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Abstract. Under a contract, agents are not only held to honor the allocation as prescribed

by a cost sharing mechanism but also a full description of allocated units and costs once pro-

duction falls short. For agents leaving the cost sharing problem by taking their demanded

units and prepaying the corresponding bill, a contract allows for a reformulation of the

cost sharing problem to serve the remaining agents. Consistency requires invariance of cost

shares relative to any such reduced cost sharing problem. Under consistency, the proportional

mechanisms uniquely satisfy additivity and positivity of cost shares. Exchanging positivity

by equal treatment characterizes the set of mechanisms which propose proportional shares

for only those agents in the maximal indifference set for some preordering on the rest of non-

negative numbers. This includes egalitarian and average cost sharing. The latter is further

characterized by the properties linearity. Under R-consistency, a mechanism is supported

by at least one reasonable contract which meets upperbounds. The class of additive and

R-consistent mechanisms is isomorphic to the class of consistent and monotonic rationing

methods. Consequently serial cost sharing is R-consistent, whereas Shapley-Shubik is not.

Examples are given how the extensive literature on consistent monotonic rationing can be

inferred to study and characterize cost sharing mechanisms.
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1. Introduction

This paper fits in the stream of axiomatic cost sharing literature (see Thomson (2001),
Moulin (2002)) which discusses structural and characterizing properties of solutions. I will con-
sider homogeneous cost sharing problems; a group of agents N have demands q = (qi)i∈N for
a single perfectly divisible output and corresponding production costs C(

∑
i∈N qi) have to be

shared. Central property is that of consistency, which is studied in various fields in economics
and social choice theory as a fundamental principle to decision problems pertaining to varying
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sets of agents. In the cost sharing context, the basic idea is the following: Suppose that agent
i leaves the cost sharing problem, by taking away the demanded units qi and prepaying his
cost share µi(q, C). In line with much of the literature then a solution µ is called consistent if
the calculated cost shares for the remaining agents in N\i in the reduced cost sharing problem
(qN\i, C∗) are the same, or µN\i(q, C) = µ(qN\i, C∗); the reduced cost function C∗ ideally
presents the cost structure after i has gone, therebye using the information contained in the
model given by (q, C) and µ. Following Young (1985, p19), this self-similarity property envi-
sions an idea of fairness of solutions at all levels of cooperation, for any subgroup of agents,
according to which ’no subgroup should want to ”re-contract”’.

Where for some models in the distributive justice literature, like the rationing model, the
concept of consistency is transparent and unambiguous, for the (homogeneous) cost sharing
problem it is not. The problems do not arise in choosing the reduced demand profile, which
is obviously qN\i, but in choosing an appropriate reduced cost function C∗. In the literature
several proposals have been made, each serving its own purpose. Below I will argue that there
is still a clear issue with defining consistency in homogeneous cost sharing problems, and con-
tribute to the literature with a new proposal.

First I will extend the notion of a cost sharing solution by that of a contract, which also
specifies the way produced units and corresponding costs are shared in case demand is not fully
met. Each contract is used to define a reduced cost function, and a reduced cost sharing prob-
lem in particular. I will call a solution consistent if for all possible contracts the agents in the
reduced cost sharing problem need not renegotiate since the solution calculates the same cost
shares as before. A solution is weakly consistent if there exists at least one contract supporting
it accordingly. So the basic feature of a consistent solution – under the weak or strong notion
– is that it offers the agents an opportunity to agree to a contract which rationalizes the cost
shares at hand, by implementing the same solution for all contingent reductions based on this
contract. If no such contract exists, there is the intrinsic problem of agents holding different
opinions to which reduced problem the solution must be applied.

1.1. Relation to the literature. Basically the efforts to properly define consistency in cost
sharing problems can be divided in two branches, each of which originated from notions of
consistency for cooperative games due to Davis and Maschler (1965), Sobolev (1973), and
Hart and Mas-Collel (1989). The fundamental difference is the way that reduced costs are
modeled. First, the residual cost put forward by the literature à la Hart and Mas-Colell is
the total cost minus the total amount the complement subgroup of remaining agents would
have to pay under the cost sharing solution, where potential revision of the demands of the
remaining agents is incorporated. Leroux (2007) suggests a definition in this fashion for the
model discussed here, but needs solutions fit for heterogeneous cost functions. Sudhölter (1998)
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applies the original ideas to cooperative games associated with cost sharing problems. However,
in light of contingent externalities it is not clear which transformation of a cost sharing problem
into a cost game fits best.

The second branch of literature, based on ideas of Davis and Maschler (1965), treats the
residual costs as the total cost minus what the complement coalition has already paid for.
Examples are Moulin and Shenker (1994), Kolpin (1994), Tijs and Koster (1998), and Albizuri
and Zarzuelo (2007). Again, these papers show the richness of the model allows for many types
of reduction, each expressing a different notion of consistency.
This paper contributes to the literature in the following ways. First, the arbitrariness in choosing
the appropriate reduction is to some degree tackled by requiring invariance of cost shares to sets
of reductions. Second, although one could argue the paper belongs to the Hart and Mas-Collel
type of literature, the notion of a contract takes into account a continuum of hypothetical cost
sharing problems.

1.2. Overview of the paper and results. Section 2 provides the basic model of homoge-
neous cost sharing, as well as the notion of solution in these contexts. Section 3 introduces the
basic notions of contract, reduced cost sharing problem and consistency. In Section 4 we derive
an integral representation of additive cost sharing mechanisms which extends the isomorphism
of Moulin and Shenker (1994) concerning the additive mechanisms with the constant returns
property. Within the class of additive mechanisms the proportional mechanisms are the only
consistent ones, assuming that positive demands always reward a positive share of total costs.
Exchanging positivity by the weak fairness property equal treatment, we also end up with mech-
anisms billing in a proportional fashion. But now a preordering is used to preselect the real
contributors as those with demands that are in its maximal indifference set. Egalitarian and
average cost sharing belong to the mentioned class; the latter is further characterized by the
property linearity, which weakens the standard constant returns. Adding positivity again, we
obtain the class of quasi-proportional mechanisms.

In Section 5 is devoted to relaxations of the consistency property, weak consistency and reg-
ular consistency. The additive cost sharing mechanisms characterized by a consistent rationing
method are regularly consistent, and, vice versa, each such cost sharing mechanism defines a
consistent rationing method. In particular, the existence of these perfectly linked up notions of
consistency provide a positive answer to the question raised in Moulin (2002, p. 328). We now
may conclude that the serial mechanism is R-consistent, whereas the Shapley-Shubik mecha-
nism is not. The characterization of parametric rationing methods of Young (1987) is extended
to the context of cost sharing using this isomorphism. Finally we discuss converse consistency,
the requirement that a solution for 2 agent problems be consistently extendible to problems
with variable number of agents.
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2. The model and preliminaries

Consider a production facility for some perfectly divisible good Y , of which the technology
is summarized by a cost function C : R+ → R+; C(y) denotes the minimal (monetary) input
to generate y units of Y . It will be assumed that C is nondecreasing and there are no fixed
costs, so that C(0) = 0. In addition we shall assume absolutely continuous cost functions1. This
technical condition implies that a cost function is differentiable almost everywhere with respect
to the Lebesgue measure λ. With slight abuse of notation C ′ is the marginal cost function,
i.e., it coincides with the derivative of C whenever the latter exists, and assumes the value 0
otherwise. In particular, C ′ is is λ-integrable and costs for output level y may be expressed as
C(y) =

∫ y
0
C ′(t) dt.2 The set of all cost functions is denoted by C. Special cost functions are the

base functions Bt defined for t ≥ 0 by Bt(y) = min{t, y}, slant functions Λt(y) = max{y− t, 0}
and the identity Cid(y) = y.

Let N be the set of nonempty and finite subsets of the natural numbers; N is interpreted
as the set of potential agents in the cost sharing problem. A cost sharing problem for the set
of agents N ∈ N is an ordered pair P = (q, C) ∈ RN+ × C. The interpretation of P is that
the agents in N jointly own the production facility, and q = (qi)i∈N summarizes the individual
demands of the agents for good Y ; then q(N) =

∑
i∈N qi is produced and cost C(q(N)) has to

be shared. The set of all cost sharing problems for N is denoted PN . The demand profile for
N containing only zeroes is denoted 0N .

For (q, c) ∈ PN , y ∈ RN+ is called vector of cost shares if y (N) = C (q (N)). A cost sharing
mechanism assigns to each cost sharing problem a vector of cost shares. Reknown examples
of mechanisms include average cost sharing, serial cost sharing (Moulin and Shenker (1992)),
and the Shapley-Shubik cost sharing mechanism (Shubik (1962)). Concise definitions of these
mechanisms are in the text below. The class of mechanisms with properties P1, . . . , Pm will
subsequently be denoted M(P1, . . . , Pm).

3. Contracts and consistency

Assume that for each cost sharing problem (q, C) ∈ PN not only it is specified how much an
agent is billed but also how much he would consume and pay in case the actual production level
were y ≤ q(N). A complete description for all contingent cost sharing problems will be called
a contract. Formally, a contract for mechanism µ is an ordered pair (ξ, γ) where for all cost

1For such functions it holds that for all intervals [a, b] ⊂ R+ and ε > 0 there is a δ > 0 such that for every

finite collection of pairwise disjoint intervals (ak, bk) ⊂ [a, b] , k = 1, 2, . . . , n with
∑n

k=1 (bk − ak) < δ, we have∑n
k=1 |f (bk)− f (ak)| < ε.
2This follows by the Fundamental Theorem in Lebesgue (1904).
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sharing problems (q, C) ∈ PN the mapping ξ(·, q, C) describes the allocation of units available
for consumption such that for all y ∈ [0, q(N)]

•
∑
i∈N ξi(y, q, C) = y, and

• ξ(q(N), q, C) = q.

The mapping γ(·, q, C) assigns to each production level y vectors of cost shares such that

•
∑
i∈N γi(y, q, C) = C(y), and

• γ(q(N), q, C) = µ(q, C).

I will make further assumptions. First, the mappings y 7→ ξ(y, q, C) and y 7→ γ(y, q, C) are
non-decreasing. Second, for all (q, C) ∈ PN , i ∈ N , k∗ − ξi(k∗, q, C) = k′ − ξi(k′, q, C) implies
C(k∗) − γi(k∗, q, C) = C(k′) − γi(k′, q, C). This condition expresses that if i is the sole con-
sumer of the last k∗−k′ units then he pays for the corresponding incremental cost C(k∗)−C(k′).

Suppose that agent i wants to leave group N . Then, as long as his demand is not met and his
cost share not paid, agent i leaves with a contract which stipulates that if a quantity k ≤ q(N)
of the good is produced, he will receive a quantity ξi(k, q, C) and pay a bill γi(k, q, C). The
agents in N\i are obliged to honor the very same contract and may use it to calculate the
production cost of y units for their own consumption as follows: first they find the level k such
that y = k−ξi(k, q, C), then they produce k, give the quantity ξi(k, q, C) to i, collect γi(k, q, C)
from him and end up paying the remainder of the cost, C(k) − γi(k, q, C). This is taken as
definition of the reduced cost C(ξ,γ),−i(y) for production level y ≤ q(N).

Definition 3.1 Let ϕ = (ξ, γ) be a contract for mechanism µ. For (q, C) ∈ PN , i ∈ N the
reduced cost function Cϕ,−i is defined by

y < q(N) : Cϕ,−i(y) = C(k)− γi(k, q, C)
where k ≤ q(N) solves

∑
j∈N\i ξj(k, q, C) = y,

y ≥ q(N) : Cϕ,−i(y) = C(y)− µi(q, C).

Note that Cϕ,−i indeed specifies an element in C: a solution to
∑
j∈N\i ξj(k, q, C) = y exists

by continuity of y 7→ ξ(y, q, C). Moreover, Cϕ,−i is non-decreasing:
∑
i∈N γi(y, q, C) = C(y) so

for almost all y,
∑
i∈N

d
dyγi(y, q, C) = C ′(y), hence d

dyγi(y, q, C) ≤ C ′(y) by monotonicity.

Definition 3.2 Mechanism µ is consistent if for all contracts ϕ for µ, all i ∈ N , and all
(q, C) ∈ PN

(1) µN\i(q, C) = µ(qN\i, Cϕ,−i).
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Example 3.3 The average cost sharing mechanism µav defined for q 6= 0N by

µav(q, C) = q · C(q(N))
q(N)

is consistent (see Theorem 4.8) below. Now consider the serial mechanism µsr introduced by
Moulin and Shenker (1992). Take (q, C) ∈ P{1,2,...,n} and assume the demands are ordered
such that qi ≤ qj ⇔ i ≤ j. Then with x0 = 0, xi := q1 + q2 + . . . qi−1 + (n + 1 − i)qi for all
i = 1, 2, . . . , n

(2) µsr
i (q, C) =

i∑
j=1

C(xj)− C(xj−1)
n+ 1− j

.

Consider the contract ϕ = (ξ, γ) defined by ξ(y, q, C) = q
q(N) ·y, γ(y, q, C) = µsr(q,C)

C(q(N))C(y). Then
for (q, C) ∈ PN with q = (1, 2, 3), C(y) = y2, µsr(q, C) = (3, 11, 22) and Cϕ,−1(y) = 33

25y
2 so

that µ{2,3}(q{2,3}, Cϕ,−1) = (264
25 ,

561
25 ) 6= µ{2,3}(q, C). So µsr is not consistent. /

4. Consistent and additive cost sharing

As a first exercise I will study for the consistent members among the additive mechanisms,
the class of mechanisms which accomodates most of the popular cost sharing mechanisms such
as µav, µsr, µss.

Additivity
For all C1, C2 ∈ C, all q ∈ RN+ , µ(q, C1 + C2) = µ(q, C1) + µ(q, C2).

Additivity is a standard property in the cost sharing literature which is usually motivated
as an accounting convention. I will exploit the fact that the class of additive mechanisms allows
for a transparent integral expression as in Moulin and Shenker (1994).3

3A precise statement in Moulin and Shenker (1994) is missing, so below I will refer to Moulin (2002), Th.

2.2.
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4.1. Production assignment and rationing. A production sharing problem for agents in
N ∈ N consists of a pair (q, t) ∈ RN+ ×R+ such that t ∈ [0, q(N)]. Here q is usually interpreted
as a vector of claims, and t the amount to be divided. A production assignment ρ associates
to each production sharing problem a vector ρ(q, t) ∈ RN+ such that

∑
j∈N ρj(q, t) = t. Such ρ

is called rationing method if ρ(q, t) ≤ q. In that case nobody is granted more than her claim
while the available amount is fully distributed. The prevalent symmetric rationing methods
are the proportional rationing method rp and uniform gains method rug. These are defined by
rp(q, t) = q/q(N)t, and rug

i (q, t) = min{qi, ω}, where ω solves
∑
j∈N min{qj , ω} = t. Consider

a permutation σ of N . Priority rationing relative to σ is defined as rσi (q, t) = max{min{t −∑
j:σ(j)<σ(i) qj , qi}, 0}. Random priority is defined by averaging the priority methods, rrp(q, t) =

1
n!

∑
σ r

σ(q, t). See, e.g., Moulin (2002) and Thomson (2003) for overviews.4

Production assignment ρ is monotonic whenever t ≤ t′ implies ρ(q, t) ≤ ρ(q, t′) for all
t, t′, q ∈ RN+ ; then ρ defines for all q ∈ RN+ a monotonic (and continuous) path t 7→ ρ(q, t) from
0 to q.
Any monotonic production assignment ρ induces an additive cost sharing mechanism µρ by

µρ (q, C) =
∫ q(N)

0

C ′ (t) dρ (q, t) .

We may also reverse the statement, since each additive mechanism may be expressed in this
way by choosing a suitable production assignment :

Theorem 4.1 µ ∈M (ADD) if and only if µ = µρ for some monotonic production assignment
ρ.

Proof. The ‘if’ part is clear, which leaves us to show the ‘only if’ part. Take µ ∈ M (ADD).
Define a production assignment ρ by ρ (q, t) := µ (q,Bt). Then it is easy to see that ρ is
monotonic. Take q ∈ RN+ and x, y ∈ [0, q (N)] , x ≤ y. Then By −Bx ∈ C and

ρ (q, y)− ρ (q, x) = µ (q,By)− µ (q,Bx) = µ (q,By −Bx) ≥ 0.

Now consider the function Λx (y) := Bq(N) (y)−Bx (y) = max {y − x, 0} . Then

µρ (q,Λx) =
∫ q(N)

0

Λ′x (t) dρ (q, t) =
∫ q(N)

x

1 dρ (q, t) = ρ (q, q (N))− ρ (q, x)

= µ
(
q,Bq(N)

)
− µ (q,Bx) = µ

(
q,Bq(N) −Bx

)
= µ (q,Λx) .

Then we may conclude that µ = µρ by Lemma 1 in Moulin and Shenker (1994).

Constant returns
For any α ≥ 0, µ(q, αCid) = αq.

4Moulin (2000) focuses on discrete formulation of the problem and asymmetric priority rules.
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Corollary 4.2 (Moulin and Shenker (1994)) µ ∈ M (ADD,CR) ⇔ µ = µr for some mono-
tonic rationing method r.

Equal Treatment qi = qj implies µi(q, C) = µj(q, C).

Similarly, any production assignment ρ satisfies equal treatment if for all production sharing
problems (q, t), qi = qj implies ρi(q, t) = ρj(q, t).

Theorem 4.3 µ ∈M(ADD,ET) if and only if µ = µρ and ρ satisfies ET.

Proof. We only show the ’only if’ part. ADD implies the functional representation as in
Theorem 4.1. Now suppose there is q ∈ RN+ such that qi = qj but not ρi(q, t) = ρj(q, t)
for all t ∈ [0, q(N)]. Assume that not ρi(q, t) ≥ ρj(q, t) for all t ∈ [0, q(N)]. Then there
must be an interval U such that d

dtρi(q, t) <
d
dtρj(q, t) for all t ∈ U . Consider the indicator

function IU with respect to U and define C ∈ C by C(y) =
∫ y
0

IU (t) dt for all y ∈ R+. Then

µi(q, C) =
∫ q(N)

0
IU (t) dρi(q, t) <

∫ q(N)

0
IU (t) dρj(q, t) = µj(q, C), contradicting ET.

Within the demand sharing context the idea of consistency is transparent and intuitive: a
production assignment ρ is called consistent if for all demand sharing problems (q, x) among
agents in N , all j ∈ N ,

(3) ρN\j(q, x) = ρ(qN\j , x− ρj(q, x)).5

Hence, consistency states that with removing an agent from the cooperative N , and taking all
the resources that are allocated to this agent, renewed allocation of the remaining pieces within
the reduced society does not make a difference as long as ρ is used. As Moulin (2000) puts
it within the context of rationing, ’changing the status of an agent from active participant to
passive expense of resources does not alter the overall distribution’.

Proposition 4.4 If µ is additive and consistent then µ = µρ with consistent and monotonic
ρ.

Proof. If µ is additive then take ρ as is guaranteed by Theorem 4.1. Define the contract ϕ = (ξ, γ)
by ξ(y, q, C) = ρ(q, y) and γ(y, q, C) =

∫ y
0
C ′(t) dρ(q, t). Then for x ∈ [0, q(N)], y ∈ [0, x] we

have ξ(y, q, Bx) = ρ(q, y) = γ(y, q, Bx). Hence, for i ∈ N , (Bx)ϕ,−i = Bx−ρi(q,x), and thus, by

5In fact the notion is usually defined in terms of general sets of agents leaving, but is derived from repeated

application of this statement.
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consistency

ρN\i(q, x) = µN\i(q,Bx) = µ(qN\i, (Bx)ϕ,−i) =
∫ q(N\i)

0

(Bx−ρi(q,x))
′(t) dρ(qN\i, t)

=
∫ x−ρi(q,x)

0

dρ(qN\i, t) = ρ(qN\i, x− ρi(q, x)).

Example 4.5 The converse does not hold: rug defines a consistent production assignment but
µsr = µr

ug

is not consistent. /

Example 4.6 µss is not consistent since µss = µr
rp

and rrp is not a consistent rationing
method. /

Null Agent If qi = 0 then µi(q, C) = 0.

Lemma 4.7 If µ ∈M(CONS) then µ ∈M(NULL).

Proof. Let ϕ be a contract for µ ∈M(CONS) and take a cost sharing problem P = (q, C) ∈ PN

with qi = 0 for some agent i ∈ N . Denote N\i = {i1, i2, i3, . . . , in−1}. Define iteratively cost
sharing problems P k = (qk, Ck) for the agents Nk = {i, ik, ik+1, . . . , in−1} for k = 1, 2, . . . , n−1
so that P 1 = P and qk := qi,ik,ik+1,...,in−1 and Ck = (Ck−1)ϕ,−ik−1 for k ≥ 2. By consistency
we have

µi(P ) = µi(P 1) = . . . = µi(Pn−1) = µi(qi, Cn−1).

Now, since Cn−1 ∈ C, we obtain Cn−1(0) = 0 which in turn implies µi(qi, Cn−1) = 0.

Positive cost for positive demand
For any C ∈ C, any i ∈ N , and any q ∈ RN+ , if qi > 0 while C(q(N)) > 0 then µi(q, C) > 0.

Theorem 4.8 Assume n ≥ 3. Mechanism µ satisfies additivity, consistency, and positive cost
for positive demand if and only if for each i ∈ N there is a function fi : R+ → R+ such that
fi(y) = 0⇔ y = 0 and for all nontrivial (q, C) ∈ PN

(4) µi(q, C) =
fi(qi)∑
j∈N fj(qj)

C(q(N)).
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Proof. First we show the implication ⇐. Suppose µ takes the form as in (4). Consider the
contract (ξ, γ) for µ defined for (q, C) ∈ PN by

ξi (y, q, C) =
qi

q (N)
y, γi (y, q, C) =

fi (qi)∑
k∈N fj (qj)

C (y) .

Take i ∈ N, then for each y ≥ 0 we obtain

k − ξi (k, q, C) = y =⇒ k =
q (N)
q (N\i)

y.

Then

C(ξ,γ),−i (y) = C

(
q (N)
q (N\i)

y

)
− γi

(
q (N)
q (N\i)

y, q, C

)
= C

(
q (N)
q (N\i)

y

)
− fj (qj)∑

k∈N fk (qk)
C

(
q (N)
q (N\i)

y

)
=

∑
j∈N\i fj (qj)∑
j∈N fj (qj)

C

(
q (N)
q (N\i)

y

)
.

Hence for j ∈ N\i :

µj
(
qN\i, C(ξ,γ),−i

)
=

fj (qj)∑
k∈N\i fi (qk)

C(ξ,γ),−i (q (N\i)) =
fj (qj)∑
k∈N fk (qk)

C (q (N)) = µj (q, C) .

‘⇒’ Assume µ ∈ M(ADD,CONS). By Theorem 4.1 there is ρ such that µ = µρ. Define
the following contract for µ, ξ (y, q, C) = q

q(N)y, γ (y, q, C) = ρ(q,q(N))
c(q(N)) C (y) for (q, C) ∈ PN

such that q(N) > 0. Now take (q, C) ∈ PN , and assume without loss of generality that
qi > 0, q(N\i) > 0. Consistency implies

Cϕ,−i (y) =

∑
j∈N\i ρj (q, q (N))

q (N)
C

(
q (N)
q (N\i)

y

)
.

In particular,

(Bt)ϕ,−i (y) =

∑
j∈N\i ρj (q, q (N))

q (N)
Bt

(
q (N)
q (N\i)

y

)
=

=

∑
j∈N\i ρj (q, q (N))

q (N)
· q (N)
q (N\i)

B q(N\i)
q(N) t

(y) =

=

∑
j∈N\i ρj (q, q (N))

q (N\i)
·B q(N\i)

q(N) t
(y) .
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Again by consistency and additivity

ρN\i (q, t) = µρN\i (q,Bt) = µρ
(
qN\i, (Bt)ϕ,−i

)
=(5)

=

∑
j∈N\i ρj (q, q (N))

q (N\i)
· µρ

(
qN\i, B q(N\i)

q(N) t
(y)
)

=(6)

=

∑
j∈N\i ρj (q, q (N))

q (N\i)
· ρ
(
qN\i,

q (N\i)
q (N)

t

)
.(7)

This equality has two consequences:

(A) By taking sums on the left and right we get, for t ∈ [0, q (N)]

t− ρi (q, t) =
∑
k∈N\i

ρk (q, t) =
q (N)− ρi (q, q (N))

q (N\i)
·
∑
k∈N\i

ρk

(
qN\i,

q (N\i)
q (N)

t

)
=

=
q (N)− ρi (q, q (N))

q (N\i)
· q (N\i)
q (N)

t = t− ρi (q, q (N))
q (N)

t.

So for t ∈ [0, q (N)],

ρi (q, t) =
ρi (q, q (N))

q (N)
t.

Hence

(8) µρ(q, C) =
ρ(q, q(N))
q(N)

C(q(N)).

(B) For q � 0, we get by substituting t = q (N) for all j, k 6= i and positive cost shares for
positive demands that

(9)
ρk (q, q (N))
ρj (q, q (N))

=
ρk
(
qN\i, q (N\i)

)
ρj
(
qN\i, q (N\i)

) .
So the left-hand fraction is actually independent from the value qi. By varying over all triples
i, j, k, the conclusion is that the following expression is well-defined

hij (qi, qj) :=
ρi (q, q (N))
ρj (q, q (N))

for all i, j ∈ N.

Then

(10) hij (qi, qj)hjk (qj , qk)hki (qk, qi) = 1 for different i, j, k ∈ N,

and, in particular, we find that any expression of type hjk (qj , qk)hki (qk, qi) is independent
from qk. I claim that there are functions fj : R\ {0} → R+ such that

hij (qi, qj) =
fi (qi)
fj (qj)

.
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To see this, fix k ∈ N and define, invoking the independence resulting from (10) ,

fi (qi) : = hki (1, qi) for all i 6= k,(11)

fk (qk) : = hk` (1, y)hk` (qk, y) for some ` 6= k, y 6= 0.

Then, finally, we are able to assert our claim since for i, j 6= k :

fi (qi)
fj (qj)

=
hki (1, qi)
hkj (1, qj)

=
1

hik (qi, 1)hkj (1, qj)
= hij (qi, qj) ,

and by choosing ` = i, y = qi in (11) :

fi (qi)
fk (qk)

=
hki (1, qi)

hki (1, qi)hki (qk, qi)
= hki (qk, qi) .

So I established the claim, as for all i, j ∈ N

(12)
ρj (q, q (N))
ρi (q, q (N))

=
fj (qj)
fi (qi)

.

It is not hard to see that (12) is true for any q ∈ RN+ such that qi > 0 and all j ∈ N . Proof by
induction on the number of zero demanders in q, Z(q). Suppose the statement is correct for all
q with qi > 0 and Z(q) ≤ k − 1 for 1 ≤ k ≤ n − 1. Now take q with qi > 0, Z(q) = k. For h
with qh = 0 and j 6= h, ε > 0

ρj(q, q(N))
ρi(q, q(N))

=
ρj(qN\h, q(N\h))
ρi(qN\h, q(N\h))

=
ρk((qN\h, ε), q(N\h) + ε)
ρj((qN\h, ε), q(N\h) + ε)

=
fj(qj)
fi(qi)

.

Here, the last equality is due to the induction hypothesis.

Now, by combining (A) and (B) we are finally done since for all qi > 0

µρi (q, C) =
ρi (q, q (N))

q (N)
C (q (N)) =

ρi (q, q (N))∑
j∈N ρj (q, q (N))

C (q (N))

=
ρi (q, q (N))

ρi(q,q(N))
fi(qi)

∑
j∈N fj (qj)

C (q (N)) =
fi (qi)∑
j∈N fj (qj)

C (q (N)) .

Well-known examples in the class of all such mechanisms are the proportional rule with
f (y) = y, the egalitarian rule with f (y) = 1 whenever y > 0. A few examples that have become
classic in queuing theory and network performance evaluation are limited (discrimanatory)
processor sharing fi(y) = wi min{y, `i} and coupled processor allocation fi(y) = `i I R++(y).

Remark At first glance consistency may seem a very strong notion, as a solution should offer
stability with respect to varying sets of agents relative to the unrestricted domain of contracts.
However, note that in Theorem 4.8 only very special contracts are used to arrive at the formula
(8).
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The following examples point out that the three axioms additivity, consistency and positive
cost for positive demand are logical independent.

Example 4.9 Define the following mechanism µ. Select two agents i, j ∈ N . Define, for any
C ∈ C, any q ∈ RN+ , µ(q, C) = µav(q, C) if {k ∈ N

∣∣ qk = 0} = {i, j}, and else µ{i,j}(q, C) :=
(0, 0), µN\{i,j}(q, C) = qN\{i,j}

q(N\{i,j})C(q(N)). Then µ is additive and consistent, but fails to charge
the agents i, j a positive share of positive costs. /

Example 4.10 For any (q, C) ∈ PN , j ∈ N define fj(q, C) = C(q(N) + qj) − C(q(N)) + qi.
Define a cost sharing mechanism µ by

µi(q, C) =
fi(q, C)∑
j∈N fj(q, C)

C(q(N)).

Then µ is consistent, since any reduction leaves the values of fj unchanged. Moreover, since
fi(q, C) = 0 if and only if qi = 0, µ satisfies positive cost for positive demand. But clearly µ is
not additive. /

Example 4.11 Below we will see that the Shapley-Shubik mechanism fails to be weakly
consistent, and therefore it does not constitute a consistent solution. But the mechanism is
additive and does satisfy positive cost for positive demand. /

Adding ET to the characterization in Theorem 4.8 leads to a characterization of the family
of quasi-proportional mechanisms:6

Corollary 4.12 Assume n ≥ 3. Then µ ∈M(ADD,CONS,POS,ET) if and only if there is
a function f : R+ → R+ with f(x) = 0⇔ x = 0 such that

(13) µi(q, C) =
f(qi)∑
j∈N f(qj)

C(q(N)) for all i ∈ N, (q, C) ∈ PN , q 6= 0.

Proof. Take µ ∈M(ADD,CONS,POS,ET), (q, C) ∈ PN and functions {fj}j∈N as in Theorem
4.8. Then by ET, for arbitrary i, j ∈ N, qi = qj =⇒ fi(qi) = fj(qj) and so we obtain fi = fj

for all i, j.

6The name is borrowed from Moulin and Sprumont (2005) who discuss the same family, only for a discrete

framework.
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Example 4.13 Positivity can not be left out. Define µi(q, C) for (q, C) ∈ PN as follows. If
qi ≤ 1 for all i ∈ N , then define µ(q, C) = µav(q, C), else let S = {i ∈ N

∣∣ qi > 1} and put
µN\S(q, C) = 0 and µS(q, C) = qS

q(S)C(q(N)). Then µ satisfies all but the property POS. /

For a given preordering 4 of R+, any q ∈ RN+ , denote by A(q,4) ⊆ N the set of agents for
which the demands in q are in the maximal indifference set of 4, i.e., i ∈ A(q,4) if there is no
j ∈ N such that qi ≺ qj .

Theorem 4.14 Assume n ≥ 3. Then µ ∈ M(ADD,CONS,ET) if and only if there is a
preordering 4 of R+ and a function f : R+ → R+ such that for each q ∈ RN+ , C ∈ C

µi(q, C) =


f(qi)∑

j∈A(q,4) f(qj)
C(q(N)) if i ∈ A(q,4),

0 if i 6∈ A(q,4).
(14)

Proof. We will only show the ‘only if’ part. Let µ ∈M(ADD,CONS,ET) and take a production
assignment ρ such that µ = µρ as is guaranteed by Theorem 4.1. Below I will use (5) for 3-
agent sets U ∈ N : for any q ∈ RU+, and all pairs u, v ∈ U we have ρ{u,v} (q, q (U)) = 0{u,v} if
q{u,v} = 0{u,v}, and

(15) ρ{u,v} (q, q (U)) =
ρu (q, q (U)) + ρv (q, q (U))

qu + qv
ρ
(
q{u,v}, qu + qv

)
.

otherwise.
Define a complete ordering 4 on R+ by

qi 4 qj if ρ ((qi, qj), qi + qj)� 0 or ρi ((qi, qj), qi + qj) = 0.

Claim: 4 defines a preordering.
1) 4 is reflexive, i.e., qi 4 qi for all qi ∈ R+. By ET it holds ρi((qi, qi), 2qi) = qi, hence if qi = 0
then ρi((qi, qi), 2qi) = 0 and ρi((qi, qi), 2qi) = (qi, qi)� 0 otherwise.
2) 4 is transitive, i.e., if qi 4 qj and qj 4 qk, then qi 4 qk.

Take qi, qj , qk ∈ R+ and assume qi 4 qj and qj 4 qk, qi � qk. Then qi > 0 by NULL and
ρk
(
q{i,k}, qi + qk

)
= 0. Now apply (15) to {u, v} = {i, k} and conclude that ρk (q, q (U)) = 0.

Distinguish between the two cases:
(A) qj ≺ qk. Then ρj

(
q{j,k}, qj + qk

)
= 0, hence by (15) with {u, v} = {j, k} , ρj (q, q (U)) = 0.

Then ρi (q, q (U)) = q (U) > 0. Now by (15) for {u, v} = {i, j} , ρj
(
q{i,j}, qi + qj

)
= 0 and

ρi
(
q{i,j}, qi + qj

)
> 0, contradicting qi 4 qj .

(B) qj ∼ qk. Without loss of generality assume qj 6= qk. Then ρ
(
q{j,k}, qj + qk

)
� 0 and by ap-

plication of (15) to {u, v} = {j, k} we obtain ρj (q, q (N))+ρk (q, q (U)) = 0, so ρj (q, q (N)) = 0.
Then, like in case (A), we obtain ρi (q, q (U)) = q (U) > 0, which leads to contradiction with
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qi 4 qj . In both the cases (A) and (B) the assumption qk ≺ qi leads to a contradiction, so
qi 4 qk. This proves transitivity.

Take N ∈ N , q ∈ RN+ and suppose for i, j ∈ N that qi ≺ qj . Let N\{i, j} = {k1, k2, . . . , kn−2}
and define T0 = ∅, T` = {k1, k2, . . . , k`}. Then by successive removal of the agents k1, k2, . . . , kn−2

by CONS and (5),

ρ{i,j}(q, q(N)) =
n−2∏
`=0

∑
t∈N\T`

ρt(qN\T`
, q(N\T`))

q(N\T`)
· ρ(q{i,j}, qi + qj),

which shows that ρi(q, q(N)) = 0. In particular, the only agents making positive contributions
are those with demands in the maximal indifference class of 4. If q 6= 0N , the only interesting
case, then A(q,4) ∩A(0N ,4) = ∅ which means that for all i ∈ A(q,4), ρi(q, q(N)) > 0. Then
this suffices to be able to repeat the reasoning as in the second part of the proof of Theorem 4.8.
The same logic applies to derive values fi(qi) for agent i ∈ A(q,4), and by ET the functions
fi are all the same so that we may put f(qi) = fi(qi) for all i ∈ A(q,4). Then basically this
shows how to derive the values of the desired function f on the maximal indifference class
corresponding to q. We only need to be cautious where the induction hypothesis is applied:
ε can not be any positive value, but needs to be in the maximal indifference class determined
by q. Then finally, complete the definition of f by varying q so that f gets values on all the
indifference classes.

Linearity
For all α, β ∈ R+, it holds µi((q−i, βqi), αCid) = βµi(q, αCid).

This property is similar to that discussed in Trudeau (2009). In absence of externalities it
imposes that a raise or decrease of ones individual demand with a factor β will magnify the
bill in the cost sharing problem accordingly. Notice that it is weaker than the constant returns
property.

Theorem 4.15 Assume n ≥ 3. Then µ ∈M(ADD,CONS,LIN,ET) if and only if µ = µav.

Proof. We only show the ’only if’ part. Suppose that µ ∈M(ADD,CONS,LIN,ET). We have
µ = µρ and by (8):

µρ(q, C) =
ρ(q, q(N))
q(N)

C(q(N)) for all (q, C) ∈ PN with q(N) > 0.

Now fix N = {1, 2, . . . , n}, q ∈ RN+ . If q(N) = 0 then by nonnegativity of cost shares µ(q, C) =
0N = µav(q, C). So we may assume q 6= 0N and, without loss of generality, that q1 > 0. We
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will show that ρ(q, q(N)) = q for all qN\1 ∈ RN\1+ by (increasing) induction on the number of
agents with demands unequal to q1, i.e. the size of S(q) = {j ∈ N\1

∣∣ qj 6= q1}. First of all,
if |S(q)| = 0, then ET implies ρ(q, q(N)) = q. Now suppose ρ(q, q(N)) = q if |S(q)| ≤ k for
some k ≤ n − 1. Take a demand profile q with |S(q)| = k + 1. For i ∈ S(q), by application of
linearity and the induction hypothesis

ρi(q, q(N)) = ρi

((
q−i,

qi
q1
· q1
)
, q(N)

)
=
qi
q1
· ρi((q−i, q1),

∑
j 6=i

qj + q1) =
qi
q1
· q1 = qi.

In addition, by ET it holds for all i 6∈ S(q)

ρi(q, q(N)) =
q(N)−

∑
j∈S(q) ρj(q, q(N))

|N\S(q)|
=
|N\S(q)|q1
|N\S(q)|

= q1.

Then we have shown that ρ(q, q(N)) = q.

Example 4.16 µe satisfies all of the above properties except LIN. /

5. Relaxing consistency, consistent rationing

Consistency stipulates that a mechanism should be able to take care of all kinds of contracts
– even the less sensible ones. Then this property seems overly strong when the agents are willing
to accept any contract in agreement with the idea of preserving the cost shares in the induced
reduced cost sharing problems.

Definition 5.1 Mechanism µ is weakly consistent if a contract ϕ for µ exists, such that for all
i ∈ N , and all (q, C) ∈ PN , µN\i(q, C) = µ(qN\i, Cϕ,−i).

Theorem 5.2 If µ = µρ and ρ is a consistent production assignment, then µ is weakly
consistent.

Proof. Assume ρ is a consistent and monotonic production assignment and µ = µρ. Define
the contract ϕ = (ξ, γ) for µ by ξ(y, q, C) = ρ(q, y) and γ(y, q, C) =

∫ y
0
C ′(t) dρ(q, t). For

i ∈ N, y ∈ [0, q(N)]

Cϕ,−i(y − ρi(q, y)) = Cϕ,−i(y − ξi(y, q, C))

= C(k)− γi(k, q, C) =
∫ k

0

(1− d
dtρi(q, t))C

′(t) dt.
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where k is such that y = k − ξi(k, q, C) = k − ρi(q, k). Substituting the latter expression for y
and using the chain rule we obtain for almost all y ∈ [0, q(N)] 7

(1− d
dyρi(q, y))(C(ξ,γ),−i)′(y − ρi(q, y)) = (1− d

dyρi(q, y))C ′(y).

So whenever d
dyρi(q, y) 6= 1 it holds (C(ξ,γ),−i)′(y − ρi(q, y)) = C ′(y). This is exactly what we

need since now

µρN\i (q, C) =
∫ q(N)

0

C ′ (t) dρN\i (q, t) =

=
∫ q(N)

0

C ′ (t) dρ
(
qN\i, t− ρi (q, t)

)
=

=
∫ q(N)

0

(C(ξ,γ),−i)′ (t− ρi(q, t)) dρ
(
qN\i, t− ρi (q, t)

)
=

=
∫ q(N\i)

0

(C(ξ,γ),−i)′ (t) dρ
(
qN\i, t

)
= µρ

(
qN\i, C(ξ,γ),−i

)
.

Weak consistency as a property for mechanism µ is as appealing as the contract supporting
it. Recall that there are no severe built-in requirements on contracts, so that we may find mech-
anisms weakly consistent although there is in practice no good reason to assume that agents
will agree to the underlying contract. So weak consistency as a relaxation of consistency takes
too extreme a position. Now we will look for a more restrictive notion than weak consistency
by demanding the existence of special types of contracts under which solutions to the induced
reductions are stable.

Denote for C ∈ C the right derivative at t ∈ R+ by D+C(t).

Upperbound
Contract (ξ, γ) for µ satisfies upperbounds if for all (q, C) ∈ PN , y ∈ [0, q(N)], i ∈ N

(16) γi(y, q, C) ≤ ξi(y, q, C) · sup
t∈[0,q(N)]

D+C(t).8

The idea is that a contract conflicting with upperbounds will make individual agents want to
revoke it. Call contract (ξ, γ) for µ regular if it satisfies upperbounds. Note that µ satisfies

7Here I use the fact that a monotonic rationing method ρ is Lipschitz-continuous and – in particular –

absolutely continuous in the resource component t.
8Here other ideas come to mind. Also that γ(y, q, C) be contained in the pessimistic imputation set

I∗(ξ(y, q, C)) for all (q, C) ∈ PN , y ∈ [0, q(N)]. I will use the property only for the case C = Bx, and here both

types of upperbound lead to the same conclusions.
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upperbounds as well, by subsitution of y = q(N) in (16). Clearly any such µ satisfies constant
returns.

Regular consistency
There is at least one regular contract ϕ for µ such that µN\i(q, C) = µ(qN\i, Cϕ,−i) for all
(q, C) ∈ PN , i ∈ N .

Lemma 5.3 Consider a regular contract (ξ, γ) for mechanism µ. Then for all x ∈ R+, i ∈ N

(Bx)(ξ,γ),−i = Bx−γi(q(N),q,Bx).

Proof. Take x ∈ [0, q(N)]. We have by definition of the reduced cost function

(17) (Bx)(ξ,γ),−i(k − ξ(k, q, Bx)) =

{
k − γi(k, q, Bx) if k ≤ x,
x− γi(k, q, Bx) if k ∈ (x, q(N)].

Firstly, in order to qualify as a cost function we must have that on (x, q(N)] the mapping
k 7→ x− γi(k, q, Bx) is non-decreasing. But at the same time k 7→ γ(k, q, Bx) is non-decreasing.
Then k 7→ x − γi(k, q, Bx) must be constant on (x, q(N)], and in particular x − γi(k, q, Bx) =
x− γi(q(N), q, Bx) for all k ∈ (x, q(N)].
Secondly, regularity implies for y ≤ x, γ(y, q, Bx) ≤ ξ(y, q, Bx). Also by definition of γ and ξ we
have

∑
j∈N γj(y, q, Bx) = Bx(y) = y =

∑
j∈N ξj(y, q, Bx), hence γ(y, q, Bx) = ξ(y, q, Bx).

Then (17) turns into

(18) (Bx)(ξ,γ),−i(y) =

{
y for y ∈ [0, x− γi(q(N), q, Bx),
x− γi(q(N), q, Bx) if y > x− γi(q(N), q, Bx).

Within the context of Theorem 4.1, regular consistency smoothly transfers from the cost
sharing context to the rationing model and back. The mappings r 7→ µr and µ 7→ rµ with
rµ(q, t) = µ(q,Bt) define an isomorphism between the set of consistent rationing methods and
M(ADD,RCONS).

Theorem 5.4 µ ∈M(ADD,RCONS) if and only if µ = µr and r is a consistent monotonic
rationing method.

Proof. Take (q,Bx) ∈ PN , i ∈ N . Since µ = µr is consistent there is a regular contract (ξ, γ) such
that µN\i(q,Bx) = µ(qN\i, (Bx)(ξ,γ),−i). In particular γi(q(N), q, Bx) = µi(q,Bx) = ri(q, x).
By application of Lemma 5.3 (Bx)(ξ,γ),−i = Bx−γi(q(N),q,Bx) = Bx−ri(q,x). So

µ(qN\i, (Bx)(ξ,γ),−i) = µ(qN\i, Bx−ri(q,x)) = r(qN\i, x− ri(q, x)).
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Then it holds rN\i(q, x) = µN\i(q,Bx) = µ(qN\i, (Bx)(ξ,γ),−i) = r(qN\i, x− ri(q, x)). By varia-
tion over all rationing problems (q, x) we conclude that r is consistent.

Now the other way, assume r is a consistent and monotonic rationing method and let µ = µr.

Define a regular contract (ξ, γ) for µ by ξ(y, q, C) = r(q, y) and γ(y, q, C) =
∫ y
0
C ′(t) dr(q, t)

and continue the proof as in Theorem 5.2.

The result shows in particular that under additivity, RCONS is the same as the consistency
notion discussed in Koster (2007).

Interestingly, µsr may be not consistent, but it is regularly consistent as it relates to a con-
sistent rationing method rug. Also the priority rationing methods rσ are consistent and so µσ is
regularly consistent. Compare this with µss, which is not regularly consistent, since its natural
counterpart in rationing, rrp, is not.

Conjecture 5.5 M(ADD,RCONS) = M(ADD,CR,WCONS)

Example 5.6 The properties RCONS and ADD are logically independent. Tijs and Koster
(1998) relate to each P = (q, C) ∈ PN a pessimistic cost sharing problem (q, C∗P ), where the
pessimistic cost function C∗P is defined as the concave rearrangement of C on [0, q(N)],

(19) C∗P (y) =

 sup
{∫

T

C ′(t) dt
∣∣ T ⊆ [0, q(N)], λ(T ) = y

}
if y ∈ [0, q (N)] ,

C (y) if y > q (N) ,

Tijs and Koster (1998) shows that for any P = (q, C) ∈ PN there is a family {TP (x)}x∈[0,q(N)]

of increasing and λ-measurable subsets such that λ(T (x)) = x and
∫
T (x)

C ′(t) dt = C∗P (x) for all
x ∈ [0, q(N)]. Now consider the pessimistic marginal mechanism µσ,∗, defined for P = (q, C) ∈
PN by µσ,∗(q, C) := µσ(q, C∗P ). Define Ui = T (qi +

∑
j:σ(j)<σ(i) qj)\T (

∑
j:σ(j)<σ(i) qj) and a

contract (ξ, γ) for µσ,∗ by ξi(y, q, C) =
∫ y
0

IUi
(t) dt, γi(y, q, C) =

∫ y
0
C ′(t) IUi

(t) dt. Then this
contract may be used to show that µσ,∗ is regularly consistent. Clearly µσ,∗ is not additive. /

Having established the tight relationship between consistent rationing and regularly consis-
tent cost sharing, we may find other characterizations of cost sharing mechanisms by known
characterizations of corresponding rationing methods. I will give one such an example, based
on the characterization of parametric rationing by Young (1987).

A rationing method r is called continuous if it is jointly continuous in both arguments, i.e.,
(q, t) 7→ r(q, t) is continuous for all rationing problems (q, t). Such r is then robust against
small changes in the parameters defining the rationing problem. For cost sharing mechanisms
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the approach is similar; a mechanism will be called continuous if small changes in demands and
Bt cause only small changes in cost shares. More specifically,

Continuity (CONT) The mapping (q, t) 7→ µ(q,Bt) is continuous on RS+×R+, for all S ⊆ N .9

Theorem 5.7 µ ∈M(ADD,RCONS,ET,CONT) if and only if µ = µr for some continuous
parametric r.

Proof. Take µ with the listed properties. Then the rationing method r defined by r(q, t) :=
µ(q,Bt) satisfies continuity (by definition), consistency, and equal treatment. Since we have
an infinite pool N of agents we can apply Theorem 1 in Young (1987), which implies that
r is continuous and parametric. Moulin and Shenker (1994) show that µ = µr. Now take
a continuous parametric r. By definition µr is continuous. Moreover, since r satisfies equal
treatment, so does µr by Theorem 4.3. Finally, r is consistent by Theorem 1 in Young (1987),
so we are done by referring to Theorem 5.4.

5.1. Consistent extensions. Given a cost sharing mechanism defined for only 2-agent prob-
lems, it natural to ask whether it is possible to extend it in a consistent way to a mechanism for
arbitrarily finite sets of agents. The related problem for rationing methods has been partially
solved. Dagan and Volij (1997) show that any rationing method for 2-agent problems allows for
a unique average consistent method. And, moreover, whenever a consistent extension exists,
it must coincide with the average consistent method. In particular this shows that there is at
most one possibility to extend a rationing method for 2-agent problems in a consistent way. An
example of a rationing method for 2-agent problems which cannot be extended consistently is
the claims-truncated proportional rule (see Thomson (2008)). Then Theorem 5.4 implies:

Theorem 5.8 Let µ̄ be an additive mechanism with the property CR defined for 2-agent cost
sharing problems only. Then there is at most one way to extend µ̄ to µ ∈M(ADD,RCONS).

For instance, this shows that there is at most one mechanism µ ∈ M(ADD,RCONS) ex-
tending serial- or average cost sharing for 2-agent problems, whereas there is no consistent
extension of the mechanism defined through the truncated claims proportional method.

In principle, consistent cost sharing mechanisms can be constructed using the techniques
of Dagan and Volij (1997). Once the rationing method underlying the mechanism for 2-agent
problems is known, calculate the corresponding average consistent extension and – if at all –
the consistent mechanism results from Theorem 5.4.

9In order to avoid the hybrid character of CONT one may consider the replacement by two requirements,

continuity of the mappings t 7→ µ(q,Bt) and q 7→ µ(q,Bt).
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6. Discussion and open problems

Instead of taking cost sharing mechanisms as the basic tool to share costs, I could have
started with contracts as the primitive notion of solution; all could have been written in terms
of constracts, since any contract defines a cost sharing mechanism in an unambiguous way. I
have chosen not to do so in order to stick to study the notion of consistency in the standard
framework.

I reflected on the fact that consistency may be valued contingent on the quality of the un-
derlying contracts. I started of with the two diametrically opposed notions of consistency, and
discussed regular consistency as a reasonable intervening notion. The idea is that mechanisms
with many regular contracts are desirable, and that for the same reason it may be easier for
these to comply with regular consistency. However, another way to proceed is to demand for
consistency with respect to all regular contracts. Notice the tension between the pluriformity of
regular contracts and the corresponding notion of consistency: on the one hand it will be easier
to meet existence of regular contracts, but on the other hand, the more regular contracts exist,
the more demanding consistency gets. The situation becomes even more complex if revision of
the idea of a regular contract is considered; the definition is rather ad-hoc now. Further study
on these refinements is needed to shed more light on the structure of the space of solutions
meeting these new standards.

Also this may lead to a better understanding so that a couple of open problems arising in
this paper can be answered. First there is Conjecture 5.5, which states that under additive
cost sharing and constant returns weak consistency is equivalent to regular consistency. An-
other open problem is whether a nonadditive and consistent mechanism µ can be found which
meets independence from irrelevant cost, i.e., µ(q, C1) = µ(q, C2) if only C1(y) = C2(y) for all
y ≥ q(N). If not, then this would lead to the conclusion that consistency and independence
form irrelevant cost together imply additivity, see, e.g., example 4.10.
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