RQnJ
−1
n R>Qn}−1 exists, premultiplying (A.7) by RnJ

−1
n R>n {RQnJ

−1
n R>Qn}−1Rn gives

RnJ
−1
n ξ = 0 (which implies MRnξ = ξ) so (A.7) reduces to J−1

n ξ = 0, which provides

the contradiction that ξ = 0. Hence, Dn is a symmetric nonsingular matrix. Now, let

JQn = D−1
n and note that (A.6) gives RnJ

−1
QnR

>
n = RQnJ

−1
n R>Qn. Then, JQn ∈ J and, using

(2), it is easily seen that Wn(JQn, Rn) = Wn(Jn, RQn) so, given (A.5),

W ∗
n(Jn, Qn) = Wn(Jn, RQn) = Wn(JQn, Rn). (A.8)

Similarly, it can be shown that Wn(Jn, Rn) = W ∗
n(Jn, QRn) = W ∗

n(JRn, Qn) where QRn is as

above and

JRn =
[
J−1

n Q>
n {QnJ

−1
n Q>

n }−1QRnJ
−1
n Q>

Rn{QnJ
−1
n Q>

n }−1QnJ
−1
n + J−1

n MQn

]−1

∈ J

with MQn = Ip −Q>
n {QnJ

−1
n Q>

n }−1QnJ
−1
n .

Proof of Equation (9). Let R∗ = P̄−1
n Q̂ ∈ R and

J∗n =
[
Ĵ−1

n R̂>{R̂Ĵ−1
n R̂>}−1R∗Ĵ−1

n R∗>{R̂Ĵ−1
n R̂>}−1R̂Ĵ−1

n + Ĵ−1
n M̂Rn

]−1

∈ J

where M̂Rn = Ip − R̂>{R̂Ĵ−1
n R̂>}−1R̂Ĵ−1

n ; i.e., R∗, J∗n, and M̂Rn are special cases of RQn,

JQn, and MRn, respectively, obtained by setting Jn = Ĵn, Rn = R̂, and Qn = Q̂. Then, (9)

is obtained from (A.8) by noting that W ∗
n(Ĵn, Q̂) = W ∗

n(Ĵn).
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