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Abstract
This paper compares the predictive ability of the factor models of Stock

and Watson (2002) and Forni, Hallin, Lippi, and Reichlin (2005) using
a “large” panel of US macroeconomic variables. We propose a nesting
procedure of comparison that clarifies and partially overturns the results
of similar exercises in the literature. As in Stock and Watson (2002), we
find that efficiency improvements due to the weighting of the idiosyncratic
components do not lead to significant more accurate forecasts. In contrast
to Boivin and Ng (2005), we show that the dynamic restrictions imposed by
the procedure of Forni, Hallin, Lippi, and Reichlin (2005) are not harmful
for predictability. Our main conclusion is that for the dataset at hand
the two methods have a similar performance and produce highly collinear
forecasts.

JEL Classification: C31, C52, C53.

Keywords: Factor Models, Forecasting, Large Cross-Section.



Non-technical summary

This paper performs a detailed forecast comparison between the static factor

model of Stock and Watson (2002) (SW)and the dynamic factor model of Forni,

Hallin, Lippi, and Reichlin (2005) (FHLR). The SW and FHLR methods essen-

tially differ in the computation of the forecast of the common component. In

particular, they differ in the estimation of the factor space and in the way projec-

tions onto this space are performed. In SW, the factors are estimated by static

principal components (PC) of the sample covariance matrix and the forecast of

the common component is simply the projection of the predicted variable on the

factors. FHLR propose efficiency improvements in two directions. First, they es-

timate the common factors based on generalized principal components (GPC) in

which observations are weighted according to their signal to noise ratio. Second,

they impose the constraints implied by the dynamic factors structure when the

variables of interest are projected on the common factors. Specifically, they take

into account the leading and lagging relations across series by means of principal

components in the frequency domain. This allows for an efficient aggregation of

variables that may be out of phase. Whether these efficiency improvements are

helpful to forecast in a finite sample is however an empirical question. Literature

has not yet reached a consensus. On the one hand, Stock and Watson (2005)

show that both methods perform similarly (although they focus on the weighting

of the idiosyncratic and not on the dynamic restrictions), while Boivin and Ng

(2005) show that SW’s method largely outperforms the FHLR’s and, in particu-

lar, conjecture that the dynamic restrictions implied by the method are harmful

for the forecast accuracy of the model. This paper tries to shed some new light

on these conflicting results. We focus on the industrial production index (IP) and

the consumer price index (CPI) forecast and base the evaluation on a simulated

out-of sample exercise. Our data set, borrowed from Stock and Watson (2002),

consists of 146 monthly observations for the US economy. The data spans from

1959 to 1999. In order to isolate and evaluate specific characteristics of the meth-

ods, we design a procedure where the two non-parametric approaches are nested
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in a common framework. In addition, for both versions of the factor model fore-

casts, we study the contribution of the idiosyncratic component to the forecast.

We also investigate other non-core aspects of the model: robustness with respect

to the choice of the number of factors and variable transformations. Finally, we

study the sub-sample performances of the factor based forecasts. The purpose

of the exercise is to design an experiment for assessing the contribution of the

core characteristics of different models to the forecasting performance and dis-

cussing auxiliary issues. As in Stock and Watson (2005), we find that efficiency

improvements due to the weighting of the idiosyncratic components do not lead to

significant more accurate forecasts. In contrast to Boivin and Ng (2005), we show

that the dynamic restrictions imposed by the procedure of Forni et al. (2005)

are not harmful for predictability. Our main conclusion is that the two methods

have a similar performance and produce highly collinear forecasts.
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1 Introduction

This paper compares two standard methods for forecasting using factor models

in large panels: Stock and Watson (2002)’s static principal components method

(SW) and Forni, Hallin, Lippi, and Reichlin (2005)’s two-step approach based on

dynamic principal components (FHLR). We are not the first in performing such

an evaluation. Boivin and Ng (2005) focus on a very similar problem, while Stock

and Watson (2005) compare the performances of a larger class of predictors.

The SW and FHLR methods essentially differ in the computation of the fore-

cast of the common component. In particular, they differ in the estimation of

the factor space and in the way projections onto this space are performed. In

SW, the factors are estimated by static principal components (PC) of the sam-

ple covariance matrix and the forecast of the common component is simply the

projection of the predicted variable on the factors.

FHLR propose efficiency improvements in two directions. First, they esti-

mate the common factors based on generalized principal components (GPC) in

which observations are weighted according to their signal to noise ratio. Second,

they impose the constraints implied by the dynamic factors structure when the

variables of interest are projected on the common factors. Specifically, they take

into account the leading and lagging relations across series by means of principal

components in the frequency domain. This allows for an efficient aggregation of

variables that may be out of phase. Whether these efficiency improvements are

helpful to forecast in a finite sample is however an empirical question and depends

on the dataset at hand.

Literature has not yet reached a consensus. Using a large panel of US macro-

economic variables, Stock and Watson (2004a) find that both methods perform

similarly (although they focus on the weighting of the idiosyncratic and not on the

dynamic restrictions), while Boivin and Ng (2005) find that SW’s method largely

outperforms the FHLR’s and, in particular, they conjecture that the dynamic

restrictions implied by the latter method are harmful for the forecast accuracy of

the model. Schumacher (2006) finds instead that the FHLR’s method generally
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outperforms the SW’s in forecasting German macroeconomic variables.

This paper tries to shed some new light on these conflicting results. We per-

form a simulated out-of sample exercise to evaluate and compare the performance

of the two methods in forecasting industrial production index (IP) and the con-

sumer price index (CPI). Our data set, borrowed from Stock and Watson (2002),

consists of 146 variables for the US economy. The data spans from 1959 to 1999.

In order to isolate and evaluate specific characteristics of the methods, we

design a procedure where the two non-parametric approaches are nested in a

common framework. In addition, for both versions of the factor model forecasts,

we study the contribution of the idiosyncratic component to the forecast. We also

investigate other non-core aspects of the model: robustness with respect to the

choice of the number of factors and variable transformations. Finally, we study

the sub-sample performances of the factor based forecasts.

The purpose of the exercise is to design an experiment for assessing the con-

tribution of the core characteristics of different models to the forecasting perfor-

mance and discussing auxiliary issues. We hope that this may also serve as a

guide for practitioners in the field.

The paper is organized as follows. Section 2 describes the different models.

Section 3 gives an overview of the database employed and describes its main

characteristics. Section 4 designs the empirical exercise and discusses two issues:

(i) factors vs univariate forecasts; (ii) comparison between factor based forecasts.

Section 5 concludes.

2 Models

Consider an (n×1) covariance stationary process Yt = (y1t, ..., ynt)
′. We are inter-

ested in forecasting some elements yit+h of Yt by using all the variables (y1t, ..., ynt)
′

as predictors. The best linear forecast is defined by the following linear projection

yit+h|t = proj {yt|Ωt} (2.1)
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where Ωt = span {Yt−p, p = 0, 1, 2, ...} is a potentially large information set at

time t when the forecasts are made.

When the size of the information set, n, is large, the above projection is unfea-

sible in practice since it requires the estimation of a large number of parameters

with a substantial loss of degrees of freedom (curse of dimensionality). If most of

the interactions among variables in the information set are accounted by few un-

derlying common factors, Ft = {F1t, ..., Frt} with r << n, while there is a limited

interaction among variable-specific dynamics, the curse of dimensionality problem

can be solved. In this case, the projection of a variable yit+h on the whole infor-

mation set Ωt is well approximated by the projection on the smaller information

set including common factors and past values of the variable, therefore:

yit+h|t = proj
{
yit+h|t|Ωt

}
≈ proj

{
yit+h|t|Ωi

t

}
(2.2)

where Ωi
t = span {Ft} ∪ span {yit, yit−1, ...} is the parsimonious representation of

the information set that exploits the factor structure. The parsimonious approx-

imation makes the projection feasible since it only requires the estimation of a

limited number of parameters. It is worth stressing that this projection coin-

cides with the optimal one if the idiosyncratic components are cross-sectionally

orthogonal.

2.1 Approximate Factor Structures

Suppose that Xt = (x1t, ..., xnt)
′ is the standardized version of Yt, i.e.

xit =
yit − µi

σi

, µi = E[yit], σi =
√

E [(yit − µi)2]

If Xt is described by a factor model, it can be written as the sum of two orthogonal

components1:

xit = bi(L)ft + ξit = [bi0, ..., bis]




ft

...
ft−s


 + ξit = biFt + ξit (2.3)

1The model we present here is a restricted version of the “dynamic factor model” proposed
by Forni, Hallin, Lippi, and Reichlin (2000). The relations between “restricted” and “general”
dynamic factor model have been studied in Forni, Giannone, Lippi, and Reichlin (2005) and
Forni, Hallin, Lippi, and Reichlin (2005).
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or, in vector notation:

Xt = B(L)ft + ξt = [B0, ..., Bs]




ft

...
ft−s


 + ξt = BFt + ξt (2.4)

where ft is a (q× 1) vector of dynamic factors, B(L) = B0 +B1L+ ..., BsL
s is an

(n× q) matrix of filters of finite length s, ξt is the (n× 1) vector of idiosyncratic

components, Ft is the (r× 1) vector of the stacked factors, with r = q(s+1). We

assume that ft and ξt are mutually orthogonal stationary processes and define

χt = B(L)ft as the common component.2

We will refer to Xt = B(L)ft + ξt as the dynamic representation, and to

Xt = BFt + ξt as the static representation. Correspondingly, ft will be defined

as vector of the dynamic factors while Ft as the vector of the static factors.

Given the orthogonality assumption between common factors and idiosyn-

cratic component, the spectral density matrix of Xt at each frequency θ ∈ [−π, π]

can be decomposed into the sum of the spectral densities of the common and the

idiosyncratic component3:

Σ(θ) = Σχ(θ) + Σξ(θ) (2.5)

where Σχ(θ) = B(e−iθ)Σf (θ)B(e−iθ)′ is the spectral density matrix of the com-

mon component χt and Σξ(θ) is the spectral density matrix of the idiosyncratic

component ξt. Analogously, the covariance matrix of Xt can be decomposed as:

Γk = Γχ
k + Γξ

k (2.6)

where Γχ
k = BΓF

k B′, ΓF
k is the covariance matrix of Ft at lag k and Γξ

k is the

covariance matrix of ξt at lag k.

Note that the rank of the spectral density of the common component, Σχ(θ),

is equal to q, the number of dynamic factors, while the rank of the covariance

matrix Γχ
k is equal to r, the number of stacked (static) factors.

2The restriction r = q(s + 1) holds in this very simple model but in more general models we
can only say that r ≥ q (see Forni, Giannone, Lippi, and Reichlin, 2005; Giannone, Reichlin,
and Sala, 2006).

3Given a matrix A with complex entries, its conjugate transpose will be denoted as A′.
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The forecast of the ith variable h-steps ahead can be decomposed into the sum

of two components: the forecast of the common component and the forecast of

the idiosyncratic component. Given the orthogonality assumption the forecast of

the common component is obtained by projecting onto the space spanned by the

common factors. Then, assuming that the bulk of dynamic interaction among

variables is captured by the common factors, the forecast of the idiosyncratic

component can be approximated by using only the past values of the dependent

variable:

xt+h|t ≈ proj {χit+h|Ωi
t}+ proj {ξit+h|Ωi

t}
= proj

{
χit+h|t|Ft

}
+ proj

{
ξit+h|t|yit, yit−1, ...

} (2.7)

The projection above is not feasible in practice since the common factors are

unobserved. However, if data follow an approximate dynamic factor model, the

set of common factors Ft can be consistently estimated by appropriate cross-

sectional averages, or aggregators in the terminology of Forni and Reichlin (1998)

and Forni and Lippi (2001). The intuition is that only the pervasive common

sources survive the aggregation, since the weakly correlated idiosyncratic errors

are averaged out. Building on Chamberlain and Rothschild (1983), Forni, Hallin,

Lippi, and Reichlin (2000) and Stock and Watson (2002) have shown that prin-

cipal components of the observed variables Xt, are appropriate averages. That

is, the common component can be approximated by projecting either on the first

r principal components of the covariance matrix (see Stock and Watson (2002))

or on the first q dynamic principal components (see Forni, Hallin, Lippi, and

Reichlin (2000)).

For the empirical application we will consider the following consistent estima-

tor of the autocovariance matrix of standardized data, X̂t = (x̂1t, ..., x̂nt)
′:

Γ̂k =
1

T − k − 1

T∑

t=k

X̂tX̂
′
t−k (2.8)
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where

x̂it =
yit − µ̂i

σ̂i

and µ̂i and σ̂i denote the sample mean and standard deviation of the scalar

process yit respectively. T denotes the sample size. The spectral density matrix

will be estimated by averaging a given number m of autocovariances:

Σ̂(θ) =
1

2π

m∑

k=−m

wkΓ̂ke
−iθk (2.9)

where wk are weights satisfying the conditions: w(0) = 1 and 0 ≤ w(k) ≤ 1,∀k ≤
m. The estimates of the spectral density are consistent provided that m → ∞
and m

T
→ 0 as T → ∞. In the empirical section we will use m =

√
T , which

satisfies the above asymptotic requirements.

2.2 SW approach

The Stock and Watson (2002) approach to forecasting with factor model consists

of estimating the common factors Ft as the sample principal components of the

whole, standardized panel X̂t. The estimated factors are then used as predictors.

Consider the following eigenvalue problem for the sample covariance matrix:

Γ̂0Vr = VrDr (2.10)

where Dr is a diagonal matrix having on the diagonal the first r largest eigenvalues

of Γ̂0 and Vr = [v1, ..., vr] is the (n×r) matrix whose columns are the corresponding

eigenvectors. The first r principal components (PC) are defined as:

F̂t = V ′
r X̂t (2.11)

and the covariance matrix of the common component is estimated by:

Γ̂χ
0 = VrDrV

′
r (2.12)

If the data follow an approximate dynamic factor model, F̂t are consistent

estimates of the unknown common factors.
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The estimated common factors are then used as predictors. Specifically,

ŷi,t+h|t = proj
{
yi,t+h|Ω̂i

t

}

where Ω̂i
t = span

{
F̂t

}
∪span {yit, yit−1, ...}. This approach is implemented through

the following forecasting equation:

ypc
i,t+h = αih + βihF̂t + γih(L)yi,t + εit+h (2.13)

where the two sub-scripts i and h refer to the variable and to the forecast horizon

respectively, while the super-script pc indicates that factors are extracted via

principal components. The lag polynomial γih(L) is of length s and εit+h is an

error term. As stressed above, the general idea behind this approach is that

the comovements among series can be captured by means of the common factors;

since the interdependence among idiosyncratic components is assumed to be weak

it can be captured by lagged values of the dependent variable.4

Denoting by α̂ih, β̂ih, γ̂ih the OLS estimates, the forecast of ypc
i,T+h|T is defined

as:

ŷpc,ols
i,T+h|T = α̂ih + β̂ihF̂T + γ̂ih(L)yiT (2.14)

Note that in this approach the factor structure assumption is exploited only

for the extraction of the common factors. The forecasting projection, eq.(2.13),

does not incorporate the restrictions implied by the dynamic factor structure.

Indeed, the OLS projection does not exploit either the lead-lag structure among

the series (which are reflected in the rank of the spectral density matrix) or the

orthogonality assumption between common and idiosyncratic component. These

restrictions are instead embedded in the FHLR method.

4This equation is a restricted version of that used by Stock and Watson (2002), since it
allows only for dependence on contemporaneous factors. They call this a DI-AR (diffusion
index-autoregressive) forecast. When the autoregressive part is dropped it is called simply DI
forecast. SW (2002) show that, in most cases, DI-AR and DI forecasts are as good as or better
than forecasts obtained including also lagged factors, labelled as DI-AR, Lag.
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2.3 FHLR Approach

The starting point of the method proposed by Forni, Hallin, Lippi, and Reichlin

(2005) is the problem of the spectral density matrix, defined, at a given frequency

θ, as:

Σ̂(θ)Vq(θ) = Vq(θ)Dq(θ) (2.15)

where Dq(θ) is a diagonal matrix having the diagonal on the first q largest eigen-

values of Σ̂(θ) and Vr(θ) is the (n×q) matrix whose columns are the corresponding

eigenvectors.

If the panel of series Xt is driven by q dynamic factors, a consistent estimate

of the spectral density matrix of the common component is given by:

Σ̂χ(θ) = Vq(θ)Dq(θ)Vq(θ)
′ (2.16)

The spectral density matrix of the idiosyncratic part, is estimated as a resid-

ual:

Σ̂ξ(θ) = Σ̂(θ)− Σ̂χ(θ).

The covariance matrices of common and idiosyncratic parts are computed

by applying the inverse Fourier transforms to the respective estimated spectral

density matrices:

Γ̂χ
k =

2π

2m + 1

m∑

j=−m

Σ̂χ(θj)e
ikθj (2.17)

Γ̂ξ
k =

2π

2m + 1

m∑

j=−m

Σ̂ξ(θj)e
ikθj (2.18)

where θj = 2π
2m+1

j and j = −m, ...,m.

The auto-covariance matrices computed in this first step incorporate the re-

strictions implied by the dynamic properties of the common factors, since they

are estimated by imposing the rank reduction on the spectral density matrix.

In a second step, the estimated covariance matrix of the common components

is used to solve the generalized principal components (GPC) problem:

Γ̂χ
0Vrg = Γ̂ξ

0VrgDrg (2.19)
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s.t. V ′
rgΓ̂

ξ
0Vrg = Ir

where Drg is a diagonal matrix having on the diagonal the first r largest general-

ized eigenvalues of the pair (Γ̂χ
0 , Γ̂ξ

0) and Vrg is the (n× r) matrix whose columns

are the corresponding eigenvectors.

The first r GPCs are defined as:

F̂ g
t = V ′

rgX̂t (2.20)

In practice the estimate of the covariance matrix of the idiosyncratic compo-

nent, Γ̂ξ
0, is ill-conditioned when the cross-sectional dimension is large and this

makes the generalized principal components unstable. To overcome this problem,

the out off-diagonal elements of Γ̂ξ
0 are set to zero. Consequently, the general-

ized principal components can be seen as static principal components computed

on weighed data; weights are inversely proportional to the variance of the idio-

syncratic components. Such a weighting scheme should provide more efficient

estimates of the common factors.

Using the estimates of the auto-covariance matrices of the common and idio-

syncratic components, we can compute the forecasts of both components sepa-

rately as:

χ̂iT+r|T = Proj[χiT+r|F̂ g
T ] = Γ̂χ

i.,rVrg(V
′
rgΓ̂0Vrg)

−1V ′
rgX̂T (2.21)

and

ξ̂i,T+k|T = Proj[ξi,T+k|x̂iT , ..., x̂iT−p] = [Γ̂ξ
ii,r, ..., Γ̂

ξ
ii,r+p]W

−1
i,k [x̂iT , ..., x̂iT−p]

′

(2.22)

where Γ̂i.,r denotes the ith row of Γ̂r and

Wi,k =




Γ̂ii,0 ... Γ̂ii,−(k−1)

... ... ...

Γ̂ii,k−1 ... Γ̂ii,0




while Γ̂ij,r denotes the entry of the ith row and the jth column of Γ̂r.
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The forecast of yi,T+h|T , labelled as yfhlr
i,T+k|T , is computed as the sum of the

common component forecast and idiosyncratic component forecast:

ŷfhlr
i,T+k|T = σ̂i

(
χ̂i,T+k|T + ξ̂i,T+k|T

)
+ µ̂i

Since the procedure is run on standardized data, the forecast are then transformed

to reattribute mean and variance.

This approach explicitly takes into account the distinction between dynamic

factors and their lags. It is therefore possible to infer the dynamic structure of

the panel, that is, the number of shocks driving the economy. This can be ad-

dressed by, for example, looking at the performance of the models across different

specifications of r and q .

2.4 Nesting the Models

In order to compare the predicting performances of the two factor models, the

two methodologies need to be nested.

There are three main differences between the SW and FHLR methods. First

the procedures differ in terms of the weighting scheme adopted when comput-

ing the common factors. As discussed above, SW use standard PCs to extract

factors, while FHLR propose an estimator based on the GPC. We recall that

when extracting the common factors the GPC down-weight series with large

idiosyncratic components.

The second difference relates to the projection of common factors. While

SW perform the projection using ordinary least squares (OLS), FHLR perform a

non-parametric regression that takes into account the restrictions implied by the

dynamic factor structure, essentially imposing restrictions by the rank reduction

of the spectral density matrix. We will denote such projection as dynamic least

squares (DLS).

Finally, the methods differ in the way they forecast the idiosyncratic compo-

nent: SW include lags of the dependent variable as additional predictors, while

FHLR exploit the orthogonality between idiosyncratic and common components
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and hence forecast the two components separately. If the idiosyncratic compo-

nent is unforecastable, as we will show in our empirical exercise, we can focus only

on the first two differences. Considering only factor estimations and projections,

four combinations are possible:

• PC/OLS: OLS regression on principal components (SW);

• GPC/OLS: OLS regression on generalized principal components

• PC/DLS: DLS regression on principal components

• GPC/DLS: DLS regression on generalized principal components (FHLR);

We can isolate and evaluate the relevance of the efficiency improvement asso-

ciated with the FHLR’s weighting scheme by comparing the forecasts obtained

with PC/OLS and GPC/OLS estimators.

The GPC/OLS forecast is computed simply by replacing static principal com-

ponent with generalized principal components in eq.(2.20):

x̂gpc,ols
iT+h|T = α̂g

ih + β̂g
ihF̂

g
T (2.23)

where the parameters are estimated by OLS.

The effect of the restrictions imposed with the dynamic projection can be

instead evaluated by comparing PC/DLS and PC/OLS estimators. Thus, taking

into account the restrictions implied by the factor structure and imposed through

dynamic principal components (computed in the first step of the FHLR’s proce-

dure), we obtain the following forecasting equation:

x̂pc,dls
i,T+h|T = Γ̂χ

i.,hVr(V
′
r Γ̂0Vr)

−1V ′
r X̂T (2.24)

and ŷpc,dls
i,T+h|T = σ̂ix̂

pc
i,T+r|T + µ̂i.

The unrestricted projection on simple principal components (PC/OLS) can be

derived as a particular case of the forecasts in (2.24), when the number of dynamic
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factors, q, is equal to the cross-section dimension, n. In this case, the dynamic

factor structure restrictions are not imposed, since the rank of the spectral den-

sity matrix is left unrestricted (we use all the dynamic principal components).5

Therefore, the estimated autocovariance matrix of the common component Γ̂χ
i.,r

is equal to the sample autocovariance matrix of the series themselves (Γ̂i.,r) and

the estimator is:

x̂pc,ols
i,T+k|T = wkΓ̂i.,rVr(V

′
r Γ̂0Vr)

−1V ′
r X̂T (2.25)

Nevertheless, for q = n the PC/DLS still does not nest the SW’s method

(PC/OLS) because of the presence of the weighting term wk on the right-hand

side. The presence of the weighting term is due to the fact that the spectral es-

timates are computed on the weighted auto-covariance function. For this reason,

when computing the inverse Fourier transform of the spectral density matrix,

Σ̂(θ), we do not recover the covariance matrix of order k, Γ̂k, but wkΓ̂k. Only

when the weights are set equal to one, wk = 1, k = −m, ...,m (rectangular win-

dow), the PC/DLS estimator, with q = n, matches the SW’s estimator PC/OLS.

We will consider two cases; rectangular (rect) window (wk = 1, k = −m, ..., m)

and Bartlett, triangular (triang) window (wk = 1− |k|
(2m+1)

, k = −m, ...,m). The

latter was originally proposed by Forni, Hallin, Lippi and Reichlin (2005).

To understand how the weights wk can affect forecasts, it is important to

notice that the triangular window shrinks toward zero covariances at longer lags.

This shrinking can damage the forecasts if the variables of interest are persistent,

that is the covariances fade away slowly. On the other hand, if the persistence

is low, covariances fade away much more rapidly and a shrinking term in the

covariance function can help to reduce the sample variance of the forecasts, thus

improving the forecast accuracy.

In our empirical exercise we will evaluate how different combination of: PC

vs. DPC (estimation of the common factors); OLS vs. DLS (projection on the

common factors) and triang vs. rect widows (estimation of the spectral density

5It is worth stressing that we are not anymore in the framework of Section 2.3 since the
number of dynamic factors, q, is allowed to be larger than the number of static factors, r.
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matrix) affect forecast precision.

3 Data and Basic Characteristics of the Panel

The data set employed for the out-of-sample forecasting analysis is the same

as that adopted by Stock and Watson (2002), with the exception of a few series.

The panel includes real variables (sectoral industrial production, employment and

hours worked), nominal variables (consumer and producer price indices, wages,

money aggregates), asset prices (stock prices and exchange rates), the yield curve

and surveys. A full description of the database is provided in appendix A.

Series are transformed to obtain stationarity. In general, for real variables

such as employment, industrial production and sales, we use the monthly growth

rate. We use first differences for series already expressed in rates: unemployment

rate, capacity utilization, interest rate and some surveys. Prices and wages are

transformed into first differences of annual inflation following Giannone, Reichlin,

and Sala (2004) and Giannone, Reichlin, and Small (2005).

3.1 Descriptive Statistics

The main motivation behind the factor representation is the strong comovement

observed in macroeconomic time series, which is possible only if there are few

underlying common driving forces. The simplest statistic to describe comove-

ments among series is the percentage of the variance of the panel accounted for

by common factors estimated by PCs. If the series are characterized by strong

comovements, then a small number of principal account for a relevant percentage

of the overall panel variance while the remaining principal components have a

small marginal contribution.6 On the other hand, a low degree of comovement is

reflected in the fact that all principal compoenents account for a small percentage

6The marginal contribution of each principal component in explaining the panel variance (at
each frequency) is equal to the eigenvalues of the covariance matrix (spectral density matrix
at a given frequency). The approximate factor structure assumption requires that few of those
eigenvalues become large while the remaining stay small, when the cross-sectional dimension
becomes larger and larger.
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of explained variance and hence a larger number of PCs are required to explain

a non-trivial percentage of the overall variance. Table 1 reports the percentage of

the total variance of the panel explained by q = 1, ..., 15 dynamic common factors

(second row) and r = 1, ..., 15 static common factors (third row).7

Table 1: Percentage of total variance explained by the first q (dynamic) and r (static) principal
components

1 2 3 4 5 6 7 8 9 10 11 12 13 12 15
n. of dynamic fac. (q) 0.29 0.42 0.52 0.59 0.64 0.68 0.72 0.75 0.78 0.80 0.82 0.84 0.86 0.87 0.88
n. of static fac. (r) 0.16 0.26 0.31 0.36 0.40 0.44 0.48 0.51 0.54 0.56 0.59 0.60 0.62 0.64 0.66

Results show that comovements are relatively strong. A few number of dy-

namic principal components (3 to 4) capture most of the variance of the panel,

while the marginal contribution of the remaining is quite small. There is however,

a remarkable difference between the variance explained by static and dynamic

PCs. Ten static factors, estimated by PCs, are needed to explain around the

same amount of variance captured by three/four dynamic factors, estimated by

dynamic PCs. This finding suggests that there are substantial dynamics in our

panel. In fact, lagged dynamic factors are counted as additional static factors,

and hence their presence increase the asymptotic rank of the covariance matrix

r. On the other hand, the asymptotic rank of the spectral density matrix, q, is

invariant with respect to the presence of lagged factors. Therefore, a big gap in

the variance accounted for the static and dynamic PCs indicate that the panel is

characterized by a rich lead-lag structure. In fact, in equation (2.4) the difference

between the number of dynamic factors, q, and the number of static factors, r,

reflects the length, s, of the filters B(L). If we select q and r so as to explain

around 50 percent of the total variance, then q ∼ 3 and r ∼ 10. Indeed, given

that r = q(s + 1), then s ∼ 3, 4, suggesting the presence of a quite relevant

amount of dynamic structure. The restrictions implied by these rich dynamics

7Our measure is given by: traceΓ̂χ
0 /traceΓ̂0 where Γ̂χ

0 is estimated by using the first q
dynamic principal components (cfr. eq.(2.17)) and the first r static principal components (cfr.
eq.(2.12)). For dynamic principal components, the spectral density matrix is estimated using a
Bartlett window.
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are imposed by the FHLR’s approach when computing the forecast by projecting

on the common factors.

In order to evaluate the relevance of idiosyncratic dynamics, Table 2 shows

the distribution of the percentage of variance left unexplained when projecting

on two dynamic common factors (noise to signal). The estimates are computed

using dynamic principal components (see equation 2.18).

Table 2: Frequency distribution of the size of the idiosyncratic component

( .0-.1) ( .1-.2) ( .2-.3) ( .3-.4) (.4-.5) ( .5-.6) ( .6-.7) ( .7-.8)

%Var(ξit)
Var(xit)

0.68 4.11 14.38 15.75 19.18 16.44 17.81 11.64

It is evident that the distribution of the idiosyncratic variance is quite dis-

persed: some variables are largely driven by common sources (around 50 percent

of the series have the variance of the idiosyncratic component that accounts for

a percentage of total variance between 20 and 50 percent, cfr. columns 4 to 6),

while other variables are driven mainly by idiosyncratic forces. This result sug-

gests that weighting the variables according to their signal to noise ratio, that is,

putting less weight on variables with large idiosyncratic variance, should provide

an efficiency improvement in the extraction of the common factors. Therefore,

GPCs should be more effective than PCs to recover the factor space. However,

the empirical importance of such restrictions will be evaluated in an out-of-sample

forecasting exercise.

In conclusion, these findings (strong comovements, rich dynamic structure and

heterogeneity in the degree of commonality) suggest that factor models provide a

reasonable representation of our panel and indicate that there is room for improv-

ing the SW simple principal components forecasts by exploiting the restrictions

implied by the factor structure and by weighting appropriately the data when

extracting the common factors.

To find out if such efficiency improvements are helpful in forecasting, an em-
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pirical evaluation is necessary. This will be carried out using a simulated pseudo

out-of-sample exercise.

4 Design of the Forecasting Comparison and Em-

pirical Results

Let us define IP as the monthly industrial production index and CPI as the

consumer price index. The variables we forecast are yt+h, πt+h where yt = 100×
logIPt is the (rescaled) log of IP and πt = (pt − pt−12)/pt−12 × 100 is the annual

CPI inflation.

Since IP enters the panel in monthly growth rates, while CPI enters as monthly

differences of annual inflation, we first compute the forecasts ∆̂yT+1|T , ..., ∆̂yT+h|T

and ∆̂πT+1|T , ..., ∆̂πT+h|T . The forecasts for the (log) IP and the level of inflation

are computed as:

ŷT+h|T = yT + ∆̂yT+1|T + ... + ∆̂yT+h|T (4.26)

and

π̂T+h|T = πT + ∆̂πT+1|T + ... + ∆̂πT+h|T (4.27)

The prediction accuracy is evaluated at a given horizon, h, using the mean

squared forecast error (MSFE) metric, given by:

MSFEh
π =

1

T1 − T0 − h + 1

T1−h∑

T=T0

(π̂T+h|T − πT+h) (4.28)

and

MSFEh
y =

1

T1 − T0 − h + 1

T1−h∑

T=T0

(ŷT+h|T − yT+h) (4.29)

The sample has a monthly frequency and ranges from January 1959 (1959:1) to

February 1999 (1999:2). The evaluation period is 1970:01 to 1999:02. T1=1999:02

is the last available point in time, T0= 1969:12 and h = 12.

We perform a preliminary forecast analysis to understand the broad predict-

ing characteristics of the models and in particular the role of the idiosyncratic

component in forecasting.
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We compute MSFE for IP and CPI using the two factor models, for different

parameter specifications, and for a naive model, random walk with drift. Table

3 below reports MSFE of the factor based forecasts relative to those of the naive

model (RMSFE). A number below one indicates that the factor model specifica-

tions deliver, on average, more accurate forecasts than the naive model.

We report results for a wide range of parameter specifications.8 The static

rank r ranges from zero (no factors) up to a maximum of fifteen. The lags s of

the dependent variable in SW, and the lags of the idiosyncratic component itself

in FHLR, included to forecast the idiosyncratic component, range from zero (no

lagged dependent variable) up to six. The FHLR method is estimated using a

triangular window of size
√

T and with three dynamic factors, q = 3. When

r = 0, the SW forecasts correspond to those of an autoregressive (AR) model.

The entries with both s = 0 and r = 0 correspond to the benchmark naive model

(random walk with drift) for which we report the MSFE.

The two factor models appear to clearly outperform the AR model (specifi-

cation with r=0 in Table 3) in forecasting IP and CPI. We additionally see that

the improvements achieved by the multivariate techniques are very relevant.

Moreover, the common factors capture the bulk of the dynamics of the two

variables of interest. In fact, once controlling for common factors, the lags of the

dependent variables do not help to forecast. This suggests that the idiosyncratic

component is unforecastable for the transformations we adopted and only the

common components of industrial production and inflation are predictable. In

summary, the common factors, constructed to explain the maximum amount of

cross-sectional variance of the panel, are also able to capture all the predictable

dynamics of the key aggregated variables.9

8For each specification, lag length and number of common factors are kept fixed for the whole
out-of-sample simulation exercise. All the exercises of the paper have also been performed by
using information criteria to select the parameterizations in real-time, as in Boivin and Ng
(2005). The results, available upon request, show that this alternative strategy does not affect
the qualitative conclusions of the paper.

9This result is in line with that of Giannone, Reichlin, and Sala (2004). Stock and Watson
(2002) obtained a similar result for IP, but not for CPI. What characterizes our forecast is
the different transformation used for prices: Stock and Watson (2002) use monthly changes of
monthly CPI inflation, while we use monthly changes of yearly inflation. The transformations
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Table 3: MSFEs of 12-step ahead predictions, SW and FHLR methods

IP r SW r FHLR
s 0 1 3 5 10 15 0 1 3 5 10 15
0 24.37 0.96 0.56 0.57 0.57 0.61 ... ... 0.65 0.60 0.61 0.64
1 0.99 0.91 0.55 0.56 0.57 0.61 ... ... 0.65 0.60 0.60 0.64
2 1.00 0.90 0.55 0.56 0.56 0.60 ... ... 0.65 0.61 0.61 0.64
3 1.03 0.91 0.55 0.56 0.56 0.58 ... ... 0.65 0.61 0.61 0.65
6 1.07 0.95 0.57 0.59 0.58 0.59 ... ... 0.64 0.59 0.60 0.64

CPI r SW r FHLR
s 0 1 3 5 10 15 0 1 3 5 10 15
0 4.91 0.69 0.68 0.58 0.61 0.69 ... ... 0.76 0.68 0.69 0.73
1 0.95 0.67 0.69 0.58 0.61 0.68 ... ... 0.77 0.69 0.69 0.72
2 0.96 0.67 0.70 0.59 0.62 0.69 ... ... 0.78 0.70 0.70 0.73
3 0.97 0.67 0.70 0.59 0.63 0.69 ... ... 0.78 0.70 0.71 0.73
6 0.98 0.66 0.72 0.61 0.64 0.71 ... ... 0.79 0.70 0.71 0.74

Notes: RMSFEs for different model specifications. The cell on the left hand side, corresponding to the model with s = 0 and

r = 0, reports the MSFE of the naive model. s and r denote the number of lags for the idiosyncratic component and the

number of static factors respectively. The number of dynamic factor q is equal to 3.

Table 4 below compares the relative performances of the SW and FHLR fore-

casts for different specifications of the the dynamic rank q and for s = 0 (given

the unforecastability of the idiosyncratic component). The static rank r is re-

ported in the first column. The FHLR’s method is evaluated for a dynamic rank

(reported in parenthesis in the first row) ranging from 1 to 5. The SW forecasts

are reported for comparison. The spectral density matrix is estimated with a

triangular window of size m =
√

T .

Results show that for all the specifications, factor forecasts are more precise

than the simple univariate forecasts (value less than one) and, when we include

at least three dynamic factors (q = 3), FHLR factor-based forecasts are very

close to the SW forecasts. However, the RMSFEs associated to the FHLR’s

in Stock and Watson (2002) are such that prices display dynamic properties that are different
from those of the rest of the panel. Indeed their spectrum peaks at the high frequencies. In
this paper, the transformed series have, as most of the other series included in the panel, a
power spectrum localized on the business cycle frequencies. This makes the use of the lags
of the prices themselves redundant. A discussion on the different transformations for prices is
reported in appendix B.



25
ECB

Working Paper Series No 680
October 2006

forecasting method are slightly higher than those obtained with the SW princi-

pal components forecasts. This is particularly true for CPI. These results could

be interpreted as evidence that the restrictions implied by the dynamic factor

structure and imposed by the FHLR method are not satisfied by the data. Nev-

ertheless, there are at least two further qualifications to this result. First, the size

of the improvements of the two factor models over univariate forecasts is of first

order importance, while the differences between factor models are quite small or

at least of second order; indeed the correlation between forecasts obtained with

the two factor models is around 0.9 both for IP and CPI.10 However, as stressed

in section 2.3, at this stage, the two methods are not directly comparable and,

apart from the dynamic factor structure restrictions, there are still many other

differences between the two techniques. Therefore it is impossible to draw a con-

clusion on the usefulness of the factor restrictions on the basis of these results.

We will come back to this point in the next sections. Below we further study the

properties of the forecasts by looking at their performance over the out-of-sample

evaluation period.

Table 4: The Performance of the SW and 2S methods (RMSFE)

IP CPI

r SW fhlr(1) fhlr(2 ) fhlr(3) fhlr(4) fhlr(5) SW fhlr(1) fhlr(2) fhlr(3) fhlr(4) fhlr(5)
1 0.96 0.80 0.69 0.87
2 0.64 0.71 0.63 0.64 0.78 0.73
3 0.56 0.66 0.63 0.65 0.68 0.72 0.67 0.76
5 0.57 0.66 0.69 0.60 0.61 0.62 0.58 0.68 0.68 0.68 0.68 0.69
10 0.57 0.71 0.69 0.61 0.60 0.60 0.61 0.73 0.68 0.69 0.70 0.71
15 0.61 0.73 0.72 0.64 0.63 0.64 0.69 0.74 0.70 0.73 0.74 0.75

Notes: RMSFEs for different model specifications. r denotes the number of static factors, q, indicated in brackets, denotes the

number of dynamic factors.

10As for Figure 1, a specification with 3 dynamic factors, 10 static factors and without
idiosyncratic component is used for this computation.



26
ECB
Working Paper Series No 680
October 2006

4.1 When Does the Large Cross-Section Help?

In this section we study how the forecast accuracy of the two multivariate models

has evolved over time. Figure 1 reports the MSFEs of the two factor models

relative to the naive benchmark smoothed over time with a centered moving

window spanning six years. The shaded areas denote the US recessions as dated

by the NBER. The factor forecasts are computed using a specification with 10

static factors for the SW’s model and with 3 dynamic factors and 10 static factors

for the FHLR’s model. The benchmark is the random walk with drift, r = 0, s = 0

in eq.(2.13).

The picture shows that the advantages of factor models on the AR forecast

come, almost entirely, from the first part of the sample until 1985 (value of the

RMSFE less than one). Improvements are quite remarkable over this period.

This is not surprising because at that time the series are characterized by strong

comovements. This is a situation in which common factors describe the data par-

ticularly well. From 1985 onwards the picture is very different. The two factor

models lose most of their advantage over the simple AR model, that is the RMS-

FEs are, on average, around one. The post 1985 period, known as the ”Great

Moderation”, is characterized by a sizable decline in the volatility of output and

price measures (see Stock and Watson, 2004b, and references cited there). Our

result of declined forecast accuracy of factor models relative to simple univariate

models indicates that the great moderation has also been associated with an im-

portant structural break in the relations between IP, CPI and the common factors

extracted from our large panel. A slight increase in predictability is nonetheless

observed in concomitance with the recession in the 90s. One possible interpre-

tation is that downturn periods are characterized by increased comovements - a

situation in which factor based forecasts are likely to be more accurate.11 The

picture also shows that the SW’s method performs better that the FHLR’s one

on the pre-85 sample. On the other hand, during the post-1985 sample, the SW

11Comovement is indeed one of the main features of the recessions, see Burns and Mitchell
(1946).
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simple principal components forecasts become less accurate than the simple ran-

dom walk, while the FHLR model still retain some advantage over the naive,

random walk, model in forecasting CPI inflation.

To shed more light on the sub-sample performances we split the out-of-sample

evaluation period in two parts according to the “Great Moderation” breakdown of

mid-1980s. We study the performances of the factor based forecasts for different

parameterizations of the static and the dynamic rank.

Table 5 below reports the results in terms of RMSFE. The features emerging

from Figure 1 are confirmed. During the first period, forecasts obtained with the

factor models are remarkably accurate both for IP and CPI. In the second sub-

sample the factor models lose the forecast accuracy that they display in the first

sub-sample, becoming even less accurate than a simple random walk forecast.

Performance, relative to the naive benchmark is particularly poor for the SW

method. These results hold for all specification of the static r and dynamic q

rank. D’Agostino, Giannone, and Surico (2006) have shown that the decline of

the predictive accuracy relative to naive forecasts is not limited to factor-based

forecasts but is a general feature of a wide class of model-based and institutional

forecasts.

Results on the relative performances of the two factor models are also con-

firmed. During the first period the SW forecasts are more accurate that those of

the FHLR. Both the factor based forecasts are more accurate than the naive ones.

This result holds for both IP and CPI inflation and for all specifications of the

static, r, and the dynamic rank, q. In the post-1985 sample, for all specifications

of the static rank (r), SW forecasts are less accurate than the naive forecasts for

both IP and CPI inflation; FHLR forecasts for IP are also less accurate than the

naive forecasts. For CPI inflation FHLR forecasts are, instead, more accurate

than the random walk provided that the number of common shocks is kept small.

Another important feature observed from the results is that over the first

sample the most accurate forecasts computed using the FHLR’s method are ob-

tained using a specification with at least three dynamic factors, q > 3. After the
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Table 5: The Performance of the SW and 2S methods over the two sub-samples (RMSFE)

IP 1970:1-1984:12 CPI 1970:1-1984:12
r SW fhlr(1) fhlr(2 ) fhlr(3) fhlr(4) fhlr(5) SW fhlr(1) fhlr(2) fhlr(3) fhlr(4) fhlr(5)
1 0.95 0.77 0.62 0.86
2 0.53 0.67 0.57 0.56 0.75 0.69
3 0.44 0.62 0.56 0.60 0.61 0.68 0.62 0.73
5 0.43 0.62 0.63 0.53 0.54 0.56 0.46 0.65 0.63 0.64 0.63 0.63
10 0.46 0.68 0.65 0.55 0.54 0.54 0.50 0.70 0.64 0.66 0.66 0.67
15 0.51 0.70 0.68 0.59 0.57 0.58 0.59 0.72 0.68 0.69 0.69 0.70

IP 1985:1-1999:2 CPI 1985:1-1999:2
r SW fhlr(1) fhlr(2 ) fhlr(3) fhlr(4) fhlr(5) SW fhlr(1) fhlr(2) fhlr(3) fhlr(4) fhlr(5)
1 0.99 0.97 1.09 0.95
2 1.37 0.95 1.05 1.10 0.94 0.92
3 1.38 0.93 1.11 1.00 1.06 0.96 0.91 0.93
5 1.55 0.91 1.05 1.10 1.08 1.10 1.24 0.90 0.91 0.95 0.98 1.02
10 1.32 0.91 1.00 0.97 1.07 1.02 1.24 0.90 0.86 0.90 0.94 0.93
15 1.27 0.90 0.99 1.01 1.05 1.01 1.24 0.87 0.85 0.91 1.01 1.02

Notes: RMSFEs for different model specifications. r denotes the number of static factors, q, indicated in brackets, denotes the

number of dynamic factors.

mid-eighties, instead, a specification with one or two dynamic factors, q = 1, 2,

provide more accurate forecasts.

In conclusion, four main results emerge from our exercise. First, if variables

are transformed appropriately, idiosyncratic dynamics are irrelevant for forecast-

ing. Second, both the SW and FHLR factor model outperform a simple AR

model. The advantages of factor models over a simple univariate model are sub-

stantial during the the pre-1985 period, which is characterized by strong comove-

ments and high volatility. Third, factor based forecasts are highly collinear and

have similar forecasting accuracy. The SW forecast are, however, slightly more

accurate than those obtained via the FHLR in the pre-1985 period, but in the

post-85 they become less accurate than both FHLR and random walk forecasts.

Finally, the number of common shocks that generate predictable fluctuations of

IP and CPI has declined in the “Great Moderation” period.

Although the results of this and the previous sections have highlighted im-
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portant features of both the data panel and the models, they still cannot be used

to value the relevance of the dynamic restrictions and weighting scheme imposed

by the FHLR when computing the forecasts. As stressed in section 2, the two

factor-based approaches differ in a number of core and non-core characteristics.

To understand the rationales behind the different performances it is necessary to

isolate these different features.

4.2 SW and FHLR

In this section the two factor models are nested in a unified comparable frame-

work. This allows us to evaluate the importance of the core (weighting schemes

(GPC vs. PC) and dynamic restrictions) and non-core (estimation window of

the spectral density matrix) differences.

As stressed in Section 2, the models can be compared in two ways. First

FHLR’s approach can be nested in the SW approach by computing OLS projec-

tion on the generalized principal components instead of simple principal compo-

nents, see eq. (2.23). This allows us to isolate the importance of the weighting

scheme for the forecast accuracy. Second, the SW method can be obtained as a

particular case of the FHLR method, with no restrictions on the spectral density

matrix (q = n) and rectangular window for the estimation of the spectral den-

sity (see eq. (2.25)). In what follows we evaluate the relative performances of

these nested models. We also evaluate the impact of alternative spectral density

window estimators (triangular and rectangular) on the predictive performance.

Results for the whole sample and the two sub-samples are summarized in table

6. The static rank r is fixed as equal to ten (detailed results for all specifications

are reported in Appendix C). We report the MSFEs relative to the random walk

for six different forecast specifications, both for IP (left hand side) and CPI (right

hand side).

For OLS forecasts based on generalized principal components (see eq. (2.23)),

the covariance matrices of the common and idiosyncratic components are esti-

mated by running dynamic principal components on the spectral density matrix
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tha is computed with rectangular window (column 2, gpc,ols (r)) and triangular

window (column 3, gps,ols (t)).

Dynamic forecast regression on simple (non-weighted) principal components

(see eq. 2.24) are computed on the basis of two estimates of the spectral density

matrix: using a rectangular (column 4, pc,dls (r)) and triangular window (column

5, pc,dls (t)). Results for the same exercise performed on weighted principal

components are displayed in columns 6 (gpc,dls (r)) and 7 (gpc,dls (t)).12

The first column reports the static rank, q, ranging from 1 to n (no dynamic

restrictions). The case with the spectral density matrix computed with a rectan-

gular window and q = n nests the SW’s approach.

The table is rich in information. We now proceed to summarize it below.

First, forecasts based on simple OLS projections, computed on weighted and

non-weighted principal components, are very similar (cfr. colums 2, 3). This is

irrespective of the number of dynamic factors and the spectral density estima-

tor (triangular vs rectangular window) used to compute the covariance matrix.

Results are robust across samples and forecasted variables. This suggests that

weighting for the signal to noise ratio when extracting the common factors does

not have a major impact on forecasting accuracy.

Second, when focusing on the whole sample, forecasts based on dynamic factor

regression, computed on both weighted (cfr. colums 4, 5) and non-weighted

(cfr. colums 6, 7) principal components, are quite accurate and stable across

specifications provided the number of common shocks q is larger than two. For

q = n results are very similar to those for 3 ≤ q ≤ 5, suggesting that imposing

the restrictions of the dynamic factor models has small effect on the forecasting

accuracy. This stands in stark contrast to the conjecture of Boivin and Ng (2005),

who claim that imposing restrictions on the dynamic structure is harmful for

forecasting accuracy.

The crucial “parameter” that explains the differences between the forecasts is

rather the window used for the estimation of the spectral density matrix (column

12Results in columns 5 are the same of the previous section.
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4 vs column 5 and column 6 vs and 7). The small differences in forecast accuracy

between the SW and FHLR methods are hence due to a “non-core” characteristic

of the procedures, rather than to the fact that the “tight factor structure” imposed

by FHLR is not satisfied by the data, as claimed by Boivin and Ng (2005).

In this context it is important to assess why the choice of the window is so

crucial. To address this question we examined at the sub-sample performances.

The first sub-sample forecasts obtained using the rectangular window estimator

outperform those computed using the triangular window. The reverse is true

for the second sub-sample. The two periods are characterized by very different

persistence of the series; high during 1970s to mid-1980s, and low during mid-

1980s to the end of 1990s. The triangular window, used in the estimation, gives

less weight to covariances associated with longer lags. This choice is, of course,

not suitable when samples are characterized by long lasting time dependence,

as observed over in first sub-sample. In this case, the rectangular window, that

equally weights upon covariances of all orders, is the more appropriate choice.

In the second period, characterized by less persistence, putting less weight upon

covariances of higher order helps, since it aligns the forecasts toward those of a

random walk, which has a very good performance in this low persistent sample

(see Atkeson and Ohanian, 2001; D’Agostino, Giannone, and Surico, 2006)

5 Conclusions

This paper compares alternative forecasting methodologies based on large-panel

factor models. We compare the static principal component approach of Stock and

Watson (2002) and the two-step approach of Forni, Hallin, Lippi, and Reichlin

(2005) in forecasting Industrial Production (IP) and Consumer Price (CPI) infla-

tion by using a large macroeconomic dataset constructed by Stock and Watson

(2002). The main results can be summarized as follows:

• both approaches outperform the simple univariate autoregressive model.

The gain from factor based predictions is substantial, especially in periods

of high comovements
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• few factors capture all the predictable components of CPI inflation and IP,

while idiosyncratic dynamics are negligible

• even when factors are estimated by putting less weight to series with larger

idiosyncratic variance, there is no evident improvement in the forecast ac-

curacy

Lastly, taking into account the heterogeneity in the lead-lag relations among

series, analyzed by nesting the Stock and Watson (2002) approach (no dynamic

heterogeneity) in the Forni, Hallin, Lippi, and Reichlin (2005) approach (dynamic

heterogeneity), appears irrelevant for the predictive performances.

We conclude that although there is a significant heterogeneity in the signal-

to-noise ratio and in the dynamic effects of the common shocks across macroeco-

nomic variables, accounting for this heterogeneity using the Forni, Hallin, Lippi,

and Reichlin (2005) approach does not help improving the forecasting accuracy

of factor based forecasts. In the last period, however, the Forni, Hallin, Lippi,

and Reichlin (2005) approach slightly improves on the naive model in particular

for inflation. In this case, however, the degree of shrinkage of autocovariances at

longer lags is crucial for forecast precision.
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6 Appendix A: Data definition and transformation codes

1 = no transformation, 2 = first difference, 3 = second difference , 4 = logarithm ×100, 5 =
monthly growth rate (first difference of logarithms ×100), 6 = first difference of monthly growth
rates (second difference of logarithms ×100), 7 = first difference on yearly growth rate (twelfth
difference of first difference of logarithms ×100)

code sample transf. description
Real output and income

1 ip 1959:01 1999:02 5 industrial production: total index (1992D 100, sa)
2 ipp 1959:01 1999:02 5 industrial production: products,total (1992 D 100, sa)
3 ipf 1959:01 1999:02 5 industrial production: final products (1992 D 100, sa)
4 ipc 1959:01 1999:02 5 industrial production: consumer goods (1992 D 100, sa)
5 ipcd 1959:01 1999:02 5 industrial production: durable consumer goods (1992 D 100, sa)
6 ipcn 1959:01 1999:02 5 industrial production: nondurable consumer goods (1992 D 100, sa)
7 ipe 1959:01 1999:02 5 industrial production: business equipment (1992 D 100, sa)
8 ipi 1959:01 1999:02 5 industrial production: intermediate products (1992 D 100, sa)
9 ipm 1959:01 1999:02 5 industrial production: materials (1992 D100, sa)
10 ipmnd 1959:01 1999:02 5 industrial production:nondurable goods materials (1992 D 100, sa)
11 ipmfg 1959:01 1999:02 5 industrial production: manufacturing (1992 D 100, sa)
12 ipd 1959:01 1999:02 5 industrial production: durable manufacturing (1992 D 100, sa)
13 ipn 1959:01 1999:02 5 industrial production: nondurable manufacturing (1992 D 100, sa)
14 ipmin 1959:01 1999:02 5 industrial production: mining (1992 D 100, sa)
15 iput 1959:01 1999:02 5 industrial production: utilities (1992 D 100, sa)
16 ipxmca 1959:01 1999:02 1 capacity util rate: manufacturing, total (% of capacity, sa)(frb)
17 pmi 1959:01 1999:02 1 purchasing managers index (sa)
18 pmp 1959:01 1999:02 1 NAPM production index (percent)
19 gmyxpq 1959:01 1999:02 5 personal income less transfer payments (chained) (#51) (bil 92$, saar)

Employment and hours
20 lhel 1959:01 1999:02 5 index of help-wanted advertising in newspapers (1967 D 100; sa)
21 lhelx 1959:01 1999:02 4 employment: ratio; help-wanted ads:no. unemployed clf
22 lhem 1959:01 1999:02 5 civilian labor force: employed, total (thous., sa)
23 lhnag 1959:01 1999:02 5 civilian labor force: employed, nonagric. industries (thous., sa)
24 lhur 1959:01 1999:02 1 unemployment rate: all workers, 16 years & over (%, sa)
25 lhu680 1959:01 1999:02 1 unemploy. by duration: average (mean) duration in weeks (sa)
26 lhu5 1959:01 1999:02 1 unemploy. by duration: persons unempl. less than 5 wks (thous., sa)
27 lhu14 1959:01 1999:02 1 unemploy. by duration: persons unempl. 5 to 14 wks (thous., sa)
28 lhu15 1959:01 1999:02 1 unemploy. by duration: persons unempl. 15 wks C (thous., sa)
29 lhu26 1959:01 1999:02 1 unemploy. by duration: persons unempl. 15 to 26 wks (thous., sa)
30 lpnag 1959:01 1999:02 5 employees on nonag. payrolls: total (thous., sa)
31 lp 1959:01 1999:02 5 employees on nonag. payrolls: total, private (thous., sa)
32 lpgd 1959:01 1999:02 5 employees on nonag. payrolls: goods-producing (thous., sa)
33 lpcc 1959:01 1999:02 5 employees on nonag. payrolls: contract construction (thous., sa)
34 lpem 1959:01 1999:02 5 employees on nonag. payrolls: manufacturing (thous., sa)
35 lped 1959:01 1999:02 5 employees on nonag. payrolls: durable goods (thous., sa)
36 lpen 1959:01 1999:02 5 employees on nonag. payrolls: nondurable goods (thous., sa)
37 lpsp 1959:01 1999:02 5 employees on nonag. payrolls: service-producing (thous., sa)
38 lpfr 1959:01 1999:02 5 employees on nonag. payrolls: nance, insur. & real estate (thous., sa)
39 lps 1959:01 1999:02 5 employees on nonag. payrolls: services (thous., sa)
40 lpgov 1959:01 1999:02 5 employees on nonag. payrolls: government (thous., sa)
41 lphrm 1959:01 1999:02 1 avg. weekly hrs. of production wkrs.: manufacturing (sa)
42 lpmosa 1959:01 1999:02 1 avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa)
43 pmemp 1959:01 1999:02 1 NAPM employment index (percent)

Real retail, manufacturing and trade sales
44 msmtq 1959:01 1999:02 5 manufacturing & trade: total (mil of chained 1992 dollars)(sa)
45 msmq 1959:01 1999:02 5 manufacturing & trade: manufacturing; total (mil of chained 1992 dollars)(sa)
46 msdq 1959:01 1999:02 5 manufacturing & trade: mfg; durable goods (mil of chained 1992 dollars)(sa)
47 msnq 1959:01 1999:02 5 manufact. & trade: mfg; nondurable goods (mil of chained 1992 dollars)(sa)
48 wtq 1959:01 1999:02 5 merchant wholesalers: total (mil of chained 1992 dollars)(sa)
49 wtdq 1959:01 1999:02 5 merchant wholesalers: durable goods total (mil of chained 1992 dollars)(sa)
50 wtnq 1959:01 1999:02 5 merchant wholesalers: nondurable goods (mil of chained 1992 dollars)(sa)
51 rtq 1959:01 1999:02 5 retail trade: total (mil of chained 1992 dollars)(sa)
52 rtnq 1959:01 1999:02 5 retail trade: nondurable goods (mil of 1992 dollars)(sa)

Consumption
53 gmcq 1959:01 1999:02 5 personal consumption expend (chained)-total (bil 92$, saar)
54 gmcdq 1959:01 1999:02 5 personal consumption expend (chained)-total durables (bil 92$, saar)
55 gmcnq 1959:01 1999:02 5 personal consumption expend (chained)-nondurables (bil 92$, saar)
56 gmcsq 1959:01 1999:02 5 personal consumption expend (chained)-services (bil 92$, saar)
57 gmcanq 1959:01 1999:02 5 personal cons expend (chained)-new cars (bil 92$, saar)

Housing starts and sales
58 hsfr 1959:01 1999:02 4 housing starts: nonfarm (1947-58); total farm and nonfarm (1959-) (thous., sa)
59 hsne 1959:01 1999:02 4 housing starts: northeast (thous.u.) s.a.
60 hsmw 1959:01 1999:02 4 housing starts: midwest (thous.u.) s.a.
61 hssou 1959:01 1999:02 4 housing starts: south (thous.u.) s.a.
62 hswst 1959:01 1999:02 4 housing starts: west (thous.u.) s.a.
63 hsbr 1959:01 1999:02 4 housing authorized: total new priv housing units (thous., saar)
64 hmob 1959:01 1999:02 4 mobile homes: manufacturers shipments (thous. of units, saar)
65 ivmtq 1959:01 1999:02 5 manufacturing & trade inventories: total (mil of chained 1992)(sa)
66 ivmfgq 1959:01 1999:02 5 inventories, business, mfg (mil of chained 1992 dollars, sa)
67 ivmfdq 1959:01 1999:02 5 inventories, business durables (mil of chained 1992 dollars, sa)
continue...



38
ECB
Working Paper Series No 680
October 2006

68 ivmfnq 1959:01 1999:02 5 inventories, business, nondurables (mil of chained 1992 dollars, sa)
69 ivwrq 1959:01 1999:02 5 manufacturing & trade inv: merchant wholesalers (mil of chained 1992 dollars)(s
70 ivrrq 1959:01 1999:02 5 manufacturing & trade inv: retail trade (mil of chained 1992 dollars)(sa)
71 ivsrq 1959:01 1999:02 2 ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa)
72 ivsrmq 1959:01 1999:02 2 ratio for mfg & trade: mfg; inventory/sales (87$)(s.a.)
73 ivsrwq 1959:01 1999:02 2 ratio for mfg & trade: wholesaler; inventory/sales (87$)(s.a.)
74 ivsrrq 1959:01 1999:02 2 ratio for mfg & trade: retail trade; inventory/sales (87$)(s.a.)
75 pmnv 1959:01 1999:02 1 napm inventories index (percent)

Orders and un infilled orders
76 pmno 1959:01 1999:02 1 napm new orders index (percent)
77 pmdel 1959:01 1999:02 1 napm vendor deliveries index (percent)
78 mocmq 1959:01 1999:02 5 new orders (net)-consumer goods & materials, 1992 dollars (bci)
79 mdoq 1959:01 1999:02 5 new orders, durable goods industries, 1992 dollars (bci)
80 msondq 1959:01 1999:02 5 new orders, nondefense capital goods, in 1992 dollars (bci)
81 mo 1959:01 1999:02 5 mfg new orders: all manufacturing industries, total (mil$, sa)
82 mowu 1959:01 1999:02 5 mfg new orders: mfg industries with un lled orders (mil$, sa)
83 mdo 1959:01 1999:02 5 mfg new orders: durable goods industries, total (mil$, sa)
84 mduwu 1959:01 1999:02 5 mfg new orders: durable goods indust with un lled orders (mil$, sa)
85 mno 1959:01 1999:02 5 mfg new orders: nondurable goods industries, total (mil$, sa)
86 mnou 1959:01 1999:02 5 mfg new orders: nondurable gds ind. with un lled orders (mil$, sa)
87 mu 1959:01 1999:02 5 mfg un lled orders: all manufacturing industries, total (mil$, sa)
88 mdu 1959:01 1999:02 5 mfg un lled orders: durable goods industries, total (mil$, sa)
89 mnu 1959:01 1999:02 5 mfg un lled orders: nondurable goods industries, total (mil$, sa)
90 mpcon 1959:01 1999:02 5 contracts & orders for plant equipment (bil$, sa)
91 mpconq 1959:01 1999:02 5 contracts & orders for plant equipment in 1992 dollars (bci)
92 fsncom 1959:01 1999:02 5 NYSE common stock price index: composite
93 fspcom 1959:01 1999:02 5 SandPs common stock price index: composite
94 fspin 1959:01 1999:02 5 SandPs common stock price index: industrials
95 fspcap 1959:01 1999:02 5 SandPs common stock price index: capital goods
96 fsput 1959:01 1999:02 5 SandPs common stock price index: utilities
97 fsdxp 1959:01 1999:02 1 SandPs composite common stock: dividend yield (% per annum)
98 fspxe 1959:01 1999:02 1 SandPs composite common stock: price-earnings ratio (%, nsa)

Exchange rates
99 exrus 1959:01 1999:02 5 United States effective exchange rate (merm) (index no.)
100 exrger 1959:01 1999:02 5 foreign exchange rate: Germany (deutsche mark per U.S.$)
101 exrsw 1959:01 1999:02 5 foreign exchange rate: Switzerland (swiss franc per U.S.$)
102 exrjan 1959:01 1999:02 5 foreign exchange rate: Japan (yen per U.S.$)
103 exrcan 1959:01 1999:02 5 foreign exchange rate: Canada (canadian $ per U.S.$)

Interest rates 1
104 fyff 1959:01 1999:02 2 interest rate: federal funds (effective)
105 fygt5 1959:01 1999:02 2 interest rate: U.S. treasury const mat., 5-yr.(nsa)
106 fygt10 1959:01 1999:02 2 interest rate: U.S. treasury const maturities, 10-yr. (% per ann, nsa)
107 fyaaac 1959:01 1999:02 2 bond yield: moodys aaa corporate (% per annum)
108 fybaac 1959:01 1999:02 2 bond yield: moodys baa corporate (% per annum)
109 fyfha 1959:01 1999:02 2 secondary market yields on fha mortgages (% per annum)

Money and credit quantity aggregates
110 fm1 1959:01 1999:02 6 money stock: m1 (bil$, sa)
111 fm2 1959:01 1999:02 6 money stock: m2 (bil$,
112 fm3 1959:01 1999:02 6 money stock: m3 (bil$, sa)
113 fm2dq 1959:01 1999:02 5 money supply-m2 in 1992 dollars (bci)

Stock prices
114 fmfba 1959:01 1999:02 6 monetary base, adj for reserve requirement changes (mil$, sa)
115 fmrra 1959:01 1999:02 6 depository inst reserves: total, adj for reserve req chgs (mil$, sa)
116 fmrnbc 1959:01 1999:02 6 depository inst reserves: nonborrow (mil$, sa)

Price indexes
117 pmcp 1959:01 1999:02 1 napm commodity prices index (percent)
118 pwfsa 1959:01 1999:02 7 producer price index: nished goods (82 D 100, sa)
119 pwfcsa 1959:01 1999:02 7 producer price index: nished consumer goods (82 D 100, sa)
120 psm99q 1959:01 1999:02 7 index of sensitive materials prices (bci-99a)
121 punew 1959:01 1999:02 7 cpi-u: all items (sa)
122 pu83 1959:01 1999:02 7 cpi-u: apparel upkeep (sa)
123 pu84 1959:01 1999:02 7 cpi-u: transportation (sa)
124 pu85 1959:01 1999:02 7 cpi-u: medical care (sa)
125 puc 1959:01 1999:02 7 cpi-u: commodities (sa)
126 pucd 1959:01 1999:02 7 cpi-u: durables (sa)
127 pus 1959:01 1999:02 7 cpi-u: services (sa)
128 puxf 1959:01 1999:02 7 cpi-u: all items less food (sa)
129 puxhs 1959:01 1999:02 7 cpi-u: all items less shelter (sa)
130 puxm 1959:01 1999:02 7 cpi-u: all items less medical care (sa)
131 gmdc 1959:01 1999:02 7 pce, impl pr de : pce
132 gmdcd 1959:01 1999:02 7 pce, impl pr de : pce; durables
133 gmdcn 1959:01 1999:02 7 pce, impl pr de : pce;nondurables
134 gmdcs 1959:01 1999:02 7 pce, impl pr de : pce; services

Average hourly earnings
135 lehcc 1959:01 1999:02 7 avg hr earnings of constr wkrs: construction (sa)
136 lehm 1959:01 1999:02 7 avg hr earnings of prod wkrs:manufacturing (sa)

Interest rates 2 (Spread)
137 sfycp90 1959:01 1999:02 1 spread fycp - fyff
138 sfygm3 1959:01 1999:02 1 spread fygm3 - fyff
139 sfygm6 1959:01 1999:02 1 spread fygm6 - fyff
140 sfygt1 1959:01 1999:02 1 spread fygt1 - fyff
141 sfygt5 1959:01 1999:02 1 spread fygt5 - fyff
142 sfygt10 1959:01 1999:02 1 spread fygt10 - fyff
143 sfyaaac 1959:01 1999:02 1 spread fyaaac - fyff
144 sfybaac 1959:01 1999:02 1 spread fybaac - fyff
145 sfyfha 1959:01 1999:02 1 spread fyfha - fyff
Others
146 hhsntn 1959:01 1999:02 1 u. of mich. index of consumer expectations (bcd-83)
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7 Appendix B: Transformations for prices

For prices and wages two different transformations have been used in the liter-

ature. Stock and Watson (2002) transform prices in first differences of monthly

inflation, while Giannone, Reichlin and Sala (2005) and Giannone, Reichlin and

Small (2005) use first differences of annual inflation. We use the latter approach

for two reasons. First, it consists in imposing the “Atkeson-Ohanian prior” of

random walk on price annual inflation which works surprisingly well in forecast-

ing (Atkeson and Ohanian, 2001). Second, monthly changes of yearly inflation,

in contrast to monthly changes of monthly inflation, have dynamic properties

similar to those of the rest of the panel. This is a desirable property since with

a more homogenous panel it is more likely that one can capture the dynamic

characteristics of the whole panel by means of few factors. Table 1 below reports

the average persistence (measured as the ratio between medium and long run

variance and total variance) for the price block and compares it with the average

persistence of the rest of the panel, using the two alternative transformations.13

Table 7: Percentage of the total variance explained within frequency bands with
cyclical components longer than three, two and one years

Cyclical Components
> 3y > 2y > 1y

Whole Panel 0.28 0.32 0.40
Industrial Production block 0.20 0.26 0.36
Price block: Monthly changes of yearly inflation 0.16 0.23 0.34
Price block: Monthly changes of monthly inflation 0.00 0.01 0.02

It is evident that the medium-long run component is negligible for monthly

changes of monthly price inflation, while it is very large for real variables, which

13Our measure of persistence is defined as the variance due to fluctuations with period of
length longer than a given threshold P . Precisely, for a given variable xit, we define

ρi(θ̄) =

∫ θ̄

−θ̄
σ2

i (θ)dθ∫ π

−π
σ2

i (θ)dθ

where σ2
i (θ) is the spectral density of xit, estimated as outlined in Section 2, using a Bartlett

window equal to 36, θ̄ = 2π/P . We reports the average value of ρ for groups of variables and
for P = 12, 24, 36 months
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display the typical spectral shape of Granger (1966). On the other hand, when

imposing the random walk prior, the typical shape is recovered also for prices.

8 Appendix C: Tables

Table 8: Generalized Principal Components (GPC), Ordinary Least Squares (OLS),
(Rectangular Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.67 0.64 0.59 0.59 0.57 0.54 0.54 0.54 0.54 0.55 0.55 0.55 0.58 0.60 0.59
FHLR (q=2) ... 0.71 0.64 0.60 0.58 0.55 0.54 0.54 0.53 0.55 0.55 0.55 0.57 0.60 0.60
FHLR (q=3) ... ... 0.71 0.69 0.68 0.61 0.60 0.58 0.57 0.56 0.59 0.60 0.62 0.63 0.64
FHLR (q=4) ... ... ... 0.60 0.63 0.64 0.63 0.61 0.61 0.62 0.65 0.66 0.66 0.67 0.67
FHLR (q=5) ... ... ... ... 0.61 0.61 0.59 0.60 0.61 0.62 0.64 0.65 0.66 0.65 0.68

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.90 0.63 0.60 0.59 0.59 0.61 0.58 0.57 0.56 0.57 0.57 0.56 0.56 0.58 0.58
FHLR (q=2) ... 0.64 0.63 0.61 0.62 0.61 0.61 0.61 0.61 0.61 0.62 0.62 0.63 0.62 0.62
FHLR (q=3) ... ... 0.70 0.62 0.56 0.60 0.61 0.60 0.61 0.61 0.61 0.61 0.63 0.64 0.66
FHLR (q=4) ... ... ... 0.65 0.60 0.60 0.59 0.59 0.60 0.62 0.63 0.62 0.62 0.64 0.65
FHLR (q=5) ... ... ... ... 0.62 0.63 0.63 0.61 0.63 0.64 0.64 0.65 0.66 0.68 0.69

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.62 0.56 0.48 0.49 0.47 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.48 0.49 0.46
FHLR (q=2) ... 0.59 0.49 0.46 0.44 0.40 0.39 0.39 0.39 0.41 0.43 0.44 0.45 0.49 0.49
FHLR (q=3) ... ... 0.53 0.53 0.53 0.44 0.43 0.44 0.45 0.46 0.49 0.50 0.52 0.54 0.54
FHLR (q=4) ... ... ... 0.46 0.47 0.48 0.46 0.46 0.47 0.49 0.54 0.56 0.56 0.57 0.57
FHLR (q=5) ... ... ... ... 0.46 0.46 0.45 0.51 0.53 0.54 0.55 0.57 0.58 0.58 0.60

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.88 0.57 0.52 0.50 0.50 0.52 0.50 0.49 0.49 0.48 0.47 0.47 0.46 0.47 0.46
FHLR (q=2) ... 0.57 0.56 0.53 0.54 0.50 0.51 0.52 0.52 0.53 0.54 0.53 0.54 0.53 0.53
FHLR (q=3) ... ... 0.64 0.51 0.43 0.47 0.49 0.48 0.50 0.50 0.50 0.50 0.52 0.54 0.55
FHLR (q=4) ... ... ... 0.54 0.49 0.49 0.47 0.47 0.47 0.49 0.50 0.49 0.50 0.52 0.53
FHLR (q=5) ... ... ... ... 0.51 0.53 0.50 0.48 0.49 0.51 0.51 0.52 0.53 0.54 0.55

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 1.03 1.21 1.31 1.25 1.27 1.21 1.15 1.12 1.16 1.20 1.22 1.22 1.22 1.37 1.47
FHLR (q=2) ... 1.58 1.67 1.57 1.59 1.59 1.58 1.54 1.51 1.45 1.39 1.35 1.36 1.37 1.36
FHLR (q=3) ... ... 1.89 1.82 1.76 1.78 1.76 1.53 1.37 1.30 1.29 1.30 1.29 1.28 1.30
FHLR (q=4) ... ... ... 1.61 1.72 1.72 1.78 1.65 1.59 1.52 1.44 1.40 1.38 1.38 1.37
FHLR (q=5) ... ... ... ... 1.66 1.65 1.54 1.25 1.18 1.21 1.24 1.20 1.19 1.19 1.22

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.96 0.99 1.00 1.06 1.13 1.15 1.03 1.00 1.01 1.09 1.10 1.09 1.10 1.17 1.20
FHLR (q=2) ... 1.02 1.02 1.03 1.08 1.21 1.17 1.10 1.12 1.07 1.09 1.11 1.11 1.12 1.12
FHLR (q=3) ... ... 1.04 1.27 1.29 1.29 1.33 1.26 1.23 1.23 1.22 1.23 1.23 1.24 1.27
FHLR (q=4) ... ... ... 1.27 1.25 1.21 1.26 1.27 1.33 1.35 1.34 1.33 1.33 1.32 1.34
FHLR (q=5) ... ... ... ... 1.27 1.21 1.35 1.34 1.38 1.43 1.39 1.42 1.43 1.46 1.48

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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Table 9: Generalized Principal Components (GPC), Ordinary Least Squares (OLS),
(Triangular Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.77 0.65 0.57 0.57 0.52 0.51 0.52 0.52 0.52 0.52 0.51 0.51 0.52 0.51 0.52
FHLR (q=2) ... 0.61 0.60 0.57 0.57 0.55 0.54 0.55 0.54 0.52 0.53 0.54 0.55 0.56 0.56
FHLR (q=3) ... ... 0.57 0.57 0.59 0.56 0.56 0.56 0.56 0.54 0.55 0.56 0.56 0.56 0.58
FHLR (q=4) ... ... ... 0.61 0.59 0.59 0.60 0.59 0.58 0.56 0.58 0.58 0.58 0.58 0.62
FHLR (q=5) ... ... ... ... 0.60 0.58 0.58 0.58 0.59 0.58 0.61 0.61 0.61 0.61 0.65

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.84 0.67 0.58 0.55 0.52 0.54 0.55 0.57 0.59 0.59 0.59 0.57 0.57 0.57 0.58
FHLR (q=2) ... 0.66 0.56 0.58 0.58 0.56 0.58 0.58 0.59 0.63 0.62 0.62 0.63 0.63 0.63
FHLR (q=3) ... ... 0.72 0.63 0.58 0.56 0.56 0.58 0.59 0.60 0.61 0.61 0.62 0.62 0.64
FHLR (q=4) ... ... ... 0.63 0.60 0.62 0.61 0.60 0.61 0.61 0.63 0.63 0.65 0.66 0.66
FHLR (q=5) ... ... ... ... 0.60 0.62 0.61 0.61 0.61 0.61 0.64 0.64 0.65 0.66 0.68

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.74 0.55 0.44 0.43 0.41 0.40 0.41 0.42 0.41 0.42 0.41 0.41 0.42 0.41 0.41
FHLR (q=2) ... 0.50 0.46 0.43 0.44 0.42 0.42 0.42 0.42 0.41 0.41 0.43 0.44 0.46 0.45
FHLR (q=3) ... ... 0.44 0.42 0.44 0.42 0.42 0.42 0.43 0.43 0.45 0.46 0.45 0.45 0.48
FHLR (q=4) ... ... ... 0.46 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.46 0.46 0.46 0.51
FHLR (q=5) ... ... ... ... 0.45 0.44 0.43 0.44 0.46 0.48 0.50 0.52 0.52 0.53 0.57

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.80 0.61 0.49 0.46 0.43 0.44 0.46 0.48 0.50 0.49 0.49 0.48 0.48 0.48 0.48
FHLR (q=2) ... 0.60 0.48 0.50 0.48 0.44 0.47 0.47 0.49 0.53 0.53 0.53 0.54 0.54 0.54
FHLR (q=3) ... ... 0.67 0.54 0.47 0.44 0.45 0.47 0.49 0.50 0.50 0.51 0.52 0.52 0.53
FHLR (q=4) ... ... ... 0.53 0.48 0.51 0.49 0.49 0.49 0.50 0.51 0.52 0.54 0.55 0.55
FHLR (q=5) ... ... ... ... 0.48 0.52 0.50 0.50 0.50 0.50 0.52 0.53 0.55 0.55 0.57

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.99 1.28 1.50 1.53 1.28 1.27 1.27 1.26 1.23 1.20 1.20 1.19 1.21 1.21 1.24
FHLR (q=2) ... 1.40 1.56 1.53 1.47 1.45 1.43 1.44 1.41 1.32 1.33 1.32 1.29 1.29 1.31
FHLR (q=3) ... ... 1.48 1.54 1.62 1.59 1.55 1.52 1.44 1.30 1.30 1.30 1.28 1.29 1.32
FHLR (q=4) ... ... ... 1.63 1.61 1.62 1.69 1.60 1.57 1.39 1.40 1.40 1.40 1.41 1.41
FHLR (q=5) ... ... ... ... 1.64 1.61 1.65 1.54 1.50 1.32 1.40 1.25 1.22 1.19 1.22

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 1.05 1.04 1.06 1.04 1.00 1.12 1.11 1.12 1.08 1.13 1.15 1.08 1.07 1.08 1.10
FHLR (q=2) ... 1.03 1.02 1.04 1.10 1.26 1.21 1.18 1.15 1.15 1.15 1.15 1.18 1.16 1.19
FHLR (q=3) ... ... 1.04 1.13 1.20 1.23 1.18 1.19 1.18 1.18 1.19 1.19 1.19 1.18 1.24
FHLR (q=4) ... ... ... 1.21 1.26 1.22 1.25 1.25 1.25 1.24 1.27 1.27 1.28 1.28 1.31
FHLR (q=5) ... ... ... ... 1.31 1.22 1.24 1.27 1.27 1.25 1.30 1.26 1.28 1.28 1.30

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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Table 10: Principal Components (PC), Dynamic Least Squares (DLS), (Rectangular
Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.74 0.63 0.60 0.61 0.61 0.61 0.63 0.65 0.67 0.70 0.70 0.71 0.72 0.72 0.73
FHLR (q=2) 0.64 0.64 0.65 0.70 0.72 0.72 0.72 0.73 0.76 0.76 0.78 0.80 0.82 0.84
FHLR (q=3) 0.58 0.57 0.55 0.54 0.52 0.53 0.53 0.56 0.57 0.58 0.59 0.60 0.60
FHLR (q=4) 0.55 0.55 0.55 0.56 0.54 0.55 0.55 0.54 0.55 0.55 0.57 0.58
FHLR (q=5) 0.55 0.55 0.55 0.54 0.53 0.53 0.53 0.54 0.54 0.54 0.55

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.89 0.70 0.66 0.67 0.65 0.70 0.71 0.73 0.76 0.77 0.77 0.77 0.77 0.77 0.78
FHLR (q=2) 0.65 0.63 0.62 0.63 0.62 0.61 0.61 0.63 0.65 0.66 0.66 0.67 0.68 0.68
FHLR (q=3) 0.69 0.63 0.61 0.61 0.59 0.60 0.61 0.63 0.63 0.64 0.65 0.66 0.66
FHLR (q=4) 0.64 0.61 0.64 0.63 0.63 0.64 0.65 0.66 0.66 0.67 0.68 0.68
FHLR (q=5) 0.60 0.62 0.62 0.63 0.62 0.63 0.66 0.67 0.68 0.69 0.70

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.71 0.57 0.53 0.54 0.56 0.56 0.58 0.62 0.63 0.66 0.66 0.67 0.68 0.68 0.69
FHLR (q=2) 0.55 0.53 0.54 0.61 0.66 0.67 0.67 0.69 0.71 0.72 0.74 0.76 0.78 0.80
FHLR (q=3) 0.48 0.45 0.42 0.42 0.42 0.43 0.44 0.48 0.49 0.50 0.51 0.52 0.52
FHLR (q=4) 0.44 0.43 0.44 0.44 0.44 0.45 0.45 0.44 0.45 0.45 0.47 0.48
FHLR (q=5) 0.42 0.44 0.45 0.45 0.44 0.44 0.44 0.46 0.46 0.46 0.48

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.86 0.64 0.60 0.61 0.59 0.64 0.66 0.68 0.72 0.74 0.74 0.73 0.73 0.74 0.75
FHLR (q=2) 0.58 0.56 0.55 0.56 0.54 0.54 0.55 0.58 0.60 0.61 0.62 0.62 0.63 0.64
FHLR (q=3) 0.63 0.53 0.51 0.50 0.50 0.51 0.52 0.54 0.54 0.56 0.57 0.58 0.59
FHLR (q=4) 0.54 0.51 0.54 0.55 0.55 0.55 0.57 0.58 0.58 0.60 0.61 0.62
FHLR (q=5) 0.50 0.52 0.53 0.53 0.52 0.54 0.57 0.58 0.59 0.61 0.63

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.97 1.00 1.07 1.14 1.01 0.97 0.96 0.90 0.98 0.97 0.98 1.00 1.01 1.00 1.02
FHLR (q=2) 1.29 1.41 1.43 1.31 1.14 1.10 1.08 1.07 1.07 1.06 1.06 1.06 1.08 1.08
FHLR (q=3) 1.28 1.39 1.40 1.31 1.20 1.17 1.17 1.15 1.10 1.12 1.14 1.10 1.11
FHLR (q=4) 1.31 1.39 1.31 1.36 1.22 1.26 1.26 1.24 1.20 1.24 1.26 1.24
FHLR (q=5) 1.39 1.30 1.28 1.13 1.15 1.18 1.15 1.13 1.07 1.06 1.08

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 1.06 1.06 1.02 1.00 1.03 1.04 1.00 1.00 0.97 0.94 0.96 0.95 0.95 0.96 0.96
FHLR (q=2) 1.07 1.04 1.02 1.04 1.07 0.96 0.96 0.96 0.92 0.91 0.92 0.91 0.91 0.91
FHLR (q=3) 1.06 1.19 1.18 1.18 1.11 1.13 1.11 1.14 1.09 1.10 1.11 1.13 1.11
FHLR (q=4) 1.19 1.19 1.18 1.12 1.11 1.14 1.16 1.15 1.09 1.08 1.06 1.05
FHLR (q=5) 1.18 1.19 1.14 1.16 1.16 1.17 1.16 1.16 1.14 1.14 1.10

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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Table 11: Principal Components (PC), Dynamic Least Squares (DLS), (Triangular
Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.83 0.71 0.66 0.66 0.66 0.67 0.68 0.70 0.70 0.70 0.70 0.71 0.72 0.72 0.73
FHLR (q=2) ... 0.64 0.65 0.65 0.68 0.67 0.67 0.68 0.69 0.70 0.69 0.70 0.70 0.71 0.71
FHLR (q=3) ... ... 0.66 0.61 0.59 0.58 0.58 0.58 0.59 0.61 0.61 0.63 0.62 0.63 0.63
FHLR (q=4) ... ... ... 0.62 0.60 0.59 0.60 0.60 0.61 0.60 0.60 0.61 0.61 0.62 0.63
FHLR (q=5) ... ... ... ... 0.60 0.60 0.60 0.60 0.61 0.61 0.60 0.61 0.62 0.62 0.63

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.85 0.77 0.72 0.71 0.69 0.70 0.71 0.72 0.73 0.74 0.74 0.74 0.74 0.75 0.75
FHLR (q=2) ... 0.71 0.66 0.67 0.66 0.67 0.66 0.67 0.67 0.68 0.69 0.69 0.70 0.69 0.71
FHLR (q=3) ... ... 0.74 0.72 0.69 0.69 0.67 0.68 0.68 0.70 0.71 0.72 0.72 0.72 0.72
FHLR (q=4) ... ... ... 0.71 0.68 0.69 0.69 0.69 0.70 0.70 0.71 0.72 0.73 0.73 0.74
FHLR (q=5) ... ... ... ... 0.68 0.69 0.69 0.70 0.70 0.71 0.72 0.73 0.73 0.74 0.75

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.81 0.67 0.62 0.62 0.62 0.63 0.65 0.67 0.67 0.68 0.68 0.68 0.70 0.70 0.70
FHLR (q=2) ... 0.59 0.59 0.59 0.63 0.63 0.64 0.64 0.65 0.66 0.65 0.66 0.66 0.67 0.68
FHLR (q=3) ... ... 0.61 0.56 0.52 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58 0.59
FHLR (q=4) ... ... ... 0.56 0.54 0.53 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.56 0.57
FHLR (q=5) ... ... ... ... 0.54 0.54 0.54 0.55 0.55 0.55 0.54 0.55 0.57 0.57 0.58

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.83 0.74 0.67 0.67 0.65 0.66 0.67 0.68 0.70 0.71 0.71 0.71 0.72 0.72 0.72
FHLR (q=2) ... 0.66 0.61 0.63 0.61 0.62 0.61 0.62 0.63 0.64 0.66 0.66 0.66 0.67 0.68
FHLR (q=3) ... ... 0.70 0.68 0.64 0.64 0.63 0.64 0.64 0.66 0.68 0.68 0.69 0.69 0.69
FHLR (q=4) ... ... ... 0.66 0.63 0.64 0.65 0.65 0.65 0.66 0.68 0.68 0.69 0.70 0.70
FHLR (q=5) ... ... ... ... 0.63 0.64 0.64 0.66 0.66 0.66 0.68 0.69 0.69 0.70 0.71

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.97 0.94 0.93 0.96 0.91 0.91 0.91 0.91 0.89 0.90 0.90 0.90 0.90 0.90 0.90
FHLR (q=2) ... 1.02 1.05 1.08 0.98 0.96 0.94 0.95 0.96 0.96 0.97 0.97 0.94 0.93 0.94
FHLR (q=3) ... ... 0.96 0.97 1.07 1.01 1.00 0.96 0.98 0.98 0.97 0.98 0.98 0.97 0.96
FHLR (q=4) ... ... ... 1.03 1.03 0.98 1.04 1.01 1.04 1.04 1.02 1.02 1.03 1.03 1.04
FHLR (q=5) ... ... ... ... 1.04 0.99 1.00 0.98 1.00 1.01 1.02 1.00 1.01 1.00 1.00

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.98 0.96 0.97 0.95 0.91 0.93 0.93 0.93 0.92 0.92 0.92 0.90 0.89 0.89 0.89
FHLR (q=2) ... 0.96 0.94 0.92 0.95 0.96 0.92 0.91 0.88 0.87 0.86 0.86 0.89 0.85 0.85
FHLR (q=3) ... ... 0.96 0.94 0.97 0.97 0.92 0.93 0.92 0.91 0.89 0.91 0.91 0.89 0.90
FHLR (q=4) ... ... ... 1.00 0.97 0.97 0.94 0.96 0.94 0.95 0.94 0.92 0.92 0.92 0.95
FHLR (q=5) ... ... ... ... 0.98 0.98 0.94 0.97 0.95 0.95 0.98 0.96 0.95 0.96 0.97

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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Table 12: Generalized Principal Components (GPC), Dynamic Least Squares (DLS),
(Rectangular Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.70 0.62 0.62 0.66 0.65 0.64 0.66 0.66 0.67 0.69 0.69 0.69 0.70 0.71 0.71
FHLR (q=2) 0.69 0.67 0.71 0.73 0.75 0.74 0.74 0.75 0.77 0.77 0.79 0.80 0.82 0.84
FHLR (q=3) 0.66 0.64 0.64 0.62 0.61 0.60 0.58 0.57 0.57 0.58 0.59 0.60 0.62
FHLR (q=4) 0.60 0.60 0.61 0.62 0.59 0.59 0.59 0.58 0.58 0.58 0.59 0.59
FHLR (q=5) 0.60 0.58 0.57 0.54 0.54 0.55 0.55 0.55 0.55 0.56 0.57

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.90 0.68 0.64 0.65 0.66 0.69 0.69 0.70 0.70 0.71 0.71 0.71 0.71 0.72 0.73
FHLR (q=2) 0.65 0.64 0.63 0.64 0.64 0.65 0.65 0.66 0.66 0.67 0.68 0.69 0.70 0.69
FHLR (q=3) 0.70 0.62 0.57 0.62 0.63 0.62 0.63 0.64 0.65 0.66 0.68 0.69 0.70
FHLR (q=4) 0.67 0.63 0.62 0.62 0.63 0.66 0.68 0.69 0.69 0.70 0.70 0.72
FHLR (q=5) 0.63 0.63 0.63 0.63 0.65 0.67 0.68 0.69 0.69 0.71 0.72

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.66 0.58 0.58 0.61 0.60 0.60 0.62 0.62 0.63 0.64 0.64 0.64 0.65 0.66 0.65
FHLR (q=2) 0.58 0.53 0.60 0.63 0.66 0.65 0.66 0.67 0.70 0.71 0.74 0.75 0.77 0.78
FHLR (q=3) 0.51 0.49 0.50 0.48 0.48 0.49 0.49 0.49 0.49 0.50 0.52 0.53 0.55
FHLR (q=4) 0.47 0.46 0.46 0.46 0.45 0.45 0.46 0.46 0.46 0.47 0.48 0.48
FHLR (q=5) 0.47 0.45 0.45 0.45 0.46 0.46 0.46 0.47 0.47 0.48 0.50

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.90 0.62 0.59 0.60 0.60 0.64 0.65 0.66 0.66 0.67 0.68 0.68 0.67 0.69 0.69
FHLR (q=2) 0.58 0.57 0.56 0.58 0.57 0.59 0.59 0.60 0.62 0.63 0.64 0.65 0.66 0.65
FHLR (q=3) 0.65 0.53 0.47 0.52 0.53 0.53 0.54 0.55 0.57 0.58 0.60 0.61 0.62
FHLR (q=4) 0.58 0.53 0.53 0.53 0.54 0.56 0.58 0.60 0.59 0.61 0.61 0.63
FHLR (q=5) 0.53 0.54 0.52 0.54 0.55 0.57 0.58 0.59 0.59 0.61 0.62

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.98 0.91 0.96 0.99 0.97 0.94 0.95 0.91 1.00 1.02 1.04 1.02 1.02 1.10 1.12
FHLR (q=2) 1.47 1.60 1.44 1.43 1.38 1.37 1.35 1.32 1.27 1.19 1.17 1.17 1.19 1.18
FHLR (q=3) 1.71 1.67 1.59 1.60 1.57 1.35 1.17 1.11 1.10 1.10 1.10 1.09 1.11
FHLR (q=4) 1.46 1.57 1.58 1.71 1.57 1.53 1.49 1.40 1.36 1.33 1.33 1.32
FHLR (q=5) 1.49 1.49 1.43 1.20 1.13 1.17 1.16 1.10 1.10 1.09 1.10

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.95 0.99 0.97 0.98 1.00 1.00 0.93 0.91 0.91 0.91 0.91 0.91 0.92 0.93 0.94
FHLR (q=2) 1.02 1.02 1.00 1.01 1.04 1.00 0.95 0.95 0.92 0.91 0.92 0.91 0.92 0.91
FHLR (q=3) 1.02 1.14 1.17 1.16 1.17 1.14 1.12 1.12 1.11 1.10 1.12 1.13 1.15
FHLR (q=4) 1.19 1.16 1.12 1.16 1.15 1.22 1.24 1.23 1.23 1.21 1.20 1.23
FHLR (q=5) 1.19 1.12 1.25 1.19 1.22 1.26 1.25 1.26 1.26 1.28 1.31

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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Table 13: Generalized Principal Components (GPC), Dynamic Least Squares (DLS),
(Triangular Window)

r Whole Sample
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.80 0.71 0.66 0.66 0.66 0.67 0.68 0.70 0.70 0.71 0.71 0.71 0.73 0.72 0.73
FHLR (q=2) 0.63 0.63 0.67 0.69 0.69 0.69 0.70 0.70 0.69 0.70 0.70 0.71 0.71 0.72
FHLR (q=3) 0.65 0.60 0.60 0.59 0.59 0.59 0.61 0.61 0.62 0.63 0.62 0.62 0.64
FHLR (q=4) 0.63 0.61 0.60 0.62 0.61 0.62 0.60 0.61 0.61 0.61 0.62 0.63
FHLR (q=5) 0.62 0.60 0.61 0.61 0.62 0.60 0.62 0.62 0.62 0.62 0.64

r Whole Sample
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.87 0.78 0.72 0.71 0.68 0.70 0.71 0.71 0.73 0.73 0.73 0.73 0.74 0.74 0.74
FHLR (q=2) 0.73 0.67 0.68 0.68 0.67 0.67 0.67 0.67 0.68 0.68 0.69 0.70 0.69 0.70
FHLR (q=3) 0.76 0.71 0.68 0.68 0.67 0.69 0.69 0.69 0.71 0.71 0.72 0.72 0.73
FHLR (q=4) 0.71 0.68 0.69 0.69 0.69 0.70 0.70 0.72 0.72 0.73 0.74 0.74
FHLR (q=5) 0.69 0.69 0.69 0.70 0.71 0.71 0.72 0.73 0.74 0.75 0.75

r 70:1-84:12
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.77 0.67 0.62 0.62 0.62 0.64 0.65 0.67 0.67 0.68 0.68 0.69 0.70 0.70 0.70
FHLR (q=2) 0.57 0.56 0.60 0.63 0.64 0.64 0.65 0.66 0.65 0.65 0.66 0.67 0.68 0.68
FHLR (q=3) 0.60 0.54 0.53 0.52 0.52 0.53 0.55 0.55 0.57 0.57 0.57 0.57 0.59
FHLR (q=4) 0.56 0.54 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.55 0.55 0.57
FHLR (q=5) 0.56 0.53 0.53 0.54 0.54 0.54 0.54 0.56 0.56 0.57 0.58

r 70:1-84:12
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.86 0.75 0.68 0.67 0.65 0.66 0.67 0.68 0.70 0.70 0.70 0.71 0.71 0.71 0.72
FHLR (q=2) 0.69 0.62 0.64 0.63 0.62 0.62 0.63 0.64 0.64 0.65 0.66 0.67 0.67 0.68
FHLR (q=3) 0.73 0.67 0.64 0.63 0.63 0.65 0.65 0.66 0.67 0.68 0.69 0.69 0.69
FHLR (q=4) 0.66 0.63 0.65 0.65 0.65 0.66 0.66 0.67 0.68 0.69 0.69 0.69
FHLR (q=5) 0.63 0.65 0.65 0.66 0.66 0.67 0.67 0.69 0.69 0.70 0.70

r 85:1-end
IP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.97 0.95 0.93 0.98 0.91 0.90 0.91 0.90 0.89 0.91 0.91 0.90 0.91 0.90 0.90
FHLR (q=2) 1.05 1.11 1.11 1.05 1.04 1.02 1.03 1.03 1.00 1.00 0.99 0.97 0.96 0.99
FHLR (q=3) 1.00 1.04 1.10 1.09 1.07 1.05 1.05 0.97 0.96 0.99 0.98 0.98 1.01
FHLR (q=4) 1.09 1.08 1.10 1.22 1.18 1.18 1.07 1.06 1.08 1.06 1.06 1.05
FHLR (q=5) 1.10 1.10 1.16 1.13 1.12 1.02 1.12 1.05 1.02 1.00 1.01

r 85:1-end
CPI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FHLR (q=1) 0.95 0.94 0.96 0.94 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.88 0.87 0.87 0.87
FHLR (q=2) 0.92 0.91 0.91 0.91 0.94 0.91 0.89 0.87 0.86 0.85 0.85 0.86 0.83 0.85
FHLR (q=3) 0.93 0.94 0.95 0.95 0.92 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.91
FHLR (q=4) 0.98 0.98 0.94 0.95 0.95 0.94 0.94 0.97 0.97 0.98 0.98 1.01
FHLR (q=5) 1.02 0.95 0.97 0.97 0.97 0.93 1.00 0.98 1.01 1.02 1.02

Notes: Relative MSFEs of different models. r is the number of static factors and q is the number of dynamic factors. The
idiosyncratic component s is set equal to zero.
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