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Abstract

Should the central bank act to prevent �excessive�asset price dy-

namics or should it wait until the boom spontaneously turns into a

crash and intervene afterwards to attenuate the the fallout on the real

economy? The standard "three equation" New Keynesian framework

is inadequate to analyse this issue for the very simple reason that as-

set prices are not explicitly included in the model. There are two

straightforward ways to take into account asset price dynamics in this

framework. First of all, the objective function of the central bank �

usually de�ned in terms of in�ation and the output gap � could be

�augmented� to take into account asset price in�ation. Second, ex-

pected asset price in�ation can a¤ect the IS curve through a wealth

e¤ect. In this paper we follow a di¤erent route. In our model in fact,

the expected asset price dynamics will be eventually incorporated into
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the NK Phillips curve. This is due to the assumption of a cost chan-

nel for monetary policy which is activated whenever monetary policy

a¤ects asset prices and dividends. In fact they determine the cost of ex-

ternal �nance in the simple "equity only" �nancing model we consider,

abstracting for simplicity from internal funds and the credit market.

We analyze the design and the transmission mechanism of monetary

policy in this simpli�ed setting, both in the case of an instrument rule

(with or without a feedback from asset prices) and in the case of opti-

mal monetary policy.
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1 Introduction

Should the central bank prevent �excessive� asset price dynamics raising

interest rates to halt a Stock market boom or a bubble in house prices or

should it wait until the boom spontaneously turns into a crash and intervene

afterwards to attenuate the pains of the market adjustment and the fallout

on the real economy?

The debate over this crucial issue is at least a decade old �if we date it

from the Bernanke-Gertler (1999) vs Cecchetti et al. (2000) exchange �but

it has not settled yet, expecially in the light of the 2007-08 �nancial crisis.
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The standard framework to analyse the transmission mechanism and the

optimal design of monetary policy, i.e. the "three equation" New Keynesian

(NK) DSGE framework is of course too simple and therefore inadequate to

analyse this issue for the very good reason that asset prices do not show up

anywhere in the model.

In order to make the model operational from this viewpoint, asset prices

should be explicitly included in the macroeconomic model of interest. There

have been many insightful attempts in this direction (Bernanke, Gertler and

Gilchrist, 1999; Bean, 2004; Carlstrom and Fuerst 2007; Gilchrist and Saito,

2006; Iacoviello, 2005; Monacelli, 2006; Airaudo, Nisticò and Zanna, 2007;

Santoro and Pfajfar, 2007; De Grauwe, 2009 to name just a few) but there

is much room for improvement in our opinion.

So far, two approaches have been adopted in the literature to take into

account asset price dynamics. First of all, the objective function of the

central bank �usually de�ned in terms of in�ation and the output gap �

could be �augmented�to take into account asset price in�ation. This is for

instance the route followed by Cecchetti (2000).

Second, asset price in�ation can show up as a factor "augmenting" the

IS curve. In fact an asset price shock can impact on the macroeconomy

basically through two channels: (i) a Tobin q e¤ect on investment expendi-

ture; (ii) a wealth e¤ect on consumption and/or on investment. The wealth

e¤ect on investment takes the form of a net worth or balance sheet e¤ect. In

both cases, the asset price shock a¤ects aggregate demand and leads to an

"Augmented" (optimizing) IS curve. This is essentially the route followed

by Bernanke-Gertler-Gilchrist �who emphasize the net worth e¤ect �and
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Airaudo-Nisticò-Zanna, who stress the role of the wealth e¤ect on consump-

tion. The impact of asset price changes on in�ation is only indirect through

changes in demand driven output gap changes.

In this paper we follow a di¤erent route. In our model in fact, the

expected asset price dynamics will be eventually incorporated into the NK

Phillips curve. This is due to the assumption of a cost channel for monetary

policy (Walsh and Ravenna, 2006) which is activated whenever monetary

policy a¤ects asset prices and dividends. The latter in fact are the cost of

external �nance in our model.

In simpli�ed economy we consider, in fact, �rms have to anticipate wages

to workers before they can cash in sales proceeds. Therefore they need

funds at the moment wages have to be paid. For simplicity, we assume that

�rms do not accumulate internal funds and have to issue new equities to

raise external �nance ("equity only" �nancing). The novelty of the analysis

consists in a peculiar treatment of �nancing decisions, which aims at bringing

to the fore the relationship between pricing of goods and pricing of assets.

In the end we obtain an "Augmented" NK Phillips curve. The impact

of asset price changes on in�ation is in this case direct through changes in

the cost structure of the corporate sector. In a sense this is a variant of the

cost channel NK-DSGE model. While in Ravenna-Walsh monetary policy

impacts on in�ation directly because the interest rate is a determinant of the

�rm�s cost, in our setting the cost channel is activated indirectly whenever

monetary policy a¤ects �through changes in the interest rate �asset price

in�ation.

In this context, optimal monetary policy should take into account asset
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price dynamics, essentially because it signals future changes in in�ation. In a

sense, we are exactly in the conditions emphasized by Bernanke and Gertler:

"... policy should not respond to changes in asset prices, except insofar as

they signal changes in expected in�ation..." (emphasis added).

The toy economy we consider is of course a far cry from reality. For

reasons of tractability and as a very preliminary step towards a more sat-

isfactory �and necessarily more complicated �setting, in fact, we abstract

from a wide range of crucial imperfections of �nancial markets. The im-

plications of the model, however, are surprisingly far reaching. We analyse

the design and the transmission mechanism of monetary policy in three

regimes:(a) an instrument rule with no-reaction to asset prices (IR-NAP),

(b) an instrument rule with reaction to asset prices (IR-RAP) and (c) an

optimal monetary policy rule (OR). In cases (a) and (c), by construction,

monetary policy does not respond to asset prices. This is essentially due

to the fact that the model has a built in tendency to dichotomize into 2

independent subsystems (one for output, in�ation and the interest rate and

the other for asset prices). In case (b) this tendency is overcome by the

explicit consideration of asset prices as an argument of the "Augmented"

Taylor rule.

In the case of a supply shock, the policy prescription and the transmission

mechanism are qualitatively the same both with an instrument rule and

with in an optimal monetary policy setting. The central bank is "leaning

against the wind": the interest rate goes up, asset prices fall, the output gap

turns negative, the return on shares increases. The magnitude of the e¤ect,

however, is indeed di¤erent. When the central bank takes into account asset
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prices �i.e. in the IR-RAP case �the impact of the shock on both in�ation

and the output gap is milder than in the IR-NAP. In the OR case, if the

central banker is su¢ ciently "hard nosed", a supply shock can even turn

into a de�ationary shock.

The results are even more intriguing in the case of a demand shock. The

same (demand) shock has opposite e¤ects on the output gap. In the IR

regime, it has a positive e¤ect �as we are led to think in a standard short

run macro setting �while in the OR regime it has a negative e¤ect. When

the central bank takes into account also asset prices, i.e.in the IR-RAP case,

output grows more than in the IR-NAP case but in�ation will be milder.

Our simpli�ed model, therefore, can account for a wide range of possible

real world outcomes. We consider these results as an encouragement to

enrich the model to explore more realistic environments.

The paper is organized as follows. Sections 2 and 3 describe households�

and �rms�decision rules. Section 4 is devoted to the determination of the

�ex-price equilibrium. The log-linearization around the steady state is car-

ried out in section 5. In section 6 we derive the Augmented NK Phillips

curve. In section 7 we evaluate the impact of a Taylor type instrument

rule for monetary policy,with and without asset prices. We design optimal

monetary policy in section 8. In section 9 we derive the optimal in�ation

targeting rule. We compare the results in the IR vs. OR regime in section

10. Finally, in section 11 we study the properties of the model (under di¤er-

ent rules for dividends) in terms of stability and learnability in an adaptive

learning environment à la Evans and Honkapojia. Section 12 concludes.
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2 Households

The economy is populated by households and �rms. The former decide

on consumption, asset holdings (money, bonds, shares) and labour supply.

The latter produce di¤erentiated goods in a monopolistic setting à la Dixit-

Stiglitz, using only labour as an input. Pricing decisions are characterized

by Calvo type nominal rigidity. Therefore there are �ve markets: labor,

goods, money, bonds, shares.

There is a continuum of unit mass of in�nitely lived identical house-

holds which discount the future at the factor �. Period by period utility is

represented by a standard CRRA function:

U (Ct;mt; Nt) =
C1��t

1� � +



1� �m
1��
t � �N

1+�
t

1 + �

where �, 
, �; �; � are positive parameters with the usual interpretation, Ct

is a CES aggregator of consumption goods,1 mt := Mt=Pt are real money

balances 2 and Nt represents hours worked. Real money balances show up

in the utility function because they provide liquidity services.

The households� portfolio consists of money, bonds and shares. The

nominal value in t of money balances (resp. Government bonds) carried

1Ct consists of di¤erentiated consumption goods produced by monopolistically com-
petitive �rms and is de�ned as follows:

Ct =

�Z 1

0

c
e�1
e

jt dj

� e
e�1

with e > 1 governs the price elasticity of demand of each good.
2The price level is de�ned as a CES aggregator of the individual prices: Pt =hR 1
0
p1�ejt dj

i 1
e�1
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over from the past is denoted by Mt�1 (Bt�1) : Moreover the household

owns At�1 shares, whose price is Qt: In period t the household receives a

�ow of interest payments on Government bonds it�1Bt�1 where it�1 is the

nominal interest rate decided upon in t-1. Moreover we assume that �rms

pay in t (nominal) dividends equal to Dt per share (more on this in a while)

held in t-1.

The household employs "resources" consisting of wage income, interest

payments, and dividends to consume and increase money, bond and share-

holdings according to the following budget constraint in real terms:

Ct+mt+ bt+ qtAt = wtNt+
1

1 + �t
[mt�1 + (1 + it�1) bt�1] + (qt + dt)At�1

(1)

where bt := Bt=Pt are real bond holdings; qt := Qt=Pt is the real price of

each share (asset price or Stock price for short in the following);wt :=Wt=Pt

is the real wage; �t :=
Pt
Pt�1

� 1 is the in�ation rate and dt are dividends

per share.

Liquidity injections (withdrawals) are implemented (by the central bank)

by means of open market purchases (sales) of bonds: Mt�Mt�1 = � [Bt � (1 + it�1)Bt�1] :Taking

into account this procedure, the budget constraint of the representative

household boils down to: PtCt+Qt (At �At�1) =WtNt+DtAt�1 Recalling

that QtAt =WtNt it turns out that

PtCt = (Qt +Dt)At�1 (2)
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In period t, the representative household maximizes:

Et

1X
s=0

�s

"
C1��t+s

1� � +



1� � (mt+s)
1�� � �

N1+�
t+s

1 + �

#
(3)

subject to a sequence of budget constraints of the form (1). From the �rst

order conditions (see the appendix for details) one can derive the usual

optimal relations, i.e. the consumption Euler equations for consumption,

money and labour supply:

�
Ct+1
Ct

��
= � (1 + it)Et

�
Pt
Pt+1

�
(4)

it
1 + it

= 

C�t

m�
t

(5)

�C�t N
�
t = wt (6)

Moreover we get one additional optimal relation that we interpret as a

No-Arbitrage Condition

1 + it
1 + Et�t+1

=
Et (qt+1 + dt+1)

qt
(7)

Equation (7) establishes the equality between the return on bonds, i.e.

the real interest rate, and the return on equities, i.e. the sum of the dividend

yield and the capital gain (in real terms). By simple algenra, this condition
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can be turned into an asset price equation:

qt =
Et (qt+1 + dt+1)

1 + it
(1 + Et�t+1) (8)

Consolidating the No-arbitrage condition and the Consumption Euler

equation we get:

C��t qt = �EtC
��
t+1 (qt+1 + dt+1) (9)

This optimality condition states the equality between the marginal util-

ity the agent gives up by saving in order to purchase one share and the

present value of the marginal utility the agent will gain one period ahead by

transforming into consumption the dividend and the capital gain the share

yields.

3 Firms

As in the standard New Keynesian model the corporate sector consists of J

�rms, indexed by j; which produce di¤erentiated goods in a monopolistically

competitive setting à la Dixit and Stiglitz (1977) using only labour.Therefore

�rms incur only the production cost represented by the wage bill.

We depart from the standard setting in assuming the following

1. Production takes time. Technology is represented by the CRS produc-

tion function Yjt+1 = ZtNjt where Zt is a technological shock (uniform

across �rms). Since �rms hire workers in period t and sell output in

t+1, they cannot pay wages out of sales proceeds: at the beginning of

each period they have to anticipate the wage bill to employees.
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2. No internal funds: �rms do not accumulate internal �nance so that

the �nancing gap coincides with the wage bill. They have to raise

external �nance to �ll the �nancing gap.

In order to concentrate on the role of asset prices in macroeconomic

performance, we adopt the following simplifying shortcut:

3. "Equity only" �nancing: there is only one source of external funds,

the Stock market.

Assumptions 2. and 3. allow us to get rid, in the following, of the

complications due to the accumulation of net worth and to ignore the credit

market. This is patently unrealistic. We consider the present framework as

only a �rst step towards a more satisfactory and realistic model.

From the "equity only" �nancing assumption, follows that the j-th �rm

raises funds issuing new shares and the amount of shares sold is equal to the

wage bill: 3

wtNjt = qtAjt (10)

4. Dividend and buy-back policy: Shareholders are remunerated by means

of dividends (distributed in t+1 on shares held in t), which represent

the cost of external funds for the �rms. Furthermore �rms buy back

all the shares outstanding in t+1.
3 In principle, each �rm issues its own shares so that there should be an entire range of

heterogeneous asset prices, one for each �rm. In order to simplify the argument, we will
impose from the start the symmetry among �rms which is built-in the model and assume
that the asset price is uniform across equity-issuing �rms:Alternatively, one can think of
q as the average Stock market index and assume that each individual share prices qj is
not too far from the average. In the end, however, �rms will behave uniformly, so that
the individual share price will coincide with the average.
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The time schedule can be summarized as follows. At the beginning of

period t, the �rm issues equities and uses the proceeds to hire workers and

start production. Since production takes an entire period, output will be

available for sale in t+1. Sale proceeds are used in t+1 to pay dividends and

buy back shares issued in t. In fact, as shown above �see (2) �Pt+1Ct+1 =

(Qt+1 +Dt+1)At:At the beginning of period t+1, the cycle starts again.

In the end, therefore, we are assuming that in the same period (t+1) the

�rm is paying dividends and reimbursing shareholders for the shares they

bought in t and it is issuing new equities to �nance production in t+1. This

is clearly unrealistic but simpli�es the analysis to a great extent.

The �rm�s total disbursement occur in t+1 but are related to operat-

ing costs incurred in t. The �rm�s total cost in real terms, therefore, is

TCjt = Et (qt+1 + dt+1)Ajt:
4Substituting (10) into this expression we ob-

tain: TCj =
Et (qt+1 + dt+1)

qt
wtNjt:Hence the real marginal cost is:

�t =
Et (qt+1 + dt+1)

qt

wt
Zt

(11)

The expression
Et (qt+1 + dt+1)

qt
= ROS

is the novelty of this approach. With respect to the standard setting,

whereby �t =
wt
Zt
; the marginal cost must be augmented by a term which

represents the cost of external �nance for the �rm. This, in turn, coincides

4Since disbursement will occur one period ahead, in t the �rm has to form expectations
on the total gross return in t+1 of each share issued in t. This gross return in real terms
if the sum of the asset price and dividends in t+1.

14



with the return on stock for the shareholder, i.e. the sum of the dividend

yield
Etdt+1
qt

and the capital gain
Etqt+1
qt

.

4 Flexprice equilibrium

As in the original New Keynesian framework, in a symmetric �exprice equi-

librium all the �rms charge the same price Pt equal to a markup � > 1 over

nominal marginal cost Pt�t.
5. Therefore �t =

1

�
. Recalling (11) we get:

wt =
Zt
�

qt
Et (qt+1 + dt+1)

(12)

Log-linearizing around the steady state (s.s.) and denoting s.s. values

with the suscript s and percent deviations from the s.s. with a hat, from

the equation above we derive:

ŵt = Ẑt �
h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
(13)

where

� :=
qs

qs + ds
= �

is the inverse of the s.s. ROS, which is equal to the discount factor (see

below).6 Equation (13) is the price rule in the present context. It is repre-

5The mark-up, in turn, depends on price elasticity: � = e
e�1 :

In the optimum, in period the �rm charges a price Pt which is a multiple of the
contemporaneous marginal cost evaluated at prices of period t: Pt�t. The real mar-
ginal cost in t, in turn, re�ects expected real disbursements which will occur in t+1:

�t =
Et(qt+1+dt+1)

qt

wt
Zt
:Sales proceeds in t will then be used to validate commitments to-

wards shareholders originated in t-1 (see (2)).
6The expression �Etq̂t+1+(1� �)Etd̂t+1 �i.e. the weighted sum of the percent devia-

tions of dividends and the future asset price. is equal to the percent deviation of the sum
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Figure 1: Price rule and wage rule

sented by the black horizontal line in �gure 1. The grey line is the price rule

in the canonical CGG model, whose equation is ŵt = Ẑt:

The expression

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t = [ROS (14)

is the deviation of the ROS from the s.s.

In order to derive the wage rule, we start from the optimality condition

(6), which states that the real wage should be equal to the marginal rate of

substitution between labour and leisure. Plugging the goods market equilib-

rium condition Ct = Yt and the labour requirement function Nt = Yt=Zt into

of dividends and future asset price, i.e. Et
�

\qt+1 + dt+1
�
:
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(6) and rearranging we get:

wt = �
Y �+�t

Z�t
(15)

Log-linearizing around the steady state we get:

ŵt = (� + �) Ŷt � �Ẑt (16)

This is the wage rule, represented by the upward sloping black line in

�gure 1. The wage rule is the same as in the canonical model.

Equating (13) and (16) we obtain the �exprice equilibrium deviation of

output from the s.s.

Ŷ ft = Ŷ ct �
1

� + �

h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
(17)

where Ŷ ct =
1+�
�+� Ẑt is the �exprice equilibrium in the standard (canonical)

NK model.From �gure 1 it is clear that when [ROS is positive: (i) Ŷ ft < Ŷ ct

i.e. the �exprice equilibrium is smaller than in the canonical case, and (ii)

ŵt < ŵct = Ẑt �see (13) �i.e. the real wage is smaller than in the standard

case. The reason why both the real wage and output (in log deviations)

are smaller in the present context is simple: The ROS represents the cost

of external �nance for the �rm. In the presence of this additional cost, the

�rm is producing less at a higher price (a lower real wage).
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5 Steady states and log-linearization

The economy consists of �ve markets: labor, goods, money, bonds, shares.

The equilibrium condition on the goods market is Ct = Yt:Moreover, Yt =

ZtNt:Imposing the s.s. condition in (4), it turns out that

1 + it
1 + Et�t+1

= ��1 = 1 + r (18)

i.e. in the steady state the real interest rate is anchored to the rate of time

preference r.

Using (18) and imposing the s.s. condition in the asset price equation

(8) we get
ds
qs
= ��1 � 1 = r (19)

i.e. in the s.s. the dividend yield is constant and equal to the rate of time

preference. From the equation above follows qs = ds=r i.e. a pure dividend

discount model of asset price determination: in the steady state, the asset

price is the discounted sum of an in�nite stream of dividends.

Therefore the s.s. ROS is:

ROSs =
1

�
=
qs + ds
qs

= 1 + r

This is obvious: Because of the no-arbitrage condition, the real interest rate

should be equal to the ROS.

18



Equating (15) and (12) we obtain the level of the �exprice equilibrium:

Y ft =

 
Z1+�t

��

qt
Et (qt+1 + dt+1)

! 1
�+�

which in the steady state is equal to

Y fs =

 
�
Z1+�s

��

! 1
�+�

(20)

Notice that in the standard case we have Y cs =

 
Z1+�s

��

! 1
�+�

: In the present

setting, therefore, the s.s. �exprice equilibrium output is a fraction �
1

�+� of

the standard one.

From the consumption Euler equation (4) through linearization aroud

the s.s. and taking into account the equilibrium condition Ct = Yt we get

Ŷt = EtŶt+1 �
1

�
(it � Et�t+1)

For the sake of comparison with the standard NK-DSGE model, we rewrite

the equation above as

xt = Etxt+1 � � (it � Et�t+1) + gt (21)

where xt denotes the output gap, de�ned as the di¤erence between cur-

rent output and �exprice equilibrium output in the canonical model, i.e.

xt := Ŷt � Ŷ ct . Equation (21) represents the optimizing IS curve. We have

appended a demand shock to the IS curve . As usual gt follows an AR(1)

19



process:gt =  gt�1 + egt with egt �iid(0; �2g).
From the asset price equation (8) through linearization we get the Asset

Price (AP) schedule:

q̂t = �(it � Et�t+1) +
h
�Etq̂t+1 + (1� �)Etd̂t+1

i
(22)

6 The �augmented�NK Phillips curve

From the linearization of (11) around the s.s. we get

�̂t = ŵt � Ẑt +
h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i

Plugging (16) into the expression above and rearranging we get:

�̂t = (� + �)

�
xt +

1

� + �

h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i�
(23)

where xt is the output gap as de�ned in the canonical New Keynesian

framework.

In each period a fraction ! of �rms is unable to adjust its price. As

usual in a Calvo pricing context, therefore, ! is a measure of the degree of

nominal rigidity. The j-th �rm�s pricing decision problem therefore is

max
pjt

Et

1X
s=0

!s�s;t+s

"�
pjt
Pt+s

�1�e
� �t+s

�
pjt
Pt+s

��e#
Ct+s

where �s;t+s = �s
�
Ct+s
Ct

���
is the consumption based discount factor,�

pjt
Pt+s

��e
Ct+s = cjt is demand for the j-th �rm�s product and �t is the

20



marginal (and average) cost.

The optimal relative price of the good produced by the adjusting �rm in

period t, therefore, takes into account the stream of future marginal costs,

which, in our framework, depends on current and future asset prices and

dividends (see (11)).

From the standard microfoundations of the NK Phillips curve, after lin-

earization we get �t = k�̂t + �Et�t+1:Substituting (23) and rearranging we

get

�t = �xt + k
h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
+ �Et�t+1 + ut (24)

with � := k (� + �) :Equation (24) is the NK Phillips curve in the new

setting. We have appended a supply shock ut to the NK Phillips curve

in order to avoid the "divine coincidence". As usual ut follows an AR(1)

process:ut = �ut�1 + eut with eut �iid(0; �2u).
The di¤erence w.r.t. the canonical NK-PC is the term in brackets, i.e.

[ROS (see equation (14). In fact, the cost channel and the equity-only �-

nancing assumptions imply that the cost of external �nance, which coincides

with the ROS, is a¤ecting the �rms�pricing decisions and therefore in�ation.

This is the reason why we will de�ne the equation above the Augmented New

Keynesian-Phillips Curve (A-NKPC).
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7 An instrument rule for monetary policy

We will �rst explore the design and the transmission mechanism of monetary

policy in the case in which the central bank adopts a simple Taylor-type

instrument rule. For the sake of simplicity and without loss of generality,

let�s assume that this rule is activated exclusively by the feedback from

in�ation (in other words, the central bank does not take into account the

output gap in devising its policy). Hence, the rule is it = r + 
��t where r

is the real interest rate (equal to the rate of time preference in the steady

state). In the following, in order to get rid of unnecessary complications, we

will ignore the real interest rate so that the instrument rule becomes

it = 
��t (25)

This is the simplest rule one can imagine. In subsection 7.2 we will

consider an instrument rule augmented by the asset price.

7.1 Model I-1

The macroeconomic model in structural form consists of the No-Arbitrage

Condition (22), Augmented NK Phillips curve (24), IS curve (21) and Taylor

rule (25) which we reproduce here for the reader�s convenience.

q̂t = �(it � Et�t+1) +
h
�Etq̂t+1 + (1� �)Etd̂t+1

i
�t = �xt + k

h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
+ �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

it = 
��t

(M I-1)
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This is "model I-1", a system of four linear di¤erence equations in �ve

state variables, xt; q̂t; �t; it; d̂t:

Model I-1 therefore is incomplete: There is one degree of freedom in

modelling the macroeconomy in the present setting, which we can exploit

to specify the dynamic pattern of dividends. 7 We will specify the dividend

policy of �rms in sections ....

The system above is recursive. Using the no-arbitrage condition, in fact,

we obtain:

�t = �xt + k (it � Et�t+1) + �Et�t+1 + ut (M I-0)

xt = Etxt+1 � � (it � Et�t+1) + gt

it = 
��t

These equations form "model I-0", a system of three equations in xt; �t; it:

Notice that we can solve for these variables without any reference to [ROS

and therefore to asset prices and dividends. In fact, we have replaced [ROS

with the real interest rate it�Et�t+1, exploiting the no-arbitrage condition.

In other words

Remark 1 If the economy is described by model I-1 the determination of

the asset price and dividends can be separated from the determination of all

the other state variables. The equilibrium values of xt; �t; it: can be logi-

cally determined by solving model I-0 before determining asset prices and
7We will not get entangled at this stage of the analysis in the debate on the dividend

puzzle and simply borrow from the real world the stylized fact that �rms do pay dividends
even if the reasons for this behavior are not exactly clear.
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dividends.

The Rational Expectations Equilibrium (REE) of model I-0 is computed

in appendix B. In the following we illustrate the transmission of shocks

within model I-0 by means of simple diagrams.

In order to do so, notice �rst that from (21), recalling that � = 1=�

follows that it �Et�t+1 = � (Etxt+1 � xt + gt) :Second, notice that in order

to solve the system by the method of undetermined coe¢ cient, we guess

s1 = s1ut + s2gt for each state variable s = �; x; i. Therefore Etst+1 =

s1�ut + s2 gt.

Assumption 1. Let�s assume, for the sake of discussion, that � =  :

This assumption is of course restrictive and may entail a modest loss of

generality. It greatly simpli�es the calculations, however, and yields very

neat results since Etst+1 = � (s0ut + s1gt) = �st for each and every state

variable.

Because of assumption 1, the RE of a state variable taken in t for t+1 is

a fraction of the current value of the variable. The expected rate of change

therefore is decreasing with the current value: Etst+1 � st = � (1� �) st:

This implicitly determines a mean reverting behaviour of that variable. If a

shock hits a variable, causing a departure from the s.s., a negative (stabiliz-

ing) feedback is activated.

From assumption 1 follows that Etxt+1 = �xt; Et�t+1 = ��t. Hence the

real interest rate is

it � Et�t+1 = (
� � �)�t (26)

Using (M I-0), the system above boils down to:
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xt = ��
� � �
1� � �t +

1

1� �gt (27)

�t =
�

1� ��� k (
� � �)
xt +

1

1� ��� k (
� � �)
ut (28)

Equation (27) represents the AD schedule in the present setting. Equa-

tion (28) represents the AS schedule.

Assumption 2. We assume

� < 
� < �+
1� ��
k

(29)

The inequality on the LHS of (29) is the equivalent, in the present setting, of

the Taylor principle: in fact it assures that the real interest rate is positive

when there is a burst of in�ation (and viceversa). Thanks to the Taylor

principle, the AD schedule is downward sloping on the (xt; �t) plane. The

inequality on the RHS of (29) assures, on the other hand, that the AS

schedule is upward sloping.When the AD and the AS curves are well behaved

(i.e. they have the "appropriate slopes"), the solutions of M I-0 make sense

(the system is "viable"). This means that

Remark 2 The reaction of the central bank to current in�ation must be

neither too weak (Taylor principle: � < 
�) nor too strong (
� < � +

1� ��
k

) to assure the viability of the model solution.

The RHS of (29) is the truly novel feature of this setting. In the absence

of the cost channel, in fact, model M I-0 would boild down to the canonical
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model which we will label M I-0(c):

�t = �xt + �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

it = 
��t

(M I-0(c))

which, after incorporating the model-consistent expectations, becomes:

xt = ��
� � �
1� � �t +

1

1� �gt (30)

�t =
�

1� ��xt +
1

1� ��ut (31)

Hence only � < 
� must be assumed to assure that the AD curve is down-

ward sloping; the AS curve in model M I-0(c) is upward sloping for any

value of 
�.

Notice moreover that, as a consequence of the Taylor principle, the AS

curve in model M I-0 is steeper that in model M I-0(c):

@�t
@xt

����
AS

=
�

1� ��� k (
� � �)
>
@�t
@xt

����
AS(c)

=
�

1� ��

In a sense this is obvious. In fact, an increase in output (with respect to the

�exprice equilibrium) brings about an increase of in�ation equal to @�t
@xt

���
AS(c)

in the canonical model. In the presence of the cost channel, the reaction of

the central bank, i.e. the increase of the interest rate due to in�ation, will

make the increase of in�ation even bigger, as shown by @�t
@xt

���
AS
.

Solving (27) (28) gives xt and �t as linear functions of the shocks. Sub-

stituting the solution for �t into (25) one gets the fundamentals based in-
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Figure 2: AS and AD schedules

strument rule (see again appendix B for details).

We are now ready to examine the transmission and the e¤ects of shocks.

Suppose initially there are no shocks: gt = ut = 0. In �gure 2 we

represent the AD and the AS schedules in the present setting (black) and in

the canonical one (grey). In the absence of shocks in both settings the two

lines intersect in the origin, point A.

Suppose a (temporary) supply shock hits the economy. In a canonical

setting, in�ation goes up by
1

1� ��ut on impact (see point B in �gure 3).

In the presence of the cost channel, the reaction of the central bank to the

increase in in�ation �i.e. the increase of the interest rate �adds to in�ation

on impact. This is the reason why in�ation goes up by
1

1� ��� k (
� � �)
uton

impact in the presence of the cost channnel (see point B� in �gure 3). In

other words, the AS curve augmented with the cost channel shifts up more
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Figure 3: E¤ects of a supply shock

than in the canonical case.8

The central bank reaction steers the economy to C�. In the end, therefore,

there will be more in�ation an a more acute recession than in the canonical

case (compare with C). In the case of a supply shock, therefore, the cost

channel works as an ampli�cation mechanism of the shock.9 Of course,

since the shock is temporary, with the passing of time the economy will

move back to point A.

In the case of a demand shock, the new (short run) equilibrium will be at

the intersection B�as shown in �gure 4. The output gap turns positive but,

in the presence of the cost channel, the expansion is weaker and in�ation is

8 It is easy to see, however, that the intercepts on the x-axis of the AS and AS(c)
schedules after the shock coincide.

9 In fact, in the RE solution �the coe¢ cients of in�ation and the output gap w.r.t. the
supply shock are greater in absolute value in the presence of the cost channel. In symbols:
b1 > b

c
1, ja1j > jac1j as shown in appendix B.
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Figure 4: E¤ects of a demand shock

higher than in the canonical case (compare with B).

What happens to the stock price? As we said, since the system is recur-

sive we can solve for the asset price after having solved for the ouput gap,

in�ation and the interest rate. Suppose, as a very convenient special case,

that �rms do not distribute dividends. In this case [ROS = Etq̂t+1 � q̂t i.e.

the deviation of ROS from the s.s. is equal to the deviation of the capital

gain from the s.s. 10 Notice that, because of assumption 1, Etq̂t+1 � q̂t =

� (1� �) q̂t:Using this de�nition in (22) we get:

q̂t = �

� � �
1� � �t (32)

10 It is easy to see that this di¤erence is the expected (real) asset price in�ation, i.e. the
di¤erence between (nominal) expected asset price in�ation Et't :=

Qt
Qt�1

�1 and expected
in�ation Et�t := Pt

Pt�1
� 1. Hence: [ROS = Etq̂t+1 � q̂t = Et't � Et�t
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Hence, thanks to the Taylor principle, a burst of in�ation has a negative

impact on the asset price. This is, once again, in a sense obvious. When the

economy is hit by an in�ationary shock, the central bank raises the interest

rate prompting a �ight from equities. Asset prices fall bringing about an

increase of the return on shares such as to match the increase of the interest

rate. This is how the no-arbitrage condition is re-established. Hence q̂ is

a linear decreasing function of g and u because they both bring about an

increase of in�ation. Both types of shocks therefore, are detrimental for the

Stock market.

7.2 Model I-2

Let�s consider now an augmented interest rate rule for monetary policy which

takes into account not only in�ation but also the asset price deviation from

the s.s.

it = 
��t + 
q q̂t (33)

In this case, the macroeconomic model in structural form consists of

equations (22), (24), (21) and (33). For the sake of discussion, let�s assume

away the problem of providing at least a behavioral assumption for dividends

con�ning ourselves to the very convenient scenario in which �rms do not pay
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out dividends. In this special case the model becomes:

q̂t = �(it � Et�t+1) + Etq̂t+1

�t = �xt + k (Etq̂t+1 � q̂t) + �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

it = 
��t + 
q q̂t

(M I-2)

This is "model I-2", i.e. a system of four linear di¤erence equations in

four state variables, xt; q̂t; �t; it:

This system is not recursive. In other words, when the central bank

reacts to the asset price, the system does not dichotomize into 2 independent

subsystems (one for xt; �t; it and the other for q̂t) as in model I-1. 11

The REE of model I-2 is computed in appendix ... In this new setting

the real interest rate is

it � Et�t+1 = (
� � �)�t + 
q q̂t (34)

In order to solve this model, it is convenient to plug (34) into (22). Using

assumption 1 (so that Ex
0
= �x, E�

0
= ��, Eq̂

0
= �q̂) we get

q̂t = �

�

1 + 
q
�t +

1

1 + 
q
Et�t+1 +

1

1 + 
q
Etq̂t+1 (35)

Hence, substituting (35) into M I-2 and using assumption 1, the system

11A similar dichotomy occurs also in Carlstrom and Fuerst (2007) albeit in a di¤erent
context.
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becomes:

�t =
�

1� ��� k (
� � �)
xt +

k
q
1� ��� k (
� � �)

q̂t +
1

1� ��� k (
� � �)
ut

xt = �
� (
� � �)
1� � �t �

�
q
1� �q̂t +

gt
1� �

q̂t = �

� � �

1 + 
q � �
�t

(M I-2bis)

Notice that asset prices impact directly on in�ation (see the �rst equa-

tion). These equations form a system in xt; �t; q̂t:Substituting the asset price

equation into the other equations we get:

xt = �
� (
� � �)
1 + 
q � �

�t +
gt
1� � (36)

�t =
�

1� ��� k (
� � �)
�
1 +


q
1��

��1xt + (37)

+
1

1� ��� k (
� � �)
�
1 +


q
1��

��1ut
Equation (36) represents the AD schedule in model I-2. Equation (37)

represents the AS schedule.

Assumption 3. We assume

� < 
� < �+
1� ��
k

+
1� ��
k (1� �)
q (38)

The inequality on the LHS of (38) is, of course, the Taylor principle. The

inequality on the RHS of (38) assures that the AS schedule is upward slop-
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Figure 5: Viability area

ing. As already noted in Remark 2 above, this means that the reaction of

the central bank to in�ation must not be too strong. In the present case,

moreover, it should ful�ll an additional requirement concerning the sensitiv-

ity of monetary policy to asset prices. In �gure 5 we represent the viability

area in the presence of the cost channel. When the central bank does not

react to asset prices, viability is con�ned to the area between the grey and

the black horizontal lines (i.e. the area that ful�lls (29)). When the central

bank reacts to asset prices the viability area (i.e. the area that ful�lls (38))

expands to the area between the upward sloping and the horizontal black

lines.

Notice that the AS schedule in the presence of reaction to asset prices is
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�atter than in the case of no asset price (AP) reaction. In fact

@�t
@xt

����
AS

=
�

1� ��� k (
� � �)
>
@�t
@xt

����
AS(q)

=
�

1� ��� k (
� � �)
�
1 +


q
1��

��1
In order to understand why, recall that, absent the cost channel, a posi-

tive output gap brings about an increase of in�ation equal to @�t
@xt

���
AS(c)

. In

the presence of the cost channel, the reaction of the central bank, i.e. the

increase of the interest rate due to in�ation, will make the increase of

in�ation bigger, as shown by @�t
@xt

���
AS
. According to the third equation in

M I-2, asset prices go down as a consequence of in�ation. If the central

bank targets also asset prices, the contraction of the asset price will induce

a monetary easing, i.e. a reduction of the interest rate, which, in the

presence of the asset price cost channel, translates into a reduction of in�a-

tion. Overall, there will be an increase in the interest rate also in the case of

reaction to asset prices, but this increase will be smaller than in the case of

no reaction. Notice that the higher the reaction to asset prices, the �atter

the AS curve becomes. As 
q increases, the slope tends asymptotically to

that of the AS curve in the canonical (i.e. no cost channel) case. in fact

lim

q!1

@�t
@xt

����
AS(q)

=
�

1� �� =
@�t
@xt

����
AS(c)

Notice moreover that when the central bank reacts to q̂t also the slope

of the AD curve changes w.r.t. the case of no reaction. In absolute value:

@�t
@xt

����
AD

=
1� �

� (
� � �)
<
@�t
@xt

����
AD(q)

=
1 + 
q � �
� (
� � �)
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Figure 6: Slopes of the AD and AS curves

In words, the AD curve when 
q > 0 is steeper �on the (xt; �t) plane �

than in the case 
q = 0: In order to understand why, recall that, in the case


q = 0, an increase of in�ation brings about a contraction of output whose

magnitude is @xt
@�t

���
AD

=
� (
� � �)
1� � . This is due to the reaction of the central

bank to in�ation, i.e. to the increase of the interest rate. In�ation leads

to a fall of asset prices (due to arbitrage). In the case 
q > 0; the central

bank contrasts this tendency by "easing" a bit, i.e. reducing the interest

rate marginally w.r.t. the previous interest rate hike. This will make the

contractionary impact of the increase of the interest rate smaller, as shown

by @xt
@�t

���
AD(q)

=
� (
� � �)
1 + 
q � �

.

In �gure 6 we report the AD and AS curves in the di¤erent cases.

Solving (36) (37) gives xt and �t as linear functions of the shocks. Sub-

stituting the solution for �t into (33) one gets the fundamentals based in-
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strument rule (see again appendix ... for details)).

We are now ready to examine the transmission and the e¤ects of shocks.

Suppose initially there are no shocks: gt = ut = 0. In �gure 6 we

represent the AD and the AS schedules in the case in which 
q > 0 (AS(q)

in black) and in the case in which there is no reaction to the asset price (AS

in grey). In the absence of shocks in both settings the two lines intersect in

the origin, point A.

Suppose a supply shock hits the economy. In the no asset price reaction

case, in�ation goes up by
1

1� ��� k (
� � �)
ut (see point B�in �gure 7.2,

which corresponds to B�in �gure 3). This burst of in�ation incorporates the

fact that the central bank reacts to the shock raising the interest rate, which

adds to in�ation on impact. The increase in in�ation makes asset prices go

down. When 
q > 0; the central bank reacts to the fall of asset prices easing

a bit so that the increase of the interest rate �and the additional in�ation
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due to the cost channel �will be smaller than in the no reaction case. In

other words, targeting asset prices will reduce the impact on in�ation of a

contractionary monetary policy in the presence of the cost channel.

The central bank then steers the economy to C". Notice that the AD

curve is now steeper than in the no AP reaction. In the end, therefore, there

will be less in�ation and a milder recession than in the case in which the

central bank does not react to asset prices (compare with C�). When a supply

shock hits the economy, therefore, the reaction of the central bank to asset

prices has a mitigating e¤ect on both the change in output and in�ation,

curbing the ampli�cation mechanism activated by the cost channel in the

no reaction case.

In the case of a demand shock, the new short run equilibrium will be

at the intersection B" as shown in �gure 4. The output gap turns positive.

But with the cost channel and the reaction to asset prices the expansion is

stronger and in�ation is higher than in the previous case. 12When a demand

shock hits the economy, therefore, the reaction of the central bank to asset

prices has a mitigating e¤ect on in�ation, but an ampli�cation mechanism

on output with respect to the no reaction case.

What happens to the stock price? Recall that in the previous case: q̂t =

�
� � �
1� � �t while now q̂t = �


� � �
1 + 
q � �

�t. Hence, a burst of in�ation has a

negative impact on the asset price but smaller than in the previous case.In

fact, when the economy is hit by an in�ationary shock, asset prices fall.

12Points B�and B" lie on an upward sloping straight line (not shown in the �gure), whose
equation �i.e. (44) � is obtained by consolidating the Augmented NK-PC as de�ned in
equation (41) and of the IS curve (42). We will refer to this curve as the Augmented
NK-PC in section 8).
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Figure 7: E¤ect of a demand shock

When 
q > 0; the central bank eases a bit mitigating the fall of asset prices.

8 Optimal Monetary Policy

In this section we turn our attention to the case in which monetary policy

is determined optimally. In order to do so we need to specify the central

bank�s preferences. We represent them by means of a quadratic loss function

whose arguments are the deviations of in�ation and the output gap from the

target values, which we can set to zero for simplicity.

The output gap which should show up in the loss function is the di¤er-

ence between current output and the �exprice equilibrium output as de�ned

in the present context, i.e.�xt := Ŷt� Ŷ ft . Unless the central bank is myopic,

in fact, it is straightforward to assume that it wants to minimize the di¤er-
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ence between current output and the relevant notion of �exprice equilibrium

with reference to the economy under scrutiny.

There is an obvious relationship between the canonical notion of output

gap xt := Ŷt � Ŷ ct and the relevant notion for the policy maker �xt:

�xt = xt +
�
Ŷ ct � Ŷ

f
t

�
= xt +

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t
� + �

so that the loss fuction can be written as follows:

L = Et
1P
s=0

�s

24�2t+s + �
 
xt+s +

�Etq̂t+s+1 + (1� �)Etd̂t+s+1 � q̂t
� + �

!235
Hence [ROS = �Etq̂t+s+1+(1� �)Etd̂t+s+1�q̂t shows up in the loss func-

tion in a straightforward (non ad-hoc) way. In the canonical model, under

discretion, the loss is minimized subject only to the New Keynesian Phillips

curve assuming that agents�expectations are given. In the present setting

the optimization problem is more complicated. Not only the (Augmented)

New Keynesian Phillips Curve but also the optimizing IS curve should play

the role of constraints in the optimization problem.

Therefore the intertemporal optimization problem boils down to a se-

quence of period by period minimization problems of the type:

min
�t;xt;q̂t

L = �2t + �

 
xt +

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t
� + �

!2
+ C0

s.t. �t = �xt � kq̂t + C1

xt = �q̂t + C2
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where we treat expectations and shocks as given as it is customary in

the discretionary regime. Hence:

C0 : = Et
1P
s=1

�s

24�2t+s + �
 
xt+s +

�Etq̂t+s+1 + (1� �)Etd̂t+s+1 � q̂t
� + �

!235
C1 : = �Et�t+1 + k

h
�Etq̂t+1 + (1� �)Etd̂t+1

i
+ ut

C2 : = Etxt+1 � �
h
�Etq̂t+1 + (1� �)Etd̂t+1

i
+ gt

are treated as constants in the minimization problem. From the FOCs

of the problem above one gets the Social Expansion Path (SEP):

xt = �
�

�
�t �

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t
� (� + �)

(39)

The �rst component of the RHS of (39) is exactly the same as in the

canonical Clarida-Galì-Gertler (CGG) model. In our setting, the SEP is

"augmented" by a factor proportional to [ROS.13

8.1 Model O-1

The macroeconomic model in structural form consists of the Social Expan-

sion Path (39), Augmented NK Phillips curve (24), No-Arbitrage Condition

(22) and IS curve (21) which we reproduce here for the reader�s convenience.

13Notice, however, that [ROS is equal to the real interest rate due to the No-arbitrage
condition and that the real interest rate is equal to Etxt+1+gt�xt

�
. Taking these consider-

ations into account would yield a SEP whose slope in the end is di¤erent with respect to
the standard one. We will make use of this considerations below (see subsection ??).
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xt = �
�

�
�t �

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t
� (� + �)

q̂t = �(it � Et�t+1) +
h
�Etq̂t+1 + (1� �)Etd̂t+1

i
�t = �xt + k

h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
+ �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

(M 0-1)

This is "model O-1", a system of four linear di¤erence equations in �ve

state variables, xt; q̂t; �t; it; d̂t:

For the moment we do not need to specify dividend policy for the very

good reason that the system is recursive. In fact, plugging (22) into (39),

and (24), in fact, we obtain:14

xt = ��
�
�t �

it � Et�t+1
� (� + �)

(40)

�t = �xt + k (it � Et�t+1) + �Et�t+1 + ut (41)

These equations, together with (21) form "model O-0", a system of three

equations in xt; �t; it:

Notice that we can solve for these variables without any reference to

[ROS and therefore to asset prices and dividends.In other words we have the
14Plugging (22) into (21) we get:

xt = Etxt+1 � �
h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
+ gt

Since there is a negative relationship between [ROS and the output gap, in the end the
current output gap is increasing with the current asset price. This positive relationship is
not new in the literature. The optimizing IS curve in fact may incorporate this positive
relationship due a wealth e¤ect. However we obtain this result for entirely di¤erent reasons:
The higher is q̂t; the smaller will be [ROS and correspondingly smaller, in equilibrium,
will be the real interest rate; the associated increase in consumption will boost output.
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same dichotomy as in model I-0 (see remark 1 above).

We assume, as in the previous section, that � =  (assumption 1) so

that Etxt+1 = �xt; Et�t+1 = ��t: Hence, from the IS curve follows:

it � Et�t+1 = �� (1� �)xt + gt (42)

Plugging (42)into the system above and rearranging we get:

xt = � � (� + �)

� (� + �)� � (1� �)�t �
�

� (� + �)� � (1� �)gt (43)

�t = k
� + ��

1� ��xt +
k�

1� ��gt +
1

1� ��ut (44)

Solving (43) (44) gives xt and �t as linear functions of the shocks. Sub-

stituting the solutions for xt and �t into (21) one gets the fundamentals

based optimal interest rate rule (see again appendix D for details).

For the sake of comparison, we recall that the standard CGG model

� incorporating the model-consistent expectations into the system �boils

down to:

xt = ��
�
�t (45)

�t = k
� + �

1� ��xt +
1

1� ��ut (46)

Assumption 4. Let � (� + �)�� (1� �) > 0 i.e. � > �̂1 :=
�

� + �
(1� �)

15.
15Notice that �̂1 < 1.
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In this case the SEP of equation (43) �which we will label SEP-ABD �

is downward sloping and �atter �on the (xt; �t) plane �than the SEP in

CGG represented by (45):

@�t
@xt

����
SEP�ABD

=
�� �(1��)

�+�

�
<
@�t
@xt

����
SEP�CGG

=
�

�

This means that for any given in�ation shock, the policy-induced recession

necessary to steer the macroeconomy on the optimal in�ation-output gap

locus is bigger in the present setting than in CGG. Moreover the SEP is

a¤ected by demand shocks, which was not the case in CGG.

As to the Phillips curve, the Augmented NK-PC of equation (44) is

�atter than the NK-PC represented by (46). Moreover the the Augmented

NK-PC is a¤ected by demand shocks, which was not the case in CGG: in

the present setting there is an indirect supply shock induced by the increase

in demand through the cost channel.

The fact that the Augmented NK-PC is �atter than the canonical NK-

PC puzzling. After all, one would expect in�ation to be higher � for a

given increase in output (with respect to the �exprice equilibrium) �in the

presence of the cost channel. In order to explain the puzzle, notice that

equation (44) is the consolidation of the Augmented NK-PC as de�ned in

equation (41) and of the IS curve (42). In the absence of shocks, a positive

output gap brings about in�ation equal to @�t
@xt

���
NKPC

=
k (� + �)

1� �� in the

CGG model. Notice that the output gap turns positive, according to (42)

only if the central bank has engineered a reduction of the real interest rate.

In the presence of the cost channel, this reduction of the real interest rate
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Figure 8: NK-PC and SEP in di¤erent cases.

will make the increase of in�ation associated to a given increase of output

smaller: @�t
@xt

���
A�NKPC

=
k (� + ��)

1� �� .

We are now ready to examine the transmission and the e¤ects of shocks.

Suppose initially there are no shocks: gt = ut = 0. In �gure 8 we represent

the SEP and the Phillips curve in CGG and in the present (ABD) setting.

In the absence of shocks in both settings the two lines intersect in the origin,

point A, which is also the bliss point.

Suppose a supply shock hits the economy. In a CGG setting, the NK-PC

shifts up by
1

1� ��ut on impact (see point B in �gure 9). The central bank

reacts raising the interest rate to steer the macroeconomy on the SEP and

the new short run equilibrium will be in C. The output gap turns negative.

Also in our setting the Augmented NK-PC shifts up by
1

1� ��uton impact

(once again see point B). The central bank reacts raising the interest rate
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Figure 9: E¤ect of a supply shock

and the new short run equilibrium will be at the intersection D. Qualitatively

we have the same prescription in favour of a leaning against the wind policy

as in the standard setting.

Notice however that in the present setting the central bank is implicitly

targeting the ROS. In fact [ROS = it�Et�t+1 in equilibrium (no-arbitrage).

In other words, by changing the policy rate the central bank steers the [ROS

in such a way as to obtain a target level of [ROS consistent with the SEP.

The quantitative impact moreover is di¤erent. Due to the smaller slopes

of the schedules involved, in our setting the contraction induced by the

leaning against the wind policy is bigger while the e¤ect on in�ation may

be smaller.

Things are more complicated and more interesting in case a demand

shock occurs. In a CGG economy, the demand shock does not a¤ect either
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in�ation or the output gap because it is completely o¤set by the central

bank.In the present model, the Augmented NK-PC shifts up by
k�

1� ��gt on

impact (see point B in �gure 10). This is the indirect supply shock induced

by the increase in demand through the cost channel.16 The central bank

reacts raising the interest rate to steer the macroeconomy on the SEP. The

output gap turns negative. In our setting the SEP shifts down due to the

demand shock, making the recession more acute. This is actually lowering

in�ation. The short run equilibrium will be in C. In the �gure in�ation is

still positive in C.

If the SEP shifts down "enough", however, one can well have a de�ation,

i.e. a negative rate of growth of the price level. In appendix ...we show

that this is the case if the central banker is (relatively) conservative, i.e

�̂1 < � < 1:

What happens to the stock price? As we said, since the system is re-

cursive we can solve for the asset price after having solved for the ouput

gap, in�ation and the interest rate. Suppose that �rms do not distribute

dividends. In this case

[ROS = Etq̂t+1 � q̂t = � (1� �) q̂t (47)

16Consolidating the IS and A-NKPC curves through the cost channel we have:

�t = k�xt + k [� (Etxt+1 + gt)] + �Et�t+1 + ut

so that the e¤ect of a demand shock on in�ation given expected in�ation is
@�t
@gt

����
G

= k�:

If we take rational expectations into account, i.e. Etxt+1 = �xt; Et�t+1 = ��t, we end
up with (44) so that e¤ect of a demand shock on in�ation with rational expectations is

bigger:
@�t
@gt

����
RE

=
k�

1� �� :
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Figure 10: E¤ect of a demand shock

From the no-arbitrage condition (22) and the IS (21), moreover one gets

[ROS = it � Et�t+1 = �� (1� �)xt + gt (48)

Therefore:

q̂t = �xt �
gt
1� � (49)

In the end, therefore, we have a new schedule on the (xt; q̂t) plane which

is upward sloping and subject to a shock. We can think of this schedule

as an Asset Price Phillips curve (AP-PC): when the output gap is positive

there will be a burst of asset price in�ation and viceversa. A sudden increase

of demand translates into a negative shock for the Stock market.

In order to understand why an AP-PC is implicit in our setup, let�s

represent equations (47) and (48) on the
�
q̂t;[ROS

�
plane as in �gure 11.
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Figure 11: E¤ect of a supply shock on q̂

(47) is represented by a downward sloping straight line passing through the

origin, which represents the equilibrium (point A). If the economy is in the

�exprice equilibrium (xt = 0) and there are no shocks, (48) coincides with

the x-axis ([ROS = 0 for any q̂t).

Suppose a supply shock occurs so that the central bank steers the econ-

omy on the SEP by raising the interest rate. Hence the output gap becomes

negative. The horizontal line representing (48) shifts up.The new equilib-

rium is D: the asset price has gone down. Figure 11 should be thought of

as a complement to �gure 9. Points A and D in the former corresponds to

points A and D on the latter.

Suppose now a demand shock occurs so that the central bank raises the

interest rate. The output gap becomes negative. The horizontal line of

equation (48) shifts up twice �as shown in �gure 12 �because of the shock
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Figure 12: E¤ects of a demand shock on q̂

(from A to B) and because of the recession (from B to C). The asset price

has gone down.Figure 12 is a complement to �gure 10. Points A and C in

the former correspond to points A and C on the latter.

Substituting the solutions for xt in (49) we obtain q̂t as a linear function

of the shocks (see again appendix D for details). It turns out that q̂ is a

linear decreasing function of g and u. Both types of shocks therefore, are

detrimental for the Stock market.

8.2 Model O-1.1: dividends and pro�ts

So far we have not speci�ed how �rms set dividends. The speci�cation of

dividend policy allows to complete model O-1 �which is, as we said above,

dichotomous �in a satisfactory way. In section 8.1 in fact, for the sake of

discussion, we have closed the model (and derived the solution for the asset
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price) by assuming that �rms do not pay dividends so that the return on

shares coincides with the capital gain.

In the present section, we will derive an explicit solution for dividends

and the asset price assuming that �rms�real pro�ts are paid out to house-

holds in the form of dividends: dt = Yt� wt
Zt
Yt:Substituting the real wage as

de�ned in (15) into the expression above we get

dt = Yt � �
Y 1+�+�t

Z1+�t

(50)

Log-linearizing (50) around the steady state and rearranging we get:

d̂t =

�
1 +

�

�� � (� + �)
�
xt +

1 + �

� + �
ẑt (51)

where
1 + �

� + �
ẑt = Ŷ ct and

�

�� � =
Ys � ds
ds

. 17We assume that the technology

shock ẑt follows a AR(1) process ẑt = �z ẑt�1 + ~zt, with 0 < �z < 1 and

ezt �iid(0; �2z). Hence dividends are an increasing linear function of the

output gap subject to a technology shock. Our complete system therefore

consists of the equations of model O-1 supplemented by (51), i.e.

xt = �
�

�
�t �

�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t
� (� + �)

q̂t = �(it � Et�t+1) +
h
�Etq̂t+1 + (1� �)Etd̂t+1

i
�t = �xt + k

h
�Etq̂t+1 + (1� �)Etd̂t+1 � q̂t

i
+ �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

d̂t =

�
1 +

�

�� � (� + �)
�
xt +

1 + �

� + �
ẑt

(M O-1.1)

17Notice that ds=Ys =
�� �
�

is the s.s. share of pro�ts in total income.
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This is "model O-1.1". If we iterate (51) one period ahead and take the

expected value we get

Etd̂t+1 =

�
1 +

�

�� � (� + �)
�
Etxt+1 +

1 + �

� + �
�z ẑt: (52)

Substituting out it and Etd̂t+1 from (21) and (52) into (22), we get

q̂t = �Etq̂t+1 +

�
(1� �)

�
1 +

�

�� � (� + �)
�
� 1

�

�
Etxt+1 (53)

+
1

�
xt �

1

�
gt + (1� �)

1 + �

� + �
�z ẑt

In the present setting, the [ROS becomes

[ROS = �Etq̂t+1+(1� �)
�
1 +

�

�� � (� + �)
�
Etxt+1+(1� �)

1 + �

� + �
Etẑt+1�q̂t

The Rational Expectation of q̂t+1 taken in t is Etq̂t+1 = �q̂t due to

assumption 1. This implicitly determines a mean reverting behaviour of

the asset price too. Taking model-consistent expectations into account the

expression above boils down to:

[ROS = (1� �)
�
1 +

�

�� � (� + �)
�
�xt + (1� �)

1 + �

� + �
�z ẑt � (1� ��) q̂t

(54)

As shown in section 8.1, when �rms do not pay dividends [ROS is rep-

resented by equation to (47). Equation (54) shows that, when �rms pay

dividends out of pro�ts, [ROS is not only decreasing with q̂t (because of

the capital gain) but also increasing with xt (because of the distribution of
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dividends).

From equations (21) and (22), moreover we obtain (48), i.e. [ROS =

�� (1� �)xt + �gt:Equating (54) and (48) one gets:

q̂t =

(1� �)
�
1 +

�

�� � (� + �)
�
�+ � (1� �)

1� �� xt + (55)

+

(1� �) 1 + �
� + �

�z

1� �� ẑt �
�

1� ��gt

In the end, therefore, we have a new equation for the Asset Price Phillips

curve which take into accounts also dividends and the productivity shock

(compare with (49)).18 While the demand shock will have a negative impact

on the Stock market, a productivity shock will boost asset prices, ceteris

paribus.

In the case of a supply shock, the central bank steers the economy on the

SEP by raising the interest rate. The output gap becomes negative. The

horizontal line representing (48) shifts up.Pro�ts and dividends decrease

because of the recession. Hence (??) shifts down. The new equilibrium

is D: the asset price has gone down. Figure 13 should be thought of as a

complement to �gure 9. Points A and D in the former corresponds to points

A and D on the latter.

Suppose now a demand shock occurs so that the central bank raises the

interest rate. The output gap becomes negative. The horizontal line of

equation (??) shifts up twice �as shown in �gure 14 �because of the shock

18Notice that (55) can be derived from (53) by incorporating model consistent expecta-
tions.
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Figure 13: E¤ect of a supply shock on the asset price.

and because of the recession.

Pro�ts and dividends decrease. (??) shifts down. Equilibrium is D: the

asset price has gone down.Figure 14 should be thought of as a complement

to �gure 10. Points A and D in the former corresponds to points A and D

on the latter.

Finally consider a productivity shock. The central bank does not inter-

vene because the output gap is zero (but the �exprice equilibrium output

has gone up). (??) shifts up as shown in �gure. Equilibrium is B. The asset

price has gone up.

Another way of visualizing the impact of di¤erent shocks consists in

simulating the impulse response function. For the sake of comparison we use

the CGG parameterization, i.e. � = 4 so that � = 0:25. This is admittedly

a controversial assumption but it considered somehow acceptable in the
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Figure 14: E¤ect of a demand shock on the asset price

Figure 15: E¤ect of a productivity shock on the asset price
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Figure 16: E¤ects of a supply shock.

literature. As to the other parameters, we assume

k = 0:03; � = 2;� = ��1;� = k (� + �) = 0:075

� = 1:2;� = 0:99; = � = 0:9; �z = 0:95

The e¤ect of a temporary supply shock is shown in �gure 16. The reac-

tion of the central bank is contractionary as expected. The asset price and

dividends follow the dynamic pattern of the output gap.

The impulse response function for a temporary demand shock is shown in

�gure 17. The dynamic patterns of all the variables of interest are similar to

the ones recorded in the case a supply shock. This is not surprising because

�as explained above �in the present context the demand shock plays the

role of an indirect supply shock.

As a consequence of recursive structure of the system, a temporary tech-
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Figure 17: E¤ects of a demand shock

nology shock a¤ects only the asset price and dividends as shown in �gure

18.

8.3 Model O-1.2: dividends and asset prices

In this section we will explore an alternative approach to dividends, i.e. we

assume that �rms pay dividends on the basis of the following behavioral

rule:19

dt = q�t (56)

where � is the elasticity of dividends to asset prices.

Log-linearizing around the steady state we get: d̂t = �q̂t. In this case

19Of course, the amount of dividends paid out following (56) should be no greater than
realized pro�ts.
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Figure 18: E¤ects of a technology shock

[ROS becomes:

[ROS = �0Etq̂t+1 � q̂t (57)

where �0 := � + (1� �) �:

In �gure 19 we report the scatter diagram of dividends paid in the US

by non-farm and non-�nancial enterprises and the Dow Jones from 1970 to

2008 on a log-log scale. In the data, the elasticity � is smaller than (but

close to) one.

Using this fact, we can assume that �0 := � + (1� �) � is positive but

smaller than one.20 Equating (57) and (48) we get:

q̂t = �0Etq̂t+1 + �(xt � Etxt+1 � gt) (58)

Incorporating rational expectations into the de�nition (57) above, we

20 In fact �0 is a weighted average of 1 and �:
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Figure 19: Dividends and Stock prices

have

[ROS = �
�
1� ��0

�
q̂t (59)

Hence [ROS is decreasing with the current asset price. Equating (59) and

(48) we get

q̂t =
1� �
1� ��0�xt �

�

1� ��0 gt (60)

which is the equation of the AP-PC with this particular de�nition of div-

idends. Qualitatively, the same discussion we have proposed at the end of

section 8.1 applies also here.

We simulate the model using the following parameters:

� = 0:075;� = 1:2;� = 0:99; � = 4; � = 2; k = 0:003; � =  = 0:9
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Figure 20: Supply shock. � = 0:5

The impulse response function for a temporary supply shock is shown

in �gure 20. The central bank reacts to an in�ationary shock by raising

the interest rate. Both the output gap and the asset price go down (and

therefore also dividends decrease). Over time, all the variables converge,

albeit with a certain persistence, to the steady state.

The impulse response function for a temporary demand shock is shown

in �gure 21. The central bank reacts to the shock by raising the interest

rate. Contrary to the standard case, in this scenario the central bank is

unable to o¤set completely the shock and to anchor output at the �exprice

equilbrium. Both the output gap and the asset price go down (and therefore

also dividends go down). Over time, all the variables converge, albeit with

a certain persistence, to the steady state.
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Figure 21: Demand shock. � = 0:5

9 The augmented in�ation targeting rule

From model O-0, i.e. (40)(41)(21),after some algebra (see appendix E for

details), we get the optimal expectations based monetary policy rule:

it = 
�Et�t+1 + 
xEtxt+1 + 
uut + 
ggt (61)

where


� = 1 +
�

1� �A0
� ��

�+ �2


x =
�

1� �A0

u =

�A2
1� �A0


g =
�

1� �A0
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and A0 =
�k + (� + �)�1

�+ �2
:Notice that sign (
x) = sign (
u) = sign

�

g
�
=

sign (1� �A0).

Assumption 5: We assume that

� > �̂0 := � (� + �)�1 � � (� + �) k2 (62)

Recalling that � = 1=� and � = k (� + �) it is easy to verify that (62)

implies 1 > �A0:Hence assumption 5 assures that the response of the interest

rate to a policy shock goes in the familiar direction (
x > 0; 
u > 0; 
g > 0)

and 
� > 0:

It is interesting to note that 62 is satis�ed if the central banker is not

"too conservative", i.e. if the aversion to output dispersion is high enough,

greater than a threshold �̂0 which is in turn a function of k, the sensitivity

of in�ation to the cost channel: In �gure 9, the condition is ful�lled for all

the points of the (k; �) plane above the curve. Notice that for relatively

high values of k this condition is always satis�ed.
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If we "translate" Etxt+1 into a function of expectations of in�ation (see

again appendix E for details) we obtain

it = 
�Et�t+1 + 

0
�Et�t+2 + 
uut + 
ggt (63)

where


� = 1 +

 
��

�+ �2
� �k + (� + �)�1

k (�� 1)

!

g


0� =
� (� + �)�1

(�� 1) k 
g


u =

"
� (� + �)�1

(�� 1) k +
�

�+ �2

#

g


g = (��A0)�1
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Equation (63) is the optimal augmented in�ation targeting rule ac-

cording to which the central bank should respond to changes in the in�ation

expectations (formed in t) not only for t+1 but also for t+2.

In order to discuss the response of the central bank to expectations and

shocks we focus �rst on the expression (��A0)�1 which is the response


g of the policy rate to a demand shock and shows up in all the other

coe¢ cients of the in�ation targeting rule. Notice that 
g > 0 if � > A0

which is satis�ed if we adopt assumption 5, i.e. if the central banker is

su¢ ciently "accommodating".

This is puzzling: the central banker should be "wet" (enough) for the

policy rate to increase in response to a demand shock �i.e. for 
g to be pos-

itive. Even when 
g > 0, moreover, in this model the central bank responds

less aggressively to a demand shock than in the standard New Keynesian

setting �such as in Clarida-Galì-Gertler �where 
CGGg = ��1. However, the

rationale for this is clear. When a demand shock hits the economy, in fact,

the attempt of the central bank to stabilize output by increasing the interest

rate translates into an (indirect) supply shock �through the cost channel �

that boosts in�ation. A conservative central banker would "�ght" against

this in�ation shock by raising the policy rate less than an accommodating

central banker exactly because the former is more concerned with in�ation

than the latter.

The response of the central banker to expectations of in�ation one period

ahead 
� can well be smaller than 1. As to the response of the central bank

to expectations of in�ation two periods ahead, it is worth noting that 
0�is

positive, i.e. the policy rate increases in response to Et�t+2 if � > 1.
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10 Instrument rule vs. optimal monetary policy

We are now in a position to sum up the discussion of monetary policy so

far. We have basically three regimes:

� an instrument rule with no-reaction to asset prices (IR-NAP),

� an instrument rule with reaction to asset prices (IR-RAP)

� an optimal monetary policy rule (OR) which, by construction, does

not respond to asset prices.

In the case of a supply shock, the policy prescription and the transmission

mechanism is the same both in the IR and OR regimes. The central bank

reacts by raising the interest rate, asset prices fall, the output gap turns

negative, the return on shares increases (even if dividends fall both in case

dividends are linked to output through pro�ts and in case they are linked

to the asset price through the asset price elasticity). The magnitude of the

e¤ect, however, is indeed di¤erent. When it takes into account asset price

changes �i.e. in the IR-RAP case �the central bank usually mitigates the

impact on price and quantity of its contractionary policy in a instrument rule

setting. The IR-RAP regime, therefore, is characterized by milder variations

in in�ation and output. In the asymptotic case of an in�nite reaction to asset

prices, the policy prescription and the transmission mechanism are the same

as in a CGG economy without cost channel.

Things are more complicated and more interesting in the case of a de-

mand shock. To compare the e¤ects of a demand shock in the IR and OR

cases, notice �rst that the Augmented NK-PC of equation (44), being the
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consolidation of the Augmented NK-PC as de�ned in equation (41) and of

the IS curve (42), can be employed not only in the OR case (as we have

done in section 8) but also in the IR case. In the IR case, the intersection

between the AD and AS schedules should lie on the Augmented NK-PC.

In order to avoid messy diagrams, suppose for the sake of the argument

that the SEP of equation (43) and the AD curve (in the IR-NAP case) of

equation (27) are graphically coincident. In other words, by a �uke the

slopes of the downward sloping loci on the (x; �) plane in the OR setting

(i.e. the SEP) and in the IR context (i.e. the AD curve) are the same. A

demand shock shifts the AD curve up (see the dashed downward sloping

black line) but the SEP down (see the dotted downward sloping line), as

shown in �gure 22. Moreover, the Augmented NK-PC of equation (44) wil

shift up (see the dotted upward sloping line). The new short run equilibrium

will be B in the IR case and C in the OR case.

Hence the same (demand) shock has opposite e¤ects on the output gap.

In the IR regime, it has a positive e¤ect �as we are accustomed to think in a

standard short run macro setting �while in the OR regime it has a negative

e¤ect. In the latter case, in fact, the downward sloping locus �i.e. the SEP

� incorporates the attempt of the central bank to to stabilize output and

in�ation in a setting characterized by the presence of a cost channel. The

contractionary reaction of the central bank to the shock translates into a

downward shift of the locus.

When the central bank takes into account also asset prices, i.e. is in the

IR-RAP case characterized by (q) in the �gure, the new short run equilib-

rium will be in B(q). Of course both B and B(q) lie on the new Augmented
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Figure 22: E¤ects of a demand shock in the IR and OR cases

NK-PC. Output grows more than in the IR-NAP case but in�ation will be

milder.

11 Learning

An interesting research question we want to answer is whether the properties

of the basic NK model change �in terms of determinacy and learnability of

the RE equilibrium �once we introduce asset prices through a cost channel.

Carlstrom and Fuerst (2007) introduce asset prices in an augmented Taylor

rule (but not in the structural equations for supply and demand in the econ-

omy). They show that in this case indeterminacy is more likely. Airaudo et

al. (2007), instead, introduce asset prices in the demand side of the economy

through a wealth e¤ect and �nd that a central bank that responds to ex-
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pected stock prices can induce multiple sunspot-driven equilibria. Moreover

E-instability of the fundamental equilibrium is more likely.

In order to explore this issue we start from the system

yt = AEtyt+1 +Bwt (64)

where matrices A and B will depend on the speci�c policy rule adopted, yt

is the vector of state variables and wt is the vector of exogenous shocks. We

write the agents�Perceived Law of Motion (PLM) in matrix form as follows

yt = Hwt

Hence the Actual Law of Motion (ALM) is

yt = (AHF +B)wt

where F is the (diagonal) matrix of autoregressive parameters for the shocks.

This set-up implies the following map from PLM to ALM

_H = AHF +B �H (65)

whose �x point ( �H) represents the Rational Expectations Equilibrium (REE).

REE is E-stable if the matrix di¤erential equation (65) is locally stable at

�H:

To evaluate stability, we have to vectorize the matrix di¤erental equation
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and derive its Jacobian

J =
�
F 0 
A� I

�
: (66)

The REE is E-stable i¤ the eigenvalues of J have all negative real parts.

We analyze determinacy and E-stability under two alternative policy

rules, the Fundamentals based and the Expectations based policy rule.

11.1 Model O-1.1

In the REE solution of model O-0 xt; �t; it are linear functions of the shocks

as shown in appendix D.1. The solution for it takes the form:

it = 
uut + 
ggt + 
z ẑt (67)

where 
i; i = u; g are functions of the structural parameters and 
z =

0:This is the fundamentals based optimal interest rate rule. The same rule

applies to both model O-1.1 and O-1.2.

In the case of model O-1.1 we get the solution for q̂t as a linear function

of the shocks (demand, supply, productivity) from the Asset Price Phillips

schedule (55) (see appendix D.3).

In order to evaluate determinacy and E-stability, we use the fundamen-

tals based policy rule (67) to substitute out it from the system consisting of

the IS curve (21), Augmented New Keynesian Phillips curve (24) and Asset

Price Phillips curve (53) and obtain a 3 dimensional dynamic system of the
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form (64)with

yt =

266664
xt

�t

qt

377775 ;wt =
266664
ut

gt

ẑt

377775

A =

266664
1 � 0

� �� + � � k 0

(1� �)
�
1 +

�

�� � (� + �)
�

1 �

377775

B =

266664
��
u ��
g + 1 0

(k � ��) 
u + 1 (k � ��) 
g + � 0

�
u �
g
1 + �

� + �
�z

377775
Since none of the variables are predetermined, determinacy requires all

the eigenvalues of A to be within the unit circle. Finding the eigenvalues

requires to �nd the roots of the characteristic polynomial, which is of 3rd

degree. Not much can be said analytically, so we calibrate the model and

solve numerically. For the parameters in the standard NK model, we use the

parameterization suggested by Clarida, Gali and Gertler (2000)21.E-stability

requires the negative part of all eigenvalues of matrix J as de�ned in (66)to

be negative.

Numerical results with the parameterization chosen show that the MSV

REE is indeterminate and not learnable (E-unstable). This result is consis-

tent with what found previously in the literature (see Evans and Honkapo-

21We also check the robustness of our results by considering the alternative calibrations
suggested by McCallum and Nelson (1999) and Woodford (1999).
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hja, 2003). In this sense, asset prices do not help solve the problem of in-

determinacy of equilibria in the model when an optimal fundamental based

policy rule is implemented by the central bank.

We move therefore to the analysis with the Expectations based rule. In

order to �nd it, we use (40)(41)(21) to express it in terms of expectations

only. We obtain:

it = 
xEtxt+1 + 
�Et�t+1 + 
ggt + 
uut (68)

with


x =
1

��


� =
s

�


g =
1

��


u = � �

��
�
�+ �2

�
and

� : = 1� 1

�

"
�k

�+ �2
+

1�
�+ �2

�
(� + �)

#

s : = 1� 1

�

"
�k

�+ �2
+

1�
�+ �2

�
(� + �)

� ��

�+ �2

#

as shown in appendix E. Note that the Expectations based rule does not

respond to expected future asset price, but only to expected output and

in�ation. This is due to the dichotomy inherent in the system.

Using policy rule (68) to solve out it we obtain a 3-dimensional system
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of the form (64) with matrices

A =

266664
1� �
x �(1� 
�) 0

� (1� �
x) + k
x � + (��� k) (1� 
�) 0

�
x + (1� �) [1� � (� + �)] 1� 
� �

377775

B =

266664
��
u ��
g + 1 0

(k � ��) 
u + 1 (k � ��) 
g + � 0

�
u �
g
1 + �

� + �
�z

377775
With the same parameterization chosen above, numerical results show

that when an expectations based policy is employed the MSV REE is deter-

minate and learnable (E-stable). This outcome is consistent with previous

�ndings that an expectations based rule can help to solve the problem of

indeterminacy.

11.2 Model O-1.2

The REE for xt; �t; it are the same as in the case of model O-1.1 because they

are derived as solutions of model O-0 as shown in appendix D.1. Therefore

also the fundamentals based rule is the same.

In the case of model O-1.2 we get the solution for q̂t as a linear function

of the shocks (demand, supply) from the Asset Price Phillips schedule (60)

(see appendix D.4).

Using the fundamentals based policy rule:it = 
uut + 
ggt to substitute

out it from the system consisting of the IS curve (21), Augmented New

Keynesian Phillips curve (24) and Asset Price Phillips curve (58) we obtain
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a 3 dimensional dynamic system of the form (64) with matrices

A =

266664
1 � 0

� �� + � � k 0

0 1 �0

377775

B =

266664
��
u ��
g + 1

(k � ��) 
u + 1 (k � ��) 
g + �

�
u �
g

377775
Numerical results with the parameterization chosen show that the MSV

REE is indeterminate and not learnable (E-unstable).

Following the same procedure as before, we �nd the Expectations based

rule, which is the same as (68). We obtain therefore the 3-dimensional

system of the form (64) to be analyzed for determinacy and E-stability with

matrices

A =

266664
1� �
x �(1� 
�) 0

� (1� �
x) + k
x � + (��� k) (1� 
�) 0

�
x 1� 
� [� + (1� �) �]

377775

B =

266664
��
u ��
g + 1

(k � ��) 
u + 1 (k � ��) 
g + �

�
u �
g

377775
The numerical analysis shows that the MSV REE is determinate and

learnable (E-stable) when an expectations based policy is employed.

Finally, in the particular case in which the �rm does not pay dividends,

72



[ROS = Etq̂t+1� q̂t, from the numerical results we infer that the MSV REE

is indeterminate and non-learnable (E-unstable) when using a fundamentals

based policy rule,while if an expectations based policy rule is employed we

�nd that the MSV REE is still indeterminate but it becomes learnable (E-

stable).

In the present setting therefore we �nd that calibrating the model à la

Clarida, Gali and Gertler, the REE solution is indeterminate and E-unstable

when a fundamentals based policy rule is implemented �whatever approach

we use to modelling dividends �while it generally becomes both determinate

and stable if we use an expectations based rule. There is in fact one notable

exception: In the no-dividend case, the problem of indeterminacy cannot be

overcome by resorting to the expectations based rule (see table 1).

Table 1: Properties of the RE solution

Fundamentals B. Expectations B.

Dividends=Pro�ts
indeterminate

E-unstable

determinate

E-stable

Dividends elastic to asset prices
indeterminate

E-unstable

determinate

E-stable

No-dividends
indeterminate

E-unstable

indeterminate

E-stable
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12 Conclusion

In this paper we have presented a NK-DSGE model in which asset prices will

be eventually incorporated into the NK Phillips curve. This is due to the

assumption of a cost channel for monetary policy which is activated when-

ever monetary policy a¤ects asset prices and therefore the return on shares.

The latter in fact is the cost of external �nance in our model. The novelty of

the analysis consists in this peculiar treatment of �nancing decisions, which

brings to the fore the relationship between pricing of goods and pricing of

assets.

We analyse three monetary policy regimes:(a) an instrument rule with

no-reaction to asset prices (IR-NAP), (b) an instrument rule with reaction

to asset prices (IR-RAP) and (c) an optimal monetary policy rule (OR).

In the case of a supply shock, the policy prescription and the transmission

mechanism are qualitatively the same both with an instrument rule and with

in an optimal monetary policy setting. The results are more complicated

but also more interesting in the case of a demand shock, which has opposite

e¤ects on the output gap. In the IR regime, it has a positive e¤ect while in

the OR regime it has a negative e¤ect. In the IR-RAP case, output grows

more than in the IR-NAP case but in�ation will be lower.

We consider these results encouraging even if this is a very preliminary

exploration of the properties of the model. We want to pursue an appro-

priate generalization because the model has to be enriched to explore more

realistic environments. The most straightforward extension will consist in

incorporating credit markets and credit market imperfections because they
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have a major role to play in our "story". The list of possible extensions that

one can imagine, however, is quite long and will �gure on top of our research

agenda in the near future.
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A The household�s maximization problem

The representative household�s problem consists in :

max
Ct;mt;Nt;At;bt

Et

1X
s=0

�s

"
C1��t+s

1� � +



1� � (mt+s)
1�� � �

N1+�
t+s

1 + �

#

subject to a sequence of budget constraints de�ned as it follows:

Ct+s +mt+s + bt+s +At+sqt+s = wt+sNt+s + qt+sAt�1+s+

+mt�1+s
1

1 + �t+s
+
1 + it�1+s
1 + �t+s

bt�1+s + dt+sAt�1+s

The Lagrangian therefore is:

L = Et

1X
s=0

�s

"
C1��t+s

1� � +



1� � (mt+s)
1�� � �

N1+�
t+s

1 + �

#
+

�Et
1X
s=0

�s�t+s [Ct+s +mt+s + bt+s +At+sqt+s+

� wt+sNt+s �mt�1+s
1

1 + �t+s
� 1 + it�1+s
1 + �t+s

bt�1+s +

� qt+sAt�1+s � dt+sAt�1+s]

Solving the above problem we get the following FOCs that hold 8t:
@L

@Ct
= 0 =) C��t � �t = 0

@L

@mt
= 0 =) 
 (mt)

�� � �t + ��t+1
1

1 + �t+1
= 0

@L

@Nt
= 0 =) ��N�

t + �twt = 0

@L

@At
= 0 =) ��tqt + ��t+1 (Etqt+1 + Etdt+1) = 0

@L

@bt
= 0 =) ��t + ��t+1

1 + it
1 + Et�t+1

= 0
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From the above conditions we get the the Euler equations (4)(5)(6) and

the asset price equation (7) as de�ned in section 2.

B Model I-1

We proceed to the solution of model I-0, which boils down to equations

(27) and (28) by the method of undetermined coe¢ cients. We "guess" the

following:

xt = a1ut + a2gt

�t = b1ut + b2gt

So that, under assumption 1,

Etxt+1 = � (a1ut + a2gt)

Et�t+1 = � (b1ut + b2gt)

After some algebra we verify that the conjecture is indeed correct and

we get the following solutions:

a1 = �� (
� � �)
K0

a2 =
1� ��� k (
� � �)

K0

b1 =
1� �
K0

b2 =
�

K0
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where

K0 := (1� ��) (1� �) +
k

�
(
� � �) (� + ��)

Under assumption 2 it turns out that K0 > 0 and a1 < 0; a2 > 0; b1 >

0; b2 > 0.

The coe¢ cients for the fundamentals based interest rate rule:

it = 
uut + 
ugt

can be computed as follows: 
u = 
�b1 > 0; 
g = 
�b2 > 0:

Finally, from (32) follows that, under the special case of no-dividends,

the solution for q̂t is q̂t = c1ut + c2gt where

c1 = �
� � �
1� � b1 = �


� � �
K0

c2 = �
� � �
1� � b2 = �

� (
� � �)
(1� �)K0

=
�

1� �c1

Therefore c1 < 0; c2 < 0:This completes the solution of model I-1.

The canonical model (without the cost channel) M I-0(c) consists of

equations (30) and (31). The RE solution is:

ac1 = �� (
� � �)
K1

ac2 =
1� ��
K1

bc1 =
1� �
K1

bc2 =
�

K1
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where

K1 := (1� ��) (1� �) +
k

�
(
� � �) (� + �)

The coe¢ cients have the same sign as the corresponding coe¢ cients of the

model with the cost channel. MoreoverK1 > K0: Therefore jac1j < ja1j ; ac2 >

a2; b
c
1 < b1; b

c
2 < b2.

The coe¢ cients for the fundamentals based interest rate rule are: 
u =


�b
c
1 > 0; 
g = 
�b

c
2 > 0:Finally, from (32) follows that, under the spe-

cial case of no-dividends, q̂t = �
� � �
1� � (b

c
1ut + b

c
2gt). This completes the

solution of model I-1(c).

C Model I-2

In order to �nd the RE solution of model I-2bis we "guess" the following:

xt = a1ut + a2gt

�t = b1ut + b2gt

q̂t = c1ut + c2gt

So that, under assumption 1,

Etxt+1 = � (a1ut + a2gt)

Et�t+1 = � (b1ut + b2gt)

Etq̂t+1 = � (c1ut + c2gt)

After some algebra we verify that the conjecture is indeed correct and
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we get the following solutions:

a1 = �� (
� � �)
K2

a2 =
(1� �) [1� ��� k (
� � �)] + 
q (1� ��)

(1� �)K2

b1 =
1 + 
q � �

K2

b2 =
�
�
1 + 
q � �

�
(1� �)K2

=
�

1� �b1

c1 = �
� � �
K2

= �a1

c2 = �� (
� � �)
(1� �)K2

=
�

1� �c1 =
�

1� ��a1

where

K2 := (1� ��)
�
1 + 
q � �

�
+
k

�
(
� � �) (� + ��)

Under assumption 3 it turns out that K2 > 0 and a1 < 0; a2 > 0; b1 >

0; b2 > 0; c1 < 0; c2 < 0.

We can determine the coe¢ cients for the interest rate in the fundamen-

tals based rule:

it = 
uut + 
ugt

as follows: 
u = 
�b1 + 
qc1; 
g = 
�b2 + 
qc2
g: Using the expressions
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above for bi and ci i = 1; 2 we get:


u =

q�+ 
� (1� �)

K2


g =
�
�

q�+ 
� (1� �)

�
(1� �)K2

=
�

1� �
u

This completes the solution of model I-2.

D Model O-1

D.1 Model O-0

We proceed to the solution of model O-0, which boils down to equations

(43) and (44) by the method of undetermined coe¢ cients. We "guess" the

following:

xt = a1ut + a2gt

�t = b1ut + b2gt

so that, under assumption 1,

Etxt+1 = � (a1ut + a2gt)

Et�t+1 = � (b1ut + b2gt)

After some algebra we verify that the conjecture is indeed correct and

we get the following solutions:
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a1 = � � (� + �)

(1� ��)K3 + �
2 (� + ��)

a2 = � �

K3

�
�2 (� + �) (�� 1)

(1� ��)K3 + �
2 (� + ��)

+ 1

�
b1 =

K3

(1� ��)K3 + �
2 (� + ��)

b2 =
k� (� + �) (�� 1)

(1� ��)K3 + �
2 (� + ��)

where

K3 := � (� + �)� � (1� �)

Assuming K3 := � (� + �)�� (1� �) > 0; i.e. � < �̂1 :=
�

� + �
(1� �) ;

a1 < 0; a2 < 0; b1 > 0; b2 > 0 if � > 1 and viceversa.

Recall that

it = ��t � � (1� �)xt + �g

Therefore, the coe¢ cients for the fundamentals based optimal interest rate

rule:

it = 
uut + 
ugt

can be computed as follows:


u = �b1 � � (1� �) a1


g = �b2 � � (1� �) a2 + �

It turns out that 
u > 0; 
g > 0:
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D.2 No dividends

From (49) follows that, under the special case of no-dividends, the solution

for q̂t is q̂t = c1ut + c2gt where

c1 = �a1

c2 = �a2 �
1

1� �

Therefore c1 < 0; c2 < 0:This completes the solution of model O-1 in the no

dividends case.

D.3 Model O-1.1

In order to �nd the solution of model O-1.1 we guess

xt = a1ut + a2gt + a3ẑt

�t = b1ut + b2gt + b3ẑt

q̂t = c1ut + c2gt + c3ẑt

Since the system is recursive, ai; biwith i = f1; 2g are the same as in model

O-0 (see above) and a3 = b3 = 0.

From (55) follows that the solution for q̂t is q̂t = c1ut + c2gt where

c1 =

�+ � (1� �)

1� �� a1

c2 =

�+ � (1� �)

1� �� a2 �
�

1� ��

c3 =

�z + � (1� �z)

1� ��z
a3 +

(1� �) (1 + �)
(� + �) (1� ��z)

�z
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where 
 = (1� �)
�
1 +

�

�� � (� + �)
�
(recall that � = � and � =

1

�
).

D.4 Model O-1.2

In order to �nd the solution of model O-1.2 we guess

xt = a1ut + a2gt

�t = b1ut + b2gt

q̂t = c1ut + c2gt

Since the system is recursive, ai; biwith i = f1; 2g are the same as in model

O-0 (see above).

c1 =
1� �
1� ��0�a1

c2 =
�

1� ��0 [(1� �) a2 � 1]

E The expectations based rule

The system consists of equations (40)(41)(21), which we reproduce here for

the reader�s convenience

xt = ��
�
�t �

it � Et�t+1
� (� + �)

�t = �xt + k (it � Et�t+1) + �Et�t+1 + ut

xt = Etxt+1 � � (it � Et�t+1) + gt

Solving the �rst 2 equations we get:
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xt = �A0it +A1Et�t+1 �A2ut (69)

and

�t = A3it +A4Et�t+1 +A5ut (70)

where

A0 =
�k + (� + �)�1

�+ �2

A1 =
�� (� � k) + (� + �)�1

�+ �2
=

���
�+ �2

+A0

A2 =
�

�+ �2

A3 =
(�� 1) k
�+ �2

A4 =
�� + (�� 1) k

�+ �2

A5 =
�

�+ �2

In order to derive the expectations based rule we plug (69) into the IS

curve (21). After rearranging we obtain:

it = 
�Et�t+1 + 
xEtxt+1 + 
uut + 
ggt
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where


� = 1 +
�

1� �A0
� ��

�+ �2


x =
�

1� �A0

u =

�A2
1� �A0


u =
�

1� �A0

and 1� �A0 > 0 provided � > �k+(�+�)�1

�+�2
:

In order to obtain the optimal in�ation targeting rule, we update (69),

take the expectation and using the law of iterated projections and recalling

that Etut+1 = �ut we get:

Etxt+1 = �A0Etit+1 +A1Et�t+2 �A2�ut

We can retrieve Etit+1 from (70), taking the expectation and using the

law of iterated projections:

Etit+1 =
Et�t+1
A3

� A4
A3
Et�t+2 �

A5
A3
�ut

Substituting the second expression into the �rst one and rearranging:

Etxt+1 = �
A0
A3
Et�t+1 +

�
A1 +A0

A4
A3

�
Et�t+2 +

�
A0
A5
A3

�A2
�
�ut (71)

Substituting (69) and (71) into (??) and solving for it yields:

it = 
�Et�t+1 + 

0
�Et�t+2 + 
uut + 
ggt
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where


� = 1 +

 
��

�+ �2
� �k + (� + �)�1

k (�� 1)

! 
�� �k + (� + �)�1

�+ �2

!�1


0� =
� (� + �)�1

(�� 1) k

 
�� �k + (� + �)�1

�+ �2

!�1


u =

"
� (� + �)�1

(�� 1) k +
�

�+ �2

# 
�� �k + (� + �)�1

�+ �2

!�1


g =

 
�� �k + (� + �)�1

�+ �2

!�1
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