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Abstract

Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their
invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L.
Arnold. The classification is however not invariant under diffeomorphisms of the state space. In a recent
paper we proposed an alternative classification, based on an invariant that is a ratio of joint and marginal
probability density functions, that does not suffer from this defect. This classification entails the concept of
what we call ‘ratio bifurcations’. In this note it is shown that for a large class of dynamical systems, ratio
bifurcations and phenomenological bifurcations actually coincide. Moreover, we link the ratio invariant to
the transformation invariant function that Wagenmakers et al. obtained for stochastic differential equations.
The results are illustrated with numerical applications to stochastic dynamical systems.

1. Introduction

In many applications, families of discrete time Markov chains of the form

Xt+1 = fµ(Xt) + εt (1)

occur, where fµ : Rm → Rm is a parametrised family of Ck maps, k ≥ 2, and where the sequence {εt}

consists of independent and identically distributed normal random variables. A specification of the form (1)
is often called a stochastic dynamical system. The corresponding stochastic process {Xt} is a Markov process,
because the future states Xt+k, k ≥ 1, are conditionally independent of the past states, Xt−1, Xt−2, . . ., given
the current state Xt.

There have been several attempts to develop a bifurcation theory for stationary stochastic dynamical
systems, all of which have specific limitations. The basic problem encountered is to find a reasonable notion
of being ‘qualitatively equal’, which is usually expressed by an equivalence relation between systems.

Zeeman [4] proposed to use the Morse classification of invariant densities of stochastic dynamical sys-
tems as a basis for such an equivalence relation. This approach suffers from the fact that probability densities
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are not invariant under general coordinate transformations; for instance, any absolutely continuous probabil-
ity distribution on the real line can be mapped to the uniform distribution on the unit interval. This problem
was acknowledged by Zeeman, who noted that only the class of isometric transformations could be allowed,
but the idea never caught on.

A second approach was developed by L. Arnold [1] and his co-workers. They interpreted the stochastic
dynamical system (1) as the skew product of the shift dynamics on the space of outcomes of the process {εt}

with equation (1), obtaining a deterministic dynamical system on a much larger phase space, and developed
a bifurcation theory for these systems. The main objection against this approach is of a practical nature: even
if the dynamic equations of such a skew system are known, its state cannot be observed, even approximately,
as this entails the knowledge of the complete sequence {εt} of noise realisations.

A third approach, related to Zeeman’s ideas, was proposed by us in a previous article [2]. It is based
on the observation that the dependence ratio, that is, the ratio of the transition density of the process to
the invariant density, is invariant under coordinate transformations and hence a geometric invariant of the
stochastic process. The Morse classification of these dependence ratios then extends to a classification of
the associated stochastic processes. In fact, in the paper a refined classification is developed that takes the
behaviour of the ratios at infinity into account. This gives rise to a third notion of bifurcation of stochastic
dynamical system, which is based on computable geometrical objects and thus avoids the shortcomings of
both Zeeman’s and Arnold’s proposals. However, of the three notions it is the one that lends itself least to
intuitive interpretations.

In the present note, we aim to show that this shortcoming is lessened for the class of systems (1) for which
our classification is essentially equivalent to Zeeman’s original proposal. For these systems, critical points of
the dependence ratio, as well as the critical value and the signature of the Hessian, correspond in a one-to-one
fashion to critical points, critical values and signatures of the invariant density. Hence, in this special class,
the Morse classification of the invariant density gives indeed rise to a classification of stochastic processes
that can easily be computed and interpreted in practical situations. The dependence ratio is then connected
to the geometric invariant of Markov diffusions found by Wagenmakers et al. [3]. As a consequence, we
find that the class for which the invariant density can be used as the basis for a classification is the discrete
time analogue of diffusions of constant diffusion strength for which the Wagenmakers invariant also reduces
to the invariant density.

Finally, the results are illustrated numerically for two different families of stochastic maps. The first is a
family of diffeomorphisms whose deterministic skeleton features a pitchfork bifurcation and, after symmetry
breaking, a saddle-node. We obtain numerically that the stochastic system undergoes a stochastic pitchfork
bifurcation as the noise intensity increases, and a stochastic saddle-node bifurcation when symmetry is
broken. The second example is a family of non-invertible unimodal maps that feature a period doubling
cascade. For increasing perturbation strengths we obtain the beginning of a cascade of stochastic saddle
node bifurcations.

2. The invariants

For a large class of discrete time stochastic processes a geometric invariant, the dependence ratio, has been
introduced in [2]. An equivalence relation of stochastic processes is obtained from the Morse classification
of their associated dependence ratios. Here we show that for a subclass, the critical points of the invariant
densities are linked to the critical points of the associated dependence ratios. This allows to take invariant
densities as the basis of a classification of processes, even if they are not geometric invariants of the process.

Itô’s lemma suggests a geometric invariant for stochastic processes that are governed by a stochastic
differential equation. As for small time steps, a stochastic differential equation yields a discrete time process
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in the class that we consider, it turns out that the continuous time invariant can be obtained as a limit of the
discrete time dependence ratio for small time steps.

2.1. Discrete time systems with additive noise
Consider a Markov chain on Rm of the form

Xt+1 = f (Xt) + εt, (2)

where f : Rm → Rm is a C2 map, and where the noise process {εt} is a sequence of identically and in-
dependently distributed random variables, whose distribution can be described by a C2 probability density
function ϕ. If Xt is distributed according to the probability density function pt, then Xt+1 is distributed
according to pt+1 = T pt, where the transformation T is given as

(T pt)(y) =

∫
τ(y|x)pt(x)dx, (3)

and where the C2 transition density τ has the form

τ(y|x) = ϕ
(
y − f (x)

)
. (4)

Note that T maps the space of probability densities into itself. If the Markov process {Xt} is stationary, there
is an invariant probability density p. In [2] it was shown that for stationary Markov processes specified
by (2), the dependence ratio

ρ(x, y) =
τ(y|x)
p(y)

(5)

is invariant under coordinate transformations, and that it is therefore a suitable geometrical invariant to form
the basis of a bifurcation theory of stochastic dynamical systems of the form (2).

In the following, we shall consider noise processes with nondegenerate unimodular probability densities;
that is, we shall assume that ϕ has a unique critical point 0, where it necessarily takes a maximum, such that
the symmetric Hessian matrix D2ϕ(0) is negative definite. More generally, the situation that ϕ has a unique
critical point c could be considered; however, when εt is replaced by c + εt, the former situation is restored.

Recall that the signature s of a symmetric matrix is the difference s = n− − n+ between the number n−
of negative and the number n+ of positive eigenvalues of the matrix. By extension, the signature of a critical
point of a C2 map is the signature of the Hessian matrix of the map at the critical point.

The following result relates the critical points of the invariant density p to the critical points of the
dependency ratio ρ for the case that f is a diffeomorphism.

Theorem 1. Let f : Rm → Rm be a C2 diffeomorphism and ϕ a C2 nondegenerate unimodular probability
density with critical point 0. Assume that ϕ(x) > 0 for all x ∈ Rm and that the Markov process defined by (2)
is strictly stationary with invariant density p.

Then the point yc is a critical point of p if and only if the point (xc, yc), with xc determined by

yc = f (xc), (6)

is a critical point of ρ. The critical value is given as

ρ(xc, yc) =
ϕ(0)
p(yc)

.

Moreover, the signatures sρ of D2ρ(xc, yc) and sp of D2 p(yc) are related as

sρ = m − sp. (7)
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Proof. We have

Dxρ(x, y) =
1

p(y)
Dϕ

(
a(x, y)

)
Dxa(x, y), (8)

Dyρ(x, y) =
1

p(y)
Dϕ

(
a(x, y)

)
Dya(x, y) −

ϕ
(
a(x, y)

)
p(y)2 Dp(y), (9)

where the argument of ϕ and its derivatives is

a(x, y) = y − f (x).

It is clear that if yc is a critical point of p, and if yc = f (xc), then

a(xc, yc) = 0

implying that
Dϕ(a(xc, yc)) = Dϕ(0) = 0

and that (xc, yc) is a critical point of ρ.
Note that

Dxa(xc, yc) = −D f (xc) and Dya(xc, yc) = I

are both invertible. Therefore, if (xc, yc) is a critical point of ρ such that yc = f (xc), it follows that

Dϕ(a(xc, yc)) = 0.

Substitution in (9) yields that then Dp(yc) = 0, as ϕ, and by extension p, is everywhere positive.
At a critical point (xc, yc) of ρ, the second derivative of ρ takes the form

D2ρ =
1
p

D f T D2ϕD f −D f T D2ϕ

−D2ϕD f D2ϕ − ϕ
p D2 p

 (10)

where the arguments of f , p and ϕ and their derivatives are respectively xc, yc and c.
Let u, v ∈ Rm and introduce w ∈ R2m as

w =

(
D f (xc)−1(u + v)

v

)
.

Compute 〈
w, pD2ρw

〉
=

〈
u + v,D2ϕ(u + v)

〉
− 2

〈
v,D2ϕ(u + v)

〉
+

〈
v,D2ϕ v

〉
−
ϕ

p

〈
v,D2 p v

〉
=

〈
u,D2ϕ u

〉
−
ϕ(0)

p

〈
v,D2 p v

〉
This is a sum of two independent quadratic forms: the signature of the first term is m, while the signature of
the second term is −sp. This completes the proof of the theorem.

We have the following easy corollary to the proof of the theorem for mappings that are not diffeomor-
phisms.
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Theorem 2. Let the conditions of theorem 1 hold, excepting the assumption that f : Rm → Rm is invertible.
If yc is a critical point of p, and if there is xc ∈ R

m such that

yc = f (xc), (11)

then (xc, yc) is a critical point of ρ.

2.2. Stochastic differential equations
A stochastic process of the form (2) on the real line arises naturally as the Euler approximation of a stochastic
differential equation. For such equations, a geometric invariant has been given by [3]; it turns out that this
invariant is related to the dependence ratio.

2.2.1. Invariants of continuous time processes
More generally, consider a process Xt on Rm, governed by the stochastic differential equation

dXt = f (Xt)dt + σ(Xt)dBt, (12)

where Bt is an m-dimensional Brownian motion. Assume that Xt is ergodic, and that detσ(x) , 0 for
any x ∈ Rm. Denote the invariant density by p. Let the function θ : Rm → R be defined as

θ(x) = p(x)| detσ(x)|.

A C2 diffeomorphism ψ : Rm → Rm defines an associated process X̃t = ψ(Xt), which, by Itô’s lemma, is of
the form

dX̃t = f̃ (Xt)dt + σ̃(Xt)dBt,

where in particular
σ̃(x) = Dψ(ψ−1(x))σ(ψ−1(x)) (13)

The invariant density p̃ of X̃t has the form

p̃(x) = p(ψ−1(x))| det Dψ−1(x)|. (14)

Combining (13) and (14) yields the following result, due to [3].

Theorem 3. The function θ is an invariant of the process Xt, that is

θ̃(ψ(x)) = θ(x)

for all x ∈ Rm.

2.2.2. Connection to dependence ratio
Again, consider the process Xt on Rm given by (12), as well as its invariant density p and its geometric

invariant θ. The step-h Euler approximation Yh
t+1 of Xh(t+1) conditional on Yh

t = Xht is given as

Yh
t+1 = Yh

t + h f (Yh
t ) +

√
hσ(Yh

t )εt, (15)

where the {εt} are independently distributed standard normal variables. Note that (15) defines a discrete
Markov chain with transition density

τh(y|x) =
1

| detσ(x)|
√

2πh
exp

(
−

1
2h

〈
y − x − h f (x),Σ−1(x)(y − x − h f (x))

〉)
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where Σ(x) = σ(x)Tσ(x). Let ph denote the invariant density of the Euler approximation (15). The depen-
dence ratio ρh of this Markov chain is given as

ρh(x, y) =
τh(y|x)
ph(x)

.

Let i : Rm → Rm × Rm denote the embedding i(x) = (x, x). Note that the function

∆h(x) = (i∗ρh) (x) =
τ(x|x)
ph(x)

is also a geometric invariant of the Euler process.
The following result connects the invariant θ of the continuous time process (12) to the invariant ∆h, and

by extension ρh, of the discrete time process (15).

Theorem 4. Assume that ph(x)→ p(x) as h→ 0. Then

√
2πh ∆h(x)→

1
θ(x)

as h→ 0.

Proof. We have

√
2πh ∆h(x) =

1
θ(x)

exp
(
−

h
2

〈
f (x),Σ(x)−1 f (x)

〉)
→

1
θ(x)

as h→ 0.

2.2.3. Interpretation
As noted, systems of the form (2) are obtained as the Euler approximations of stochastic differential

equations (12) for which the diffusion strength is independent of x, that is, σ(x) = σ0 for all x. We find that
then the geometric invariant reads as

θ(x) = cp(x),

where c = | detσ0|. That is: systems from the class of Markov diffusions (12) with constant diffusion
strength can be invariantly classified by the Morse classification of the invariant densities.

3. Bifurcations

Theorem 1 is illustrated using the stochastic hyperbolic tangent map.

Example 1. Consider the stochastic hyperbolic tangent map given by

xt = tanh(a xt−1) + b + εt, (16)

where {εt} is a sequence of independent N(0, σ2)-distributed random variables. As σ varies for fixed values
of a and b, stochastic bifurcations occur. Since by Theorem 1 the ratio bifurcations and phenomenological
bifurcations coincide for this system, changes in the number of critical points of the marginal density occur
exactly at the ratio bifurcation points. Figures 1 and 2 show the critical points of the marginal density as a
function of σ, for a = 1.3, b = 0 (symmetric case) and b = 0.01 (asymmetric case), respectively.
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Figure 1: Critical points of the invariant density as a function of the noise level σ for the stochastic hyperbolic map (16), for the case
a = 1.3, b = 0. Local maxima are indicated by solid lines, while local minima are indicated by dashed lines. The thin dashed lines
indicate the fixed points for the deterministic map.
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Figure 2: Critical points of the invariant density as a function of the noise level σ for the stochastic hyperbolic map (16), for the case
a = 1.3, b = 0.01. Other details are as for Fig. 1.
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Figure 3: Phase diagram in the (a, σ)-plane. In the region labelled ‘A’ the invariant distribution is unimodal, while it is bimodal in the
region labelled ‘B’.

In both figures it can be observed that for small noise levels the modes of the bimodal distribution are
close to the two fixed points of the noise-free dynamical system (σ = 0). Note that in the asymmetric
case (b = 0.01) the point where the minimum of the marginal density is attained displays a rather erratic
dependence on σ for small σ. For the symmetric (b = 0) as well as the asymmetric case (b = 0.01),
increasing σ sufficiently leads to a phenomenological bifurcation, in which the invariant density changes
from bimodal to unimodal.

To establish the dependence of this pehnomenon on the parameter a, Fig. 3 shows the regions in the
(a, σ)-plane where the invariant distribution is unimodal and bimodal, respectively. It can be seen that if
a > a∗, where a∗ = 1 is the classical bifurcation value of a for the noise-free case σ = 0, increasing σ leads
to a phenomenological bifurcation (and hence a corresponding ratio bifurcation).

To illustrate the fact that these phenomenological bifurcations coincide with ratio bifurcations, Fig. 4
shows the level sets (top panels) of the dependence ratio for noise levels below, at, and above the bifurcation
value, which is approximately σ = 0.5. The lower panels show the invariant densities for the corresponding
values of σ. By comparing the upper and lower panel figures it can be readily verified that the x-values
for which the invariant density reaches a local maximum or minimum, correspond with values yc of critical
points (xc, yc) of the dependence ratios.

Example 2. To illustrate the case of a non-invertible map, we consider

xt = xt−1 − log(exp(3xt−1) + µ) + εt, (17)

where, as before, εt ∼ N(0, σ2). The deterministic skeleton is conjugated, via xt = log zt, to the system
zt = zt−1/(z3

t−1 + µ). Fig. 5 shows a bifurcation diagram for the noise-free dynamical system (σ = 0). It can
be observed that the deterministic skeleton shows a cascade of period doubling bifurcations for decreasing
values of µ. As shown by the Lyapunov exponent in Fig. 6, the skeleton becomes chaotic for even smaller
values of µ.
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Figure 4: Ratio bifurcation for increasing σ, coinciding with the phenomenological bifurcation (a = 1.3 and b = 0.01). The top panels
show contour plots of the dependence ratio, and the lower panels the invariant density. The dashed line is the graph of the function.

Fig. 7 shows phenomenological bifurcations in the (µ, σ)-plane. The number of m of local maxima of
the invariant density is indicated for m = 1, 2, 4. In our numerical implementation the computational time
(or inaccuracy) was seen to increase fast for smaller values of σ and µ, which is why attention is limited to
the parameter region shown here.

Fig. 8 shows the local maxima and minima, respectively, of the invariant density for µ = 0.1 as σ
varies. The deterministic skeleton has a stable period-4 cycle for this parameter value. It can be observed
that decreasing the noise level σ gives rise to a bifurcation scenario in which the number of local maxima
increases from one, to two, and finally four.

To illustrate Theorem 2, according to which we expect the phenomenological bifurcations in this cascade
to coincide with ratio bifurcations, Fig. 9 shows the level sets (top panels) of the dependence ratio, as well
as the invariant densities (lower panels). The parameter µ is fixed at 0.1, while the σ-values are 0.05, 0.2
and 0.4, respectively. For these parameter values of σ the invariant density has 4, 2 and 1 local maxima,
respectively. Again, it can be readily verified from this figure that the x-values for which the invariant
density reaches a local maximum or minimum, correspond with the values yc of the critical points (xc, yc) of
the dependence ratio.

9



-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

X

µ

Figure 5: Bifurcation diagram of the deterministic skeleton of system (17).
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