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1 Introduction.

Dynamic economic models based on optimization principles are often
described by implicitly defined equilibrium equations derived from first
order conditions. In such an implicitly defined system, the forward equi-
librium dynamics is in general not uniquely defined, since at each date
there may be more than one optimal forward solution, while the back-
ward dynamics may be well-defined. This situation typically occurs if the
dynamic equations are nonlinear, non-invertible functions (e.g. power
functions). Two well known examples are the overlapping generations
(OLG)-model (e.g. Grandmont, 1985) and the cash-in-advance model
(e.g. Woodford, 1994, Michener and Ravikumar, 1998).
One way to deal with this ambiguity is to select the solution closest to

the steady state. Indeed locally this strategy makes sense in a dynamic
analysis. However, globally there often is no inherent reason, other than
convenience, why one should follow this strategy. At first sight it seems
unwise to select a far from steady state solution; the dynamical analysis
would get unnecessarily complicated and presumably not much can be
said about the global forward dynamics. The aim of this paper is to
characterize the non-uniquely defined forward equilibrium paths using
knowledge of the well-defined backward dynamics. We present examples
of the OLG-model in which at each date multiple forward equilibria
exist, but all forward equilibrium paths converge to a fractal attractor.
This seemingly contradictory claim can most easily be understood

by means of an example. Take three arbitrary linear contracting maps
fi (i = 1, 2, 3) of the plane. If one applies one map, say f1 sufficiently
often then sequences will converge to the unique fixed point of f1. A
similar conclusion holds if one uses one of the other two maps. The pic-
ture dramatically changes if one allows for a random choice between the
three maps at each period in time. More precisely, it has been shown
by Barnsley (1988) that independent of the starting condition and the
randommechanism that prescribes the choice of maps all orbits converge
to an unique fractal attractor. The dynamics on the attractor displays
extremely irregular though unique behaviour: two different initial con-
ditions will converge rather than diverge to the same unique, irregular
dynamic path.
This remarkable result is just a simple example of a so-called iter-

ated functions system (IFS). An IFS provides a natural framework to
describe the global equilibrium dynamics in implicitly, non-uniquely de-
fined dynamic equilibrium models. To see this consider the nonlinear
pure exchange overlapping generations (OLG) model thoroughly ana-
lyzed by Grandmont (1985). In his seminal paper Grandmont shows
that in the Samuelson case the “forward” equilibrium dynamics may
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not be uniquely defined due to a strong conflict between substitution
and income effects. That is, in order to obtain the perfect foresight equi-
librium dynamics one has to invert a hump shaped offer curve. To deal
with this problem Grandmont (1985) first analyses the “backward” dy-
namics and subsequently translates the backward dynamical phenomena
through a learning mechanism to the forward process (see also Grand-
mont and Laroque, 1986). We follow a different strategy: we call the
part of the offer curve that lies to the left (right) of the critical value the
left (right) forward map. In this way we obtain two invertible functions,
one monotonically increasing and the other monotonically decreasing,
each map having a unique attracting fixed point. Using the theory of
IFS, with some slight modifications, we investigate the forward equilib-
rium dynamics of the model. Our method captures all possible forward
equilibrium paths, including those shown to exist by Grandmont (1985).
In particular, we will show that the forward equilibrium paths converge
to a Cantor set, typically jumping erratically over the Cantor set.
We also apply the (modified) theory of IFS to a non-invertible two-

dimensional OLG model with productive investment and capital accu-
mulation and a fixed factor production technology. In the case the two-
dimensional model is invertible and agents have perfect foresight it has
been shown that purely deterministic periodic (Grandmont, 1993 and
Reichlin, 1986) as well as chaotic (de Vilder 1995, 1996) equilibrium
paths are a possible outcome, even when the two goods are gross sub-
stitutes. Moreover, Woodford (1986) showed, in an infinite horizon in-
terpretation of the model, the existence of sunspot equilibria (generated
by stochastic shocks to expectations) near the stable monetary steady
state1. Here we apply the IFS framework to the two-dimensional OLG-
model when the offer curve is non-monotonic due to a sufficiently strong
income effect.
In both the one-and two-dimensional OLG model agents have ratio-

nal expectations. The forward rational expectations equilibrium paths
can be interpreted as sunspot equilibria, where a random sunspot se-
quence determines equilibrium selection, that is, at each date a random
sunspot sequence determines which of the multiple equilibria is selected.
See Azariadis and Guesnerie (1986), Boldrin and Montrucchio (1986),
Cass and Shell (1983), Grandmont (1993) or Woodford (1984, 1986) for

1Grandmont, Pintus and de Vilder (1998) and Pintus, Sands and de
Vilder (2000) generalized these results by showing that sunspot equilib-
ria and regular and irregular purely deterministic phenomena also arise
when the production process allows for factor substitution. See also
Cazzavillan, Lloyd Braga and Pintus (1998), who allow for increasing
returns to scale in various versions of the two-dimensional model.
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general references on the sunspot literature.
There have been a number of related approaches to describe forward

dynamics in implicitly defined systems. Kamihigashi (1999) describes
the set of equilibria in implicitly defined equilibrium models by sym-
bolic dynamics and shows the existence of chaotic equilibrium paths.
Contrary to our approach, Kamihigashi does not investigate whether
such chaotic equilibria can be attracting and also does not use the no-
tion of IFS. More recently, Medio and Raines (2007) use the theory
of “inverse limits” to analyze the long run dynamical behaviour of im-
plicitly defined OLG-models. Even though the forward dynamics are
multi-valued, they show that typical long run equilibria correspond to
an attractor of the shift map on the inverse limit space. In a similar vein
Kennedy and Stockman (2008) apply the theory of inverse limits to both
cash-in-advance and OLG models and provide necessary and sufficient
conditions for these systems to be chaotic. See also the recent discus-
sion in Grandmont (2008). A problem with the inverse limit approach
however, is that it is rather abstract and, e.g., the inverse limit space
is infinitely dimensional. Our IFS approach is much simpler and intu-
itive. We present sufficient conditions, which can be verified graphically
or numerically, on the (uniquely defined) backward map for the forward
dynamics to be chaotic. We also present intuitive ways to simulate the
forward dynamics, by randomly (possibly with some restrictions) ap-
plying one of the inverse forward maps, generating sunspot equilibria
corresponding to a fractal attractor of some suitable IFS.
We have organized the paper as follows. Section 2 briefly recalls

the OLG-model, defines the backward and foreward maps and discusses
sunspot equilibria. In section 3 we present the formalism of iterated
function systems (IFS), mainly by means of simple examples. Sections
4 and 5 apply this formalism to the one-respectively two-dimensional
OLG-model. Finally, some concluding remarks are given in section 6
and a mathematical appendix recalls some basic notions from dynamical
systems theory.

2 The Overlapping Generations models

In this section we present both a one-and a two-dimensional overlapping
generations (OLG-)models. We start with the simpler one-dimensional
model, followed by the closely related two-dimensional model.

2.1 One-dimensional OLG-model

Consider the OLG-model as in Grandmont (1985, 1993). The economy
has a constant population and is built up from a household sector and a
production sector. Both sectors have a representative agent who lives for
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two periods and behaves rationally. The representative agent from the
household sector works when young and consumes when old. In return
for their effort the young receive a salary in the form of fiat money which
is available in a fixed amount. The consumption good is assumed to be
perishable and one unit is produced from one unit of labour supplied by
the young. Agents have a separable utility function V1(l∗− lt)+V2(c

e
t+1),

where l∗ is fixed labour endowment of the young, l∗− lt is current leisure
and cet+1 is next periods expected consumption. Agents optimize their
utility under the budget constraint wtlt = pet+1c

e
t+1 = M , where wt is

wage rate, pet+1 expected price of the consumption good in period t+1 and
M denotes fiat money. Under perfect foresight, the first order condition
is v1(lt) = ltV

0
1(l

∗ − lt) = ct+1V
0

2 (ct+1) = v2(ct+1). The optimal pair of
current labour and future consumption is then given by

lt = χ(ct+1) = v−11 ◦ v2(ct+1), (1)

with χ(.) = v−11 ◦ v2(.); its graph is the so-called offercurve. Since one
unit of labor produces one unit of consumption good we have output
yt = lt = ct, so that we obtain

yt = χ(yt+1). (2)

We will refer to (2) as the backward dynamics. Note that the backward
dynamics is uniquely defined, since χ = v−11 ◦v2 and v1(l) = lV 0

1(l
∗− l) is

increasing for a concave utility function. To study the forward dynamics
of this one-dimensional OLG economy one has to invert the function χ
to obtain:

yt+1 = χ−1(yt). (3)

We will refer to (3) as the forward dynamics. The forward dynamics
is only uniquely defined if v−12 is well-defined, that is, if = v2(ct+1) =
ct+1V

0
2 (ct+1) is monotonic. This is the case if current leisure and future

consumption are gross substitutes, and in that case the one-dimensional
economy described by (3) can only display simple dynamic behavior:
convergence to a steady state equilibrium (see e.g. Kehoe et al., 1991).
In his seminal paper Grandmont (1985) has shown that, if the two

goods are not gross substitutes and the income effect is sufficiently
strong, the offercurve is backward bending and non-monotonic. When
the income effect is strong, the backward dynamics (2) may exhibit com-
plicated, chaotic fluctuations. This result heavily relies on a well known
theorem of Sharkovskii (1964) (see also in Sharkovskii et al. 1997) and
Li and York (1975), which essentially says that if a continuous one-
dimensional dynamical system has a periodic orbit of period three then
there exists infinitely many coexisting periodic orbits as well as an un-
countable set of aperiodic orbits all living in a Cantor set, usually of
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Lebesgue measure zero2. In order to translate these results to the
forward equilibrium process3 Grandmont (1985) introduces a learning
mechanism, and shows that backward unstable periodic orbit (or cycle)
is locally a stable cycle in the forward equilibrium process with learning
(i.e., for a specific sequence of inverses).
When the offercurve is non-monotonic, the forward dynamics (3) is

not uniquely defined, and it is better to speak of a forward process. Our
main concern here will be: what can we say about the equilibrium paths
of the forward process, given our knowledge of the backward dynamics.
We will, for example, see that if the backward dynamics exhibits chaotic
dynamics, then the forward process will also exhibit complicated dynam-
ical behavior.

2.2 Two-dimensional OLG-model

We now introduce the two-dimensional OLG-model considered in Re-
ichlin (1986), Woodford (1986) and Grandmont (1993). There are two
sectors in the economy, a household sector and a production sector. The
household sector is the same as in the one-dimensional OLG-model dis-
cussed above. Hence, as before, under perfect foresight the optimal pair
of current labour and future consumption is given by

lt = χ(ct+1), (4)

with χ the offercurve. Solving for future consumption yields

ct+1 = χ−1(lt). (5)

Output is not only produced from labour lt supplied by the house-
hold sector, but also from capital stock kt−1 supplied by non-consuming,
profit maximizing entrepreneurs. Both inputs are being used in fixed
proportions, that is, we assume a Leontief production technology so that
output yt = min{lt, kt−1/a}, where 1/a is the productivity of capital. In
each period output is partly directed towards the household sector for
consumption and partly directed towards the capital sector for invest-
ment. The capital stock available for production, at the beginning of
period t+ 1, is:

kt = (1− δ)kt−1 + it, 0 < δ < 1, (6)

2We suggest the interested reader to consult the treatments of Grand-
mont (1985, 1988) or Devaney (1986).

3In the sequel we sometimes just refer to the forward equilibrium
dynamics.
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where δ is the depreciation rate of capital and it is investment.
In equilibrium yt = lt = kt−1/a, ct = yt−it and, using (6), investment

can be written as
it = a[yt+1 − yt(1− δ)]. (7)

Actual future output is then given by

yt+1 = (1− δ)yt +
1

a
(yt − ct). (8)

Moving one period forward yields

yt+2 = (1− δ +
1

a
)yt+1 − 1

a
ct+1. (9)

Using ct+1 = χ−1(lt) and lt = yt we get

yt+2 = (1− δ +
1

a
)yt+1 − 1

a
χ−1(yt). (10)

Substituting qt = yt and rt = yt+1 yields the two-dimensional system

qt+1= rt (11)

rt+1=(1− δ +
1

a
)rt − 1

a
χ−1(qt). (12)

Equations (11)-(12) define the forward dynamics of the 2-D OLG-model.
As in the 1-D case, the forward dynamics is only uniquely defined if the
offercurve is monotonic, so that the inverse χ−1 is uniquely defined. If
the offercurve is non-monotonic, the forward process (11)-(12) is not
uniquely defined and at each date t there are two possibilities for con-
tinuation depending on whether one applies the left inverse χ−1L or the
right inverse χ−1R . It is straightforward to use (11)-(12) to derive the
backward dynamics:

qt=χ[a(1− δ +
1

a
)qt+1 − art+1] (13)

rt= qt+1. (14)

As in the 1-DOLG-model, the backward dynamics is always well-defined,
and we can formulate the same problem for the 2-D OLG-model: what
can we say about the equilibrium paths of the forward process (11)-(12),
given our knowledge of the backward dynamics (13)-(14)? As in the 1-D
case, we will see that if the backward dynamics exhibits chaotic dynam-
ics, then the forward process will also exhibit complicated dynamical
behavior.
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2.3 Sunspot equilibria

In this subsection we discuss the relation between perfect foresight equi-
libria and sunspot equilibria. In general the relationship between sunspot
equilibria and deterministic dynamics is complicated (see e.g. Cass and
Shell, 1983, Azariadis and Guesnerie, 1986, Grandmont, 1993 andWood-
ford, 1986, for a general discussion of sunspot equilibria), but in our
setting, there is a simple relationship when a random sunspot sequence
serves as an equilibrium selection process4.
First consider the simpler 1-D OLG model. At date t, given the

current money wage wt > 0 and expectations about (possibly random)
future prices pet+1, consumers maximize expected utility:

V1(l
∗ − lt) +EtV2(c

e
t+1), (15)

where Et denotes conditional mathematical expectations of a random
variable, subject to the (possibly random) budget constraint wtlt =
pet+1c

e
t+1. The first order condition yields

v1(lt) = Etv2(c
e
t+1), (16)

which together with the budget constraint determines (uniquely) current
labour supply lt and (possibly random) expected consumption cet+1 as a
function of wt and expected future price pet+1.
In the 1-D OLG-model, where wt = pt and yt = ct = lt = M/pt, a

stochastic rational expectations equilibrium is described by a sequence of
random variables yt > 0, for t ≥ 0, satisfying v1(yt) = Etv2(yt+1). This is
a sunspot equilibrium in the sense that it can be interpreted as an equilib-
rium where agents believe (rationally) that equilibrium prices pt =M/yt
are correlated with a stochastic sunspot sequence st, t = 1, 2, 3, · · · that
do not affect economic “fundamentals”. A particular case is a determin-
istic perfect foresight equilibrium: a sequence of deterministic outputs
yt, t ≥ 0, satisfying v1(yt) = v2(yt+1) or yt = χ(yt+1). In our setting, the
sunspot process only performs a random selection at time t+1 between
the two deterministic equilibria yt+1 =M/pt+1 that are possible contin-
uations, given yt = M/pt, at date t. More precisely, given pt = M/yt,
let pt+1,i = M/yt+1,i be such that yt = χ(yt+1,i) or v1(yt) = v2(yt+1,i),
for i = 1, 2. Suppose that pt+1,i is selected (perhaps through the real-
ization of some sunspot variable st+1,i) with probability qi ≥ 0. Then
at date t, the relation v1(yt) = Et(v2(yt+1)) =

P
i qiv2(yt+1,i) in (16) is

satisfied. The random selection that will be performed at date t + 1
does not affect the choice of households at date t, hence the equilibrium

4We would like to thank an anonymous referee for spelling out the
details of this relationship.

8



price pt. Hence, if sunspots only perform at each date a random se-
lection among the two possible deterministic temporary perfect foresight
equilibria, given past realizations, then the sample trajectories are for-
ward perfect foresight equilibria generated by (3). Notice that, at each
date, the random sunspot sequence in fact only must prescribe whether
the left inverse χ−1L or the right inverse χ−1R is applied to select the next
equilibrium in (3).
In the 2-D OLG-model a similar relation with sunspot equilibria

arises. Sunspot equilibria in the 2-D OLG model with Leontief technol-
ogy satisfy

v1(yt) = EtV2[(1 + a(1− δ))yt+1 − ayt+2]. (17)

Note that, since yt+1 = kt/a is predetermined at date t+ 1, only yt+2 =
kt+1/a is random here, given information available at date t. Determin-
istic perfect foresight equilibria satisfy

yt = χ[(1 + a(1− δ))yt+1 − ayt+2]. (18)

derived from (10). The same argument as in the 1-D OLG-model then
shows that stochastic equilibria where sunspots only perform a random
selection among the two perfect foresight equilibria at date t+ 1, given
the past (i.e. among values of yt+2 satisfying (10) given yt+1 and yt)
generate sample paths that are forward perfect foresight equilibria. As
in the 1-D case, at each date, the random sunspot sequence only must
prescribe whether the left inverse χ−1L or the right inverse χ−1R is applied
to select the next equilibrium in (11)-(12).

3 Iterated Function System (IFS)

The theory of so-called iterated function systems (IFS) provides a nat-
ural framework to deal with implicitly, non-uniquely defined equilibrium
models. Since most economists will not be familiar with the notion of
IFS we introduce in this section its main characteristics by means of
examples and formalize the essential features afterwards. For a detailed
treatment of the theory of IFS see Barnsley and Demko (1985) and
Barnsley (1988).

3.1 An attracting Cantor set

Our starting point is the definition of a "Cantor set", which plays an
important role as a repelling invariant set in chaotic systems and as a
fractal attractor of an IFS. The Mathematical Appendix briefly recalls
some basic notions from dynamical systems, such as invariant sets, re-
pellors and attractors. We recall that by definition (see e.g. Devaney
1986), a set Λ is a Cantor set if it is closed, totally disconnected and per-
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fect5. The simplest example is the "Middle-third Cantor set": start with
a closed interval I and remove the open "middle third" of the interval
(see Figure 1). Next, from each of the two remaining closed intervals,
say I0 and I1, remove again the open "middle thirds", and so on. After
n iterations, we have 2n closed intervals inside the two intervals I0 and
I1.

Figure 1: Middle-third Cantor set

Cantor sets are obtained in a natural way as chaotic invariant sets in
dynamical systems, see e.g. Devaney (1986) or Li and Yorke (1975). To
illustrate this point, consider the well known logistic map 6

xt = fµ(xt+1) = µxt+1(1− xt+1). (19)

Notice that we have written this quadratic difference equation as a well-
defined backward dynamical system, as for the 1-D OLG-model in 2.
Since fµ is non-monotonic, its inverse map is not unique. For any point
ξ belonging to the interval I = [0, 1] there are two distinct inverse func-
tions, say f−1µ (ξ) = f−10 (ξ) ∪ f−11 (ξ), where7.

f−10 (ξ) =
µ−pµ2 − 4µξ

2µ
, f−11 (ξ) =

µ+
p
µ2 − 4µξ
2µ

.

Hence, as for the 1-D OLG-model, the forward dynamics is not uniquely
defined. We will show that for µ > 2+

√
5, the backward dynamics (19)

has chaotic invariant Cantor set Λ8. Moreover, we will show that the
same Cantor set is an attractor of the so-called iterated function system
formed by the two inverses f−10 (ξ) and f

−1
1 (ξ). A first observation is that

for µ > 2+
√
5 the two inverses f−10 (ξ) and f

−1
1 (ξ) are contractions in I.

5Totally disconnected means that it contains no intervals (i.e. no
subset [a, b] with a 6= b) and perfect means that every point is a limit
point of other points of the set.

6This example was used within the theory of OLG-models by Medio
and Raines (2007).

7Instead of the two symbols 0 and 1, one may use L andR respectively.
8In fact, this is true for any µ > 4, but the proof is more complex.
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Figure 2: Logistic map for µ > 2 +
√
5 and the two disjoint intervals

f−1µ (I) = I0 ∪ I1.

The set of points whose backward dynamics is bounded forever in
the interval I can be obtained removing from the interval all the points
which exit the interval after n iterations, for n = 1, 2, ..... Thus let us
start with the two closed disjoint intervals

f−1µ (I) = f−10 (I) ∪ f−11 (I) = I0 ∪ I1, (20)

(see Figure 2), i.e. we have removed the points leaving I after one back-
ward iteration. Next we remove the points exiting after two backward
iterations obtaining four closed disjoint intervals

f−2µ (I) = I00 ∪ I10 ∪ I01 ∪ I11,
defining in a natural way f−1µ (I0) = f−10 (I0) ∪ f−11 (I0) = I00 ∪ I10 and
f−1µ (I1) = f−10 (I1) ∪ f−11 (I1) = I01 ∪ I11. Note that if a point x belongs
to I01 (or to I11) then fµ(x) belongs to I1 (i.e. one iteration means drop-
ping the first symbol of the index). Continuing the elimination process
we have that f−nµ (I) consists of 2n disjoint closed intervals (satisfying

f
−(n+1)

µ (I) ⊂ f−nµ (I)), and in the limit we get

Λ = ∩∞n=0f−nµ (I) = lim
n→∞

f−nµ (I). (21)

The set Λ is closed (as intersection of closed intervals), invariant by
construction (as f−1(Λ) = f−1(∩∞n=0f−nµ (I)) = ∩∞n=0f−nµ (I) = Λ) and it
cannot include any interval (because otherwise, since fµ is expanding,
after finitely many application of fµ to an interval, we ought to cover
the whole set [0, 1]). Thus Λ is a Cantor set.
Moreover, by construction, to any element x ∈ Λ we can associate

a symbolic sequence, called Itinerary, or address, of x in the backward
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dynamics, Sx = (s0s1s2s3...) with si ∈ {0, 1}, i.e. Sx belongs to the set
of all one-sided infinite sequences of two symbols

P
2 . Sx comes from the

symbols we put as indices to the intervals in the construction process,
and there exists a one-to-one correspondence between the points x ∈ Λ
and the elements Sx ∈

P
2 . Moreover, from the construction process

we have that if x belongs to the interval Is0s1...sn then fµ(x) belongs to
Is1...sn. Thus the action of the function fµ on the points of Λ corresponds
to the application of the "shift map σ" to the itinerary Sx in the code
space

P
2 :

if x∈Λ has Sx = (s0s1s2s3...) (22)

then

fµ(x)∈Λ has Sf(x) = (s1s2s3...) = σ(s0s1s2s3...) = σ(Sx).

Given a point x ∈ Λ how do we construct its itinerary Sx? In the obvious
way: we put s0 = 0 if x ∈ I0 or s0 = 1 if x ∈ I1, then we consider fµ(x)
and we put s1 = 0 if fµ(x) ∈ I0 or s1 = 1 if fµ(x) ∈ I1, and so on. It is
easy to see that each periodic sequence of symbols of period k represents
a periodic orbit with k distinct points, and thus a so-called k−cycle.
Since the elements of

P
2 can be put in one-to-one correspondence with

the real numbers9, we have that the periodic sequences are dense in the
space, thus the periodic orbits are dense in Λ. Also there are infinitely
many aperiodic sequences (i.e. trajectories) which are dense in Λ and we
also have sensitivity with respect to the initial conditions. It follows that
the backward dynamics fµ is chaotic in Λ. Moreover, we also have nice
properties of the forward process we are interested in: for any initial state
in I, whichever is the forward trajectory, it tends to Λ (i.e. the distance
of the forward iterated points from Λ tends to zero). The Cantor set Λ
describes all possible forward trajectories.
The construction process with the two contraction functions in (20)

leading to the Cantor set in (21) can be repeated with any number
of contraction functions defined in a complete metric space D of any
dimension, as is well known since the pioneering work by Barnsley. Let
us recall the definition of an IFS:
Definition. An Iterated Function System (IFS) {D;H1, ...Hm} is a

collection of m mappings Hi of D into itself.
We can so define W = H1 ∪ ...∪Hm and for any point or set X ⊆ D

we define W (X) = H1(X) ∪ ... ∪ Hm(X). The main property of this
definition is given in the following theorem:
Theorem (see Barnsley 1988, Th.1 p. 82). Let {D;H1, ...Hm} be

an IFS. If the Hi are contraction functions then there exist a "unique
9We can think for example of the representation of the numbers in

binary form.
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attractor" Λ such that Λ = W (Λ) and Λ = limn→∞W n(X) for any
non-empty set X ⊆ D.
In the case described above with the logistic map we have D = I =

[0, 1],H1 = f−10 , H2 = f−11 , so thatW (X) = f−1µ (X) = f−10 (X)∪f−11 (X),
and the set Λ = limn→∞W n(X) = limn→∞ f−nµ (X) for any X ⊆ D is
the set already described above and obtained in (21).
The existence and uniqueness of the set Λ is guaranteed by the the-

orem and it is also true that given any point or set X ⊆ D by applying
each time one of the m functions Hi we "converge" to the same set Λ.
In general, if the sets Di = Hi(D) i ∈ {1, ...,m} are disjoint, we can

put the elements of Λ in one-to-one correspondence with the elements
of the code space on m symbols

P
m . The construction is the general-

ization of the process described above for the two inverses of the logistic
functions. Let U0 = D and define

U1=W (U0) = D1 ∪ ... ∪Dm = H1(D) ∪ ... ∪Hm(D) ⊂ U0

U2=W (U1) =W 2(U0) = D11 ∪ ... ∪Dmm = H1(U1) ∪ ... ∪Hm(U1) ⊂ U1

...

Un=W (Un−1) =W n(U0) ⊂ Un−1

i.e. all the disjoint sets of U1 are identified with one symbol belonging
to {1, ...,m} , all the disjoint sets of U2 are identified with two symbols
belonging to {1, ...,m} (m2 in number) and so on, all the disjoint sets of
Un are identified with n symbols belonging to {1, ...,m} (mn in number),
and in the limit, as Λ = limn→∞Un = limn→∞Wn(U0) = ∩∞n=0Wn(U0).
Each element x ∈ Λ is in one-to-one correspondence with the elements
Sx ∈

P
m, where Sx = (s0s1s2s3...), si ∈ {1, ...,m} .

Moreover, for any element x ∈ Λ we can define a transformation (or
map) F on the elements of Λ by using the inverses of the functions Hi

(the so called shift transformation or shift dynamical system in Barsnley
1988, p. 144):

if x ∈ Hi(D) then F (x) = H−1
i (D),

so that we can also associate an induced dynamic to the points belonging
to Λ, and the rule described in (22) holds for F, i.e. if x ∈ Λ has Sx =
(s0s1s2s3...) then F (x) ∈ Λ has SF (x) = (s1s2s3...) = σ(s0s1s2s3...) =
σ(Sx). Clearly, when the functions Hi are distinct inverses of a unique
function f then the induced dynamic system is the same, as F = f .

3.2 The chaos game

As a second relevant example let us consider another well known IFS
with three functions, the so-called chaos game. Choose three different
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Figure 3: Sierpinski triangle, unique attractor of the IFS
{D;H1,H2, H3} .

points Ai, i = 1, 2, 3, in the plane, not lying on a straight line. Let
D be the closed set bounded by the triangle with vertices given by the
three points Ai, and consider the IFS {D;H1,H2,H3} where the Hi are
linear contractions in D with center Ai and contractivity factor 0.49.
Then choose an arbitrary initial state x0 in D. An orbit of the system
is obtained by applying one of the three maps Hi, after throwing a dice.
More precisely, xn+1 = Hi(xn) with i = 1 after throwing 1 or 2, i = 2
after throwing 3 or 4, i = 3 after throwing 5 or 6. For any initial state
x0 ∈ D, plotting points of this orbit after a short transient gives Figure 3.
This fractal shape is called the Sierpinski triangle and it is the unique
attractor of the chaos game. Almost all the orbits generated in the chaos
game are dense in the Sierpinski triangle.
Moreover, in Barnsley (1988, p. 335) it is also shown how, besides

the standard IFS, we can consider a Random IFS (RIFS for short, or IFS
with probabilities) by associating a probability pi > 0 to each function

Hi, such that
mP
i=1

pi = 1. Considering a point x0 ∈ D then we choose

recursively
xn+1 ∈ {H1(xn), ..., Hm(xn)}

and the probability of the event xn+1 = Hi(xn) is pi. The iterated points
always converge to the unique attractor Λ of the standard IFS, but the
density of the points over the set Λ reflects in some way the chosen
probabilities pi. However, we note that if the probabilities in the RIFS
are strictly positive, pi > 0, then the unique attractor does not change,
and the iterated points are dense in Λ.10

10The reader can find an excellent review on random dynamical systems
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This may be very useful and convenient when using IFS theory ap-
plied to dynamic economic equilibriummodels (see e.g. Montrucchio and
Privileggi, 1999, Mitra et al., 2004 and Mitra and Privileggi, 2008 for
some economic applications). Using an approach similar to the Random
IFS, we can define a Restricted IFS (or IFS with restrictions) imposing
that, depending on the position of a point x ∈ D not all the mapsHi can
be applied but only some of them. Stated differently we can impose some
restrictions on the order in which the functions can be applied. As an
example let us consider the chaos game described above, but now with
some restrictions, that is, the order in which the three different maps Hi

are applied is not completely random, but subject to certain restrictions.
Suppose for example that the map H1 is never applied twice consecu-
tively, i.e. whenever H1 is applied then the next map to be applied
is either H2 or H3. Let

P∗ ⊂ P
3 (the code space on three symbols)

be the subset of all sequences which do not have two consecutive 1’s.
The chaos game {D;H1, H2, H3} with the restriction so described has a
unique attractor Λ∗ whose points are in one-to-one correspondence with
the restricted space

P∗. A typical orbit of this chaos game with restric-
tions, after a short transient, is shown in Figure 4. The unique attractor
of the chaos game with restrictions is a subset of the Sierpinski triangle,
the attractor of the chaos game. In fact, the attractor contains precisely
those points of the Sierpinski triangle whose itinerary, or addresses, do
not have two consecutive 1’s.
This example shows that when some restrictions upon the order in

which the maps are applied is imposed, then a unique fractal attractor
can arise, which is some subset of the unique attractor of the IFS.
In the following sections we shall see how IFS are related in a natural

way to non-uniquely defined forward equilibrium dynamics. We will also
see that the forward dynamics can be described by an IFS, whenever the
(uniquely defined) backward dynamics has homoclinic trajectories due
to the existence of a snap-back repellor.

4 Analysis of the 1-D OLG-model

Let us consider the one-dimensional OLG model described in Subsection
2.1. Recall that the backward dynamics is given by

yt = χ(yt+1). (23)

Whenever the graph of the offer curve displays a hump then for a given
yt there are two equilibrium values of future output yt+1. Define the
part that lies to the left of the critical point ym of χ as the left map

in Bhattacharya and Majumdar (2004).
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Figure 4: A subset of the Sierpinski triangle. Λ∗ is the unique attractor
of the RIFS {D;H1,H2, H3} with the restriction that whenever H1 is
applied then it is followed by either H2 or H3.

and the part that lies to the right of ym as the right map. In this way
we obtain two invertible functions, one monotonically increasing and the
other monotonically decreasing. Call the inverse of the left map χ−1L and
the inverse of the right map χ−1R (see Fig.5). Future output is then given
by either the left inverse map

yt+1 = χ−1L (yt), (24)

or by the right inverse map

yt+1 = χ−1R (yt). (25)

At this point it is useful to consider a concrete specification of the 1-D
OLG-model. As in Grandmont (1985), let

V1(l
∗ − l) =

(l∗ − l)1−α1

1− α1
and V2(c) =

(0.5 + c)1−α2

1− α2
, (26)

with l∗ = 2 , α1 = 0.5 and α2 > 0. Figure 5 shows the shape of χ.
Except for the steady state at the origin, asymptotically the back-

ward dynamics (23) is contained in the invariant interval I = [χ2(ym), χ(ym)],
where ym is the critical point. Notice that for any point outside this in-
terval I, the forward process either tends to zero (after applying the left
inverse map (24) infinitely many times) or is undefined when it enters
a region without preimages (after applying the right inverse map (25)
once). We therefore restrict attention to the interval I.
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Figure 5: Graph of the one-dimensional function χ at l∗ = 2 , α1 = 0.5
and α2 = 6. χL is the branch on the left of the critical point ym with
inverse χ−1L , χR is the branch on the right of ym with inverse χ

−1
R . The

interval of interest is I = [A,B] = [A,D] ∪ [D,B], where B = χ(ym),
A = χ2(ym), D = χ3(ym).

Moreover, the third iterate χ3(ym) of the critical point ym separates
the interval I into two parts (see Fig.5). For any point belonging to
the interval [χ2(ym), χ3(ym)] only the right inverse, χ−1R , leads to an in-
teresting forward trajectory, as application of the left inverse leads out
of I. On the other hand, whenever we have a point y in the inter-
val [χ3(ym), χ(ym)] then both the inverses χ−1L and χ−1R for the forward
process can be applied giving again a point in I (and clearly χ−1L (y) ≤ ym
, χ−1R (y) ≥ ym).
Now consider the backward dynamics (23). Figure 6 shows a bifur-

cation diagram of the backward dynamics. The diagram shows the long
run backward dynamics as a function of α2 ∈ [1, 20]. The backward
dynamics exhibits the well-known period-doubling bifurcation route to
chaos (Grandmont, 1985).
For continuous 1-D maps f on the interval it is important to know

conditions under which the dynamics is chaotic (in the sense of Devaney,
1986). The condition of "existence of an orbit of period 3" is now very
well known, since the celebrated work by Li and Yorke (1975). That
is, this is a sufficient condition to establish the existence of an invariant
(repelling) Cantor set (which may be of zero measure in I) on which f
is chaotic.
Another useful condition is given inMitra (2001, p. 141-142): f3(xm) <
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Figure 6: Bifurcation diagram of the function χ at l∗ = 2 , α1 = 0.5
fixed, and varying α2 in the interval [1, 20]. α∞2 denotes the limit point
of the first period doubling cascade. bα2 denotes the bifurcation value at
which χ3(ym) = y∗.

x∗, where xm denotes the critical point and x∗ the fixed point. This is
exactly the condition for which the fixed point has homoclinic orbits (or
the fixed point is a snap-back repellor). An orbit is homoclinic to a fixed
point if a sequence of primages from the fixed points tends to the fixed
points itself; the notion of homoclinic orbit dates back to Poincaré. A
fixed point x∗ of a map f is called a snap-back repellor of f if all the
eigenvalues of Df(x∗) are greater than 1 in modulus, and there exists a
(noncritical) homoclinic orbit of x∗ (Marotto 1978, 2005).
In Figure 6 the critical parameter is denoted by bα2, that is, for bα2

(when 2 chaotic intervals merge into a unique one) we have χ3(ym) =
y∗, and the backward dynamics are chaotic in the interval I defined
above. A (noncritical) homoclinic orbit implies topological chaos (see
e.g. Devaney, 1987, Th. 16.5, p. 123). A different proof is in Gardini
(1994, Th.1), from which it follows that the condition given in Mitra
(2001) can be enforced (emphasizing when the first homoclinic orbits
appear) by stating the following:

Proposition 1. Let xm be the maximum point of a unimodal continu-
ous map of an interval into itself, say f : I → I, smooth in I\ {xm} , with
a unique unstable fixed point x∗, and a sequence of preimages of xm tends
to x∗. Then the first homoclinic orbits (all critical) of the fixed point x∗

occur when the critical point satisfies f3(xm) = x∗. For f3(xm) < x∗ the
fixed point is a snap-back repellor. There exists a closed invariant set
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Λ ⊆ [f2(xm), f(xm)] ⊆ I on which the map is topologically conjugate to
the shift automorphism, and thus f is chaotic, in the sense of Devaney,
i.e. topological chaos, with positive topological entropy.

Clearly the proposition holds also for a critical point minimum, with
obvious changes. The proof of the bifurcation condition is immediate,
as for f3(xm) > x∗ the fixed point x∗ has no rank-1 preimages in I,
while at f3(xm) = x∗ the critical point is homoclinic and infinitely many
homoclinic trajectories exist, all critical. When f3(xm) < x∗ then infi-
nitely many noncritical homoclinic orbits exist (close to those critical at
the bifurcation value, that is, the homoclinic points are obtained by the
same sequences of preimages of the function). A technique to construct
a Cantor set Λ associated with an homoclinic orbit, as well as the related
chaotic dynamics, will be discussed in the following.
Moreover, the same result (i.e. existence of a closed invariant set

Λ on which the map is chaotic) holds for any cycle (periodic point of
any period), which is a snap-back repellor (i.e. when homoclinic orbits
exist), because proposition 1 can be applied to fixed points of the map
fk, for any k > 1 (in suitable intervals for fk, corresponding to cyclical
intervals for f). It follows that when such a proposition is applied to
a fixed point of the map f, it can in fact be applied to infinitely many
different k−cycles. We shall see an example with our OLG model.
In Figure 6 the point denoted by α∞2 represents the limit of the

first period doubling sequence, after which the backward dynamics is
(topologically) chaotic, and the cycles of period 2n become homoclinic,
i.e. snap-back repellors, in decreasing order of period.

Main result
We are now ready to state the main result concerning the relation be-
tween the forward dynamics and the backward dynamics of the 1-DOLG-
model:

Theorem 1. When the offer curve satisfies χ3(ym) < y∗ (i.e. the
third iterate of the critical point is below the fixed point) then the fixed
point is a snapback repeller in the backward dynamics and there exists
an IFS {U ;F,G} each with a unique fractal attractor Λ, such that
(i) Λ is a repelling invariant Cantor set of the backward dynamics;
(ii) Λ is the unique attractor of the IFS (Λ = limn→∞W n(X) for

any X ⊆ U, where W = F ∪G);
(iii) For any initial state in U , the forward dynamics obtained with

the functions F and G always stays in U and tends to Λ or a subset of
Λ);
(iv) If the probabilities in the Random IFS are strictly positive, pi > 0,

the forward trajectory obtained with the contraction functions F and G
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is dense in Λ.
(v) Each orbit of the IFS is a sunspot equilibrium of the OLG-economy.

The condition χ3(ym) < y∗ implies that the fixed point is a snapback
repellor for the backward dynamics. The maps F and G are composite
maps of the left inverse map χ−1L in (24) and right inverse map χ−1R in
(25). For example, in the sketch of the proof below, F = χ−4LRRR and
G = χ−4RRRR. The theorem in fact holds more generally, whenever the
backward dynamics has an unstable periodic orbit which is a snap-back
repellor. This will be the case for all α2-values beyond the limit point
of the first period doubling cascade (denoted by α∞2 in Figure 6, beyond
which cycles of period 2n become snapback repellors).

Sketch of the proof (1-D case)

We sketch the proof of Theorem 1 by first considering a concrete exam-
ple and then discuss how the construction can be generalized. As an
example, fix α2 = 14, at which the backward dynamics of χ converges
to a 3-cycle.

Figure 7: Starting set U, neighborhood of y∗ (in which |χ0(x)| > 1, for
all x ∈ U) of the function χ at l∗ = 2 , α1 = 0.5 and α2 = 14.

Consider a set of initial conditions U , containing the fixed point y∗,
and such that |χ0(x)| > 1, for all x ∈ U, so that χ−1R (y) is a contraction
in U (see Figure 7). Now apply to U the left inverse map χ−1L one time,
and then the right inverse map (χ−1R ) n times, where n is such that the
final set is again located inside U . Such an integer n exists because the
fixed point is a snap-back repellor and we are following a homoclinic
trajectory. Moreover, χ−1R is a decreasing function having no periodic
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points to the right of ym except for the fixed point y∗, thus applying the
right inverse map repeatedly to a point or an interval, it will converge to
the fixed point. In our example we need three consecutive applications
of χ−1R to obtain a set I0 such that I0 ⊂ U (see Figure 8). In this way
we have built a suitable inverse function F = χ−4LRRR. Another suitable
inverse, which we call G, can be obtained applying 4 times (as F is
formed by 4 composite mappings) the right inverse map χ−1R . The final
set I1 = G(U) = χ−4R (U) still contains the fixed point and is such that
I1 ⊂ U because χ−1R is a contraction. Clearly I1 and I0 are disjoint
(because the first iterates χ−1R (U) and χ−1L (U) are disjoint, and then we
apply only the function χ−1R ).

Figure 8: A building up of the two disjoint intervals I0 and I1 belonging
to U , for the function χ at l∗ = 2 , α1 = 0.5 and α2 = 14. y

∗ ∈ I1.

Thus, by construction we have I0 ∩ I1 = ∅, χ4(I1) ⊃ (I0 ∪ I1) and
χ4(I0) ⊃ (I0 ∪ I1) (as χ4(I1) = χ4(I0) = U), and these are sufficient
conditions to apply the standard technique used in symbolic dynamics
and in the Iterated Function System (IFS) theory (see Barnsley, 1988).
Let U0 = U and

U1 = I0 ∪ I1 = F (U) ∪G(U) ⊂ U

then we use the two suitable inverses F and G. F (U1) is made up of two
disjoint pieces I00 and I01 belonging to I0, such that χ4(I00) = I0 and
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χ4(I01) = I1. Similarly G(U1) is made up of two disjoint pieces I10 and
I11 belonging to I1, and χ4(I10) = I0 and χ4(I11) = I1. And so on, by
repeating iteratively this mechanism we construct a nested sequence of
closed sets Un+1 = F (Un) ∪G (Un) ⊂ Un (for n ≥ 1 each Un consists of
2n intervals) and in the limit process we get a closed invariant set Λ ⊂ U,
whose elements are in one-to-one correspondence with the elements of
the space

P
2 of one sided infinite sequences on two symbols {0, 1} and

the application of the map χ4 to an element of Λ corresponds to the
application of the shift map σ to an element of

P
2 . We have

Λ = ∩
n>0

Un = lim
n→∞

Un , Un+1 = F (Un) ∪G (Un) ⊂ Un (27)

When F and G are contractions, then Λ is a classical Cantor set of
points on which the map χ4 is chaotic, and the condition on the first
derivative |(χ4)0(x)| > 1 in any point x ∈ U is enough to state that the
two inverses F and G are contractions. Clearly G is a contraction by
construction (composition of a finite number of contracions), while we
have to prove this for F . The easiest way is to consider the minimum
absolute value of the derivate (χ0) in the intervals U, χ−1L (U), χ

−2
LR(U),

χ−3LRR(U) (as I0 = χ−4LRRR(U) ⊂ U), which we can call ξmini for i = 1 to

4, respectively, and check if
4Q

i=1

ξmini is higher than 1. In our case this

condition holds. If not, we have to consider more applications of χ−1R ,
and we are sure (as the derivative χ0R is higher than 1 in U) that an
integer k exists such that the condition on the derivative is satisfied also
by the function F = χ−kLR...R in U. Thus both F and G are contractions on
the starting set U . Then {U ;F,G} forms an IFS. That is, in U we can
define the set valued function W (.) = F (.) ∪ G(.), and Λ is the unique
attractor of the IFS:

W (Λ) = Λ and Λ = lim
n→∞

Wn(X) for any X ⊆ U.

This proves properties (i)-(iii) of Theorem 1 for the case α2 = 14. Prop-
erty (iv) follows immediately from the results on RIFS discussed in Sub-
section 3.2, while property (v) follows from the general discussion of
sunspot equilibria in Subsection 2.3.
The same construction can be applied for any value α2 > bα2, that is,

when the fixed point is a snap-back repellor. Moreover, a similar con-
struction applies to any α2 > α∞2 , i.e. for parameter values beyond the
accumulation point of period doubling bifurcations. For all these para-
meter values there exits some cycle with homoclinic orbits, that is, some
cycle is a snap-back repellor, and we can apply a similar construction.
As another example, consider the case α2 = 8.22 < bα2, for which the

2-cycle is a snap-back repellor (i.e. homoclinic orbits to the 2-cycle exist).
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Figure 9: In (a) graph of the function χ at l∗ = 2, α1 = 0.5 and α2 = 8.22,
α∞2 < α2 < bα2 and the graph of the second iterate of the function, χ2.
In (b) an enlargement of χ2 showing a point of the 2-cycle which is a
snap-back repellor.

Figure 9 illustrates that on a suitable interval [a, b] around the largest
point p∗2 of the 2-cycle, for the function χ2 we are in the same situation
as before for the fixed point y∗, with two local inverses which we call
(χ2)−1R and (χ2)−1L , and the 2-cycle is a snap-back repellor, thus we can
repeat the process. Figure 9(b) shows a suitable neighbourhood U and
the two intervals I1 = G(U) = (χ2)−kR (U) around p∗2 and I0 = F (U) =
(χ2)−kLR...R(U) ⊂ for a suitable integer k. Then {U ;F,G} constitutes an
IFS.
Moreover, as discussed in Section 3, we can also consider the IFS with

probabilities, or Random Iteration Function System (RIFS) {U ;F,G; p1, p2},
pi > 0, p1 + p2 = 1, which means that given a point x ∈ U we consider
the trajectory obtained by applying the function F with probability p1
or the function G with probability p2, that is, one of the functions is se-
lected at random, with the given probabilities. The sequence of points is
trapped in U , i.e. the forward trajectory cannot escape, and the qualita-
tive shape of the asymptotic orbit has the set Λ as a “ghost” underlying
it. Some points in Λ are visited more often than others, that is, typi-
cal forward trajectories may be described by an invariant measure with
support on the fractal set Λ.
It should be clear that once we know some cycle to be a snap-back

repellor, then we can construct infinitely many IFS, that is, starting
from a fixed neighborhood, with different contractions we can construct
as many invariant sets as we want, and in each we have suitable com-
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positions of the two inverses of the map χ−1L and χ−1R . Ideally we can
think of a RIFS in which we put all possible IFS, with some positive
probability, in such a way that whenever we apply the function χ−1L then
we apply the function χ−1R as often as needed. For example, for the RIFS
constructed above for α2 = 8.22, whenever the function χ−1L is applied,
thereafter the function χ−1R is applied at least 7 times, and so on. Thus,
roughly speaking, we conclude that "the generic forward trajectory" ob-
tained in this way is a random sequence of points in the bounded region
obtained by the starting interval U and its images with the functions
which are involved in the definition of the contractions of the IFS. In
our example α2 = 8.22, the set including all the forward states includes
U , χ−1L (U), χ

−2
LR(U), ..., χ

−(8)
RL...L, that is, the trajectory always belongs to

the set
S = U ∪ χ−1L (U) ∪ χ−2LR(U) ∪ ... ∪ χ−(8)RL...L.

Moreover, it is not always necessary to apply the function χ−1L only once
in a row. In fact IFS may be constructed (especially at high values of
α2) in which two consecutive applications of χ−1L can occur. Thus we can
conclude that "the generic forward trajectory" (with the only constraint
that we cannot apply the function χ−1L when it leads outside of the
absorbing interval I) is a random sequence of points in the bounded
absorbing interval I with points more dense in particular intervals.

5 Analysis of the 2-D OLG-model

Recall for the 2-D OLG model that the forward dynamics is defined by

qt+1= rt (28)

rt+1=(1− δ +
1

a
)rt − 1

a
χ−1(qt), (29)

and the backward dynamics is described by the two-dimensional back-
ward map

(qt, rt) = T (qt+1, rt+1) = (χ[a(1− δ +
1

a
)qt+1 − art+1], qt+1). (30)

If the offer curve χ is non-monotonic, the backward map T is non-
invertible and the forward dynamic is not uniquely defined. The back-
ward map T is of so called11 type Z0 − Z2 (as for the 1D case): there
exists a critical curve in which the determinant of the Jacobian matrix
DT vanishes, say LC−1, a straight line of equation

rt = (1− δ +
1

a
)qt − ym

a
,

11Mira et al. (1996).
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where ym is the critical point of the offer curve as before. The critical line
plays the same role as the critical point ym in the 1D case, and separates
the phase plane in two regions, denoted by L and R, on the left (or
upper) part and the right (or lower) part, respectively (see Figure 10).
The critical line is mapped onto the line LC = T (LC−1), a vertical line
qt = χ(ym), which separates the plane in two regions Z0, each point of
which has no forward value, and Z2, each point of which has two distinct
forward values, say T−1L (.) and T−1R (.) located at opposite sides of the
curve LC−1, one on the left, L, and one on the right, R, respectively.

Figure 10: Two-dimensional phase plane separated in two regions (R
and L) by the critical line LC−1. Each point on the right of the line
LC = T (LC−1), region Z0, has no rank-1 preimages, while each point
on the left of the line LC, region Z2, has two distinct rank-1 preimages,
one in R and one in L.

We claim that for the 2-D model if the fixed point X∗ of T (different
from the origin) is a snap-back repellor for the backward dynamics, then
a similar result as in the 1-D case holds:
Theorem 2. When the fixed point X∗ of the backward dynamics T is

a snap-back repellor, then there exist several IFS ({U ;F,G}, {U ; eF, eG},
{U ;H1,H2,H3}, ...) or RIFS ({U ;H1, H2, H3; p1, p2, p3},...) each with
a unique fractal attractor Λ, such that
(i) Λ is a repelling invariant Cantor set of the backward dynamics;
(ii) Λ is the unique attractor of the IFS (Λ = limn→∞W n(X) for

any X ⊆ U, where W = F ∪G or W = H1 ∪H2 ∪H3);
(iii) For any initial state in U , the forward dynamics obtained with

the functions of the IFS always stays in U and tends to Λ or a subset
of Λ;
(iv) If the probabilities in the RIFS are strictly positive, pi > 0, the
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forward trajectory obtained with the contraction functions Hi is dense
in Λ.
(v) Each orbit of the IFS is a sunspot equilibrium of the OLG-economy.

Before we sketch the proof, it is useful to make two observations.
Firstly, the theorem refers to a situation where the unstable fixed point
X∗, which belongs to the region L, is unstable for the backward dynamics
and more precisely is an unstable focus with homoclinic trajectories (i.e.
a snap-back repeller). In order to check whether this is the case, it is
enough to consider the point T−1R (X∗), and then T−mL ◦T−1R (X∗) : if for a
suitable m this point reaches a neighborhood of X∗ (so that it tends to
X∗ as m tends to infinity), then the fixed point is homoclinic (otherwise
such a point will enter Z0 at a finite number m). Secondly, if X∗ is
homoclinic we can extend to the two-dimensional map the construction
already described in the 1-D case, leading to an invariant chaotic Cantor
set Λ, which includes infinitely many unstable cycles of T and is repelling
for the backward dynamics T. In fact (see Marotto, 1978, 2005 and also
in Gardini 1994, Th.2), in any neighbourhood of such a fixed point, it
is possible to detect two closed disjoint "balls" (bounded, closed and
simply connected sets), U and V , U ∩ V = ∅, such that for a suitable
m we have Tm(U) ⊃ U ∪ V and Tm(V ) ⊃ U ∪ V, thus for the backward
map Tm there exists an invariant set Λ ⊂ U ∪ V.
Sketch of the proof (2-D case)

We follow a similar strategy as in the 1-D case. We first consider a
concrete example, fixing the parameters (as in Grandmont, 1985, 1993)
a = 3, l∗1 = 2, δ = 0.2, α1 = 0.5 and α2 = 2.45, construct a number
of IFS’s for this example and then discuss how the construction can be
generalized. For these parameter values the steady state X∗ is repelling,
i.e. the two eigenvalues of DT are in modulus larger than 112. By
assumption, the steady state X∗ is a snap-back repellor.
Consider a (small) neighborhood U of X∗. Apply to U the right

inverse map T−1R (U) one time, and then the left inverse map T−1L n
times, where n is such that the final set is again located inside U (see
Figure 11). If U is small enough, we are sure that this integer exists
because we are following a homoclinic trajectory (which we know to
exist), thus applying the left inverse map repeatedly the sequence of sets
will converge to the fixed pointX∗. In our example we need 7 consecutive

12For δ = 0.2 and α2 = 2.45 the steady state X∗ has complex eigenval-
ues, so it is an unstable focus. In the construction below it is important
that the steady state is repelling; whether the eigenvalues are real or
complex is not important.
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applications of T−1L to obtain a set I0 such that I0 ⊂ U . In this way
we have built a suitable inverse function F = T−8RL...L. Another suitable
inverse, which we call G, can be obtained applying the left inverse map
T−1L 8 times (since F is also composed of 8 applications). The final set
I1 ≡ G(U) ≡ T−8L (U) still contains the fixed point and is such that
I1 ⊂ U with I1 and I0 disjoint sets (because the first iterates T−1R (U)
and T−1L (U) are disjoint, and thereafter we only apply the function T−1L .
Thus, by construction we have I0∩I1 = ∅, T 8(I1) ⊃ (I0 ∪ I1) and T 8(I0)

Figure 11: Qualitative description of the neighborhood U involved in the
construction of the sets I0 = F (U) = T−8RL...L(U) ⊂ U and I1 = G(U) =
T−8L (U) ⊂ U. X∗ ∈ I1.

⊃ (I0 ∪ I1) (as T 8(I0) = T 8(I1) = U), and these are sufficient conditions
to apply the construction described in the 1-D case, and find a chaotic
invariant set Λ for T 8. Defining U1 = I0∪ I1 = F (U)∪G(U) ⊂ U (= U0)
and iteratively Un+1 = F (Un) ∪ G (Un) ⊂ Un then in the limit process
we get a closed invariant set Λ ⊂ U, whose elements are in one-to-one
correspondence with the elements of the space

P
2 of one sided infinite

sequences on two symbols {0, 1} and the application of the map T 8 to
an element of Λ corresponds to the application of the shift map σ to an
element of

P
2 . Thus

Λ =
T
Un

n≥0
= lim

n→∞
Un

is the limit set of a nested sequence of closed sets. When F and G
are contractions then Λ is a classical Cantor set of points, on which the
map T 8 is chaotic. Concerning the properties of the functions F and
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G here constructed, we know that the Jacobian matrix DG has both
the eigenvalues in modulus less than 1 in all the points of U , and X∗ is
the unique fixed point of G in U, belonging to I1. This property on the
eigenvalues may hold also for the Jacobian matrixDF in all the points of
U . If not, then we can apply T−1L repeatedly until we have F = T

−(8+m)
RL...L

with this property. This means that also F has a unique fixed point in
U, belonging to I0 (that is, by repeated applications of the function F
to U we get a fixed point in I0, say Y ∗8 (which is a cycle of period 8
for the backward map T ). As we recall in the Mathematical Appendix,
Property 3, the functions F and G are homeomorphic to contractions,
and we can always consider suitable neighbourhoods of the related fixed
points (by applying T−1L more times repeatedly if necessary), in order for
F = T

−(8+m)
RL...L , and the correspondingG = T

−(8+m)
LL...L , to have this property,

i.e. two contractions in the Euclidean norm, in a suitable neighborhood
U. In our example, F = T

−(8)
RL...L and G = T

−(8)
LL...L are contractions in the

set U shown in Figure 11 (indeed the diameter of F (U) is about half the
diameter of U, and the same holds for the function G), so that we haveT
n>0

Gn(U) = X∗ ,
T
n>0

Fn(U) = Y ∗8 , and Λ =
T
n>0

Un = limn→∞ Un is a

classical Cantor set of points, that is associated with the IFS {U ;F,G}.
As for the 1D case, we have infinitely many choices to construct such

functions and related invariant chaotic sets Λ.
For example, let us construct a second IFS, using two (instead of one)

iterations of the right inverse map to the set U . That is we consider the
neighborhood U of X∗ given above (i.e. such that the two eigenvalues of
DT are in modulus larger than 1 in all the points of U). Then apply to
U the right inverse map T−1R (U) twice, after which the left inverse map
T−1L is applied n times, where n is such that the final set is again located
inside U . Such an integer exists because we are following a homoclinic
trajectory (whose existence has been previously verified), thus applying
the left inverse map repeatedly the sequence of sets will converge to the
fixed point X∗. In our example we need k = 11 consecutive applications
of T−1L to obtain a set J0 such that J0 ⊂ U . In this way we have built a
suitable inverse function eF = T

−(2+k)
RRL...L, with k = 11 and we can assume

that it is a contraction in the euclidean norm in U (if not, we adapteF by appling the left inverse map T−1L as many times as necessary).
This means that also eF has a fixed point in U , that is, by repeated
applications of the function eF to U we get a fixed point in J0, say Z∗(2+k),T
n>0

eFn(U) = Z∗(k+2) (which is a cycle of period (2 + k) for the backward

map T ). Another suitable inverse, which we call eG, can be obtained
applying (2 + k) times (since eF is also formed by (2 + k) iterations) the
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left inverse map T−1L . The final set J1 = eG(U) = T
−(2+k)
L (U) still contains

the fixed point X∗ and is such that J1 ⊂ U with J1 and J0 disjoint
sets (because the first two iterates T−1RR(U) and T−1LL(U) are disjoint,
thereafter we apply only the function T−1L ), and we can assume that eG
is a contraction in U (since we know that the Jacobian matrix D eG has
both the eigenvalues in modulus less than 1 in all the points of U).
Thus, by construction we have J0 ∩ J1 = ∅, T (2+k)(J1) ⊃ (J0 ∪ J1)

and T (2+k)(J0) ⊃ (J0 ∪ J1) (as T (2+k)(J0) = T (2+k)(J1) = U), and these
are sufficient conditions to apply the mechanism described above, and
to construct a Cantor set of points eΛ with chaotic structure, invariant
for T (2+k), obtained by using the IFS {U ; eF, eG}, defining W = eF ∪ eG,

U1 =W (U) = J0 ∪ J1 = eF (U) ∪ eG(U) ⊂ U (= U0)

and iteratively

Un+1 =W (Un) = eF (Un) ∪ eG (Un) ⊂ Un.

we get

eΛ = TUn
n≥0

=
T
W n(U)
n≥0

= lim
n→∞

Un

As a third example, we follow a different approach in order to get in-

Figure 12: Qualitative description of the construction of the different
sets J1, J2 and J3 belonging to U , involved in the IFS similar to the
"chaos game" associated with the two-dimensional model. X∗ ∈ J1.

variant sets, applying the iterated function systems technique to three
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functions. In this way, we will obtain an IFS similar to the chaos game,
as discussed in Subsection 3.2, describing forward trajectories.
Consider the following functions: H1 = eG = T

−(13)
L , H2 = eF =

T
−(13)
RRL...L, and H3 = T

−(13)
RL...L (note that in the definition of H3 the inverse

T−1L is applied 12 times, while in the definition of H2 the inverse T−1L is
applied 11 times). As the first two iterates T−2LL (U), T

−2
RR(U) and T

−2
RL(U)

are disjoint sets, it follows that also J1 = H1(U), J2 = H2(U), and
J3 = H3(U) are disjoint sets, all belonging to U (see Figure 12). In our
numerical example we have three contraction functions (in general, as
stated above, it is always possible to reach this situation by applying the
inverse map T−1L as often as necessary). Thus we can consider the set
(invariant for the backward dynamics of T (13)), associated with the IFS
{U ;H1, H2, H3}, defining W = H1 ∪H2 ∪H3

U1 =W (U) = J1 ∪ J2 ∪ J3 = H1(U) ∪H2(U) ∪H3(U) ⊂ U (= U0)

and iteratively

Un+1 = H1 (Un) ∪H2 (Un) ∪H3 (Un) ⊂ Un,

for n ≥ 1 each Un consists of 3n elements, and we have

Λ3 =
T
Un

n≥0
=
T
Wn(U)
n≥0

= lim
n→∞

Un,

which is an invariant chaotic set (repelling for the backward map T ),
and the unique attractor in U for the iterated function system.
Moreover, as shown for the 1-D case, we may consider the Random

Iteration Function Systems, say RIFS {U ;H1,H2,H3; p1, p2, p3}, pi > 0,
p1 + p2 + p3 = 1, which means that given a point x ∈ U we consider
the trajectory obtained by applying the function Hi with probability pi,
that is, at each date one of the functions is selected at random, with the
given probabilities. Then the random sequence of points is trapped in
U , i.e. the forward trajectory cannot escape, and the asymptotic orbit
is always dense in the set Λ3. The distribution of points of the fractal
set Λ3 may be uneven, as some regions may be visited more often than
others depending on the magnitude of the probabilities.
It should be clear that the same construction can be applied whenever

the fixed point is a snap-back repellor. In fact, whenever some cycle
of the backward map is a snap-back repellor, then we can construct
infinitely many different IFS, using suitable compositions of the two
inverses of the map T−1L and T−1R . To describe all forward trajectories,
we can ideally think of a RIFS in which we put all suitable compositions
of inverses, with some positive probability. To make things concrete,

30



Figure 13: Example of a forward equilibrium trajectory. In (a) a tra-
jectory of the RIFS similar to the "chaos game" associated with the
two-dimensional model, at a = 3, l∗ = 2 , δ = 0.2, α1 = 0.5 and
α2 = 2.45. The portion of phase plane (q, r) is [0.3, 0.65]× [0.3, 0.65]. In
(b) an enlargement of (a) is shown.

in the previous example, whenever we apply the function T−1R once or
at most two time consecutively, immediately thereafter we must apply
the function T−1L as many times as needed, but at least 8 times (if the
right T−1R was applied once) or at least 11 times (if the right inverse
T−1R was applied twice). Thus, roughly speaking, we can conclude that
“the generic forward trajectory" can be obtained as a random sequence
of points with an initial state in the set U and its images with the
functions which are involved in the definition of the contractions of the
IFS. For example, in the chaos game given above the set including all
the forward states includes U , T−1R (U), T−2RL(U), ..., T

−(13)(U)
RL...L , T−2RR(U),

T−3RRL(U), ..., T
−13
RRL...L(U), that is, the trajectory always belongs to the

set

S = U∪T−1R (U)∪T−2RL(U)∪...∪T−(13)RL...L∪T−2RR(U)∪T−3RRL(U)∪...∪T−13RRL...L(U)

An example of forward trajectory is shown in Fig.13.

6 Concluding Remarks

In implicitly defined equilibrium models derived from optimization, the
forward dynamics may not be uniquely defined, because at each date
there are multiple optimal solutions, while the backward dynamics is
well-defined. Well known examples include the overlapping generations
model and the cash-in-advance model. Properties of the backward dy-
namics can be used to describe the forward dynamics. We have applied
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the theory of Iterated Function Systems (IFS) to describe forward equi-
librium paths in a one- and a two-dimensional version of the OLG-model.
If the backward dynamics has a homoclinic orbit due to a snap-back re-
pellor steady state (or periodic cycle), the forward dynamics can be
described by an IFS. The fractal attractor associated with the IFS de-
scribes (a large set of) the forward trajectories. Forward trajectories can
be obtained by random applications (possibly with suitable restrictions)
of the inverse mappings of the backward dynamics. Trajectories of these
random IFS can be interpreted as sunspot equilibria, where the random
sunspot sequence determines equilibrium selection at each data. The
same IFS techniques can be applied to other implicitly defined economic
models including higher dimensional systems.

7 Mathematical Appendix

This Mathematical Appendix briefly discusses some notions from dy-
namical systems theory, such as invariant sets, attractors, repellors, ho-
moclinic orbits and snap-back repellors, which play an important role in
the relation between forward and backward dynamics of the OLG-model.
Let us consider a n−dimensional map with n ≥ 1,

x0 = f(x)

where f : X → X and the phase space X is a locally compact metric
space X ⊂ Rn, for n ≥ 1. A set A ⊆ X is called a trapping set if
f(A) ⊆ A, it is called invariant for f if f(A) = A. The following
propery holds:

Property 1. If A is a trapping set for f then any point of A has
the whole trajectory in A, and B =

T
n>0

fn(A) is invariant for f (as

f(B) = f(
T
n>0

fn(A)) =
T
n>0

fn(A) = B).

If B is invariant for f then any point of B has at least one rank-1
preimage in B (as f(B) = B implies that each point of B is the image
of at least one point of B), and iteratively: any point of B has at least
an infinite sequence of preimages in B.

The behaviour of points in a neighburhood of an invariant set A
depends on the local dynamics, A may be attracting, repelling, or neither
of the two. Let us recall here some definitions (see Milnor).
An attracting set is a closed invariant setA which possesses a trapping

neighborhood, that is, a neighborhood U , with A ⊂ Int(U), such that:

A =
\
n≥0

fn(U). (31)
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(as in the case of the set B constructed above). In other words, if A is
an attracting set for f , then a neighborhood U of A exists such that the
iterates fn(x) tend to A for any x ∈ U (and not necessarily enter A).
An attractor is an attracting set with a dense orbit.
A repelling set is a compact invariant set K which possesses an iso-

lating neighborhood ; that is a neighborhood U ⊃ K such that:

K =
\
n≥0
(fn)−1 (U). (32)

In other words, if K is a repelling set for f , then a neighborhood U of K
exists such that for any point x0 ∈ U \K, the trajectory x0 → x1 → ...
must satisfy xn /∈ U for at least one value of n ≥ 0 (but such a trajectory
may also come back again in U, as it occurs when homoclinic trajectories
exist). A repellor is a repelling set with a dense orbit.
The case of a k−cycle {x1, ..., xk} (k ≥ 1, and for k = 1 it is a fixed

point) is studied considering the k fixed points xi (i = 1, ..., k) of the
map fk, and if k > 1 the properties are "cyclical" when related to the
map f , moreover, as xi+1 = f(xi) we can associate to each point xi
of the cycle the local inverse which gives the point xi−1, say f−1i , (i.e.
f−1i (xi) = xi−1) so that each fixed point xi of the map fk has a local
inverse, say ef−k, which is a composition of the local inverses defined
on the cycle. For example, in the case of a two cycle {x1, x2}, the two
points are fixed points of f2 and the two local inverses are ef−2 = f−11 ◦f−12
and ef−2 = f−12 ◦ f−11 , (where f−12 (x2) = x1 and f−11 (x1) = x2), and this
means that the sequence of inverses f−11 , f−12 , f−11 , f−12 , ... gives the same
2−cycle {x1, x2} .
The local stability of a k−cycle is that of the k fixed points of

fk and comes from the n eigenvalues of the Jacobian matrix Jfk =
Jf(xk)...Jf(x1). When the condition |λj| > 1 holds for at least one of
the n eigenvalues of Jfk(xi), the cycle is called "unstable". The con-
dition on all the eigenvalues of the Jacobian matrix Jf(x

∗): |λj| < 1
(resp. > 1) for j = 1, ..., n, is a sufficient condition to conclude that
the fixed point is an attractor (resp. repellor), and it is not necessary.
The following propery holds (from Hirsh and Smale 1974, pp. 279-281,
applied to the fixed points for the map fk):
Property 2. If a k−cycle is an attractor (resp. repellor) for f then

it is a repellor (resp. attractor) for the local inverse map ef−k.
If A is an attractor for f then a suitable neighborhhod U of A exists

such that for any x ∈ U \A, fm(x) tends to A as m tends to infinity.
If A is a repellor for f then a suitable neighborhhod U of A exists

such that for any x ∈ U \ A a suitable sequence of preimages ef−m(x)
tends to A as m tends to infinity.
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Note that for n-dimensional maps with n ≥ 2 we have to pay at-
tention to the definition of repellor, because the statement given above
does not hold when the cycle is unstable but not a repellor, for example
a saddle cycle is unstable both for the map and the local inverse, and it
is not repelling. In the economic context, from Property 2 we have that
a cycle which is an attractor (resp. repellor) in the backward dynamics
of f (in our case of χ or of the two-dim. model) then it is a repellor
(resp. attractor) for the local inverse, and thus in some forward process.
Note also that it may be expected an unstable cycle in the backward
dynamics to be stable in some forward process, and this is true in the
one-dimensional case (because when n = 1 an unstable cycle is always
a repellor), while for n ≥ 2 this is true only when the cycle is a repellor
(equivalently: when the cycle is unstable but not a repellor, i.e. of saddle
type, then it is not true).

It is worth noticing that in n−dimensional maps with n ≥ 2 a
repelling (attracting) cycle does not lead directly to a "local expan-
sion (contraction)" in the euclidean norm, which requires (for the ex-
pansion) the existence of a constant s > 1 such that the inequality
kf(x)− f(y)k > s kx− yk holds for any x, y, x 6= y, in a suitable neigh-
borhood of x∗. However, in Hirsch and Smale (1974), pp. 278-281 it is
proved that an attracting fixed point x∗ is a local contraction in a suitable
norm; it is locally invertible, for the local inverse x∗ is a repellor, and the
local inverse is a local expansion in a suitable norm. Thus from a mathe-
matical point of view the above "imperfection" can be overcome because
a repelling cyle implies the existence of a suitable norm for which the
above inequality holds: d1(f(x), f(y)) > s d1(x, y) in a neighborhoodW
of a repelling cycle, for a suitable norm and related distance d1. But all
the norms in Rn are equivalent. Thus an homeomorphism h exists such
that, for any pair of points, d1(x, y) = d2(h(x), h(y)), where d2 denotes
the Euclidean distance. It follows d2(h◦f(x), h◦f(y)) > s d2(h(x), h(y))
and for any (ξ, η) ∈ U = h(W ) we have d2(h◦f ◦h−1(ξ), h◦f ◦h−1(η)) >
s d2(ξ, η). That is: in the Euclidean norm the function f , in a suitable
neighborhood U of a repelling cycle, is locally topologically conjugated
with an expansion (and thus, qualitatively, the dynamics are the same).
We have so proved the folllowing property:
Property 3. If a k−cycle is an attractor (resp. repellor) for f then

f is a local contraction (resp. expansion) in a suitable norm, and f is
locally topologically conjugated with a contraction (resp. expansion) in
the Euclidean norm.

Moreover, for a repelling cycle, an important property is the existence
of homoclinic orbits. An orbit is homoclinic to a fixed point if a sequence
of primages from the fixed points tends to the fixed points itself. The
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existence of homoclinic orbits leads to the existence of chaotic dynamics.
Following Marotto (1978, 2005) we shall call such a fixed point, or cycle,
a snap-back repellor. More precisely, a fixed point x∗ of a map f is called
a snap-back repellor of f if all the eigenvalues of Df(x∗) are greater than
1 in modulus, and there exists a noncritical homoclinic orbit of x∗. A
homoclinic orbit is called noncritical when none of its points is a critical
point of f , where a critical point of f is a point in which the Jacobian
matrix has one eigenvalue equal to zero.
As remarked above, the existence of homoclinic orbits (i.e. of snap-

back repellors) implies the existence of an invariant set in which the map
f is chaotic (in the standard definition of Li anf Yorke, or Devaney).
And this is a basic element not only for the backward dynamics of our
OLG models, but also for the forward dynamics in general, which we are
interested in. For example, if the graph of the offer curve displays a large
hump such that the backward dynamics has homoclinic trajectories, or
a periodic orbit of period three, then a Cantor set exists, repelling for
the backward dynamics. The forward dynamics can then be described
as an IFS with the same Cantor set as its unique attractor.
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