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Abstract

In this paper we explore how specific aspects of market transparency and agents’ be-

havior affect the efficiency of the market outcome. In particular, we are interested whether

learning behavior with and without information about actions of other participants im-

proves market efficiency. We consider a simple market for a homogeneous good populated

by buyers and sellers. The valuations of the buyers and the costs of the sellers are given

exogenously. Agents are involved in consecutive trading sessions, which are organized as a

continuous double auction with electronic book. Using Individual Evolutionary Learning

agents submit price bids and offers, trying to learn the most profitable strategy by looking

at their realized and counterfactual or “foregone” payoffs. We find that learning outcomes

heavily depend on information treatments. Under full information about actions of others,

agents’ orders tend to be similar, while under limited information agents tend to submit

their valuations/costs. This behavioral outcome results in higher price volatility for the

latter treatment. We also find that learning improves allocative efficiency when compared

with to outcomes with Zero-Intelligent traders.

JEL codes: D83, C63, D44

Keywords: Allocative Efficiency, Continuous Double Auction, Individual Evolution-

ary Learning
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1 Introduction

The question “What makes markets allocatively efficient?” has attracted a lot of atten-

tion in recent years. Laboratory experiments with human subjects starting with Smith

(1962) show quick convergence towards competitive equilibrium, also resulting in high

allocative efficiency of the continuous double auction (CDA). A natural question arises

about the significance of rationality for this outcome. With the assumption of forward-

looking, strategic, optimizing agents, whose beliefs about others’ preferences and behavior

are updated in a Bayesian way, the standard economic approach suggests solving for a

rational expectations equilibrium under specified market rules. For some examples in this

spirit see Easley and Ledyard (1993), Friedman (1991) and Foucault, Kadan, and Kan-

del (2005). In our opinion, the fully rational approach is not completely satisfactory for

two reasons. First, the rational expectation approach embeds considerable model simpli-

fications. Rather restrictive assumptions are often imposed either on information or on

strategy space or on traders’ preferences. Given the complexity of the CDA market and

the high dimension of the strategy space, a full solution is not feasible. Second, and more

importantly, the behavioral and experimental literature shows that people fail to optimize

to learn in a Bayesian way, and to behave strategically in a sophisticated strategic manner.

In other words, people are only boundedly rational. Recent research suggests that models

with boundedly rational learning behavior fit observed outcomes better (see, for example,

Duffy (2006) for a survey).

To provide an extreme example of bounded rationality, Gode and Sunder (1993) in-

troduced Zero Intelligent (ZI) agents. ZI traders do not have memory and do not behave

strategically, submitting random orders subject to budget constraints. The ZI methodol-

ogy has led to the impression that the rules of the market and not individual rationality

are responsible for market’s allocative efficiency. In fact, Gode and Sunder (1993) find

that market organized as a continuous double auction (CDA) is highly efficient and in

some cases allows ZI traders to extract around 99% of possible surplus. More careful

investigation in Gode and Sunder (1997) reveals, however, that specific market rules may

significantly affect efficiency in the presence of the ZI agents. LiCalzi and Pellizzari (2008)

have shown that the allocative efficiency of the CDA would drop substantially if every

transaction did not force agents to submit new orders. Nevertheless, as pointed out in the

recent reviews in Duffy (2006) and Ladley (2010), the ZI methodology is useful in study-

ing market design questions, because any effect of design on efficiency under ZI behavior

should be attributed solely to the change of market rules.

This paper focuses on a market design question, the question of market transparency.

In January 2002 the New York Stock Exchange (NYSE) introduced OpenBook system

which effectively opened the content of the limit order book to public. Boehmer, Saar,

and Yu (2005) show that this increasing transparency affected investors’ trading strategies

and resulted in decreased price volatility and increased liquidity. Can these changes

be explained by a theoretical model? This question cannot be studied within the ZI

methodology, since the agents do not condition on any market information and their

behavior is exactly the same under full information and limited information. For this

3



reason we follow an intermediate approach between zero intelligence and full rationality.

More precisely, we analyze allocative efficiency in the market with boundedly rational

agents. While their valuations and costs are not changing from one trading session to

another, the agents’ bidding behavior does. We use the Individual Evolutionary Learning

(IEL) algorithm, introduced in Arifovic and Ledyard (2003). This algorithm builds on

the framework introduced by Arifovic (1994) who examined genetic algorithms (GA) as

a model of social as well as individual learning of economic agents in the context of the

cobweb model.1 According to the IEL algorithm agents select their strategies (limit order

prices) not only on the basis of their actual performance, but also on their counterfactual

performance. To take the informational aspect into account, we distinguish between two

scenarios. We compare an outcome of learning based on the information available in the

open order book and an outcome of learning based only on aggregate market information,

i.e., when the order book is closed. Similar questions were recently analyzed in Arifovic

and Ledyard (2007) for call auction market, while we address them here for the CDA

market.

We analyze what kind of behavior emerges as an outcome of the learning process under

both information scenarios. In relation to that, we look at whether and how individual

learning affects the aggregate properties, such as allocative efficiency. First of all, we

show that learning may result in a sizeable increase in efficiency with respect to the ZI

behavior. Secondly, we find that the agents learn to behave differently depending on the

information available. In the open order book treatment the agents participating in trade

learn to submit bids and asks that fall within the range of equilibrium prices. On the other

hand, in the closed book treatment the trading agents submit bid/ask prices which are

close to their valuations/costs.2 Consequently, usage of the book information decreases

market volatility, which is consistent with empirical evidence. Thus, our results provide

a behavioral explanation for some of the observed effects of a change in the market rules.

The rest of the paper is organized as follows. The market environment is explained in

Section 2, where we also recall the definition of allocative efficiency and derive a benchmark

for ZI traders. We describe the individual evolutionary learning model in Section 3. The

resulting market outcomes are simulated3 and discussed in Section 4. In Section 5 we

report the results of a number of robustness tests that we conducted. Section 6 concludes.

For brevity the paper uses a number of acronyms. The detailed list of acronyms and the

corresponding definitions are given in Appendix.

1See closely related research in Fano, LiCalzi, and Pellizzari (2010) for an application of the GA to the CDA
and batch auction market with a large number of traders.

2Alternatively, as pointed out by one of the referees, this finding can be formulated as follows. The agents
participating in trade learn to be approximately “price-makers” when the information is full and learn to be
approximately “price-takers” when the information is limited. Fano, LiCalzi, and Pellizzari (2010) use this
terminology.

3The matlab codes used to generate the results of this paper are available from
http://research.economics.unsw.edu.au/vpanchenko/software/IELmatlabcodes.zip.
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2 Model

We start with describing environment and defining competitive equilibrium as a bench-

mark against which the outcomes under different learning rules will be compared. We

then proceed by explaining the continuous double auction mechanism. Finally, we study

the allocative efficiency under ZI trading.

2.1 Environment

Suppose we have a fixed number B + S market participants, B buyers and S sellers. At

the beginning of a trading session t ∈ {1, . . . , T}, each seller is endowed with one unit

of commodity and each buyer would like to consume one unit of commodity. The same

agents transact during T trading sessions. Throughout the paper index b ∈ {1, . . . , B}
denotes a buyer and index s ∈ {1, . . . , S} denotes a seller.

We consider a situation in which the valuation of every buyer and the cost of every

seller is fixed over time.4 A buyer’s valuation of a good, Vb, is the amount, which is

received when a unit is bought. A seller’s cost, Cs, is the amount, which is paid when a

unit is sold. It is assumed that each trader knows his own valuation/cost, but neither the

exact valuations and costs of others, nor the distribution of these values is available. The

ability to relax the common knowledge assumption typical in a standard game theoretic

framework is one of the features of the evolutionary learning approach used here. As this

and many other papers demonstrate, even without common knowledge assumption, the

learning behavior of agents can produce reasonable strategies and even converge to the

equilibrium.

Traders care about payoff defined as their surplus obtained from trade, i.e.,

Ub(p) =

Vb − p if buyer b traded at price p

0 if buyer b did not trade ,

Us(p) =

p− Cs if seller s traded at price p

0 if seller s did not trade .

(2.1)

Given the set of valuations, {Vb}Bb=1, and costs, {Cs}Ss=1, one can build step-wise ag-

gregate demand and supply curves, whose intersection determines the competitive equi-

librium. This outcome will serve as a theoretical benchmark, as it maximizes the mutual

benefits from trade. More specifically, the intersection of demand and supply determines a

unique5 equilibrium quantity q∗ ≥ 0 and, in general, an interval of the equilibrium prices

[p∗L, p
∗
H ]. This situation is illustrated in Fig. 1 for two different market environments.

The units, which would yield a nonnegative payoff if traded at an equilibrium price, are

called intramarginal (in the figure they are to the left of the equilibrium quantity). The

4Such fixed environment setup is common to the theoretical, simulation and experimental literature, for
corresponding examples see Satterthwaite and Williams (2002), Arifovic and Ledyard (2007) and Gode and
Sunder (1993). Fano, LiCalzi, and Pellizzari (2010) do not make the assumption of a fixed environment.

5This is guaranteed by assuming that in a special case when there exists a buyer whose reservation value
coincides with the cost of a seller, these sellers and buyers trade maximum possible quantity.
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(a) GS-market with N = 5 buyers
and one seller, from Gode and Sun-
der (1997).

(b) Symmetric S5-market with 5
buyers and 5 sellers.

(c) AL-market with 5 buyers and 5
sellers, from Arifovic and Ledyard
(2007).

Figure 1: Demand/supply diagrams for the market configurations considered in the paper. In
all cases the arrow shows the range of equilibrium prices.

agents who own these units are called intramarginal buyers (IMBs) and intramaginal sell-

ers (IMSs). The units, which would yield a negative payoff if traded at an equilibrium

price, are called extramarginal (in the figure they are to the right of the equilibrium quan-

tity), The agents who owe these units are extramarginal buyers and sellers (EMBs and

EMSs). The sum of all payoffs of buyers and sellers gives the allocative value of a trading

session. When all transactions occur at an equilibrium price, this value is maximized and

is equal to the difference between the sum of the valuations of all IBMs and the sum of

the costs of all IMSs. We adopt the following

Definition 2.1. The allocative efficiency of a trading session is the ratio between realized

allocative value during the session and maximum possible allocative value.

In this paper we consider three market environments. We present the market intro-

duced in Gode and Sunder (1997) (GS, henceforth) in Fig. 1(a). There is one seller offering

a unit which costs C1 = 0, and N = 1 + n buyers who wish to consume one unit, one of

which has valuation V1 = 1 and others have the same valuations equal to 0 ≤ β ≤ 1. The

equilibrium price range is given by (β, 1]. The seller and the first buyer are intramarginal.

A transaction between them results in a competitive outcome with efficiency equal to 1.

The n buyers with valuation β are EMBs and when the seller transacts with one of them

the efficiency is β ≤ 1. This “GS-environment” may seem too stylized, but it is analyti-

cally tractable and provides good intuition. Moreover, by varying β, we can demonstrate

that the allocative efficiency of the CDA depends on the environment.

While in the first environment the seller has a higher market power than the buyers, in

the second environment this asymmetry is removed and the number of buyers and sellers

is equal to N . For a given N the set of valuations is
{

k
N

}
and the set of costs is

{
k−1
N

}
with

integer k ∈ [1, N ]. Consequently the demand and supply schedules are symmetric and the

equilibrium quantity is given by
⌈
N
2

⌉
.6 We call this symmetric environment with N buyers

and N sellers “SN -environment”. When N is even there exists a unique equilibrium price

6The ceiling function, dxe, gives the smallest integer greater or equal to x.
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1
2 , and when N is odd, the equilibrium price range is given by

(
N−1
2N , N+1

2N

)
. Fig. 1(b)

shows the “S5-environment” which we study in this paper.

The last environment we consider is depicted in Fig. 1(c). There are 5 buyers and 5

sellers in this market, with 4 IMBs and 4 IMSs.7 This example is similar to the previous

environment for N = 5 but less symmetric. Furthermore, it is one of the configurations

for which Arifovic and Ledyard (2007) study the effect of the transparency in the market

organized as a call auction, so that a direct comparison with the CDA market can be

made. We refer to this environment AL, henceforth.

2.2 Continuous Double Auction

In our model in every trading session the market is operating as the Continuous Double

Auction (CDA) with an electronic trading book.8 This is a market mechanism for a-

synchronous trading, common to the stock exchanges nowadays. If a newly submitted

order finds a “matching order,” it is satisfied at the price of this matching order. A

matching order is defined as an order stored in the opposite side of the book at whose price

the transaction with a newly arrived order is possible. If there are many orders which

match the incoming order, the matching order with which the trade occurs is selected

according to the price-time priority. If the submitted order does not find a matching

order, it is stored in the book and deleted only at the end of the session when the book

is cleared.

We assume that every agent submits only one order (bid or ask depending on the

agent’s type) during a trading session.9 The agents determine their orders before the

session starts. Consequently, they cannot condition their order on the state of the book.

The sequence of traders’ arrivals to the market is randomly permuted for every session.

At the end of each trading session the order book is cleared by removing all the unsatisfied

orders, so that the next session starts with an empty book.

For a given set of agents’ orders and their arrival sequence, the CDA mechanism

described above generates a (possibly empty) sequence of transactions. The prices at

which buyer b and seller s traded during trading session t are denoted by pb,t and ps,t,

while their orders are given by bb,t and as,t, respectively. In case b traded with s, price

pb,t=ps,t is the price of this transaction. It is equal to bb,t if b arrived before s and to as,t,

otherwise. According to (2.1), buyer b who traded at price pb,t extracts payoff Vb − pb,t,
while the buyer who did not trade over the session gets 0. Similarly, seller s who succeeded

in selling the unit at price ps,t receives payoff ps,t−Cs, while the seller who did not trade

gets 0. Note that in the CDA market the payoff a trader attains depends not only on

submitted orders but also on the sequence of their trade.

7The valuations/costs are V1 = 1, V2 = 0.93, V3 = 0.92, V4 = 0.81, V5 = 0.5, C1 = 0.3, C2 = C3 = 0.39,
C4 = 0.55 and C5 = 0.66. First four buyers and sellers are intramarginal. The equilibrium quantity is 4 and
equilibrium price range is [0.55, 0.66).

8Each trading session can be thought as a trading “day”.
9This assumption implies that multiple rounds of bidding are excluded from the analysis in this paper. Gode

and Sunder (1997) show that multiple rounds (until all possible transactions occur) result in higher efficiency
due to the absence of losses caused by an absence of trade. We also do not clear and “resample” the book after
every transaction. Resampling would increase efficiency of the market, because orders submitted far from the
equilibrium range of price would have a chance to be corrected, see LiCalzi and Pellizzari (2008).
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2.3 Market Efficiency with ZI-traders

What is the role of a market mechanism in determining market efficiency? A benchmark

for efficiency of a market mechanism might be given by its performance when the traders

are Zero Intelligent (ZI).10 Every trading period ZI traders submit random orders, drawing

them independently from a uniform distribution. Gode and Sunder (1993) distinguish

between constrained and unconstrained ZI traders. Unconstrained ZI traders can draw

orders from a whole interval [0, 1], while constrained traders are not allowed to bid higher

than their valuation or ask lower than their cost. Gjerstad and Shachat (2007) attribute

this restriction to individual rationality (IR) in the order submission, rather than a market

rule. We follow their terminology and distinguish between agents “with IR” and “without

IR”. A buyer with IR will not submit an order higher than the valuation. A seller with

IR will not submit an order lower than the cost.

2.3.1 GS-environment

We derive an analytic expression for the allocative efficiency of the CDA with ZI traders

for the GS-environment depicted in Fig. 1(a), when the number of extramarginal buyers

n → ∞. Note that in our setup a trading session may result in no transaction, whereas

Gode and Sunder (1997) guarantee transaction by introducing an unlimited number of

trading rounds.

Proposition 2.1. Consider the CDA in the GS-environment when n→∞. The expected

allocative efficiency under ZI agents with IR converges to

E =
1

2

(
1 + β3 + β2 − β

)
, (2.2)

the expected allocative efficiency under ZI agents without IR converges to

E = β.

Proof. See Appendix.

Consider first the IR case. The solid line in Fig. 2(a) shows the theoretical efficiency

(2.2) as a function of β. Its U-shape reflects a trade-off between the probability of inef-

ficient transaction and the size of inefficiency. The probability of a transaction with an

EMB increases in β, while the losses of allocative efficiency due to this transaction de-

crease in β. The probability of no trade decreases with β. Comparing (2.2) with Eq. (6)

from Gode and Sunder (1997) reproduced below

E = 1− (1− β)
β + β2

2(1− β(1− β))
,

we observe that efficiency in a market with one trading round is lower than in a market

with unlimited number of trading rounds. In our setup efficiency can be lower than 1 not

10In using this benchmark we attempt to abstract from agents’ behavioral aspects. One needs to be careful,
however, since ZI in itself is also a very special type of behavior.
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Figure 2: Allocative efficiency in the GS-environment with ZI agents. Theoretical expected
efficiency E is compared with average efficiency for finite number of traders. Average is taken
over 100 trading periods and 100 random seeds.

only due to a transaction with an extramarginal trader but also due to the absence of

trade.

Fig. 2(a) also shows the average allocative efficiency for a finite number n of EMBs.

The average is computed over T = 100 trading sessions and S = 100 random seeds. We

observe that the effect of finite number of agents is not very strong. As number of agents

n increases the average efficiency over the simulation runs converges to the theoretical

efficiency derived in Proposition 2.1. Fig. 2(b) shows the efficiency without IR. EMB

traders are no longer bounded by their valuation β and are now competing with a unique

IMB who trades with probability of 1/(n+1), which converges to 0 as n→∞. As a result,

no transaction outcome is ruled out and non-equilibrium transactions become the only

source of inefficiency. The trade-off between the probability of an inefficient transaction

and the size of the inefficiency (equal to β) disappears. It explains a linear shape of the

efficiency curve. Comparison with the IR case reveals a surprising conclusion. For high

values of β (namely for β >
√

2 − 1) the absence of the IR in order submission leads to

higher efficiency.

2.3.2 S5- and AL-environments

Next we analyze outcomes under the ZI benchmark in the two other environments in-

troduced in Section 2.1 and shown in Figs. 1(b) and 1(c), respectively. An important

difference with respect to the GS-environment is that now more than one transaction

can occur during a single trading session, at different transaction prices. In this case, we

report an average price of all transactions during a given session.

A well known result of Gode and Sunder (1993), obtained for similar environments, is

that the allocative efficiency is close to 100%. It is obtained, however, under assumption

that the multiple rounds of bidding are allowed and the book is cleared after every trans-

action. We want to verify this claim relaxing this assumption and allowing only one order

per agent in any given trading session. We simulate the trading under ZI agents with
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(a) Agents with IR in S5-environment. (b) Agents without IR in S5-environment.

(c) Agents with IR in AL-environment. (d) Agents without IR in AL-environment.

Figure 3: Efficiency and price in S5- and AL-environment with ZI agents. Solid lines indicate
equilibrium price range, equilibrium efficiency and equilibrium number of transactions.

and without IR for 100 trading sessions. Fig. 3 shows dynamics of the (average) price,

efficiency and number of transactions in the S5 (top panels) and AL (bottom panels) en-

vironments. On the price panel we show the equilibrium price range with two horizontal

lines. We observe, first, that the average price over the trading session is volatile, and

is often outside of the equilibrium range. Second, when the IR is imposed, the sessions

without transactions occur more frequently than in the case without IR. Third, absence of

IR can also lead to overtrading, i.e., to a larger than equilibrium number of transactions.

Table 1 reports the average allocative efficiency, average price, and the average number

S5 environment AL environment
with IR without IR with IR without IR

Efficiency 0.4240 0.3474 0.3717 0.5752
Price 0.4985 0.4988 0.6211 0.4989
Price Volatility 0.1700 0.1660 0.1226 0.1666
Number of Transactions 1.2087 3.1227 1.4787 3.1176

Table 1: Aggregate outcomes in the S5- and AL-environments with ZI agents.
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of transactions over T = 100 trading sessions, as well as price volatility (standard devia-

tion) over T periods. All these statistics are also averaged over S = 100 random seeds. In

both environments the average allocative efficiency with ZI agents is far less than 100%,

with a dubious effect of individual rationality. In the absence of IR, agents transact more

often and the number of transactions is closer to the equilibrium level. On the other

hand, many transactions lead to negative payoffs for individual traders. As a result in the

S5-environment the efficiency is higher in the case with IR relative to the case without

IR, when the efficiency turns negative in several sessions. An opposite result holds for the

AL-environment, where the individual rationality constraints lower allocative efficiency.

To summarize, our simulations with ZI agents show that the allocative efficiency in the

market does depend on the market environment (rather than only on the market rules)

and is typically much lower than 100%. Further, imposing the IR constraints in agents’

order submissions does not necessarily improve allocative efficiency.

3 Individual Evolutionary Learning

Our result of low market efficiency under ZI implies that the individual rationality can

have a positive effect on the efficiency and makes an analysis of the market with intelligent

traders meaningful. Furthermore, as we already mentioned, the market design questions

cannot be addressed within the ZI methodology, when random behavior is invariant to

the change in design. In the rest of the paper we investigate market outcomes under

a simple evolutionary mechanism of individual learning, which reinforces successful and

discourages unsuccessful strategies.

In our setting, an observed action of every agent during a trading round is one submit-

ted order. The evolution of the orders is modeled by the Individual Evolutionary Learning

(IEL) algorithm which involves the following steps:

• specification of a space of strategies (or messages);

• limiting this space to a small pool of strategies for every trader;

• choosing one message from the pool on the basis of its performance measure;

• evolving the pool using experimentation and replication.

IEL is based on an individual (not social) evolutionary process. It is well suited for

applications in environments with large strategy spaces (subsets of real line) such as our

CDA environment. See Arifovic and Ledyard (2004) for a discussion of the advantages

of IEL over other commonly used models of individual learning, such as reinforcement

learning (Erev and Roth, 1998) and Experience-Weighted Attraction learning (Camerer

and Ho, 1999), in the environments with large strategy spaces.

Messages

We assume that a message, εb,t(εs,t), represents a potential bid (or ask) order price from

buyer b (or seller s) at trading session t. In our base treatment we do not allow a violation

of the IR constraints, that is, we require εb,t ≤ Vb and εs,t ≥ Cs. Under alternative
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treatments without IR constraints these restrictions will not be imposed and we will let

traders themselves learn not to submit orders which lead to individual losses. In all

specifications we assume that possible orders belong to the interval [0, 1].

Individual Pool

Even if there is a continuum of possible messages, every agent will be restricted at every

time to choose between a limited amount of them. The pool of messages (bids) available

for submission at time t by buyer b is denoted by Bb,t. The pool of messages (asks)

available for submission at time t by seller s is denoted by As,t. Every period the pool of

each agent is updated, but the number of messages in the pool is fixed and equals to J .

Some of the messages in the pool might be identical, so that an agent may be choosing

from J or less possible alternatives. Initially, the individual pools contains J strategies

drawn, independently for each agent, from the uniform distribution on the interval of

admissible messages, i.e., [Vb, 1] for buyers and [0, Cs] for sellers when the IR constraints

cannot be violated and [0, 1] for all traders in the absence of IR.

The pool used at time t is updated before the following trading session by subsequent

application of two procedures: experimentation (or mutation) and replication. During

the experimentation stage, any message from the old pool can be replaced with a small

probability by some new message. In such a way for every buyer and seller the intermediate

pools are formed. More specifically, each message is removed from the pool with a small

probability of experimentation, ρ, or remains in the old pool with probability 1 − ρ. In

case that a message is removed, it is replaced by a new message drawn from a distribution,

P. In the benchmark simulations ρ = 0.03 and distribution P is uniform on the interval

[Vb, 1] for buyers and [0, Cs] for sellers.

At the replication stage two randomly chosen messages from the just-formed (inter-

mediate) pool are compared one with another, and the best of them occupies a place in

a new pool, Bb,t+1, for a buyer or As,t+1 for a seller. For every agent such a process is

independently repeated J times (with replacement), in order to fill all the places in the

new pool. The comparison is made according to a performance measure which is defined

below. Therefore, during replication, we increase an amount of “successful” messages in

the pool at the expense of less successful ones.

Calculating the Foregone Payoffs

How good is a given message? Indeed, only the message which has actually been used

last period delivers a known payoff given by (2.1). An agent who is learning would also

like to infer foregone payoffs from alternative strategies. To do this, every agent applies

a counterfactual analysis. Notice that this is a boundedly rational reasoning, since our

agent ignores the analogous learning process of all the other agents.

The calculation of foregone payoff is also made according to (2.1), but the price of

transaction is notional and depends on the amount of information which is available to

the agent. We distinguish between two treatments which we call open book (OP) and

closed book (CL) information treatment. Under the OP treatment each agent uses the
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full information about all bids, offers and prices from the previous period. Only the

identities of bidders are not known preventing direct access to the behavioral strategies

used by others. Under the CL treatment the agents are informed only about some price

aggregate, say average price, from the previous session, P av
t . If no transaction occurred

during this session, P av
t is set to an average price of the most recent past session for

which at least one transaction had occurred. Note that the availability and use of the

information from the book may be attributed either to market design, e.g., openness of

the market or costs of the access to the book, or to individual behavior, e.g., willingness

to buy information or possibility to process it, or both.

Let It denote the largest possible information set after the trading session t. It includes

the orders of all buyers and sellers as well as sequence in which they arrive at the market.

Under the CL treatment this whole set is not known to traders: they know only their own

bids and asks as well as an average price. Thus, under the CL treatment the information

sets of buyers and sellers at the end of session t are given as

ICL
b,t =

{
bb,t, P

av
t } ∪ ICL

b,t−1 , ICL
s,t =

{
as,t, P

av
t } ∪ ICL

s,t−1 .

The order book of the past period cannot be reconstructed with this information. Hence,

agent can only use average price of the previous session as an indication for possible

realized price given alternative message submitted.11 We assume that under the CL

treatment, agents’ foregone payoffs are computed as

Ub,t(εb|ICL
b,t ) =

Vb − P av
t if εb ≥ P av

t

0 otherwise
,

Us,t(εs|ICL
s,t ) =

P av
t − Cs if εs ≤ P av

t

0 otherwise
.

(3.1)

Note that the specification of the foregone payoffs is a strong assumption about the indi-

vidual behavior which may affect results of the IEL. There are other possible mechanisms

to compute the foregone payoffs under the closed book. We choose this specific mechanism

because of close resemblance of it to the mechanism used in Arifovic and Ledyard (2003).

Under the OP treatment, an agent knows the state of the order book at every moment

of the previous trading session. Assuming that his arrival time does not change, the agent

can find a price of a (notional) transaction, p∗·,t(ε·), for any alternative message ε· and

compute his own payoff using (2.1). Thus, the foregone payoffs under OP treatment are

11Another plausible possibility is to consider the closing price of the day. This modification does not influence
our qualitative results.
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given by

Ub,t(εb|IOP
b,t ) =

Vb − p∗b,t(εb) if order εb of buyer b transacts

0 otherwise
,

Us,t(εs|IOP
s,t ) =

p∗s,t(εs)− Cs if order εs of seller s transacts

0 otherwise
,

with corresponding information sets IOP
b,t , I

OP
s,t ⊂ It.

Selection of a Message from the Pool

When the new pool is formed, one of the messages is drawn randomly with a selection

probability and the corresponding order is submitted for trading session t+1. The selection

probability is also based upon foregone payoffs from the previous period. For example,

for buyer b the selection probability of each particular message εb,t+1 from pool Bb,t+1 is

computed as

πb,t+1(εb,t+1) =
Ub,t(εb,t+1|It)∑
ε∈Bb,t+1

Ub,t(ε|It)
, (3.2)

where It is an information set, which varies depending on the type of market. Under IR

all messages have non-negative performances. This guarantees that (3.2) gives a number

between 0 and 1.12

Other specifications for selection probabilities are also possible. Popular choices in

the literature are discrete choice models (probit or logit type). The logit probability

model is popular, for example, in modeling the individual learning in the literature on

financial markets with heterogeneous agents (Brock and Hommes, 1998; Goldbaum and

Panchenko, 2010) and has been recently used to explain the results of laboratory exper-

iments (Anufriev and Hommes, 2012). We simulated our model with these alternative

specifications in order to address the robustness issue of the IEL. The results reported

below are affected neither by the functional form of selection probability nor by the value

of the intensity of choice parameter of the logit model. This is mostly due to the replica-

tion stage which in several rounds replaces most of the strategies in the pool with similar

relatively well performing strategies. It is worth pointing out that with our specification of

the selection probability, we have one less free parameter, namely, the intensity of choice.

4 Market Efficiency under IEL

To study the effects of market transparency on allocative efficiency, we compare the market

outcome in two information treatments, closed book and open book. In our simulations

performed with learning agents we concentrate on four different aggregate variables: al-

locative efficiency, session-average price, its volatility and number of transactions. As

12This does not necessarily hold without IR. In simulations of Section 5.1 we add a constant equal to 1 to
the performance of every message to ensure that (3.2) generates a number between 0 and 1.
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Parameter Symbol Value (Range)
Number of strategies in a pool J 100
Probability of experimentation ρ 0.03
Distribution of experimentation

for buyers P U([0, Vb])
for sellers P U([Cs, 1])

Individual Rationality constraint IR enforced
Transitory period T 100
Number of trading periods T 100
Number of random seeds S 100

Table 2: Parameter values used in baseline simulations.
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(b) OP treatment.

Figure 4: Efficiency in the GS-environment under IEL as compared to ZI-benchmark.

before we compute the average values of these variables over T = 100 consecutive trading

periods after T = 100 transitory periods. To eliminate a dependence on a realization of a

particular random sequence we average the above numbers over S = 100 random seeds.

Table 2 summarizes the parameters of the IEL model which we use in the baseline

simulation throughout this Section. Notice that the IR is enforced in the baseline treat-

ment.

4.1 GS-environment

Figs. 4(a) and 4(b) show an allocative efficiency under the IEL with CL and OP, respec-

tively, for the GS-environment simulated with n = 3 and n = 10 EMBs. We observe a

significant increase in allocative efficiency over the ZI-benchmark shown by dotted line.

The solid line indicates the theoretical expected efficiency for n → ∞ derived below.

The allocative efficiency under the IEL practically does not depend on n, the number of

EMBs. Notice the striking difference caused by transparency of the book. The allocative

efficiency is higher under the OP treatment, actually very close to 100% for any β, while

under the CL treatment there is a positive linear dependence between the efficiency and

β for β > 0.

15



(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 5: Dynamics in the GS-environment with 3 EMBs with β = 0.1. Horizontal lines
indicate β on the panel for price and 100% efficiency on the panel for efficiency. In the right
part of the panels (c) and (d) stars denote valuations/costs of agents and vertical line shows
equilibrium price range.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 6: Dynamics in the GS-environment with 3 EMBs with β = 0.5. Horizontal lines
indicate β on the panel for price and 100% efficiency on the panel for efficiency. In the right
part of the panels (c) and (d) stars denote valuations/costs of agents and vertical line shows
equilibrium price range.
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Figs. 5 and 6 show the evolution of the market during the first 100 trading sessions

for β = 0.1 and β = 0.5, respectively. Upper panels show the evolution of market price

and efficiency under CL (left panel) and OP (right panel) treatment. Horizontal lines

indicate β on the price panel and 100% efficiency on the efficiency panel. Consistently

with the long-run results of Fig. 4 the price is much more volatile under the CL and is

stable and close to β under the OP. The efficiency is permanently changing between β

and 1 under CL for both values of β. On the contrary, under OP the efficiency is only

initially changing between β and 1, but then converges to 1. An outlier in period 91 for

β = 0.5 on Fig. 6(b) is the result of agents’ experimentation, as discussed below.

In order to explain these results for the aggregate market outcomes we look at the

individual strategies of agents and their evolution. An important question is whether and

where the IEL-driven individual strategies converge under different treatments. In the

panels (c) and (d) of Figs. 5 and 6, we show the evolution of individual bids and asks for

both buyers and sellers. Agents’ valuations/costs are denoted by stars in the right part

of the plots; the range of equilibrium prices is indicated by a vertical line.

Closed book treatment

Consider the CL treatment shown in Figs. 5(c) and 6(c). The orders submitted by the

intramarginal traders converge to their valuations/costs. All other traders (i.e., extra-

marginal buyers) exhibit somewhat erratic behavior often changing their submitted or-

ders but now and then submitting orders very close to their valuation β. Analysis of the

evolution of the individual pools reveals that after a short transitory period the pools of

all traders become almost homogeneous (except for deviations due to experimentation)

and consist of messages that are close to their own valuations/costs. In the following

result we state that the profile with pools consisting of such messages is “attractive”. The

word “attractive” is used not in the strict sense of convergence of the dynamical system

to some state. In fact, the IEL never converges because of the non-vanishing noise of

the experimentation stage. We refer to the strategy profile as “attractive”, if any single

mutant message added to this profile at the experimentation stage will not increase its

presence in the pool, but will be replaced in the long run by a message, which is arbitrary

close to the message from the initial profile.

Result 1. The strategy profile under which the pool of every trader consists of mes-

sages equal to his own valuation/cost is attractive under the CL treatment in the GS-

environment.

We explain this result as follows. Consider the rule for the foregone payoffs (3.1), which

agents use in their learning procedure. Under the GS-environment there is only one price

during the trading session, pt = P av
t . After this price is realized each buyer (seller) receives

the same nonnegative payoff for any allowed message above (below) pt and zero payoff

for all other messages. Suppose now that the pool of every agent consists only of his

valuations/costs, and that one of the agents, say an EMB, has a mutant strategy, ε′b < β,

in his pool. Observe, that for any transaction price p the foregone payoff of the mutant is

no larger than the foregone payoff of the incumbent message, β. Indeed, when p ∈ (ε′b, β),
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the payoff of the mutant is 0, and the payoff of the incumbent is β − p > 0. For every

other price the payoffs are the same, 0 for p ≥ β and β for p ≤ ε′b. Hence, the mutant

cannot increase the probability of its presence in the pool in the subsequent periods. For

instance, until no new mutations to the initial profile occur, the transaction price can be13

1, β, ε′b, or 0. In all these cases all the messages in the EMB’s pool (i.e., β and ε′b) receive

the same payoffs and the mutant is expected to occupy exactly one place in the pool after

the replication.

Furthermore, the mutant must eventually leave the pool after a mutated message

ε′′ ∈ (ε′b, β) enters the pool of the same or other trader. At a period, when this message

determines the transaction price (such period comes about with probability 1, since every

sequence of traders’ arrival has equal, non-zero probability), the incumbent message β of

our EMB receives higher payoff than the mutant message ε′b. The mutant does not survive

the replication stage. In case if the message ε′′ belongs to the pool of the same trader,

this new mutant may “replace” the old mutant in the pool. The same reasoning implies,

however, that the new mutant will also be replaced in the long-run either by the incumbent

message β or by other mutant from the interval (ε′′, β). Only mutations towards the initial

configuration will survive in the long run, explaining the “attractiveness” of the initial

profile.

The same reasoning holds for other types of traders.

Result 1 has the following consequence for the efficiency.

Corollary 1. Under the configuration in Result 1 the price oscillates in the range [0, 1],

and the expected efficiency is given by

ECL =
4 + (3 + n2)(1 + β)

2(n+ 1)(n+ 2)
. (4.1)

Proof. See Appendix.

When number of agents n → ∞ the expression (4.1) converges to (1 + β)/2, shown

by a solid line in Fig. 4(a). Notice that the evolution of submitted orders in the CL

treatment (see Figs. 5(c) and 6(c)) is not fully consistent with Result 1 due to persistent

experimentations. A noise due to experimentation is especially strong for the EMBs

because the mutants in their pools will be wiped out by the counterfactual analysis only

after periods with sufficiently low transacted price, which are relatively rare.

Open book treatment

Let us turn now to the OP treatment, where the evolution of individual strategies is

remarkably different. In Figs. 5(d) and 6(d) we observe that intramarginal traders are

able to coordinate on one price which remains unchanged for a long period and submit

the orders predominantly at this price. In the following result we show that the profile

with pools consisting of messages equal to any given equilibrium price can, with a large

probability, be “sustained” in the sense that any single mutant message added to this

profile will be replaced by the message from the initial profile. There is a small probability,

13Recall that given the submitted orders, the price of transaction depends on the sequence of traders’ arrival.
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however, that a chain of mutations will force agents to jump out of this profile and

coordinate on a similar homogeneous profile but with another price from the equilibrium

range.14

Result 2. For any price p from the range (β, 1) the strategy profile under which the pools

of the IMB and the IMS consist of messages equal to this price can be sustained with a

high probability under the OP treatment in the GS-environment.

To explain this result, let us suppose that both intramarginal traders have homoge-

neous pools with messages equal to p ∈ (β, 1) . Given these pools, the realized price is

p. Assume that during the experimentation stage a mutant message is introduced in the

pool of the IMB and/or the IMS. Consider the replication stage immediately after the

experimentation. For any mutant message of the IMS, ε′s, such that ε′s > p, no counter-

factual transaction is possible implying 0 foregone payoff for the mutant. Similarly, any

mutant message of the IMB, ε′b, such that ε′b < p, will have 0 foregone payoff. Hence,

these mutants will not survive the replication stage, and will not be present in the pools

during the subsequent session. In case, when ε′s < p or ε′b > p, the sequence of traders’

arrival in the previous (pre-mutation) session becomes important. With probability 1/2

the IMB arrived before the IMS. In this case the counterfactual order of the IMB de-

termines the counterfactual transaction price. Hence, the mutant of the IMB, ε′b, will

yield a smaller foregone payoff than the original message, p, and will be eliminated at the

replication stage. The mutant of the IMS, ε′s, attains the same level of the foregone payoff

as the original message. The analysis of the case when the IMS arrived before the IMB is

analogous.

We have shown that every mutation can, on average, occupy less than one place in the

pools of the next session. Furthermore, only the IMS’s mutations towards the lower price

and the IMB’s mutations towards the higher price have a chance to be present in the new

pool. Under our rule for the foregone payoff, these mutations either bring strictly smaller

payoff than the incumbent message, p, or the same payoff (when they do not determine

the transaction price). Hence, in the long run the mutants are likely to be replaced by the

original messages, given that the original messages are still present in the pools of every

intramarginal trader.

However, there is a chance that the original pool will be completely abandoned through

a chain of mutations, so that the return to the original profile becomes impossible. How-

ever, this chance is very small. Through the analysis of all possible outcomes, one can

find the most probable scenario for such profile jump. Let us assume that the original

mutant of the seller, ε′s < p, survived the replication stage, was selected as an order for

one of the subsequent sessions and determined the transaction price of this session. Under

these circumstances, the IMB can generate a mutant ε′′b ∈ (ε′s, p) surviving the replication

stage. If in the next period this mutant is submitted as an order of the IMB along with

the incumbent message p of the IMS, there will be no trade. Now all the messages and

14Comparing with Result 1 for the CL treatment, notice that, on the one hand, there is a continuum of
“equilibrium” profiles under OP, leading to a possibility of abandoning any given profile. On the other hand,
when the profile is not abandoned, the mutations are replaced by the messages from the original profile, not by
the messages close to the original messages. It explains why we use the stronger notion than “attractiveness”.

20



mutations, which can facilitate counterfactual trade, e.g. increasing bid and decreasing

ask, will receive relatively high foregone payoff and will have a high chance to be selected

in the subsequent round. It means that after the following replication messages equal to

p or larger will increase their presence in the pool of the IMB, while messages equal toε′s

or smaller will increase their presence in the pool of the IMS. In this way, the IMS may

abandon its initial profile. The probability of such chain of events is of the order ρ2/J2,

since two mutations and their choice from the profiles are needed.

According to Result 2 the IEL can converge to any price within the equilibrium range.

The jumps within the equilibrium range may occur with a small probability, but all such

“multiple equilibria” are equivalent from the efficiency point of view.

Corollary 2. Under the configuration in Result 2 the price is constant and the expected

efficiency is given by

EOP = 1

Proof. Since the strategy profiles of the IMB and the IMS are constant, the price is also

constant. Given the price in the competitive equilibrium range the IMB trades with the

IMS and the maximum expected efficiency, EOP = 1, is obtained for any β.

This result is consistent with our simulations. For example, in Fig. 6(d) the strategies

of the IMB and IMS converged to the same submitted orders approximately equal to 0.53.

Notice that the EMBs never trade in such a market and all their strategies in the pools

have equal probabilities which leads to random bids fluctuations in [0, β] region, see the

lower panel of Fig. 6(d).

Even if Result 2 implies the 100% allocative efficiency, due to experimentation the

efficiency may drop in some periods. This happens around the period 91 in Fig. 6(d).

After previous trading round the seller’s pool was dominated by the orders equal to 0.53,

which is the price at period 90. An experimentation adds a strategy 0.06 to the seller’s

pool, which survives replication stage. In fact, the price p90 was determined by the buyer’s

order (the seller at t = 90 arrived after the buyer) and so all the strategies below p90 have

the same hypothetical payoffs. Even if the strategy 0.06 belongs to the seller’s pool at

time 91, a probability to use this strategy as an order is only 1/J = 1/100. Whenever

such order is submitted, the price will be lower than previously observed 0.53. In this

particular case, p91 = 0.28 equal to the order of one of the EMB. Notice that after this

trading round, the seller will re-evaluates his strategies, and strategy 0.53 will have higher

hypothetical payoff than 0.06.

To summarize, the information used by the agents under the IEL shapes their strategy

pool in the long-run. This pool affects the aggregate dynamics, which feeds back by

providing a ground for selection of active strategies within the pool. When the book is

closed (CL treatment), agents react on commonly available signal (price of the transaction)

and learn to submit their own valuations/costs. This leads to higher opportunity of trade,

but also to larger price volatility, as we observed in Figs. 5(a) and 6(a). When the book is

open (OP treatment), active agents can adapt to the stable strategies, always submitting

their previous orders. Such individual behavior results in a stable price behavior at the

aggregate level.
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Figure 7: Average price and price volatility under IEL in the GS-environment as compared to
the ZI-benchmark.

Fig. 7 shows the average price and price volatility under CL and OP treatments and

also compares them with ZI outcomes. In accordance with Result 2 under OP treatment

the price belong to the competitive price range (denoted by shaded area) for any β. This

is not the case for the CL and ZI treatments. When the book is closed and equilibrium

combination described in Result 1 is reached, the price jumps between 0, 1 and β and its

average falls into the competitive range (β, 1] only when β is small. If the traders are ZI

and β is small the price will most certainly be determined by the best among the bids

of the IMS and IMB, which is around 1/2. When β is higher, the best bid of the EMBs

available to the IMS will determine price more often, resulting in larger average price.

However, this bid is smaller than β for finite n, explaining why the price is not in the

equilibrium range. The realized volatility will be almost zero under the OP treatment, as

implied by Corollary 2. It is the largest in the CL treatment, when its jumps have the

largest amplitude.

4.2 S5- and AL-environments

Do the results about aggregate dynamics and individual behavior observed in the stylized

GS-environment also hold under alternative environments? Fig. 8 shows market aggre-

gates (price, efficiency and number of transactions), as well as evolution of the individual

trading orders (bids/asks) over time for the S5-environment, and Fig. 9 gives the same

information for the AL-environment. Two horizontal lines on the panels for price indicate

equilibrium price range, while the line on the panel for transactions shows the equilibrium

number of transactions equal to 4.

Notice that the qualitative results are very similar for S5 and AL environments. Sim-

ilarly to the GS-environment, the price is less volatile under the OP treatment and lies

within the equilibrium range, while in case of the CL treatment the price is often outside

the equilibrium range. The efficiency under the CL treatment is systematically below 1,

while under OP treatment it is virtually 1 most of the time. Interestingly, a loss of effi-

ciency under the CL is attributed to overtrading, i.e., larger than equilibrium number of
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 8: Dynamics in the S5-environment. Horizontal lines indicate equilibrium price range on
the panel for price, equilibrium efficiency on the panel for efficiency and equilibrium number of
transactions on the panel for transactions. In the right part of the plots for individual strategies
stars denote valuations/costs of agents and vertical line shows equilibrium price range.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 9: Dynamics in the AL-environment. Horizontal lines indicate equilibrium price range on
the panel for price, equilibrium efficiency on the panel for efficiency and equilibrium number of
transactions on the panel for transactions. In the right part of the plots for individual strategies
stars denote valuations/costs of agents and vertical line shows equilibrium price range.
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Figure 10: Efficiency in the GS-environment populated by agents without IR. The thick line
shows the benchmark level of expected efficiency in the attracting configurations. The dotted
line shows the efficiency with ZI agents without IR, which equals to β (and is not shown for
β < 0.4).

transactions. This is simply a consequence of larger than equilibrium range of price fluc-

tuations, which contains the valuations/costs of the extramarginal traders making their

trading possible. Under the OP treatment the loss of efficiency occurs due to smaller

than equilibrium number of transactions. The EMB and the EMS do not trade under the

OP, but occasional experimentation by the intramarginal traders may prevent them from

transacting.

As for the individual strategies, under the OP (Figs. 8(d) and 9(d)) the intramarginal

traders coordinate on one price as we have already seen in the GS-environment. Result 2

still holds. However, under the CL (Figs. 8(c) and 9(c)) traders’ orders converge to their

valuations/costs only if the latter fall within the range of price fluctuations. It follows from

(3.1) that the IEL process creates an upward pressure only on those buy orders which lie

below average price of the last trading session, P av
t , and downward pressure only on those

sell orders which lie above P av
t . Whereas in the GS-environment only one transaction per

session is possible and the “average” price reflecting this transaction fluctuates within the

whole range of [0, 1], in the AL-environment the price P av
t averages out the individual

orders. It leads to smaller range of fluctuation and does not allow traders with extreme

valuations/costs to learn. Similar feature is observed in other learning models which do

not rely on the common knowledge assumption (see, e.g., Fano, LiCalzi, and Pellizzari

(2010)).

5 Robustness

5.1 Role of Individual rationality

Gjerstad and Shachat (2007) argue that one of the key conditions for high allocative effi-

ciency under the ZI traders in Gode and Sunder (1993) are the constraints on individual
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rationality.15 In this section we investigate whether the assumption of Individual Ratio-

nality plays an important role under the IEL learning. It turns out that, in general, our

findings of the long run outcome of the IEL learning mechanism are robust towards a vi-

olation of the IR constraints by agents. In fact, the behavior violating the IR constraints

will often lead to messages with negative foregone payoff. Under the IEL the agents have

enough intelligence to discard these messages on the replication or selection stage. Nev-

ertheless, occasionally the messages violating IR will be submitted16 obviously leading to

higher price volatility. We are interested also in the effect of these messages on efficiency.

Fig. 10 shows the results of simulation of the GS-environment with n = 3 and n = 10

EMBs populated by agents relying on the IEL but without IR. For every β both in the

CL treatment (left panel) and in the OP treatment (right panel) the resulting efficiency

is very close to the theoretical level found in Corollaries 1 and 2. Comparison with Fig. 4

shows that for the IEL learning the IR constraints in the message generating process are

almost irrelevant.

Comparison of Fig. 11 with Fig. 8 for the S5-environment and Fig. 12 with Fig. 9 for

the AL-environment reveals an interesting effect of the removal of individual rationality

constraints. First of all, we observe higher volatility of submitted orders and, therefore,

in price, in both treatments, CL and OP. Under the CL this higher volatility slightly

promotes learning of agents’ valuations/costs. As a result more often we observe the

sessions with overtrading. Under the OP, absence of the IR impairs the coordination to

one price, often leading to undertrading. Both scenarios result in lower efficiency than in

simulations with IR. It is important to stress that the resulting loss of allocative efficiency

is moderate: it is much lower than the loss observed in simulations with the ZI traders.

5.2 The Role of IEL parameters

The IEL algorithm has two important parameters, the size of the pool of strategies, J , and

the probability of experimentation, ρ. Since the values of these parameters are chosen

in an ad hoc way, it is important to investigate the robustness of the results to these

parameters. For the S5- and AL-environment, respectively, Tables 3 and 4 summarize

the efficiency, price, price volatility and number of transactions averaged for different

combinations of the probability of experimentation, ρ, and the size of the strategy pool,

J .

Our finding that the price volatility and trading volume depend on the information

treatment turn out to be robust to parameter variation. In particular, the price is less

volatile under the OP treatment than under the CL treatment for any combination of ρ

and J in both environments. Also independent on the values of parameters, we observe

overtrading in the CL treatment and undertrading in the OP treatment. These are the

consequences of the different evolutions of strategy profiles under different treatment and

can be best understood with the help of Results 1 and 2, obtained for a simpler GS-

15Recall that we confirm this claim in the GS-environment only for the case when the EMBs’ valuation
β <
√

2− 1, see Fig. 2(b).
16There is an experimental evidence that profit-motivating subjects do violate the IR constraints, even if

rarely. See, for example, Lei, Noussair, and Plott (2001).
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 11: Dynamics in the S5-environment without IR. Horizontal lines indicate equilibrium
price range on the panel for price, equilibrium efficiency on the panel for efficiency and equi-
librium number of transactions on the panel for transactions. In the right part of the plots for
individual strategies stars denote valuations/costs of agents and vertical line shows equilibrium
price range.
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(a) Aggregate outcomes under CL. (b) Aggregate outcomes under OP.

(c) Individual bids (left) and asks (right) under CL.

(d) Individual bids (left) and asks (right) under OP.

Figure 12: Dynamics in the AL-environment without IR. Horizontal lines indicate equilibrium
price range on the panel for price, equilibrium efficiency on the panel for efficiency and equi-
librium number of transactions on the panel for transactions. In the right part of the plots for
individual strategies stars denote valuations/costs of agents and vertical line shows equilibrium
price range.
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CL: closed book OP: open book
J = 10 J = 50 J = 100 J = 200 J = 10 J = 50 J = 100 J = 200

ρ = 0.01
Efficiency 0.895 0.882 0.881 0.877 0.871 0.928 0.935 0.941
Price 0.497 0.501 0.499 0.501 0.501 0.501 0.496 0.505
Price Volat 0.123 0.128 0.134 0.137 0.053 0.025 0.024 0.023
Num Transact 3.249 3.610 3.628 3.635 2.583 2.752 2.780 2.788
ρ = 0.03
Efficiency 0.889 0.883 0.879 0.879 0.898 0.947 0.953 0.961
Price 0.498 0.502 0.500 0.501 0.502 0.503 0.498 0.500
Price Volat 0.130 0.133 0.136 0.137 0.047 0.026 0.024 0.022
Num Transact 3.379 3.553 3.592 3.589 2.677 2.807 2.836 2.868
ρ = 0.10
Efficiency 0.891 0.886 0.884 0.881 0.908 0.947 0.954 0.960
Price 0.502 0.499 0.499 0.498 0.504 0.499 0.508 0.504
Price Volat 0.133 0.136 0.137 0.139 0.058 0.039 0.036 0.033
Num Transact 3.234 3.371 3.396 3.415 2.706 2.840 2.864 2.878
ρ = 0.30
Efficiency 0.875 0.882 0.879 0.884 0.834 0.845 0.841 0.844
Price 0.502 0.504 0.502 0.500 0.502 0.499 0.501 0.499
Price Volat 0.131 0.132 0.132 0.132 0.099 0.092 0.091 0.092
Num Transact 2.942 3.048 3.063 3.067 2.510 2.551 2.546 2.544

Table 3: Aggregate outcomes of the open and close book CDA in the S5-environment for
varying ρ and J averaged over 100 random seeds, 100 trading sessions after 100 transient
trading sessions.

CL: closed book OP: open book
J = 10 J = 50 J = 100 J = 200 J = 10 J = 50 J = 100 J = 200

ρ = 0.01
Efficiency 0.935 0.931 0.931 0.931 0.867 0.912 0.919 0.925
Price 0.627 0.634 0.641 0.642 0.648 0.633 0.641 0.640
Price Volat 0.111 0.123 0.125 0.124 0.040 0.021 0.018 0.018
Num Transact 4.180 4.601 4.725 4.759 3.571 3.736 3.780 3.784
ρ = 0.03
Efficiency 0.932 0.931 0.930 0.930 0.887 0.915 0.925 0.929
Price 0.634 0.638 0.640 0.642 0.643 0.640 0.636 0.633
Price Volat 0.120 0.124 0.126 0.127 0.035 0.023 0.022 0.021
Num Transact 4.226 4.579 4.643 4.675 3.652 3.774 3.801 3.810
ρ = 0.10
Efficiency 0.932 0.930 0.929 0.929 0.896 0.926 0.935 0.936
Price 0.636 0.638 0.637 0.638 0.642 0.642 0.636 0.638
Price Volat 0.121 0.130 0.129 0.131 0.042 0.028 0.027 0.025
Num Transact 4.135 4.290 4.325 4.355 3.686 3.802 3.788 3.811
ρ = 0.30
Efficiency 0.922 0.926 0.927 0.927 0.845 0.850 0.851 0.852
Price 0.643 0.642 0.640 0.641 0.648 0.645 0.642 0.642
Price Volat 0.110 0.112 0.112 0.112 0.070 0.064 0.062 0.062
Num Transact 3.963 4.048 4.058 4.074 3.498 3.520 3.514 3.532

Table 4: Aggregate outcomes of the open and close book CDA in the AL-environment for
varying ρ and J averaged over 100 random seeds, 100 trading sessions after 100 transient
trading sessions.
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environment. But what can be said about the allocative efficiency? Both overtrading and

undertrading lower efficiency but for different reasons and the precise consequence for

allocative efficiency depend mostly on the configuration of demand and supply but also

on the parameters. Overtrading is more detrimental for the S5-environment because of the

larger number of the extramarginal traders and the higher potential efficiency loss. In the

S5-environment for ρ ≤ 0.1 the efficiency in the OP treatment is larger than the efficiency

in the CL treatment (the only exception is ρ = 0.01, J = 10). For large probability

of experimentation the efficiency in the OP drops significantly and becomes lower than

the efficiency in the CL. On the contrary, in the AL-environment the CL market has a

higher efficiency than the OP market for most of the parameter values (two exceptions

are obtained when ρ = 0.1 and J = 100 or J = 200).

6 Conclusion

This paper contributes to the issue of market design by analyzing the role of transparency.

We focus on the market organized as a continuous double auction with an electronic order

book, and study the consequences of the use of full or limited information derived from

the order book of a previous period. A fully rational behavior is extremely difficult to

model in such a market, while the opposite extreme of Zero-Intelligent behavior cannot

capture informational differences in market architecture. We choose an intermediate ap-

proach and model our traders as boundedly rational learning agents, whose strategies

evolve over time. The learning is modeled through the Individual Evolutionary Learning

algorithm of Arifovic and Ledyard (2003), which incorporates two Darwinian ideas. First

is experimentation, which means that agents are allowed to use, in principle, any strategy

at some period of time. Second is selection with reinforcement, so that strategies with

higher past payoffs have higher probability to be used in the future. An important aspect

of the IEL is that every agent evaluates the strategies not only on the basis of the actual,

but also counterfactual (foregone) payoff.

We derive allocative efficiency for the benchmark case with the ZI traders and show

through simulations that IEL leads to a substantially higher efficiency. As for the trans-

parency issue we show that strategies learned by traders are remarkably different in the

treatments with fully available (“open”) order book and unavailable (“closed”) order

book. Traders, who systematically participate in the trade, learn to submit their own

valuations/costs under the closed book treatment, and the previously observed trading

price under the open book treatment. These individual differences result in differences at

the aggregate level: higher price volatility and overtrading under the closed book relative

to the open book treatment. Allocative efficiency is comparable in both cases, however

the sources of the inefficiencies are different.

We show that our results are robust with respect to the market environments that

we consider. In addition, the results are robust with respect to changes in the values of

the parameters of the learning model, such as the rate of experimentation and the size

of the pool of strategies. We also find that the IEL algorithm is effective in wiping out

the strategies which contradict individual rationality constraint and which would result
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in a strictly negative payoff. This is an important property of the algorithm, suggesting

that it can be successfully applied in more sophisticated environments, where strategies

with negative performance cannot be easily identified and ruled out at the outset. Indeed,

as experiments in Kagel, Harstad, and Levin (1987) and Lei, Noussair, and Plott (2001)

show, in reality participants occasionally violate the individual rationality requirement

and trade with clear losses. The learning model applied in this paper does not contradict

such experimental evidence.

In modeling agents’ behavior our approach is relatively simple in comparison to some

micro-structure studies attempting to model fully rational behavior. However, our behav-

ioral assumptions fit better to the experimental evidence of human behavior in complex

environment that demonstrates that human subjects often use simple behavioral rules

(Hommes, Sonnemans, Tuinstra, and Velden, 2005). Based on such assumptions our

model predicts that volatility in the market should decrease as a result of higher trans-

parency. This is consistent with the study of Boehmer, Saar, and Yu (2005) for the

NYSE. Some of their finding (e.g., higher order splitting as a result of increasing mar-

ket transparency) cannot be replicated in this paper, because we do not allow individual

traders to buy or sell multiple units. Several other assumptions of this paper could also

be relaxed. Allowing for cancelation of some orders would bring us to a more realistic

setting, which lies in between of the two extremes: no-cancelation as in this paper and

cancelation of all remaining orders after every transaction as in Gode and Sunder (1993).

Submission of multiple orders would allow us to model a more realistic intermediate sit-

uation between the two extremes: one-order per agent in one trading session as here and

unbounded amount of multiple orders as in Gode and Sunder (1997). Finally, it would

be also interesting to consider endogenous dynamics for valuations and costs, explored in

heterogeneous agent models literature, see, e.g., Brock and Hommes (1998) and Anufriev

and Panchenko (2009).

Appendix

Definition of the frequently used acronyms
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Acronym Definition Explained in

CDA Continuous double auction Section 2.2

ZI Zero intelligent (agent) Section 2.3.1

IR Individual Rationality Section 2.3.1

IEL Individual evolutionary learning Section 3

AL Environment from Arifovic and Ledyard (2007) Section 2.1

GS Environment from Gode and Sunder (1997) Section 2.1

S5 Symmetric environment with 5 buyers and 5 sellers Section 2.1

OP Open book (treatment) Section 3

CL Closed book (treatment) Section 3

IMB Intramarginal buyer Section 2.1

IMS Intramarginal seller Section 2.1

EMB Extramarginal buyer Section 2.1

EMS Extramarginal seller Section 2.1

Proof of Proposition 2.1. First, let us consider ZI agents with IR. We have three

types of traders:

• one intramarginal buyer (IMB) whose valuation is 1 and whose bid price is drawn

from the uniform distribution on [0, 1];

• one intramarginal seller (IMS) whose valuation is 0 and whose ask prices are drawn

from the uniform distribution on [0, 1];

• an infinite number of extramarginal buyers (EMBs) whose valuations are β and

whose bid prices are drawn from the uniform distribution on [0, β].

In the proof we rely on the following arguments. Because the order of arrival of all

traders is random, when number of the EMBs n→∞, the number of the EMBs arriving

before the IMS becomes sufficiently large with probability 1. Since the number of the

EMBs arriving prior to the IMS is sufficiently large, the best (highest) bid price among

these EMBs converges to β with probability 1. This bid is the best available order of the

opposite side for the IMS, unless the IMB arrives prior to the IMS and outbids the highest

EMBs’ bid by submitting bid b > β. The same line of reasoning is used in the proof of a

similar proposition in Gode and Sunder (1997).

We consider, in turn, all possible outcomes of a trading session, evaluating probability

of each outcome and its allocative efficiency. Below we distinguish between two equiprob-

able outcomes (the IMB arrives before the IMS and vice versa) and then compute the

(conditional) probabilities of every single event.

1. the IMB arrives before the IMS. This event occur with probability 1
2 . The further

development depends on whether the IMB outbids the EMB with the highest bid β:

(a) the IMB bids b < β. Since the IMB is ZI, this event occurs with probability β.

But the highest EMBs’ bid is β, hence the IMB fails to outbid the EMB with

the highest bid. Two possibilities arise:

i. the IMS asks a < β with P = β - the IMS trades with the EMB; efficiency

is β, or
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ii. the IMS asks a > β, P = (1− β) - no transaction occurs; efficiency is 0.

(b) the IMB bids b > β with P = (1− β) - the IMB outbids the EMB, and

i. the IMS asks a < β with P = β - then the IMB trades with the IMS;

efficiency is 1, or

ii. the IMS asks a > β and a < IMB b with P = (1 − β)/2 - then the IMB

trades with the IMS; efficiency is 1, or

iii. the IMS asks a > β and a > IMB b with P = (1 − β)/2 - the IMS asks is

too high, no trade occurs; efficiency is 0.

2. the IMB arrives after the IMS with P = 0.5,

(a) the IMS asks a < β with P = β - the EMB trades because the IMB did not

have a chance to outbid it; efficiency is β, or

(b) the IMS asks a > β with P = 1− β - none of the EMBs can trade and

i. the IMB bids b < β with P = β - the IMB bids too low, no transaction

occurs, efficiency is 0, or

ii. the IMB bids b > β and b < IMB a with P = (1− β)/2 - the IMB bids too

low, no transaction occurs, efficiency is 0, or

iii. the IMB bids b > β and b > IMB a with P = (1 − β)/2 - the IMB trades

with the IMS; efficiency is 1.

Expected efficiency is given by the following expression

E =
1

2

(
β3 +

(1− β)2

2
+ β(1− β)

)
+

1

2

(
β2 +

(1− β)2

2

)
=

1

2
(1 + β3 + β2 − β)

Second, we consider the case of ZI agents without IR. In this case there is no difference

in bidding behavior between the IMB and EMB traders. Thus, when a number of the

EMB traders converges to infinity with probability 1, one EMB will trade. Such trade

delivers efficiency β.

Proof of Corollary 1. A transaction price in the CDA is determined using price/time

priority and highly depends on the order of the agents’ arrival. Given that agents bid/ask

their valuations/costs and the fact the order of their arrival is randomly permuted, price

vary for different trading sessions and, hence, is volatile over time.

To derive (4.1) we consider the following situations:

1. the IMS arrives first, probability P = 1/(n+ 2), and

(a) the IMB arrives next, probability P = 1/(n+ 1), and efficiency is 1, or,

(b) the EMB arrives next, probability P = n/(n+ 1), and efficiency is β

In this situation the price is 0.

2. the IMB arrives first, probability P = 1/(n+2), and efficiency is 1. In this situation

the price is 1.

3. an EMB arrives first, probability P = n/(n+ 2), and
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(a) the IMS arrives before the IMB, probability P = 1/2, and efficiency is β, in this

situation the price is β, or,

(b) the IMS arrives after the IMB, probability P = 1/2, and efficiency is 1, in this

situation the price is 1.

Summing the terms we obtain (4.1) for the efficiency.
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