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Abstract

This article extends the Leitmann equivalence method to a class of problems featuring
conjugate points. The class is characterised by the requirement that the set of indiffer-
ence points of a given problem forms a finite stratification.
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1. Introduction

In this article, the Leitmann equivalence method [1, 2, 3] that gives absolute ex-
trema of calculus of variations problems is extended to a class of problems that feature
conjugate points.

Recall that the Leitmann equivalence method consists in considering a classical
field of extremals as a coordinate transformation: the extremals of the transformed
problem are then constants. Optimality of the transformed extremals is obtained by us-
ing Carathéodory’s equivalent problem approach [4]. This gives the sufficiency theory
of the classical Calculus of Variations a particularly simple and elegant form.

However, the above summary of the equivalence method also indicates one of its
main limitations: the method breaks down when extremals intersect, that is, when the
field of extremals fails to define an invertible coordinate transformation. It may fail
globally, when a point in the extended state space is reached by several extremals, or
locally, when the differential of the transformation at a point fails to have full rank. The
latter points are classically called conjugate.
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The present article is a step in the direction of removing this limitation. First,
only the extremals of the field are considered. The obvious but important thing to
note here is that an extremal should be restricted to its maximal domain of optimality,
which is defined as the maximal interval of definition such that no other extremal in the
field having the same endpoint gives a lower value to the objective functional. If the
domain of optimality does not coincide with the integration domain of the objective
functional, several situations may arise: either the extremal cannot be extended to a
larger domain of definition or it fails to be optimal on a larger domain. In the latter
situation, the endpoint is either a conjugate point, an indifference point, meaning that it
is reached by several extremals all giving the objective functional the value, or it may
be an infimal point: in this case, the point is reached by an infinity of extremals, but the
set of associated values of the objective functional has no minimal value.

Attention is restricted to the situation that there are no infimal points, and that the
set of indifference points forms a finite stratification; this means that it is the union of
finitely many open differential manifolds, possibly of different dimensions, such that
each manifold that intersects the closure of another manifold is actually contained in
this closure. Having specified in this way the structure of the set of extremals restricted
to their domains of optimality, the second step is to show that an element of this set
actually minimises the objective functional also on the much larger set of all admissi-
ble trajectories. In the proof of this second step, it is sufficient to consider the generic
situation of a smooth non-extremal trajectory attaining a lower value of the objective
functional than all extremals of the field, and intersecting only finitely many indif-
ference manifolds finitely often. The main technical point then is to show how these
intersections can be removed without changing the value of the objective functional
too much, ending up with a trajectory that has no intersections with any indifference
manifold, but still realises a lower value of the objective functional than any extremal.
Leitmann rectification now immediately shows the impossibility of this situation. The
theorem is illustrated by its application to a relatively simple problem that features
indifference points.

Leitmann’s rectifying coordinates are closely related to Kneser’s normal coordi-
nates of a field. Kneser [5], §22, considered parametric problems having a positive
integrand. He also used a field of extremals as a coordinate transformation; however,
as the second normal variable he took the accumulated value of the objective functional
along the extremal. This ensures that the integrand of the objective functional is con-
stant along extremals and it eliminates the need to consider an equivalent problem. In
§22.IV Kneser demonstrates that in normal coordinates, the resulting variational prob-
lem can be solved by inspection. The restriction of Kneser to problems with positive
integrands was forced by the need to have the integrand transform to a simple form,
as the method of equivalent problems was not known at the time. The central idea of
the present article, to show that for the problem of finding a global minimum attention
can be restricted to the extremal trajectories, has its roots in the so-called Calculus of
Variations in the Large, where, however, it is applied to several relatively short parts of
the non-extremal trajectories [see 4, §385].

There is a rapidly growing literature on the subject of Leitmann rectification, show-
ing that the method is general and in principle applicable to all kinds of problems con-
nected to the Calculus of Variations; see [2, 3, 6, 7, 8, 9, 10, 11, 12].
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2. The problem

2.1. Preliminary definitions.

In the following, any C k function defined on a closed set G is always assumed to
be the restriction of a C k function defined on an open neighbourhood of G.

Let points a, b ∈ R be given, a < b, as well as points α, β ∈ Rn. The set X =

[a, b] × Rn is called the extended state space. Let L : X × Rn → R be a C 2 function
on the extended tangent space T = X × Rn. Writing L = L(t, x, v) with (t, x) ∈ X
and v ∈ Rn, it is assumed that

Lvv(t, x, v) > 0 for all (t, x) ∈ X.

Finally, for a < T ≤ b, let AT be the space of absolutely continuous functions x :
[a,T ] → Rn that are such that x(a) = α; an element of AT will be called a trajectory
(starting in α) in the following. Let moreover BT,X be the subset of AT of trajectories x
that satisfy x(T ) = X.

The space AT will be equipped with the topology induced by the metric

dT (x1, x2) =

∫ T

a
|ẋ1(t) − ẋ2(t)| dt.

Recall that the set of C∞ trajectories is dense in AT with respect to this metric.

2.2. The minimisation problem.

Introduce for a < T ≤ b the functional JT : AT → R that is defined by

JT (x) =

∫ T

a
L(t, x, ẋ) dt.

In this article, I consider the standard problem to find a minimiser of Jb on Bb,β, that
is, an element x0 ∈ Ab such that x0(b) = β and such that Jb(x0) ≤ Jb(x) for all x ∈ Bb,β.

Recall from the Calculus of Variations that if x ∈ Bb,β minimises Jb, then it is
necessarily a solution to the Euler-Lagrange equation

Lx(t, x, ẋ) −
d
dt

Lv(t, x, ẋ) = 0, (1)

satisfying the boundary conditions

x(a) = α, x(b) = β.

In general, solutions to (1) are called extremals. The regularity assumption Lvv > 0
implies that every extremal is at least C 2. Introduce the subspaces ET ⊂ AT and ET,X ⊂

BT,X of trajectories in AT and BT,X respectively that are extremals.
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3. Leitmann rectification.

Leitmann has developed a method which replaces the problem to minimise JT by
the problem to minimise an equivalent functional J̃T , whose minimisers can be deter-
mined “by inspection”. The method consists, if it works, in finding a field, that is,
an n-parameter family of extremals satisfying a certain integrability condition, such
that each point in the extended state space is covered by exactly one extremal. Using
this family as a coordinate transformation, the extremals transform to straight lines,
the Hamilton-Jacobi partial differential equation simplifies to a family of simple ordi-
nary differential equation solvable by quadratures, and the transformed problem can be
solved by an easy application of Carathéodory’s “royal road” approach.

That the method does not always work is a consequence of the well-known fact that
(the graphs of) extremals may intersect; this precludes the existence of globally defined
rectifying coordinates. However, if two extremals x1, x2 intersect at a point (t, x), then
that extremal which gives the larger value of Jt should obviously be discarded. If both
extremals yield the same value, and no other extremal yields a smaller value, the point
(t, x) is called an indifference point. The natural domain of definition of the Leitmann
equivalence transformation is therefore the open set that has the union of the set of
indifference points and the terminal line t = b as its boundary.

3.1. Domain of injectivity.
Let us formulate these ideas more precisely. Denote by

t 7→ ξ(t, y)

the extremal that satisfies the boundary conditions ξ(a, y) = α, ξt(a, y) = y. The max-
imal domain of definition of ξ(·, y) is denoted by [a, ωy). Note that the family ξ(t, y)
forms a central field of extremals [cf. 12].

The value of the integral along ξ(·, y) is given as

v(t, y) = Jt(ξ(·, y)) =

∫ t

a
L(s, ξ(s, y), ξs(s, y)) ds.

If (t, x) = ξ(t, y), and if ξy(t, y) , 0, then there is an open neighbourhood Ũ of (t, y)
that is mapped diffeomorphically to a neighbourhood U of (t, x) by (t, y) 7→ (t, ξ(t, y)).
Define W : U → R by

W(t, ξ(t, y)) = v(t, y), (2)

that is, W(t, x) = v(t, y) whenever x = ξ(t, y).

Lemma 1. If ξy is invertible at (t, y), then

Wx(t, ξ(t, y)) = Lv (t, ξ(t, y), ξt(t, y)) .

Proof. Differentiate (2) with respect to y to obtain

Wx(t, ξ(t, y))ξy =

∫ t

a

(
Lxξy + Lvξsy

)
ds.
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Here and in the following, arguments (t, y) of ξ and (t, ξ(t, y), ξt(t, y)) of L may be
omitted without explicit mention. Integrating partially, and using that ξ(., y) satisfies
the Euler-Lagrange equation as well as the fact that ξ(a, y) = α for all y and hence
that ξ(y(a, y) = 0, yields

Wx(t, ξ(t, y))ξy =

∫ t

a

(
Lx −

d
dt

Lv

)
ξy ds + Lvξy

∣∣∣∣t
a

= Lv(t, ξ(t, y), ξt(t, y))ξy.

Multiplication with the inverse of ξy yields the result.

Let Y(t,x) be the set of parameters y that are such that ξ(t, y) = x. Introduce also the
function V(t, x) by setting

V(t, x) = inf
{
v(t, y) | y ∈ Y(t,x)

}
.

Define a set D̃ ⊂ [a, b] × Rn as follows. If the infimum in the definition of V(t, x) is
actually a minimum that is realised by a unique element y ∈ Y(t,x), then (t, y) ∈ D̃.

It follows from the principle of optimality that if (t0, y) < D̃, then (t, y) < D̃ for
all t > t0. Introduce

τy = sup
{
t ∈ [a, ωy)

∣∣∣∣ (t, y) ∈ D̃
}
.

Note that if t = τy, then necessarily either t = ωy, or there exists ȳ ∈ Rn such
that ξ(t, y) = ξ(t, ȳ) and v(t, y) = v(t, ȳ), or there is an infinite sequence {yn} such that

ξ(t, y1) = ξ(t, y2) = · · ·

and
v(t, y1) > v(t, y2) > · · · .

3.2. The rectification map.
Define the map

Ξ : D̃ → R × Rn, (t, y) 7→ Ξ(t, y) = (t, ξ(t, y)).

Define the domain of unicity by setting D = Ξ(D̃). A point (t, x) is in D if and only if
there is a unique extremal joining (a, α) and (t, x) minimising Jt over the set of all ex-
tremals ξ(·, y) with y ∈ Y(t,x); that is, there is a unique element y ∈ Y(t,x) that minimises

jt(y) = Jt(ξ(·, y)).

For these points, a map ξ−1(t, ·) is defined by requiring that

ξ
(
t, ξ−1(t, x)

)
= x.

A point (t, x) is in the relative complement X\D of D if one of two possibilities hold.
The first possibility is that there are at least two elements y1, y2 ∈ Y(t,x) that yield
the minimum value of jt: such a point is called an indifference point. The second

5



possibility is that the set of values jt(Y(t,x)) has no minimal element; that is, there are
infinitely many extremals joining (a, α) to (t, x), and the set of values of Jt over these
extremals has no minimal element. In this case, the point (t, x) will be called infimal.

Recall also the definition of conjugate states: a state (t0, x0) is conjugate to (a, α)
along the extremal ξ(., y0), if there are sequences y(1)

k , y(2)
k → y0 with y(1)

k , y(2)
k for

any n, and a sequence (tk, xk), such that

(tk, xk) = ξ
(
tk, y

(1)
k

)
= ξ

(
tk, y

(2)
k

)
,

and such that
(tk, xk)→ (t0, x0)

as n→ ∞. It follows from this definition that ξy cannot be invertible at (t0, y0):

det ξy(t0, y0) = 0.

The set of indifference points is denoted by I; the set of conjugate points by C.
Necessarily ∂ I ⊂ C.

The following theorem is already contained in Weierstrass’ work on strong min-
ima [13]; Leitmann’s rectification method furnishes a very elegant proof (see [1, 2, 12,
14]).

Theorem 1. Let x̃ ∈ Bb,β be such that (t, x̃(t)) ∈ D for all a < t ≤ b, and let x ∈ Eb,β be
an extremal, necessarily unique, that satisfies (t, x(t)) ∈ D for all a < t ≤ b. Moreover,
assume that x and x̃ are not identical. Then

J(x̃) > J(x).

4. Main theorem

In this section, the main theorem of the paper is stated and proved.
Recall the definition of a stratification: a disjoint collection S = {Si : i = 1, · · · }

of embedded submanifolds Si is a stratification, and its union S = ∪iSi is a stratified
set, if Si ∩ S j , ∅ implies Si ⊂ S j. The stratification is finite if the collection S is
finite.

Assumption 1. In the following, it is assumed that there are no infimal points, that the
set of indifference points I is a finitely stratified set, with stratification {I1, · · · ,I`},
and that the set I ∩ C of those conjugate points that are contained in the closure of
the set of indifference points is a finite stratification of manifolds that have at most
dimension n − 1.

Introduce
Ymin

(t,x) = {y ∈ Y(t,x) | jt(y) ≤ jt(z) for all z ∈ Y(t,x)}.

It is a consequence of the assumption that Ymin
(t,x) , ∅ for any (t, x) ∈ X. Consequently,

the function V is defined everywhere on X.
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Theorem 2. Let assumption 1 hold. If x(t) = ξ(t, y) is an extremal for which y ∈ Ymin
(b,β),

then x minimises Jb over Bb,β.

Proof. Arguing by contradiction, assume that there is a trajectory x−2 ∈ Bb,β\Eb,β such
that

Jb(x−2) < m = min
x∈Eb,β

Jb(x).

Noting that Jb : Bb,β → R is continuous with respect to the topology introduced in
subsection 2.1, and making use of the fact that the C∞ elements of Bb,β are dense
in Bb,β with respect to the same topology, it follows that there is a C∞ trajectory x−1
for which also

Jb(x−1) < m.

From the weak transversality theorem it follows that there is a C∞ trajectory x0, such
that the curve t 7→ (t, x0(t)) intersects every manifold Ii of the stratification of I
transversally, as well as the manifolds of the stratification of I ∩ C, and such that

Jb(x0) < m.

Since the maximal dimension of manifolds in the stratification of I ∩ C is n − 1, it
follows from transversality that x2 does only intersect the n-dimensional manifolds in
the stratification I, and it does not intersect I ∩ C at all.

In the following it will be shown that the existence of x0 implies that there is another
C∞ trajectory xN in Bb,β that satisfies Jb(xN) < m, and that does not intersect I at all.
But this will lead to a contradiction.

As x0 intersects each Ii transversally, these intersections are isolated, and hence
the number of such intersections is finite; let this number be Ni. Consequently, the
total number N =

∑
Ni of intersections of x0 with I is finite as well. We shall perform

an induction on the number of intersections, showing that for a given trajectory with a
finite number of transversal intersections with I, it is always possible to find a trajec-
tory with a smaller number of intersections, which also yields a value of the functional
smaller than m. The induction ends with a trajectory that is entirely contained in D,
yielding a value of the objective functional smaller than m; but by theorem 1, the tra-
jectory is shown to yield a value of the functional at least as large as m, resulting in a
contradiction.

Assume therefore that there is a C∞ trajectory xk, such that xk is transversal to I
and such that it does not intersect I∩C at all, having N−k points of intersection with I
at the intersection times t1, t2, · · · , tN−k, and such that

J(xk) < m.

Let (t̄, x̄) = (t1, xk(t1)) ∈ I be the first intersection of xk with I. Since (t̄, x̄) is an
indifference point, there are y1, y2 ∈ Y

min
(t̄,x̄), y1 , y2, such that

v(t̄, y1) = v(t̄, y2) = V(t̄, x̄).

Since (t̄, x̄) is in I but not in I ∩ C, it follows that

det ξy(t, y1) , 0 , det ξy(t, y2).

7



Then there are open neighbourhoods U1 and U2 of y1 and y2 respectively, and an ε > 0,
such that Ξ(t, y) = (t, ξ(t, y)) maps U1 and U2 both diffeomorphically onto the open set

B = (t̄ − ε, t̄ + ε) × Bε(x̄) ⊂ (a, b) × Rn.

Define on B the functions V1,V2 : B→ R by

Vi(t, ξ(t, y)) = v(t, y), for all (t, y) ∈ Ui, i = 1, 2.

Lemma 1 implies that

∂Vi

∂x
(t̄, x̄) = Lv (t, ξ(t, yi), ξt(t, yi)) .

Introduce
∆(t, x) = V2(t, x) − V1(t, x).

Then
B ∩ I = {(t, x) ∈ B |∆(t, x) = 0}.

Note that for (t, x) ∈ B ∩ I

∆x =
∂V2

∂x
−
∂V1

∂x
, 0; (3)

for if this is not the case, then

ξ(t̄, y1) = ξ(t̄, y2) = x̄

as well as

Lv(t, x̄, ξt(t, y1)) = Lv(t, x̄, ξt(t, y2)).

Since Lvv is invertible everywhere, this equation can be solved for

ξt(t, y1) = ξ(t, y2);

But two solutions of the second-order Euler-Lagrange equation whose values and first
derivatives coincide at a given point are identical, implying that y1 = y2, contrary to
our assumption. Hence inequality (3) has to hold.

Let δ(t) = ∆(t, xk(t)), and note that δ(t̄) = 0. Because of transversality, δ′(t̄) , 0; in
fact, taking ε > 0 sufficiently small, it may be assumed that if (t, xk(t)) ∈ B, then

δ′(t) > 0.

It follows that if (t, ξ(t, yi)) ∈ B and t < t̄, then

∆(t, ξ(t, y1)) < 0 and ∆(t, ξ(t, y2)) > 0.

The point (t, xk(t)) is contained in D for a ≤ t < t̄, and it tends to x̄ as t ↑ t̄.
Therefore, there is an absolutely continuous trajectory zk such that for all a ≤ t < t̄

xk(t) = ξ(t, zk(t)),
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and zk(t)→ y1 as t ↑ t̄.
From theorem 1 it follows that

Jt̄(ξ(., y1)) ≤ Jt̄(xk).

Define as follows a trajectory x̂k+1 that does not cross I ∩ B:

x̂k+1(t) =

ξ(t, y2) if a ≤ t ≤ t̄,
xk(t) if t̄ < t ≤ b.

For all t such that (t, x̂k+1(t)) ∈ B, it holds that ∆(x̂k+1(t)) ≥ 0. Moreover, since

J̃t̄(ξ(., y1)) = v(t̄, y1) = v(t̄, y2) = J̃t̄(ξ(., y2)),

it follows that
Jb(x̂k+1) ≤ Jb(xk) < m.

The next step is to modify x̂k+1 to a new trajectory x̌k+1 that has no point in common
with I ∩ B. Let ρ > 0 be such that t̄ + ρ < t2 − ρ and x̂k+1(t) ∈ B for all t̄ < t < t̄ + ρ;
then

∆(t, x̂k+1(t)) ≥ 0

for t̄ < t < t̄ + ρ. Let ỹ2 be such that (t̄ + ρ, ỹ2) ∈ U2 and

ξ(t̄ + ρ, ỹ2) = x̂k+1(t̄ + ρ).

Introduce x̌k+1 as follows:

x̌k+1(t) =

ξ(t, ỹ2) if a ≤ t ≤ t̄ + ρ,

xk(t) if t̄ + ρ < t ≤ b.

The graph of x̌k+1 is contained inD for a ≤ t < t2, and

J(x̌k+1) ≤ J(x̂k+1) < m.

Again by the weak transversality theorem, there is a C∞ trajectory xk+1, having N −
(k + 1) transversal intersections with I, so close to x̌k+1 in the metric on Ab, such that

J(xk+1) < m.

This finishes the induction, leading finally to a C∞ trajectory xN contained entirely
inD, and for which

J(xN) < m ≤ J(xN).

The second inequality is implied by theorem 1. As this is a contradiction the theorem
has been proved.
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5. Example

As an example, consider the problem to minimise

Jb(x) =

∫ b

0

(
ẋ2

2
−

x2

2
+

x4

4

)
dt,

subject to the initial condition x(0) = 0. The Euler-Lagrange equation reads as

ẍ + x − x3 = 0. (4)

As before, for b > 0 and β ∈ R, let Bb,β be the space of absolutely continuous func-
tions x : [0, b] → Rn such that x(0) = 0 and x(b) = β. The following proposition
characterises the domain of unicity and the indifference set.

Proposition 1. If either 0 < b ≤ π or β , 0, there is a unique minimiser for Jb in Bb,β.
If b > π and β = 0, there are two minimisers.

To prove this proposition, the solution structure of the Euler-Lagrange equation has
to be analysed. For the purposes of this section, I shall use “extremal” in a restricted
sense: a trajectory t 7→ x(t) will be called an extremal, if x satisfies the Euler-Lagrange
equation (4) as well as the initial condition x(0) = 0.

Π

t

-1

1

x

Figure 1: Minimal extremals of Jb(x) =
∫ b

0 ( 1
2 ẋ2 − 1

2 x2 + 1
4 x4) dt (thin lines) and the indifference set I (thick

line).

Let us have a look at conjugate points along extremals. Recall that the Jacobi
equation at x is the linearisation of the Euler-Lagrange equation around a solution x of
the Euler-Lagrange equation; in our case, the Jacobi equation at x reads as

ÿ + y − 3x2y = 0.

Also recall that the point t = t2 is conjugate to t = t1 along the extremal x, if there is a
solution y = y(t) of the Jacobi equation of x that satisfies y(t1) = y(t2) = 0 and ẏ(t1) = 1.
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It is now convenient to write our equations in vector form, setting

X(t) = (x(t), ẋ(t)), Y(t) = (y(t), ẏ(t)).

The pair (X(t),Y(t)) is an element of the tangent bundle TR2 � R2 × R2 of the state
space R2; the tangent vector Y(t) is an element of the tangent space TX(t)R2.

The Euler-Lagrange and Jacobi equations in vector form read respectively as

Ẋ = F(X) =

(
0 1

−1 + X2
1 0

)
X, (5)

Ẏ = DF(X)Y =

(
0 1

−1 + 3X2
1 0

)
Y. (6)

Both equations are of the form

Ż =

(
0 1

−1 + G(t) 0

)
Z, (7)

with G(t) = GX(t) = X2
1 in the case of the Euler-Lagrange equation and G(t) = GY (t) =

3X2
1 in the case of the Jacobi equation. Moreover, for all t there is the inequality

GY (t) ≥ GX(t).

A conjugate point can be now be described as follows: t = t2 is conjugate to t = t1
along X, if there is a solution Y of the vector Jacobi equation of X such that both Y(t1)
and Y(t2) are parallel to the vertical axis. In this formulation it is clear that what really
matters is the direction Y(t)/‖Y(t)‖ of the tangent vector Y(t): if Y(t) is vertical at t = t1
as well as t = t2, then these points are conjugate.

It is therefore natural to introduce polar coordinates

X =

(
r sinϕ
r cosϕ

)
, Y =

(
ρ sinψ
ρ cosψ

)
.

In these variables, the equations read as(
ṙ
ϕ̇

)
=

(
GX(t)r sinϕ cosϕ
1 −GX(t) sin2 ϕ

)
,

(
ρ̇
ψ̇

)
=

(
GY (t)ρ sinψ cosψ
1 −GY (t) sin2 ψ

)
.

Consider an extremal that satisfies X1(0) = 0 and X2(0) > 0; moreover, take Y(0) =

(0, 1). Then
ϕ(0) = ψ(0) = 0.

From the differential equations it follows that ϕ̇(0) > 0 and ψ̇(0) > 0.
Therefore first the auxiliary system

ϕ̇1 = 1 −G1(t) sin2 ϕ1, ϕ̇2 = 1 −G2(t) sin2 ϕ2,

with initial condition ϕ1(0) = ϕ2(0) = 0 is analysed on an interval [0, a] which is such
that 0 ≤ G1(t) < G2(t) for all t ∈ (0, a).
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Lemma 2. For all t ∈ (0, a] the inequality δ(t) = ϕ1(t) − ϕ2(t) > 0 holds.

Proof. The difference δ̇(t) satisfies

δ̇ = G2 sinϕ2
2 −G1 sinϕ2

1 = (G2 −G1) sin2 ϕ2 + G1(sin2 ϕ2 − sin2 ϕ1).

Using the trigoniometric identity

sin2 ϕ2 − sin2 ϕ1 = sin(ϕ1 + ϕ2) sin(ϕ1 − ϕ2),

the previous equation takes the form

δ̇ = f (t) + g(t) sin δ,

where f = (G2 − G1) sin2 ϕ2 > 0 for all 0 < t < a and g = G1 sin(ϕ1 + ϕ2). There
is 0 < η < a such that for 0 < t < η, both f (t) > 0 and g(t) ≥ 0. Therefore, there
is 0 < t0 < η such that 0 < δ(t0) < π.

Let ∆ solve the equation

∆̇ = −g(t) sin ∆, ∆(t0) = δ(t0).

Since δ̇ ≥ ∆̇ whenever δ = ∆, it follows that δ(t) ≥ ∆(t) for all t ≥ t0. Solving the
equation for ∆ yields

tan
∆(t)

2
= tan

∆(t0)
2

e
∫ t

t0
g(s) ds

Since g is bounded, it follows that ∆(t) > 0 for all 0 < t ≤ a, and hence that δ(t) > 0
for all 0 < t ≤ a.

Lemma 3. Let x satisfy the Euler-Lagrange equation with ẋ(0) > 0, and let a > 0 be
the first positive zero of x. Then no point in (0, a] is conjugate to t = 0 along x.

Proof. Introduce the vectors X = (x, ẋ) and Y = (y, ẏ) as above, consider the sys-
tem (5)–(6) of Euler-Lagrange and Jacobi equation, and note that 0 < GX(t) < GY (t)
for 0 < t < a. Write

X(t) =

(
r1 sinϕ1
r1 cosϕ1

)
, Y(t) =

(
r2 sinϕ2
r2 cosϕ2

)
.

Since ϕ1(0) = ϕ2(0) = 0, it follows from lemma 2 that 0 < ϕ2(t) < ϕ1(t) ≤ π for
all 0 < t < a; by assumption we have that ϕ1(a) = π. Consequently y(t) = r2 sinϕ2 > 0
for all 0 < t ≤ a, and the lemma is shown.

Lemma 4. Let x1 and x2 be extremals with 0 < ẋ1(0) < ẋ2(0), such that 0 < x1(t) <
x2(t) for 0 < t < a. Then x1(a) < x2(a).

Proof. Note that for i = 1, 2
ẍi + xi − x3

i = 0

Introducing X = (x1, ẋ1) and Y = (x2, ẋ2), both X and Y are seen to satisfy an equation
of the form (7), with GX(t) = x2

1(t) and GY (t) = x2
2(t).

12



Write

X(t) =

(
r1 sinϕ1
r1 cosϕ1

)
, Y(t) =

(
r2 sinϕ2
r2 cosϕ2

)
.

Since ϕ1(0) = ϕ2(0) = 0 and 0 < GX(t) < GY (t) for all 0 < t < a, it follows by lemma 2
that ϕ1(t) > ϕ2(t) for all 0 < t ≤ a. But then X(a) , Y(a).

Let xv be the extremal that satisfies ẋv(0) = v; note that x−v = −xv. If v , 0, denote
the first positive zero of xv, if it exists, by av > 0, and set av = ∞ otherwise.

Lemma 5. If av is finite, it depends differentiably on v. Moreover, dav/ dv < 0 if v < 0
and > 0 if v > 0.

Proof. Write av = a(v), x(t, v) = xv(t), and note that t = a(v) solves

x(t, v) = 0.

The function x depends smoothly on t and v. Moreover, if

∂x
∂t

(t, v) = 0

for some t, then x(t, v) = 0 for all t, by uniqueness of the solutions of the Euler-
Lagrange equation. Therefore ∂x

∂t (t, v) , 0, and a(v) can be solved for by the implicit
function theorem. It follows that a(v) depends smoothly on v.

Restrict to the case that v > 0. Then ∂x
∂t (0, v) = v > 0, and consequently

∂x
∂t

(a(v), v) < 0.

Since
da
dv

= −

∂x
∂v
∂x
∂t

,

we need information about ∂x
∂v . Differentiating the Euler-Lagrange equation with re-

spect to v yields that
∂2

∂t2

∂x
∂v

+
∂x
∂v
− 3x2 ∂x

∂v
= 0;

that is, ∂x
∂v satisfies the Jacobi equation, with boundary conditions

∂x
∂v

(0, v) = 0,
∂

∂t
∂x
∂v

(0, v) =
∂

∂v
∂x
∂t

(0, v) = 1.

Lemma 3 implies that the first zero of the Euler-Lagrange equation occurs strictly be-
fore the first zero of the associated Jacobi equation; but this implies that

∂x
∂v

(a(v), v) > 0

if v > 0. We find that da/ dv > 0 if v > 0.
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Lemma 6. If v > 1
2

√
2 and a > 0, then

xv(a) =

∫ a

0

√
v2 − x2 +

x4

2
dt.

Proof. The function

H(x, ẋ) =
ẋ2

2
+

x2

2
−

x4

4
,

is a first integral of the Euler-Lagrange equation, and

H(xv, ẋv) = H(0, v) =
v2

2
.

Note that maxx x2/2 − x4/4 = 1/4. Therefore, if v > 1
2

√
2, then

ẋ =

√
v2 − x2 +

x4

2
> 0

for all t > 0, and the result follows.

Lemma 7. For v , 0 the inequality av > π holds; moreover av → π as v→ 0 and a(v)
increases over all bounds as v increases.

Proof. It follows from lemma 4 that 0 < v1 < v2 implies that av1 < av2 . Since av ≥ 0
for all v, the values av have a greatest lower bound a0.

Let T > 0 be a positive constant. The function xv can be written as

xv(t) = vy(t) + v2χ(t, v)

where |χ| < M is uniformly bounded for 0 ≤ v ≤ 1 and 0 ≤ t ≤ T , and where y satisfies
the Jacobi equation associated to x(t) ≡ 0:

ÿ + y = 0, y(0) = 0, ẏ(0) = 1.

That is, y(t) = sin t and
xv(t) = v sin t + v2χ(t, v).

Since xv(t) = 0 is for v , 0 equivalent to

sin t + vχ(t, v) = 0,

it follows that av → π as v→ 0.
Assume now that av is bounded from above, and that supv av = M; as av is increas-

ing in v, there is either a value v0 > 0 such that a(v) → M as v → v0, or a(v) → M
as v→ ∞. Both possibilities lead to contradictions.

In the first case, by continuity we obtain x(M, v0) = 0, and the supremum is a max-
imum. But at the point (M, v0), the implicit function theorem can be applied, yielding
the existence of a zero of x(t, v) also for values of v > v0.
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In the second case there is a function a(v) such that a(v) ∈ [π,M] and x(a(v), v) = 0
for all v > 0. But for v > 1

2

√
2, by lemma 6 it follows that

xv(av) =

∫ av

0

√
v2 − x2 +

x4

2
dt,

and this expression tends to infinity as v→ ∞.

The next lemma states that the extremals cover the right half plane t > 0 at least
once.

Lemma 8. For every a > 0, α > 0, there is exactly one solution x of the Euler-
Lagrange equation such that x(t) does not change sign for any 0 < t < a and such
that x(a) = α. If α = 0, there are two such solutions x and x̃, satisfying more-
over Ja(x) = Ja(x̃).

Moreover, if x1 is another extremal such that x(a) = α, then Ja(x) < Ja(x1).

Proof. If a > π, let v0 > 0 be such that a(v0) = a. Then xv0 (t) > 0 for all 0 < t < a. It
moreover follows from lemma 4 that xv(t) is increasing in v for v > v0, for all t ∈ (0, a].
On the other hand, if 0 < a ≤ π, then for v > 0 and 0 < t ≤ a it always holds
that xv(t) > 0, and again from lemma 4 it follows that xv(t) is increasing in v.

Since xv(a) → ∞ as v → ∞, derived from lemma 6, and since xv(a) depends
continuously on v, there is at least one extremal that is positive for all t ∈ (0, a) and that
satisfies x(a) = α.

If α = 0, it is immediate that −x is another extremal for which x(a) = 0 and which
does not change sign.

If x1 is now another extremal such that x1(a) = α, we first show that there is at least
one point 0 < t1 < a such that x1(t1) = 0. If not, let t0 > 0 the first intersection of the
graphs of x and x1; note that t0 should exist and be smaller or equal than a. But the
existence of such an intersection point is ruled out by lemma 4.

Therefore, the extremal x1 has a finite but non-zero number of isolated zeros 0 <
t1 < · · · < tn ≤ a, since x1(t) = 0 always implies ẋ1(t) , 0. Set x2(t) = |x1(t)|.
Then Ja(x1) = Ja(x2), and x2(t) > 0 for all t ∈ (0, a]\{t1, · · · , tn}. The trajectory x2 is
not an extremal, as it fails to be differentiable at the points t = ti.

Since the set Q = {t > 0, x > 0} is covered by extremals that only take nonnegative
values, and since x2(t) ∈ Q for all but a finite number of values of t, by theorem 1, we
find that Ja(x1) = Ja(x2) > Ja(x).

Lemma 9. If π < a ≤ b, then (a, 0) is an indifference point. All other points (t, x)
with t > 0 are in the domain of uniqueness.

Proof. This is an immediate corollary from lemmas 7 and 8.

Proposition 1 now follows from lemma 9 and theorem 2.
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