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Abstract
We investigate an inßationary overlapping generations model where house-

holds predict future inßation rates by running a least squares regression of
inßation rates or prices on their past levels. We critically examine the results
on learning equilibria obtained by Bullard (1994) and Schönhofer (1999) in this
framework. They show that an increase in the money growth rate may lead
to limit cycles and endogenous business cycles. We suggest an alternative es-
timation procedure, that starts from the same perceived law of motion, but is
more sensible from an econometrician�s point of view. We prove that for this
estimation procedure there is global convergence on the monetary steady for
a large set of savings functions. We also study, in an heterogeneous agents
framework, evolutionary competition between the two estimation procedures,
where the fraction of the population using a certain estimation procedure is
determined by its past average quadratic forecast error. Interestingly, the more
sensible estimation procedure is not always able to drive out the other estima-
tion procedure, and endogenous business cycles may still be observed in this
heterogeneous world.

Keywords: overlapping generations models, learning, endogenous business cycles, heteroge-
neous beliefs, evolutionary dynamics

JEL classiÞcation code: D83, D84, D90, E31, E32

1 Introduction
There is a growing literature pointing out the limitations of the rational expectations
hypothesis. In particular, it has been perceived as unsatisfactory that this hypothesis
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endows economic agents with precise information about the structure of the economy
and the beliefs of other agents as well as unbounded reasoning abilities to deal with
this information. A number of authors have suggested that the rational expectations
hypothesis still is valid as a description of long run behavior, since economic agents
learn over time and eventually arrive at a rational expectations steady state. The
rational expectations hypothesis can therefore be supported by a learning story (see
Lucas, 1976, Marcet and Sargent, 1989 and Evans and Honkapohja, 2001). In such a
learning model boundedly rational agents are generally assumed to have no structural
information about their economic environment other than time series observations
on certain economic variables. They use these observations to make inferences about
the economic environment. In his book on bounded rationality Sargent (1993, p.22)
writes: �We can interpret the idea of bounded rationality broadly as a research
program to build models populated by agents who behave like working economists
or econometricians.� Since the perceptions of agents inßuence their behavior, the
learning feeds back into the actual realizations of economic variables. Hence, the
learning procedure itself is one of the determinants of the evolution of the economic
variables. With respect to this learning procedure Bullard (1994, p.468) states:

�A common research question, asked increasingly often in the recent literature, is
how this learning takes place, and more importantly, if it makes any difference for
inferences from dynamic general equilibrium models whether the learning is explicitly
modeled.�

In his interesting paper Bullard shows, in an overlapping generations framework,
that explicitly modelling agents as econometricians might create equilibrium paths
different from the rational expectations steady state. Some of these learning equilibria
can be characterized by endogenous ßuctuations in inßation rates and agents beliefs.
Moreover, Schönhofer (1999) shows that chaotic learning equilibria exist.
The objective of the present paper is twofold. First, we show that the non-

convergence results of Bullard (1994) and Schönhofer (1999) depend heavily on the
estimation procedure their agents use. The net effect of their procedure is that agents
weight their past observations with an exponentially (over time) decreasing factor. In
other words, their agents forget quickly. But then it is not surprising that the rational
expectations steady state may not be learned. Moreover, the estimators generated
by this procedure are not consistent and do not converge to the true parameter value
as time goes to inÞnity. In fact, we will show that for an estimation procedure that is
more sensible from a statistical point of view, the steady state of the learning model is
globally stable for a large set of savings functions (including those studied by Bullard,
1994 and Schönhofer, 1999). An important observation is that the perceived law of
motion is the same for both procedures, the only difference is in the way this per-
ceived law is estimated. The main point is that it is more sound from an econometric
point of view to run a regression on a stationary time series than on a nonstationary
time series. Since in the presented model agents want to predict the inßation rates
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and since the time series of price levels is nonstationary, the estimation procedure
should be in terms of inßation rates instead of price levels. The learning equilibria
are therefore driven by the estimation procedure and not by the beliefs of the agents.
In this paper we identify a different source of complicated dynamics in this inßa-

tionary overlapping generations framework. We are interested whether all households
will persistently use estimation procedures that do not lead to consisitent and con-
verging estimates. Therefore, the second objective of our paper is to study an envi-
ronment where both types of estimation procedures are available to the households,
and where they choose one of them on the basis of their past performance (with past
performance being measured in terms of forecasting accuracy). The main research
question then is whether the estimation procedure suggested by Bullard (1994) and
Schönhofer (1999) will still be viable when a more natural procedure is available, or
whether the latter will drive out the former. We investigate this issue by employing
the Brock and Hommes (1997) model of evolutionary competition between heteroge-
neous beliefs. Surprisingly enough, we Þnd that both rules survive this evolutionary
competition and that endogenous business cycles are still possible in this heteroge-
nous beliefs framework, albeit for a signiÞcantly smaller set of overlapping generation
economies. The intuition behind this result is that, far away from the steady state
the �stable� estimation procedure will perform better (in terms of forecast errors)
and eventually most households of future generations will use this rule, which will
stabilize the inßation rates. However, for inßation rates close to the steady state,
evolutionary pressure against the �unstable� estimation procedure will diminish and
more households of future generations will start using it, which may destabilize the
inßation dynamics. After this the whole story repeats.
The rest of the paper is organized as follows. Section 2 describes the overlapping

generations model studied in Bullard (1994) and discusses the existence of learning
equilibria. In Section 3 a learning procedure based upon inßation rates is introduced
and the main stability results are given. Section 4 introduces evolutionary competi-
tion between the two different learning procedures and Section 5 concludes.

2 Learning equilibria
We consider a standard two period overlapping generations model, with only one
commodity, where in each period a generation is born that lives for two periods. The
generation born in period t solves

max
c0,c1

U (c0, c1) subject to ptc0 + p
e
t+1c1 ≤ ptw0 + pet+1w1,

where U : IR2+ → IR is a strictly monotone, strictly quasi concave utility function,
c0 and c1 are consumption in the Þrst and second period of the agent�s life and w0
and w1 are his endowments of the commodity in these periods. Furthermore, pt is
the price of the commodity in period t and pet+1 is the price expected for period t+1.
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The optimization problem gives the optimal level of consumption in the Þrst period
of the agent�s life as a function of expected inßation

pet+1
pt
, i.e. c0 = c0

³
pet+1
pt

´
. Optimal

saving of the young generation is then given by the savings function

S

µ
pet+1
pt

¶
= w0 − c0

µ
pet+1
pt

¶
.

From now on we will assume that the savings function is twice differentiable and
positive, i.e. S (ξ) > 0 for all ξ (this corresponds to the Samuelson case, where
people save when young).1 The demand for real balances in period t is given by

Mt

pt
= S

µ
pet+1
pt

¶
. (1)

The only means of saving is money. The money stockMt is controlled by the govern-
ment and grows over time to Þnance government expenditures. The monetary policy
rule is

Mt = ϑMt−1. (2)

Combining the demand for real balances (1) with the monetary policy rule (2), we
arrive at the following market clearing condition

S

µ
pet+1
pt

¶
pt = ϑS

µ
pet
pt−1

¶
pt−1.

In terms of gross inßation rates πt ≡ pt+1
pt
this equilibrium condition becomes

πt−1S (πet) = ϑS
¡
πet−1

¢
. (3)

At the monetary steady state, π∗ = ϑ, the inßation rate is equal to the money growth
rate.
The model is closed by specifying the way in which agents form expectations

about future inßation rates. Under rational expectations or perfect foresight we
have πet+1 = πt+1. It is well-known that for a downward sloping savings function
the monetary steady state ϑ is unstable under perfect foresight. For non-monotonic
savings functions more complicated perfect foresight dynamics, such as cycles and
chaotic ßuctuations, may occur (see e.g. Grandmont, 1985).
The assumption of perfect foresight requires that agents exactly know the market

equilibrium equations as well as other agents� beliefs and are able to use this informa-
tion to compute the market clearing prices for the future. An alternative approach is
to assume that economic agents make inferences about their environment by means

1Since the savings function corresponds to an aggregate excess demand function, any continuous
function corresponds to a savings function that is consistent with utility maximization, if we would
extend the number of different agents per generation to at least 2 (see Sonnenschein, 1973).
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of a learning procedure. Such a procedure uses time series observations to make fore-
casts about the future development of variables. Consider the following example of
such a learning procedure.
Agents believe that the inßation rate is constant (which is indeed the case at the

rational expectations steady state), that is, in terms of prices, they have the following
perceived law of motion

pt = βpt−1. (4)

The agents have no a priori knowledge about β, however. Bullard (1994) assumes
that agents run a least squares regression on prices in order to estimate β and that
they use this estimate to form predictions on the inßation rate. The least squares
regression estimate for agents born in period t, using data available through time
t− 1, is

βt =

Pt−1
s=1 ps−1psPt−1
s=1 p

2
s−1

, (5)

and hence their forecast of the inßation rate is πet = βt. Given this forecast, the
implied actual law of motion for the price dynamics of the model becomes

pt = ϑ
S
¡
βt−1

¢
S (βt)

pt−1. (6)

Equations (5) and (6) together form an expectations feedback system. Realized prices
inßuence perceptions agents have about their economic environment and these per-
ceptions feed back into the actual dynamics and determine which prices will be real-
ized. The complete system (5)-(6) can be written as a recursive dynamic system by
introducing the variable gt = p2t−1

£Pt
s=1 p

2
s−1
¤−1
. By furthermore deÞning the aux-

iliary variable γt ≡ βt−1, we can write the learning model as a system of Þrst-order
difference equations

βt+1 = βt + gt

·
ϑ
S (γt)

S (βt)
− βt

¸
,

γt+1 = βt, (7)

gt+1 =

"
g−1t

µ
ϑ
S (γt)

S (βt)

¶−2
+ 1

#−1
.

DeÞne the inßation elasticity of savings as a (π) = −π S0(π)
S(π)

. The following proposition
describes the main result on learning equilibria.

Proposition 1 (Bullard, 1994) Assume ϑ > 1 and S (.) is twice differentiable and
downward sloping. Then (7) generically undergoes a Hopf bifurcation at the monetary
steady state at that value ϑ∗ of ϑ, for which¡

1− ϑ−2¢ a (ϑ) = 1. (8)
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Moreover, if
¡
1− ϑ−2¢ a (ϑ) < (>) 1 the monetary steady state is locally stable (un-

stable).

It will be useful for us to investigate the details of this result a little further.
The Jacobian matrix of (7) evaluated at the monetary steady state (β∗, γ∗, g∗) =¡
ϑ,ϑ, 1− ϑ−2¢ is

J =

 ϑ−2 +
¡
1− ϑ−2¢ a (ϑ) − ¡1− ϑ−2¢ a (ϑ) 0
1 0 0
∂g
∂β

∂g
∂γ

ϑ−2

 . (9)

One of the eigenvalues is equal to ϑ−2 and hence lies inside the unit circle for
ϑ > 1. The other two eigenvalues are complex and lie on the unit circle when¡
1− ϑ−2¢ a (ϑ) = 1. Moreover, the eigenvalues cross the unit circle with positive
speed as ϑ changes. The Hopf bifurcation described in the proposition leads to an
invariant closed curve around the steady state of the learning dynamics. This closed
curve can be attracting or repelling, and motion on the closed curve can be periodic
or quasi-periodic.2 Bullard (1994) calls these cycles �learning equilibria� since they
correspond to equilibria of the learning dynamics, which are not equilibria under
rational expectations. Their existence can therefore be attributed to the learning
process. If ϑ is increased further, the time series of the inßation rates can become
even more complicated. Schönhofer (1999) gives, for a particular set of examples,
numerical evidence for the existence of homoclinic orbits and chaos in the learning
dynamics.
Let us now try to develop an intuition for the fact that the recursive least squares

estimates do not converge to the monetary steady state. Ordinary least squares
algorithms are so-called decreasing gains algorithms. Different observations receive
the same weights in the regression which implies that, as time goes on and the number
of observations increases, the impact or gain of individual new observations becomes
smaller. In (7) this gain is represented by the variable gt = p2t−1/

Pt
s=1 p

2
s−1. If price

levels are bounded gt will converge to 0 which, if it does not result in convergence
to the monetary steady state, at least leads to ever smaller changes in the estimate
of β. In the present model, however, price levels are unbounded and in fact, at the
steady state they grow at a constant rate ϑ > 1. This implies that the equilibrium
value of the gain gt is strictly positive, g∗ = 1 − ϑ−2 > 0. Hence, even after many
observations, one new observation on the price level may lead to a signiÞcant change
in the beliefs of the agents, which therefore keep on ßuctuating, implying endogenous
and persisting ßuctuations in the inßation rates. Notice that all observations still get
the same weight in the regression, but that the gain does not approach 0 because the
observations become larger themselves.

2If the savings function is nonmonotonic similar phenomena occur. In that case, the monetary
steady state may also lose stability through a period-doubling bifurcation. This happens at that
value ϑ∗ of ϑ for which ϑ2−1

ϑ2+1
a (ϑ) = −1

2 .

6



In fact, least squares learning on price levels is closely related to the adaptive
expectations rule on inßation rates. Adaptive expectations (Nerlove, 1958) corre-
sponds to updating the expectation in the direction of the last observation, i.e.,
πet+1 = πet + α (πt−1 − πet), with 0 < α ≤ 1. Notice that the weight α is constant,
and adaptive expectations therefore correspond to a constant gains algorithm. In-
troducing adaptive expectations into (3) yields the following second order difference
equation

βt+1 = βt + α

Ã
ϑ
S
¡
βt−1

¢
S (βt)

− βt
!
. (10)

Notice that the only difference between (7) and (10) is that for the latter the weight
α is constant whereas for the former it depends upon the realization of the prices.
However, if the weight in (10) equals α = g∗ = 1 − ϑ−2, (10) has the same local
stability properties as (7).3 Hence, the learning scheme proposed by Bullard (1994)
turns out to be closely related to adaptive expectations. Although the weight or gain
gt in (7) is not constant, it is certainly not (monotonically) decreasing over time.
The residuals or forecast errors from the regression (5) turn out to be

et = pt − βt−1pt−1 =
Ã
ϑ
S
¡
βt−1

¢
S (βt)

− βt−1
!
pt−1. (11)

With respect to these forecast errors we can make the following claim.

Lemma 2 Consider the dynamical system (7). If the economy is not converging to
the monetary steady state ϑ, when ϑ > 1, and if the βt remain bounded for all t, then
the forecast errors (11) grow without bound.

Proof. Note that the implied actual law (6) yields

pt+n = ϑ
n S(βt)

S(βt+n)
pt. (12)

Boundedness of the βt implies that the sequence {βt} has a converging subsequence,
and hence, by the continuity of S, that S(βt)/S(βt+n) is as close to 1 as we wish, for
appropriately chosen n = nt. Hence, since ϑ > 1, the prices pt grow exponentially,
asymptotically with rate ϑ.
Therefore, if forecast errors are bounded, then

lim
t→∞

ϑ
S(βt−1)
S(βt)

− βt−1 = 0,
3This follows from the fact that the upper 2×2 matrix of (9) (which is the relevant part) is equal

to the Jacobian of (10) evaluated at the monetary steady state.
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and, a fortiori, for the ergodic limit evolution,

ϑ
S(βt−1)
S(βt)

− βt−1 = 0,

for all t. But then the learning model (7) implies that βt+1 = βt for all t, and
consequently, that βt = ϑ, contrary to the assumption that the dynamics is not at
the monetary steady state.

This lemma provides us with another intuition for the nonconvergence of the
recursive system (7): because the forecast errors grow indeÞnitely (in absolute value),
the estimates keep changing signiÞcantly, despite the fact that the weight attached
to each individual observation decreases as time goes by. Each new observation can
upset the current estimate and lead to a radical change in the estimated perceived law
of motion which, of course, is an unsatisfactory property of an estimation procedure.
Given the exploding forecast errors, and the ßuctuations in the beliefs, agents will be
inclined to change their estimation procedure. Apart from that, it seems to be not
too sensible to run a least squares regression on an exploding time series.

3 An alternative learning procedure
In the previous section it was argued that the nonstationary nature of the price
time series may lead to endogenous and persisting ßuctuations in inßation rates.
According to the perceived law of motion (4) agents believe that the systematic part
of the inßation rate is constant. We can rewrite (4) into the following perceived law
of motion

πt = β. (13)

Notice that the economic agents� perceptions underlying both (4) and (13) is that
the inßation rate is constant.
Now suppose agents try to learn the correct value of β in (13) by running a least

squares regression of inßation rates on a constant, which corresponds to averaging
over past inßation rates, that is,

βt+1 =
1

t

t−1X
s=0

πs =
1

t

"
t−2X
s=0

πs + πt−1

#
=

µ
1− 1

t

¶
βt +

1

t
πt−1.

The evolution of inßation rates and dynamics is then described by

βt+1 = βt +
1

t

Ã
ϑ
S
¡
βt−1

¢
S (βt)

− βt
!
. (14)

This updating rule is closely related to (7) and (10), the main difference lying in
the fact that the weight factor 1/t approaches 0 as t goes to inÞnity. Hence, the
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contribution of new observations will decrease over time and the stability properties
of (14) turn out to be dramatically different from the stability properties of (7). In
an earlier version of the current paper (Tuinstra and Wagener, 2000) we showed that
the monetary steady state ϑ is globally stable under (14) for a large set of savings
functions (including those studied in Bullard, 1994 and Schönhofer, 1999).
In the present version of this paper we consider a slightly different algorithm. Note

that the total relative price increase between period 0 and period t can be written as

pt
p0
=

pt
pt−1

· pt−1
pt−2

· . . . · p1
p0
=

t−1Y
s=0

πs.

The average inßation rate over this period should therefore be computed as its geo-
metric mean

π =

Ã
t−1Y
s=0

πs

!1
t

,

and this is what our agents use as a predictor for the future inßation rate βt+1. Notice
that this is equivalent with

ln βt+1 =
1

t

t−1X
s=0

ln πs = ln βt +
1

t
(ln πt−1 − ln βt) , (15)

which corresponds to the arithmetic mean of the logarithm of the inßation rate
Now deÞne xt = lnβt − lnϑ, and σ (xt) = lnS (ϑ exp [xt]). Using (6), (15) can be

written as the following nonautonomous second order difference equation

xt+1 = xt +
1

t
(σ(xt−1)− σ(xt)− xt) . (16)

The remainder of this section is devoted to analyzing the stability properties of (16).
Recall that a function σ : IR → IR is locally Lipschitz continuous, if it satisÞes a

Lipschitz condition on any bounded interval. In this section we show that the steady
state x = 0 of the dynamic system (16) is locally stable for any locally Lipschitz
continuous function σ, and that x = 0 is globally stable for any function satisfying a
Lipschitz condition on IR.
The Þrst property of our system is that, if a sufficiently long initial segment of

the sequence {xt} is bounded then the whole sequence is bounded.
Proposition 3 Let K > 2 be an arbitrary positive constant, and assume that σ :
[−K,K] → IR is Lipschitz continuous with Lipschitz constant L. Let the sequence
{xt}∞t=1 satisfy the recurrence relation (16). If for 1 ≤ t ≤ 10L+ 1 the condition

|xt| < 3

10
K (17)

holds, then for all t ≥ 1 we have |xt| < K.
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Proof. Introduce the increments δt+1 = xt+1 − xt, and note that rewriting the
recurrence equation (16) in terms of the increments gives

δt+1 =
1

t
(σ(xt − δt)− σ(xt)− xt) . (18)

The idea of the proof: if all xt were, for instance, larger than zero, then using Lipschitz
continuity, the increment δt+1 can be bounded from above by

δt+1 ≤ L

t
|δt|. (19)

For large t, the factor L/t will be smaller than unity. Inequality (19) then implies
that the sequence xt is bounded from above. However, care is needed to treat the
case that the xt change sign, and to deal with the fact that (19) only gives an upper
bound.
Set T = 10L + 1. Note that |δt+1| ≤ |xt+1| + |xt| ≤ 3

5
K for all 1 ≤ t ≤ T − 1 by

assumption. Moreover, as a consequence of (19) and the choice of T , the δt+1 have
the property that whenever xt > 0 for t ≥ T , then

δt+1 ≤ 1

10
|δt|.

We claim that this estimate implies xt < xT−1 + 2
3
K < K for all t.

Note generally that

xt − xT−1 =
t−TX
j=0

δT+j .

1. First consider the case that xt > 0 for all t ≥ T . Let T ≤ s ≤ t − 1 be such
that δs ≤ 0 and that δs+j > 0, for j = 1, . . . , n. Since

nX
j=1

δs+j ≤
nX
j=1

10−j|δs| < −δs,

it follows that
Pn

j=0 δs+j < 0. Hence, the sum
Pt−T

j=0 δT+j is bounded from
above by the contribution of the Þrst l terms, where l is such that δT+j ≥ 0 for
0 ≤ j ≤ l and δT+l+1 < 0. Since |δT | < 3

5
K, this contribution is smaller than

t−TX
j=0

δT+j <
3

5
K/

µ
1− 1

10

¶
=
2

3
K

and therefore

xt = xT−1 +
t−TX
j=0

δT+j <

µ
3

10
+
2

3

¶
K < K.
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2. In the case of a sign change of xt, we argue by induction. It is assumed that
|xj| < K for 1 ≤ j ≤ t, and that xt < 0 and xt+j ≥ 0 for some t and j = 1, . . . , n.
Then, by (18),

xt < |δt+1| ≤ L

t
|xt − xt−1|+ |xt|

t
≤ L

10L+ 1
2K +

K

10L+ 1
<
3

10
K.

Hence xt+1 < 3
10
K, and by the same argument as in 1. it follows that

P
δt+j <

2
3
K and consequently that xt+j < K for all j = 1, . . . , n.

The proof that xt > −K for all t ≥ T is completely analogous.
As a consequence we have

Corollary 4 Let σ : IR → IR be (globally) Lipschitz continuous with Lipschitz con-
stant L. If the sequence {xt} satisÞes (16), then it is bounded.
Proof. In view of the previous proposition, all we have to know is that

max
1≤t≤10L+1

|xt| <∞.

But this follows from the Lipschitz condition.

In order to get some idea what types of savings functions are covered by Propo-
sition 3 let ξ = ϑ exp [x] and φ = ϑ exp [y]. The condition that σ(x) satisÞes a global
Lipschitz condition |σ(x)− σ(y)| < L|x− y| is equivalent toµ

ξ

φ

¶−L
<
S(ξ)

S(φ)
<

µ
ξ

φ

¶L
.

In particular, for φ = 1 this condition reads as:

S(1)ξ−L < S(ξ) < S(1)ξL.

The Þrst inequality says that S should not decrease faster than polynomially in ξ−1

as ξ →∞.
That the condition is quite sharp can be seen by considering σ(x) = −x−x2. The

corresponding savings function reads as

S(ξ) =

µ
ξ

ϑ

¶−(ln ξ+c)
,

where c = 1 − lnϑ. Note that here the exponent of ξ−1 grows beyond all bounds.
But for this choice of σ, the unbounded series xt = t is a solution of (16). However,
also for this savings function the trajectories under (16) remain bounded for a large
set of initial conditions.
Bounded sequences have the following attractive property.
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Proposition 5 Let σ : IR → IR be continuous. Any bounded orbit {xt} of (16)
converges to 0.

Proof. Recall that 0 corresponds to the monetary steady state in the original
variables. Introduce, as before, the increment δt+1 = xt+1 − xt, and let K > 0 be
such that |xt| < K for all t ≥ 1. Note that it follows from (18) that

|δt| < M

t

for some M > 0.
We shall show that for arbitrary ε > 0, any point will move to the interval

[−2ε, 2ε], and that the points in this interval cannot escape too far if t is sufficiently
large.
Fix ε > 0. Note that σ is uniformly continuous on [−K,K], and hence that there

exists an δ > 0 such that if |δt| < δ, then |σ(xt − δt) − σ(xt)| < ε. Choose T > 0
larger than M/ε and M/δ. Then for all t > T , we have that |δt| < ε and, from (18),
that

δt+1 ≤ ε− xt
t

. (20)

Let t0 > T . We ask whether it is possible that xt 6∈ [−2ε, 2ε] for all t ≥ t0. Since
|δt+1| < ε, points cannot move from positive to negative without going through
[−2ε, 2ε], and we may restrict our attention to the case that the xt are positive (the
other case would be treated similarly).
From (20) and xt > 2ε, the following estimate is obtained:

xt = xt0 +
t−1X
s=t0

δs+1 ≤ xt0 − ε
t−1X
s=t0

1

s
.

Since the harmonic series
P
s−1 diverges, the right hand side cannot be larger than 2ε

for all t, and hence there must be a Þrst moment in time t1 such that xt1 ∈ [−2ε, 2ε].
But note that then for t > t1, the state xt cannot escape the interval [−3ε, 3ε] any
more: if |xt−1| < 2ε < |xt|, then |xt| < |xt−1| + |δt| < 2ε + ε, and the next iterates
move the state back to the interval [−2ε, 2ε], as can be seen by noting that from (20)
we have δt+1 < 0 for xt > ε. Similarly we have, from (18), δt+1 > 0 for xt < −ε.
Finally, we remark that if σ is of the form lnS(ϑ exp [x]), with S a positive savings

function, then σ has the special property that

lim
x→−∞

σ(x) = lnS(0).

From this we obtain that an orbit {xt} of (16) will be bounded from below. To see
this, Þx ε > 0, and Þnd K > 0 such that |σ(x) − lnS(0)| < ε if x < −K. Then for
xt < −K,

xt+1 ≥ xt − xt + 2ε
t

≥ xt + K − 2ε
t

≥ xt,
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while for |xt| ≤ K we have that

xt+1 ≥ xt − 2C +K
t

≥ −2C − 2K,

where C = max|x|≤K σ(x). Hence xt ≥ min(x1,−2C − 2K), and these orbits cannot
run off to inÞnity.

From these results we may conclude that our dynamic system converges to the
monetary steady state ϑ for a large set of savings functions (obviously those included
in Bullard, 1994 and Schönhofer, 1999). If the inßation dynamics do not converge
to this equilibrium inßation rates diverge to inÞnity (which corresponds to autarky).
This only happens if savings decline very fast as the (expected) inßation rate increases.
Duffy (1994) studies an overlapping generations model where this autarkic steady
state is also stable under learning.

4 Competition between learning procedures
As shown above, the procedure that agents use to estimate a perceived law of motion
is pivotal for the stability properties of the full economic system. Moreover, the
endogenous business cycles studied by Bullard (1994) and Schönhofer (1999) do not
result from the perceptions of the agents per se, but from the way in which these
perceptions are updated as new information becomes available. From Propositions
3 and 5 we know that these endogenous business cycles disappear when agents use
inßation rates, instead of price levels, to update their perceptions. Furthermore,
it can be argued that using inßation rates is more appropriate, because the price
series is nonstationary and should therefore not be used in a least squares estimation
procedure.
However, the fact that an estimation procedure does not seem to be sensible

from an econometrician�s point of view or the fact that it is destabilizing does not
necessarily imply that economic agents will not use it. It is therefore important to
investigate what happens when both procedures are available to the agents, a problem
which we take up in this section. We assume that each newborn agent chooses an
estimation procedure on the basis of its past performance. In fact, the lower the
average quadratic forecast error of the predictions generated by a certain procedure,
the higher the fraction of the newborn generation that will choose this procedure. Our
objective is to study whether, in this evolutionary competition between estimation
procedures, the �unstable� procedure will be driven out. A priori, this does not have
to be the case, since the presence of this procedure may disrupt the inßation dynamics
to such an extent that the other estimation procedure will perform even worse.4

4This would be similar to the theoretical Þnding that on Þnancial markets so-called �noise traders�
cannot be driven out by rational investors, see De Long, Shleifer, Summers and Waldmann (1990).
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We follow the framework developed in Brock and Hommes (1997) for analyzing
evolutionary competition between estimation procedures. There are two types of
agents, those using prices to estimate future inßation rates (index 1), as discussed in
Section 2, and those using past inßation rates (index 2), as discussed in Section 3.
The fraction of agents of type 1 of the generation born in period t is denoted by nt.
Demand for real money balances follows as (cf. equation (1))

Mt

pt
= ntS

µ
pe1,t+1
pt

¶
+ (1− nt)S

µ
pe2,t+1
pt

¶
.

Using the money growth rule (2), the market clearing condition becomes

πt−1 = ϑ
nt−1S

¡
β1,t−1

¢
+ (1− nt−1)S

¡
β2,t−1

¢
ntS (β1t) + (1− nt)S (β2t)

, (21)

where β1t = pe1,t+1/pt and β2t = pe2,t+1/pt, are the expected inßation rates of type
1 and type 2 agents, respectively, which evolve according to (cf. equations (5) and
(15))

β1,t+1 = β1t + gt [πt−1 − β1t] ,
gt+1 =

£
g−1t (πt−1)

−2 + 1
¤−1

and (22)

β2,t+1 = β
1− 1

t
2t π

1
t
t−1.

Before introducing evolutionary competition between the learning procedures let us
consider the case where the fraction nt is Þxed and exogenously given.

Lemma 6 Consider the model given by (21) and (22), where the distribution of
agents over learning procedures is Þxed, i.e. nt = n for all t. Assume furthermore
that the savings function is positive but monotonically decreasing in the inßation rate
and that a0 (ϑ) 6= 0. The monetary steady state ϑ then is locally stable if and only if¡

1− ϑ−2¢na (ϑ) < 1.
Proof. As long as inßation rates are bounded, β2t will converge to the monetary

steady state ϑ (this follows, for example, from (12)). Our model can therefore be
approximated by the autonomous three-dimensional dynamic system

βt+1 = βt + gt

·
ϑ
nS (γt) + (1− n)S (ϑ)
nS (βt) + (1− n)S (ϑ)

− βt
¸
,

γt+1 = βt

gt+1 =

"
g−1t

µ
ϑ
nS (γt) + (1− n)S (ϑ)
nS (βt) + (1− n)S (ϑ)

¶−2
+ 1

#−1
.
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It is easily checked that the eigenvalues of the associated Jacobian matrix are complex
and cross the unit circle when

¡
1− ϑ−2¢na (ϑ) = 1.

Clearly, a decrease in the fraction n of type 1 agents generates local stability of
the monetary steady state for a larger set of savings functions and money growth
rates ϑ.
Now we will endogenize nt by assuming that the households from a newborn

generation base their choice for the estimation procedure upon the past performance
of these procedures. The appropriate performance measure is the average quadratic
forecast error, since this is what agents are actually trying to minimize with their
least squares algorithms.5 The (negative of the) average quadratic forecast error for
learning procedure i is given as

wi,t+1 = − 1

t− 1(βi,t−1 − πt−1)
2 +

t− 2
t− 1wit, i = 1, 2. (23)

The relationship between w1,t+1, w2,t+1 and the fraction nt+1 is modelled as follows.
We assume that each household i of the newborn generation can be identiÞed by
a parameter εi, which is distributed according to a distribution F , with mean 0.
This parameter εi measures household i�s preference for (or bias towards) estimation
procedure 2. This household then chooses rule 1 if and only if the performance of
rule 1 is signiÞcantly higher than that of rule 2, that is, if

w1,t+1 − w2,t+1 ≥ 1

η
εi,

where η is a measure of the dispersion of the bias, in the sense that as η increases the
bias toward rule 2 is distributed more tightly around 0. Moreover, as η approaches
+∞, all households always choose the estimation procedure with the lowest average
quadratic forecast error. Assuming that there are many households in each generation
and using a law of large numbers argument the fraction of the newborn generation
using rule 1 is then given by

nt+1 = Pr

½
w1,t+1 − w2,t+1 ≥ 1

η
εi

¾
= 1− F (η (w1,t+1 − w2,t+1)) .

In the rest of this paper we will take the logistic distribution for F which gives us
(for a discussion see Brock and Hommes, 1997)

nt+1 =
1

1 + exp [η (w2,t+1 − w1,t+1)] , (24)

but other choices give qualitatively the same results. The parameter η is sometimes
called the intensity of choice and measures how sensitive agents� choice of learning

5Alternatively, we could let the choice of estimator depend upon the realized utility from the
savings decision. This, however, has no qualitative inßuence upon our main results.

15



procedure is with respect to differences in forecasting accuracy. In fact, as η ap-
proaches inÞnity all households of the current generation will choose the estimation
procedure with the best forecasting accuracy in the past. The parameter η therefore
serves as a measure of the level of �rationality� in the choice of learning procedure.
Furthermore, if learning procedures perform equally well, agents will be distributed
evenly over the learning procedures, i.e. nt = 1

2
. Note the timing of the process. When

a new generation is born in period t + 1 the last price it observes is pt and the last
inßation rate it observes is πt−1. The fraction nt+1 is determined by quadratic forecast
errors, and the last observed forecast error therefore corresponds to βi,t−1 − πt−1.
Combining (23) and (24) gives

nt+1 =
1

1 + exp [ηWt+1]
, (25)

where

Wt+1 = αt−1
¡¡
β21,t−1 − β22,t−1

¢
+ 2πt−1

¡
β2,t−1 − β1,t−1

¢¢
+ (1− αt−1) 1

η
ln
1− nt
nt

,

αt =
1

t
.

The full evolutionary model is now given by equations (21), (22) and (25). The
steady state of the full model is (β∗1, g

∗,β∗2, n
∗) =

¡
ϑ, 1− ϑ−2,ϑ, 1

2

¢
. Note that this

is a nonautonomous dynamic system. As a Þrst approximation we consider the au-
tonomous system with β2t = ϑ for all t and αt = α > 0 for all t, where α is taken
to be sufficiently close to 0. A local stability analysis of the monetary steady state
reveals the following.

Proposition 7 Assume the savings function S is decreasing and strictly positive.
Consider the evolutionary model given by equations (21), (22) and (25) with β2t = ϑ
for all t and αt = α for all t. Let the savings function be positive and monotonically
decreasing in the inßation rate. The monetary steady state is locally stable if and only
if ¡

1− ϑ−2¢ a (ϑ) < 2. (26)

Proof. Let β2t = ϑ and αt = α for all t. After introducing auxiliary vari-
ables mt = nt−1 and γ1t = β1,t−1 we have a Þve-dimensional system of Þrst order
autonomous difference equations. The Jacobian matrix of this dynamic system, eval-
uated at the steady state (β∗1, γ

∗
1, g

∗, n∗,m∗) =
¡
ϑ,ϑ, 1− ϑ−2, 1

2
, 1
2

¢
, is

ϑ−2 + 1
2

¡
1− ϑ−2¢ a (ϑ) −1

2

¡
1− ϑ−2¢ a (ϑ) 0 0 0

1 0 0 0 0
ϑ−3

¡
1− ϑ−2¢ a (ϑ) −ϑ−3 ¡1− ϑ−2¢ a (ϑ) ϑ−2 0 0

0 0 0 1− α 0
0 0 0 1 0

 .
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This Jacobian matrix has eigenvalues

µ1,2 =
1

4ϑ2

µ¡
ϑ2 − 1¢ a (ϑ) + 2±q¡ϑ2 − 1¢2 a (ϑ)2 − ¡8ϑ2 − 4¢ ¡ϑ2 − 1¢ a (ϑ) + 4¶

µ3 = ϑ−2, µ4 = 1− α and µ5 = 0.
It is easily checked that the Þrst two eigenvalues are complex and cross the unit circle
when

1

2

¡
1− ϑ−2¢ a (ϑ) = 1.

Observe that the local stability condition (26) is independent of the value of α.
Also note the relation with condition (8) from Proposition 1 which characterises lo-
cal stability in the case that only the type 1 estimation procedure is available. The
interpretation underlying Proposition 7 is the following: if inßation rates converge to
the monetary steady state, both types of forecasts will be correct and the fraction
nt will converge to 1

2
. However, if the monetary steady state is unstable when n

is Þxed at 1
2
(apply Lemma 6 for n = 1

2
) the autonomous dynamic system will be

locally unstable at the monetary steady state ϑ. This same mechanism applies to

the (nonautonomous) full dynamic system, with β2,t+1 =
¡Qt−1

s=0 πs
¢ 1
t and αt = 1

t
.

Moreover, in the long run the behavior of the nonautonomous system is very similar
to the behavior of the autonomous system with α small. Also note that, although
instability of the steady state is still possible under evolutionary competition between
the learning procedures, this instability occurs only under a subset of savings func-
tions and money growth rates for which instability arises in the original model. The
introduction of type 2 agents therefore indeed tends to stabilize the inßation and
learning dynamics.
Let us consider a typical numerical simulation to illustrate the global dynamics

of the model. We use an example from Bullard (1994), where the savings function
is derived from the well-known CES utility function U (c0, c1) = (cρ0 + c

ρ
1)
1/ρ with

endowments w0 = 1 and w1 = 0 and 1
2
< ρ < 1. Taking ρ = 3

4
, the savings function

and inßation elasticity follow as

S (π) =
1

1 + π3
and a (π) =

3

1 + π−3
.

From Proposition 1 we immediately Þnd that, if all agents are of type 1 (i.e. nt = 1
for all t), the monetary steady state is locally stable for ϑ < 1

2
+ 1

2

√
3 ≈ 1.366. On

the other hand, if nt is determined by past performance, as in (25), the steady state
is locally stable for ϑ < 2, as can be seen from applying Proposition 7. Simulation
results for the case with ϑ = 21

2
and η = 3 are shown in Figures 1 and 2.

The attractor in Figure 1 shows the long run behavior of the inßation rates for
ϑ = 21

2
and η = 3. Inßation rates move quasi-periodically over an invariant closed
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Figure 1: Attractor for the evolutionary model with ϑ = 21
2
, η = 3 and CES utility

function with ρ = 3
4
.

curve. Figure 2 shows the time series for the forecasts β1t and β2t and the fraction
nt. These time series provide a nice illustration of the mechanism underlying the
global dynamics. When inßation rates are far away from the monetary steady state,
as in the Þrst 10 periods, predictor β2 is much more accurate than β1. This decreases
nt as can be seen in the lower panel of Figure 2. The decreased fraction of type
1 agents stabilizes the inßationary dynamics. However, as inßation rates converge
to the monetary steady state, there is no evolutionary pressure against β1 and the
fraction of type 1 agents will increase again, until nt has taken a value such that
the inßation rates become unstable (it follows from Lemma 6 that for ϑ = 21

2
the

critical value of n is given by nc = 19
45
≈ 0.4222) and the story repeats. Eventually

the fraction nt converges to bn ≈ 0.4248. At this value of n the inßation rates and the
forecasts of learning procedure 1 move over an invariant closed curve. Note that the
fraction nt converges because it is determined by the average forecast errors which
converge as long as they are bounded.
Qualitatively similar results are obtained for simulations with different savings

functions, parameter settings and\or initial conditions, although the transient be-
havior might be a little different.6 Also, the behavior of the autonomous system

6Depending on the parameter values and the initial conditions, the transient behavior of the
system might be quite long (this happens for example for high values of η).
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with β2t = ϑ and αt = α is similar to the behavior of the nonautonomous model in
particular for small values of α. In all these examples nt converges to a value below
1
2
.

5 Concluding remarks
Departing from the theory of rational expectations introduces inÞnitely many degrees
of freedom in modelling agents� beliefs. This �wilderness of bounded rationality� can
be restricted by considering agents that, if not unboundedly rational, at least are
trying to be �sensible� in predicting the future development of economic variables.
That is, they should have a perceived law of motion that is reasonable, in some sense,
and they should use the proper econometric techniques to estimate this perceived law
of motion. The learning equilibria obtained by Bullard (1994) and Schönhofer (1999),
however, are partly obtained from a somewhat misguided application of econometric
techniques, that is, a regression is applied on a nonstationary price time series. In this
paper we have shown that a more reasonable estimation technique (estimating the
perceived law of motion on the basis of the stationary time series of inßation rates)
induces convergence to the monetary steady state. Recall that the perceived laws of
motion and therefore agents� beliefs are the same for both models. Therefore, these
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learning equilibria are not the result of modelling agents as econometricians per se,
but they are the result of modelling the agents as naive econometricians.
Another approach to discipline the �wilderness of bounded rationality� is to con-

sider an evolutionary competition between the different types of beliefs, and then let
this competition decide which estimation procedures will eventually be used. Ap-
plying such an evolutionary competition to the two learning procedures discussed in
this paper shows that none of the learning rules will be driven out. This result can
be explained by observing that at the steady state both learning procedures gen-
erate the same forecasts, and their performance will therefore be the same. At this
steady state, therefore, there is no evolutionary pressure against the less sensible rule,
but its presence may nevertheless destabilize the inßation rate dynamics and causes
endogenous business cycles to emerge.
In this paper we have identiÞed a new route to endogenous ßuctuations in over-

lapping generations models. First we argued that in a homogeneous world, where all
agents use the same estimation procedure, it does not seem to be reasonable to as-
sume that they all use a procedure which uses nonstationary data, leads to exploding
forecast errors and generates inconsistent and nonconverging estimators. Second, in
a heterogeneous world, some agents might use such a procedure whereas others do
not. As was established in the previous section, an evolutionary competition between
the different rules might then, in a very natural way, lead to endogenous ßuctuations.
The goal of this paper has not been to provide a counter-example to possible in-

stability of learning models (Wenzelburger, 2002, for example, discusses for the same
overlapping generations framework another learning process with nice stability prop-
erties). In fact, we saw in Section 4 that learning processes may lead to endogenous
business cycles. However, the underlying mechanism driving these business cycles is
different from that in the original model of Bullard (1994) and certainly more robust.
Other examples of learning models that might lead to endogenous ßuctuations are,
for example, provided by Hommes and Sorger (1998) and Tuinstra (2003). In these
models the perceived law of motion of the agents converges to some limit belief and
given this limit belief prices keep ßuctuating over some nontrivial attractor.

References
[1] Brock, W.A. and C.H. Hommes, 1997. A rational route to randomness. Econo-

metrica, 65, 1059-1095.

[2] Bullard, J., 1994. Learning equilibria. J. Econ. Theory, 64, 468-485.

[3] De Long, J.B., A. Shleifer, L.H. Summers and R.J. Waldmann, 1990. Noise trader
risk in Þnancial markets. J. Pol. Econ., 98, 703-738.

[4] Duffy, J., 1994. On learning and the nonuniqueness of equilibrium in an overlap-
ping generations model with Þat money. J. Econ. Theory, 64, 541-553.

20



[5] Evans, G.W. and S. Honkapohja, 2001, Learning and Expectations in Macroeco-
nomics. Princeton: Princeton University Press.

[6] Grandmont, J.-M., 1985. On endogenous competitive business cycles. Economet-
rica, 53, 995-1045.

[7] Hommes, C.H. and G. Sorger, 1998. Consistent expectations equilibria. Macro-
econ. Dyn., 2, 287-321.

[8] Lucas, R.J., 1986. Adaptive behavior and economic theory. J. Business, 59,
401-426.

[9] Marcet, A. and T.J. Sargent, 1989. Convergence of least squares learning mech-
anisms in self-referential linear stochastic models. J. Econ. Theory, 48, 337-368.

[10] Nerlove, M., 1958. Adaptive expectations and cobweb phenomena, Quarterly J.
Econ., 72, 227-240.

[11] Sargent, T.J., 1993. Bounded Rationality in Economics. Oxford: Clarendon
Press.

[12] Schönhofer, M., 1999. Chaotic learning equilibria. J. Econ. Theory, 89, 1-20.

[13] Sonnenschein, H., 1973. Do Walras� identity and continuity characterize the class
of community excess demand functions? J. Econ. Theory, 6, 345-354.

[14] Tuinstra, J., 2003. Beliefs equilibria in an overlapping generations model. J.
Econ. Behav. & Organization, 50, 145-164.

[15] Tuinstra, J. and F.O.O. Wagener, 2000. On Learning Equilibria. CeNDEFWork-
ing Paper Series - WP 00-12, University of Amsterdam.

21


