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Abstract. This paper investigates the effect of network structure on the asset price

dynamics. We propose a simple present value discounted asset pricing model with

heterogeneous agents. Every period the agents choose a predictor of the future price

on the basis of past performance of their own and alternative strategies and form

their demands for a risky asset. The information about the performance of an alter-
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native strategy is available only locally from the directly connected agents. Using

the rewiring procedure we produce four types of commonly considered networks:

a fully connected network, a regular lattice, a small world, and a random network.

The results show that the network structure influences asset price dynamics in terms

of the region of stability and volatility. This is mostly due to the different speed of

information transmission in the different networks.

Keywords: asset pricing, local interactions, networks, small world, heterogeneous

beliefs, price dynamics.

JEL classification: C45, C62, C63, D84, G12.
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1 Introduction

To a large extent innovative ideas and practices diffuse in communities through in-

terpersonal communication. Popular ideas in financial markets also often spread

through conversations (Shiller, 1995). In a survey of institutional investors in the

USA, Shiller and Pound (1989) found that money managers who invested in stocks

with extremely high growth of the price/earnings ratio were often discussing their

trades with colleagues. Arnswald (2001) found that among fund managers in Ger-

many information exchange with other financial and industry experts was the second

most important factor influencing their investment decisions, which complemented

conversations with their colleagues and reports from media. Similarly, a study of

fund managers by Hong et al. (2005) provided the strong support for the importance

of informal communication. Household investment decisions are also affected by in-

terpersonal communication. Madrian and Shea (2000) and Duflo and Saez (2002)

showed that employees are more likely to join an investment retirement scheme if

their colleagues have done so. By reviewing data from the Health and Retirement

Study, Hong et al. (2004) suggested that interaction with neighbors or church at-

tendance increased the likelihood of a household investing in stocks.

We study the impact that local interactions between investors have on the asset

price dynamics. The innovation of our approach is to bring together ideas from three

streams of literature: the rapidly developing literature on networks, the literature

on heterogeneous agent models, and the literature on agent-based models. We ex-

plore a range of local interaction patterns by introducing different types of network

topologies into the stylized heterogeneous agent model of Brock and Hommes (1998).

We find that not only communication influences asset price dynamics, but also

the patterns of communication are important because they determine the speed of

information exchange. The analysis of the statistical properties of the time series
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shows that the model with a small world communication structure generates the

most realistic asset price dynamics among all other structures studied in this paper.

In the next section we survey heterogeneous beliefs models. The following section

examines different network structures and their properties. Section 4 contains the

description of the model and its application to the model of Brock and Hommes

(1998). In Section 5 we analyze the model, present and discuss the results of the

simulations. Section 6 concludes the paper.

2 Bounded rationality and heterogeneity in asset pricing

The rational expectations theory of finance (Friedman, 1953) asserts that rational

investors would drive irrational traders out of the financial markets. Numerous

empirical studies, however, showed that successful traders follow a variety of invest-

ment strategies (e.g. Frankel and Froot, 1987; Ito, 1990). DeLong et al. (1990) were

among the first who analytically demonstrated that irrational noise traders may sur-

vive in the market with fully rational traders. The survival is possible because noise

traders bear higher risk which leads to higher returns in the long run. Moreover,

heterogeneity of expectations can explain asset prices dynamics. Day and Huang

(1990), Chiarella (1992), Kirman (1993) and Lux (1995) showed that trades between

different agents that follow simple behavioral rules lead to endogenous price fluc-

tuations. Recently Alfarano and Milaković (2009) enriched the Kirman-Lux model

with explicit network structures.

Brock and Hommes (1998) and Hommes (2001) introduced a structural asset

pricing heterogeneous agent model (denoted the BH model henceforth) with an evo-

lutionary switching between several trading strategies. The strategies differed only

in the expectation about the future price of the risky asset. The fitness measure

of each strategy was freely available to all the agents. The BH model showed that
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the rational expectations strategies do not necessarily drive out boundedly rational

strategies. In fact, both types can co-exist in a market. Despite its complexity, the

BH model had a closed-form analytical solution. The model was able to replicate ex-

cess volatility, a stylized fact which was not reproduced by the rational expectations

models.

To improve the realism of the BH model, Anufriev and Bottazzi (2004) intro-

duced heterogeneous investment horizons, while Anufriev and Panchenko (2006)

investigated the changes in the model outcomes due to different market architec-

tures. De Fontnouvelle (2000) enriched the model with various information flow

schemes about the dividend payments. Brock et al. (2005) extended the BH model

to many trader types, and Hommes (2002) modified the original BH model to repro-

duce volatility clustering. Hommes et al. (2005) included a market maker into the

market pricing mechanism, while Brock et al. (2006) studied how the presence of

risk hedging instruments in the form of Arrow securities affects the market dynam-

ics. Boswijk et al. (2007) estimated the parameters of the BH model using annual

US stock price data. Chang (2007) enriched the model with exogenous social in-

teractions of the Brock and Durlauf (2001) type. Diks and van der Weide (2005)

studied continuous distribution of the agent beliefs, while Gerasymchuk (2008) in-

troduced prospect theory-like preferences of the agents into a modified BH model.

For a detailed survey of the state of the art in the heterogeneous agent modeling see

Hommes (2006).

Another approach used in financial market modeling relies on agent-based mod-

els. Agent-based models aim to re-create real stock markets with large populations

of interacting artificial agents. Santa Fe artificial stock market (Arthur et al., 1997;

LeBaron et al., 1999; Ehrentreich, 2006) is an example of such an approach. Other

examples of agent-based models include Gode and Sunder (1997), Chen and Yeh

(2001), Chen et al. (2001), and Duffy (2001). A major advantage of these models
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over the heterogeneous agent models is that they allow for higher flexibility, richer

behavioral assumptions, and more realistic market architectures. This comes at the

price of increased complexity. Closed form analytic solutions are typically not avail-

able for this class of models and computer simulations are used to analyze them.

For further details on agent-based modeling in finance we refer an interested reader

to the review by LeBaron (2006).

In this paper we combine the rapidly developing literature on networks with

the literature on heterogeneous agent models by introducing local interactions into

the stylized BH model. Due to high complexity of the resulting system, we lose

analytical tractability and have to use agent-based-type simulations to investigate

the model. Our aim is to study the effects of different types of local interactions on

the asset price dynamics. In our setting the information about the fitness measure of

each particular strategy is available to the agents only locally through other agents

directly connected to them. We explore a range of local interactions patterns by

introducing different types of networks. The analytically tractable BH model is a

benchmark to which we compare our results.

3 Social networks

The analysis by Wasserman and Faust (1994) and Valente and Davis (1999) sug-

gested that a typical social network has the following features (summarized in Watts,

1999): 1) there are many participants in the network; 2) each participant is con-

nected to a small fraction of the entire network; in other words, the network is

sparse; 3) even the most connected node is still connected only to a small fraction of

the entire network; that is, the network is decentralized; 4) neighborhoods overlap;

i.e. the network is clustered.

To capture these characteristics Watts and Strogatz (1998) introduced a network
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p=0 p=10<p<1

regular lattice small world random graphfully connected

Figure 1: Network topologies (adapted from Watts and Strogatz (1998)).

model called a small world. It is an intermediate network between a regular lattice

network, where the agents (called nodes in the network literature) are connected

in a geometrically regular way, and a random graph, where the connections are

random. Social scientists have recognized that the small world network is a good

model approximating social interactions in real life. Networks with the small world

properties include social networks of the US corporate elite (Davis et al., 2003),

partnerships of investment banks in Canada (Baum et al., 2003), and many more.

Small world networks emerge when participating agents form networks through a

mix of random and strategic interactions (Baum et al., 2003 and Morone and Taylor,

2004).

Figure 1 shows four examples of network topologies. In the fully connected

network, all nodes are linked to all other nodes. In the regular lattice, each node

is connected to two nodes on each side, that is, each node has 4 connections, or

edges. In order to form a small world network an edge is reconnected to a different

randomly chosen node on the lattice (avoiding self- and double-connection) with a

given rewiring probability, 0 < p < 1. Such rewiring of the nodes continues until all

the edges are processed. In the limit when p = 1 the network becomes a random

graph.

Watts and Strogatz (1998) suggested to characterize the structural properties of
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Figure 2: Clustering coefficient and characteristic path length for networks of dif-
ferent size. Note: logarithmic scale is used for abscissa.

the networks with two measures: a clustering coefficient, C(p), and a characteristic

path length, L(p). The clustering coefficient of a node is calculated by dividing

the number of edges between the node and its neighboring nodes by the maximum

possible number of edges between them. It indicates how well the neighborhood

of the node is connected or, in other words, it expresses the cliquishness of the

neighborhood. By averaging over the clustering coefficients of all the nodes in a

network we obtain the clustering coefficient of the network C(p). The characteristic

path length L(p) measures the average separation between two nodes and is defined as

the average number of edges in the shortest path between two nodes. This measure is

inversely related to the average speed of local signal transmission between two nodes

of the network. The shorter characteristic path length is, the faster the information

spreads through the network.

For each value of the rewiring probability p we obtain a network with new struc-

tural properties. These properties also depend on the number of nodes N . A small

world network can be defined in terms of the clustering coefficient and characteris-

tic path length. Specifically, it is a decentralized sparsely connected network with a

high clustering coefficient C(p) and a small characteristic path length L(p). The val-

ues of the normalized clustering coefficients and the characteristic path lengths for
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different rewiring probabilities p and two network sizes with N = 100 and N = 1000

nodes are depicted in Figure 2. Normalization is implemented over the correspond-

ing characteristics of the regular lattice (for which p = 0). The small world network

properties are observed for p = 0.1 when N = 100 and for 0.01 when N = 1000.

This is consistent with Albert and Barabási (2002) who suggest that the rewiring

probability leading to a small world network is inversely proportional to the number

of nodes.

4 Heterogeneous belief model with local interactions

First, we briefly describe the BH model which we modify to allow for local inter-

actions.1 There are two assets that are traded in discrete time: a risk-free asset

paying a constant gross return Rf = 1 + rf and a risky asset paying a stochastic

dividend yt at the beginning of each trading period t. The dividend is assumed

to be independently and identically normally distributed (i.i.d.) with mean ȳ and

variance Var[y]. The price pt per-share (ex-dividend) of the risky asset in period t is

obtained from the market clearing condition using a Walrasian auctioneer protocol.2

The wealth dynamics is:

Wt+1 = Rf (Wt − ptzt) + (pt+1 + yt+1)zt = RfWt + (pt+1 + yt+1 −Rfpt)zt, (1)

where Wt and Wt+1 are the wealth levels in period t and t+ 1 correspondingly, and

zt is the number of shares of the risky asset purchased at date t.
1While the BH model is presented in terms of deviations from the fundamental price, we present

the model in terms of the price itself for better exposition.
2Following the common convention, in the previous section we used p to denote the rewiring

probability in a small world network. From now on p will denote price.
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The agents are myopic maximizers of the mean-variance expected utility:

max
zt

{Et−1[Wt+1]− a

2
Vt−1[Wt+1]}, (2)

where a is the absolute risk aversion coefficient, and Et and Vt denote conditional

expectation and conditional variance that are based on the publicly available infor-

mation set It = {pt, pt−1, pt−2, ...; yt, yt−1, yt−2, ...}. The demand for the risky asset

of the type h agent is then given by:

zh
t (pt) =

Eh
t−1[pt+1 + yt+1]−Rfpt

aVh
t−1[pt+1 + yt+1]

=
Eh

t−1[pt+1 + yt+1]−Rfpt

aσ2
. (3)

Variables Eh
t and Vh

t are the expectations (or predictors) of the type h agent

about the mean and the variance, respectively. Note that we assume that all the

agent types expect the same variance, Vh
t = σ2 .

Suppose that the supply of outside shares of the risky asset zs is constant. Let

nh
t be the fraction of type h agents at date t, and H be the number of trader types

in the market. The equilibrium of supply and demand then results in the following

pricing equation:
H∑

h=1

nh
t

Eh
t−1[pt+1 + yt+1]−Rfpt

aσ2
= zs. (4)

Under the assumption of zero total supply of the risky asset and homogeneous

(H = 1) beliefs of the agents, the fundamental price p∗ is given by the discounted

sum of the expected future dividends as a solution to the market-clearing equation

(4), which is a well-known result. If, moreover, the dividend process is i.i.d. with

constant mean ȳ, then p∗ = ȳ/rf .

We assume that there are two types of traders present in the market: fundamen-

talists and chartists. The fundamentalist traders forecast the next period price pt+1
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to equal the fundamental price p∗, that is:

Ef
t−1[pt+1 + yt+1] = p∗ + ȳ. (5)

The chartists expect persistent deviations from the fundamental value of the price

in the following form:

Ec
t−1[pt+1 + yt+1] = p∗ + g(pt−1 − p∗) + ȳ, (6)

where a > 0 is a constant and g > 0 is an extrapolation parameter.

The belief types of agents are updated over time depending on the relative sat-

isfaction from following a strategy of a specific type. The satisfaction has observed

and unobserved components:

Ũh
t = Uh

t +
1
β
εht , (7)

where Uh
t is the observed performance measure, εht is the idiosyncratic noise (we

later discuss its source), and β is a coefficient, which controls the intensity of the

noise. The observed performance measure Uh
t is defined as a net profit of strategy

h, that is

Uh
t = πh

t − Ch = (pt + yt −Rfpt−1)zt−1 − Ch, (8)

where pt + yt − Rfpt−1 is the excess return earned per unit of the amount of the

risky asset zt−1 held in the agents’ portfolio at the end of period t−1, and Ch is the

cost of following the strategy h. This cost is set to zero for the extrapolating rule of

chartists and is strictly positive (set to unity) for fundamentalists.

In the BH model, where every agent knows the performance of both strategies,

the dynamics of the model can be described through the co-evolution of the trader
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type fractions nh
t and the market equilibrium price. For a sufficiently large number of

the agents, this fraction can be determined by nh
t = P (Ũh

t > Ũh−
t ), where P denotes

a probability measure. Moreover, if the idiosyncratic noise εht in (7) follows the

standard Gumbel (extreme value) distribution, by using the discrete choice model

of Manski and McFadden (1990), nh
t can be directly expressed as

nh
t =

exp(βUh
t )

exp(βUh
t ) + exp(βUh−

t )
. (9)

In our setup the agents are located on the nodes of a network and can observe

the performance measure of the strategies employed only by those agents who reside

on the nodes directly connected with them. Hence, they cannot observe the strategy

performance of the traders located two or more edges away. Therefore, contrary to

Brock and Hommes (1998), we do not assume that the performance of every strategy

is available to all the agents and we do not use the discrete choice fractions specified

in (9). Instead, we allow only for local information exchange in the market. In

particular, if an agent is surrounded by the agents of the same type (see Figure

3a), she does not switch as there is no information about the performance of the

alternative strategy. If an agent has at least one neighbor of the different type3 (see

Figure 3b), she is able to compare the satisfaction from her own strategy Ũh
t with

the satisfaction from the alternative strategy Ũh−
t . She switches to the alternative

3If there are more than one neighbors of the different type, only one of them is consulted to
compare strategies.
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strategy if it performs better. Formally, an agent chooses a strategy h∗ equal to

h∗ = arg max
h,h−

(Ũh
t , Ũ

h−
t ). (10)

We allow for idiosyncratic noise across the agents in the performance measure, as

specified by (7). The impact of the noise is inversely related to the intensity of the

choice parameter β.

The noise in the performance measure may come from various sources. First,

investors’ decisions may be influenced by some unobserved factors in addition to the

performance measure. These factors may be attributed to the cultural and historical

characteristics (see Bond and Smith, 1996 and Hirshleifer, 2001) and differ across

investors and across time. Second, the noise may be attributed to communication.

We can distinguish two types of noise within this category. One type is attributed

to plain noisy information transmission, i.e. under- or over-reporting of profits by

neighbors due to behavioral biases. Another type of noise can be attributed to the

amount of trust the agents put into the results communicated by their neighbors.

We assume that the noise term εht in (7) is distributed according to the standard

Gumbel distribution. Under this assumption, our model with a fully connected

graph and a sufficiently large number of agents is comparable to the Brock and

Hommes (1998) model.

Our market constitutes a complex adaptive dynamical system with co-evolving

heterogeneous agents and equilibrium price. The model progresses in the following

way (see Figure 4). After the expectations of the agents are formed and their

demand is ascertained, the price is determined through the Walrasian auctioneer

scenario. Next, the profits of the agents are determined. Then, agents compare

their net profits with their neighbors’ and switch to another strategy or remain with

their own depending on their spatial position and relative performance. Finally the
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agents form their expectations again and the cycle repeats.

INITIALIZATION

EXPECTATIONS FORMED

WALRASIAN AUCTIONEER SETS PRICE

PERFORMANCE COMPARED

WITH NEIGHBOR’S

PORTFOLIO UPDATED

DIVIDENDS DISTRIBUTED

NETWORK STRUCTURE CREATED

PROFITS COMPUTED

DEMAND COMPUTED

STRATEGY SWITCH

IF

different type
neighbours

same type
neighbours

NO SWITCH

Figure 4: Temporal flow.

As we have discussed in Section 3, many

studies point out that small world networks

are good models for approximating real-life

local interactions. In the next section we

investigate the implications of introducing

small world information exchange into the

Brock and Hommes (1998) model. We also

compare the effect from the small world

network with other basic network topolo-

gies.

5 Simulations and results

By introducing nontrivial communication

structures into the Brock and Hommes

(1998) model we lose analytic tractabil-

ity. Nevertheless, complex behavior of the

resulting models can still be analyzed by

means of computer simulations.4

We conduct simulations for four differ-

ent network structures of local interactions, i.e. for a fully connected graph, a regular

lattice, a small world graph with the rewiring probability equal to 0.01, and a ran-

dom graph (see Figure 1). All the graphs are connected, that is, there are no nodes

that do not have any edges. The fully connected graph is used as a benchmark

corresponding to the finite number of agents implementation of the original Brock
4The C++ code for our simulations is partially adapted from the code of Bottazzi et al. (2005).
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Parameter Symbol Value/Range
Intensity of choice β [0.5, 5]
Interest rate rf 0.1
Mean dividend ȳ 10
Interpolation coefficient g 1.4
Initial price p0 103
Initial fraction of fundamentalists nf

0 0.5
Number of agents N 1000
Transient period Tr 2000
Simulation length T 2000

Table 1: Parameter values used in simulations.

and Hommes (1998) model. We analyze the asset price dynamics for N = 1000

agents. We found that for this number of agents fractions nf
t are close to the corre-

sponding discrete choice probabilities in (9).5 For comparison we choose the basic

parameter values of the model similar to those used in Brock and Hommes (1998).

The parameter values are summarized in Table 1.

5.1 Evolution of prices and beliefs

The asset price dynamics for a range of values of β are shown by means of bifurcation

diagrams in Figure 5. These bifurcation diagrams depict the dependence of the price

distribution on the intensity of choice parameter β. The price distribution for each

level of β is represented by a gray-shade histogram. Darker shades correspond to

areas of higher density. The histograms are computed using price levels from 10000

periods after 2000 transient periods with β ranging from 0.5 to 5 and a linear step

of 0.05.

The two bifurcations occurring in the fully connected network are similar to

the pitchfork and Neimark-Sacker bifurcations occurring in the Brock and Hommes

(1998) model for β∗ ≈ 2.3 and β∗∗ ≈ 3.3 respectively. During the pitchfork bifur-
5We also analyzed networks with N = 100. Qualitatively the results were similar. However, the

level of noise due to the finite sample implementation was much higher.
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Figure 5: Bifurcation diagrams.

cation, the steady state loses its stability and two additional stable steady states

are created. The Neimark-Sacker bifurcation leads to the emergence of periodic or

quasi-periodic cycles. Economic intuition behind these bifurcations is as follows.

The fundamentalists bring the price to the fundamental level, while the chartists

destabilize the fundamental price by extrapolating the trend. The difference in the

fractions of these two types determines the price behavior. When the price is close

to the fundamental level the excess returns of the fundamentalists and the chartists

are equal, but the former incur the costs. When β < β∗ this relative difference in

past performance in not important for the choice of the forecasting rule. Thus, the

difference in the fractions is not large enough and the price remains at the funda-

mental level. However, when β∗ < β < β∗∗, the relative past performance becomes

more important and a larger fraction of agents chooses the less costly chartist rule.

This results in the deviation of the equilibrium price from the fundamental level.

When β > β∗∗, that is, when the agents become highly reactive to the difference in

excess returns, we observe cyclical behavior. When the price is near the fundamental
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level, the fraction of chartists rapidly increases amplifying any small deviations from

the fundamental level and creating a bubble. The bubble ends since the extrapola-

tive behaviour of chartists is not strong enough to sustain the trend and at some

point fundamentalists start dominating the market bringing the price back to the

fundamental level and the story repeats itself.

The values of β for which two bifurcations occur in the fully connected network

are close to the BH model. The other networks show somewhat different dynamics.

The period between the primary and secondary bifurcations is shorter. In terms

of the occurrence of the primary bifurcation with respect to the parameter β, the

networks can be arranged in the following order (in decreasing value of β): the fully

connected network (the benchmark), the random graph, the small world network,

and the regular lattice. The same order holds with respect to the increase in the

price amplitude. These results can be explained by the average speed of the infor-

mation transmission between the agents within the network, which is closely related

to the characteristic path length measure as discussed in Section 2. The informa-

tion about the performance of the alternative strategy reaches all the nodes in the

fully connected network within one time period. As we remove some edges, the

information transmission between the agents who are not directly connected slows

down. The speed of the information transmission is the slowest for the regular lat-

tice. Slower information transmission results in higher persistence of one particular

strategy over time, or, in other words, it delays the switching. Thus, the fraction of

chartists becomes relatively large for smaller values of β than in the fully connected

network. This translates into earlier bifurcations. The post-bifurcation region of

price instability becomes larger and the amplitude of price fluctuations becomes

higher.

Figure 6 depicts the time series of the price for two values of the intensity of

the switching parameter, β = 1 and β = 3.5, and the four networks: the fully
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Figure 6: Time series of price.

connected graph (FC), the regular lattice (RL), the small world network (SW) and

the random graph (RG). We use this abbreviation in subsequent figures. For β = 1

the price dynamics corresponding to the fully connected graph and the random

network converges to a steady state, while the regular lattice and the small world

network lead to highly irregular chaotic asset price fluctuations. For β = 3.5, chaotic

behavior is observed for all the network topologies, however, the regularity and

the amplitudes of fluctuations vary considerably among them. The price dynamics

of the random network are close to those of the fully connected network. The

price dynamics produced by the regular lattice are the most distinct from the fully

connected network. The small world network produces price dynamics similar to

the regular lattice with some shift towards the random graph.
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Figure 7: Evolution of agent population.

To provide insights into the effects of different network topologies on market

behavior we track how individual agents change their forecasting beliefs over time.

Figure 7 shows a typical set of patterns that emerge during simulations. This set

is for β = 3.5. The figure shows the evolution of the forecasting type for all 1000

agents at every time step from 0 to 1000. Each point on a vertical line represents

an agents’ type: a black point indicates the fundamentalist type, while a blank (or

white) point indicates the chartist type. As reference points about the performance

of the alternative strategy, two agents in our system do not change their types: agent

500 is always a fundamentalist, while agent 0 is a chartist. This is done to prevent

the possible extinction of one of the agents’ types, which may happen in our model

because of the finite number of agents. 6 The periods of the highest concentration

of fundamentalists correspond to the time when the price falls to the fundamental

level, while the lowest concentration of fundamentalists corresponds to the highest

deviation from the fundamental value of the price. Overall, the fraction of funda-

mentalists is higher in the fully connected network. This is consistent with smaller

deviations from the fundamental price and frequent price oscillations. Fundamen-

talist are uniformly distributed across the network. In the case of regular lattice

we observe high clustering of the fundamentalists around the fundamental “core”.
6In the Brock and Hommes (1998) model the fractions of the both types are always positive,

but may be very small. Since their model assumes infinitely large number of agents, the extinction
does not occur.
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Figure 8: Time series of price with a stochastic dividend process.

This is consistent with the high clustering coefficient of this network. In the small

world network we also observe clusters, but they are smaller and more disperse in

space. Again this is consistent with sparsity and a high clustering coefficient typical

for this network. In the case of random graph we do not observe any clusters of the

fundamentalists. This is due to a very small clustering coefficient for this network

and a relatively small number of the fundamentalists on the market during most of

the periods.

Figure 8 presents time series plots for the asset price corresponding to the case of

stochastic dividends. We assume that the dividends are independent and identically

normally distributed with the mean set to 10 and the variance of 1. For β = 1, even

with the small variance in the dividend process, the time series of the small world
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Figure 9: Measures of market information inefficiency.

network and the regular lattice exhibit large fluctuation. For the fully connected

network and the random graph the price stays at the fundamental level of 100. For

β = 3.5, the regular lattice and the small world network produce even greater irregu-

lar single-peak deviations from the fundamental price, while the fully connected and

the random networks produce relatively regular fluctuations of a much smaller scale.

A comparison of Figure 6 with Figure 8 suggests that the impact of the stochastic

dividend on the price is the strongest in the small world and the regular lattice

networks.

The informational efficiency is closely related to the speed of information trans-

mission (or characteristic path length) and can be measured by comparing the

volatility of the observed price with the volatility of the fundamental dividend pro-

cess as suggested by Shiller (1981). In order to abstract from the effect of time-

varying dividend in our model, we keep the dividend process constant. Under this

assumption, the Efficient Market Hypothesis would predict constant price over time

and zero trading volume. In Figure 9 we analyze the standard deviation of the price

(panel a) and the average traded volume (panel b) for values of β ranging from 0.5 to

5 for the four topologies. We ignore the first 2000 transitory iterations and compute

the standard deviation of price and the average traded volume for the following 2000
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(b) Excess kurtosis

Figure 10: Skewness and kurtosis of returns.

periods. To eliminate the dependence of our results on a particular realization of the

random seed, we report averages for 100 simulation runs, each run having its own

random seed. The same simulation setup is used for all the other statistics reported

further. We observe that the random graph and the fully connected network exhibit

the most informational efficient outcomes for any values of β which is consistent with

the highest speed of information transmission in these two networks. The regular

lattice exhibits the least informationally efficient outcome.

5.2 Statistical properties

Below we analyze the properties of the time series generated by the four considered

networks. This analysis helps us to understand which network structure generates

the time series, properties of which are closer to the stylized facts observed in reality.

Figure 10 depicts the skewness of the returns and the excess kurtosis of the

returns. The former statistic (Figure 10a) measures the asymmetry of the distribu-

tion. It is close to zero for all the networks for all post-bifurcation values of β. The

returns generated by the model with the small world network are slightly negatively

skewed.

The excess kurtosis plot (Figure 10b) reveals that all the four networks generate
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Figure 11: Properties of returns and volume.

return distributions with different kurtosis values. The small world network return

distribution exhibits the excess kurtosis value close to 5, which is close to the one

observed for the returns on the real financial markets.

By computing the autocorrelation of the returns for the four network structures,

we can analyze linear unpredictability of the stock returns, which is a well-known

property of the time series exhibited by the real financial markets. Figure 11a de-

picts the autocorrelation of returns for the first five lags as a function of the intensity

of choice. Usually the real financial time series exhibit small or no autocorrelation

of returns. The regular lattice and the small world network produce high autocor-

relations at all lags. This, again, can be attributed to a less efficient information

transmission in these networks. Although the random graph and the fully connected

network display large autocorrelations at the first two lags, they converge to zero

autocorrelation values at lag three to five. The significant positive autocorrelations

are resulting predominantly from the persistence of chartists strategies. It is possible

to reduce the autocorrelations by adding a sufficient amount of dynamical noise into

the price as in Hommes (2002). However, we do not aim to reproduce stylized facts

in this paper and therefore do not pursue this route.

Figure 11b shows the correlations between the squared returns and the volume
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Figure 12: Autocorrelation of squared returns.

of trades. In real financial markets, high trade volumes are associated with high

volatility. Many standard asset pricing models, however, fail to reproduce this fact.

Our model produces positive volume-volatility correlations for all networks. The

highest values in the post-bifurcation region are observed under the random graph

network, followed by the small world network.

A universal property of the real financial time series is the volatility clustering,

i.e., the presence of slow decaying autocorrelations in the squared returns. Figure

12a shows the autocorrelations of the squared returns at the first five lags as a

function of β, while Figure 12b shows the autocorrelation function of the squared

returns for 20 lags with β = 3.5. The autocorrelations of the squared returns under

the fully connected network and random graph vanish after first few lags, which is

not consistent with stylized facts. In turn the autocorrelations under the regular

lattice and the small world network remain positive and large at many lags for the

regular lattice and the small world network indicating the volatility clustering of the

returns.

The above analysis reveals that different local interaction arrangements in the

market affect the dynamics and the time series properties. The effect of the change

in the behavior parameter β also depends on a particular network configuration.
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6 Concluding remarks

In this paper we expanded the model of Brock and Hommes (1998) by introducing

local information exchange via communication networks. We studied how different

network structures affect asset price dynamics. We observed that the stability region

with respect to the intensity of choice parameter β depends on the communication

network. A relatively slower information transmission in the regular lattice and the

small world networks creates greater information inefficiencies and induces greater

instabilities and higher deviations in the price dynamics. Upon the analysis of the

statistical properties of the time series of the returns generated by different networks

we observed that the asset price dynamics generated under the small world network

exhibit some properties close to those observed in the real financial markets.

In many networks there is a feedback between network performance and network

formation. This means that the performance of agents also influences the network

topology they are active in. For simplicity in this work we imposed the network

structure on the agents. Endogenous network formation is an extension which we

plan to address in the future work.
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