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Abstract:  

Some multi-species fisheries are characterised by production jointness in the sense that several species 

are caught through a joint production process (literally in the same haul of the net). Other multi-species 

fisheries (so called purse seine fisheries) are specialized in the sense that species are targeted 

individually and by-catch is negligible, but over the fishing season the same boat chooses to target 

several species with varying intensity which also results in a sort of jointness. Both types of fisheries 

are typically modelled using standard multi-input multi-output profit function forms (e.g. translog, 

normalized quadratic). In this paper we argue that jointness in the latter, essentially separable fishery is 

caused by allocation of fishing days input among harvested species. We developed a structural model of 

a multi-species fishery where the allocation of fishing days input causes production jointness. We 

estimate the model for the Norwegian purse seine fishery and find that it is characterised by non-

jointness, while estimations for this fishery using the standard multi-input multi-output profit function 

imply jointness.  

 

JEL classification: Q22; C51 

Key words: Production jointness, multi-species fisheries, structural modeling 

 
1. Introduction 

Fishing industries characterized by multi-species harvesting have been studied extensively in the 

fisheries economics literature, and the investigation of production jointness has been a major area of 

interest. Both trawl fisheries (see e.g. Squires (1987a, 1987b, 1987c) and Alam, Ishak and Squires 

(2002) and purse seine fisheries, (see e.g. Campbell and Nicholl 1995). Asche, Gordon and Jensen 

(2007) and Ekerhovd (2007)) are generally found to be characterised by jointness. This can have 

important implications for fisheries regulation since jointness may imply spill-over’s between harvests 

of the different species undertaken by the industry.  

All the studies cited above use the multi-input multi-output profit function approach 

using standard forms (e.g. translog, normalized quadratic). However, whereas trawl production is joint 

in the sense that several species are caught in the same production process, the type of jointness that 
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may arise in a purse seine fishery has a different structure. Purse seine fishers specifically target 

individual species, and by-catch is typically negligible (Jensen (2002)).Although different species are 

caught in separate production processes over the fishing season, the same boat may choose to target 

several species with varying intensity, which in turn may result in the annual harvests of the different 

species being characterised by jointness. This is our point of departure.   

In the following we develop a structural model of a purse seine fishery. In this model, 

production jointness between different basically separate fisheries comes about through the mechanism 

of allocating fishing day input. If the vessel has idle time in harbour (not used for maintenance, rigging 

etc.), input of fishing days is not restricted. In this case there is no production jointness because fishing 

day input to a given fishery can be increased without reducing input to other fisheries by reducing idle 

harbour time. If, on the other hand, there is no idle harbour time and all vessel time is allocated either to 

fishing or maintenance, etc., jointness may occur. This foundation provides a framework for 

understanding and empirically modelling the interactions between different fisheries undertaken by 

such a purse seine fishing industry. We also derive a number of constraints implied by the theoretical 

model that can be empirically tested. As an example, we apply the model to the Norwegian purse seine 

fishery and find that this fishery is characterised by non-jointness.   When estimating a model of this 

fishery based on the standard multi-input multi-output profit function we find evidence of production 

jointness as have prior studies of this fishery using the standard model (Asche, Gordon and Jensen 

(2007) and Ekerhovd (2007)). Thus it seems that basing empirical models on the structural foundation 

we propose can seemingly have important implications for the results.  

Though fishing days input is seldom included in estimated fishery models, Dupont 

(1991) is a notable (and in our context important) exception. Dupont develops and estimates a model of 

single species harvesting constrained by quotas on fishing days (and other input) with the purpose of 

comparing efficiency of different types of input regulation. Though with a different focus and in a 

single species framework the resulting empirical model estimated by Dupont has much the same 

structure as the model we estimate here. Essentially we extend the fishing days constrained profit 

function developed by Dupont to the multi-output situation and develop the underlying theoretical 

foundation for applying it to output-regulated multi-species purse seine fisheries.  
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We take outset in the fixed but allocatable land-input setup developed in agricultural 

economics for modelling land constrained multi-crop farming (see e.g. Moore and Negri (1992) and 

Moore, Gollehon and Carey (1994) for an early application). The multi-crop farm production model lets 

each crop production process be completely separable from the others with all inputs available at fixed 

prices except for land which the farmer only has in a fixed amount. Though fixed in its total quantity, 

land is allocatable between crops and so jointness is created through this fixed but allocatable input. 

This basic production set up resembles that of a fisherman allocating fishing days between specialized 

fisheries. However, specialized multispecies fisheries production differs from agricultural crop 

production in several ways. First of all, in most fisheries one or more species are subject to some form 

of quota regulation. Second, the total number of fishing days may to some extent be adjustable in the 

short run by reallocating vessel time for maintenance, rigging etc. Finally, fishing days may not always 

be allocated freely between species. Fishing of some species is highly seasonal so that the fisherman 

may be constrained as to how he can reallocate fishing days between different fisheries (for example 

fishing days cannot be reallocated directly from a fishery whose season is in the winter months to a 

fishery with a summer season). 

In the next section we develop the theoretical model and clarify its underlying 

assumptions. In section 3 we derive a number of testable implications and other useful results implied 

by our model. In section 4 we present our empirical case and data. In section 5 we develop and estimate 

our empirical model and present results, while section 6 concludes.     

 

 

2. The theoretical model 

In this section we develop a model of a purse seine net fishery where the mechanism casing jointness 

between the different basically separable fisheries undertaken by the industry is the allocation of fishing 

days. We then make explicit how the vessel time allocation mechanism causes jointness and discuss the 

key assumptions underlying the model.  
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The fishing vessel is a fixed capital input (fixed in the short run) in principle available 365 days a year. 

However, there are periods where vessels are not at sea due to maintenance, rigging etc., and so the 

total number of fishing days allocated is typically lower. Underlying these allocations of time are 

decisions where the fisherman weighs costs of quicker maintenance and rigging against the gains from 

having more fishing days at sea. This suggests that even though vessel capital is fixed in the short run, 

the number of fishing days may be variable in the and found as an integrated part of the fisherman’s 

optimisation problem.   

We characterize the production function describing the harvest of separately targeted 

species as a two-step process. In the first step the profit maximising fisherman allocates vessel time 

between ‘maintenance’ and a number of separate single species fisheries. In the second step other inputs 

are combined with the allocated vessel time to produce fish of the targeted type and needed 

maintenance.  

In the second step, when the fisherman has allocated a certain amount of vessel time id  

to a specific fishery i, he faces a time dependant production function (where t is a specific point in time 

during the one-year fishing season): 

( , )t t
i i iy f x t= %% %      (1) 

 

Thus, if the fisherman at time t has allocated his vessel to fishery i and invests other inputs at a rate of 

t
ix% per unit of time (where ix% is a vector of n other input rates) he catches species i at a rate of t

iy%  per 

unit of time. We assume that these fisheries are distinct single species fisheries separated geographically 

or in time, and that there is no by-catch2.  Given market prices for other input 1( ,..., ,..., )i nr r r r= and 

fish output 1( ,..., ,..., )i qp p p p= standard convexity conditions (Chambers, 1988) ensure the existence 

of corresponding dual profit functions: 

 

 ( , , )   t
i ip r tπ%      (2) 

                                                 
2 As noted in the introduction by catch is typically negligible and often discarded in purse seine fisheries, Jensen 
(2002).  
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where t
iπ% is the rate of profit at time t.  For most species the fishing season is shorter than 365 days 

implying that the out of season profit rate is low. Onset of the fishing season implies rising profit rates 

as t moves into the season with the profit rate reaching a maximum and then falling again toward the 

end of the season. Assuming a well behaved profit rate function with a single maximum during the year, 

the fisherman’s problem is to decide when to start fishing and when to stop, given the amount of vessel 

time (fishing days) allocated to the species, i.e.: 

 

,
( , , )    

. .     

stop

start stop
start

t
t
i it t

t t

stop start i

Max p r t dt

s t t t d

π
=

− ≤

∫ %
    (3) 

 

Given the well behaved profit rate function start and stop dates are set so that the time constraint is 

binding and so that start and stop dates have the same profit rate. Letting * *( ), ( )start t stop tt d t d  denote the 

solution to the problem implies a profit function conditional on prices and the allocated amount of time: 

 

*

*

( )

( )

( , , ) ( , , )   
stop t

start t

t d
t

i i i i i
t t d

p r d p r t dtπ π
=

= ∫ %    (4) 

     

Thus, when there are no other constraints then the allocated vessel time for fishery of a species the 

result of profit maximisation may be described by a conditional profit function with a corresponding 

production function of the dual problem:  

 

( , )i i i iy f x d=     (5) 

 

where ix  is the vector of variable inputs and id  is the number of fishing days allocated to 

production/catch of species i, and iy  is the resulting catch. Except for being connected by the allocation 

of vessel time these fisheries are separable. 
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We must also allow for the fact that some targeted species are subject to quota regulation 

implying added constraints of the form: 

 

     for 1,...i iy y i h q≤ = +     (6) 

 

So that the first h species are unregulated and described by profit functions (4) while the remaining are 

output quota regulated. We assume quotas to be binding so that equality applies, and corresponding to 

(4) we can derive   

 dual cost functions conditional on allocated vessel time id : 

 

( , , )    for 1,...i i iC y r d i h q= +    (7) 

 

for the remaining constrained outputs.  

Finally we assume that the timing of maintenance is flexible so that there is no ‘season’ 

variation in maintenance costs. However, we will allow for the possibility of substitution between total 

maintenance costs and total vessel time allocated to maintenance. Thus, allocating  less time to 

maintenance increases maintenance costs, e.g. because of overtime payment or the extra costs of 

postponing needed maintenance in the form of extra depreciation or more expensive maintenance later. 

Let 

 

 ( )m m mC C d=     (8) 

 

be the functional relationship between maintenance costs mC and vessel time md  (measured in days) 

allocated to maintenance. Note that the model allows for the situation where there is little short run 

flexibility in the time allocation to maintenance (i.e. where fishing days actually are a quasi fixed input). 

This will be the case if the (.)mC function is steep ( / 0m mdC dd  ).  
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 We now turn to the first step of the fisherman’s maximisation problem. Barring other 

constraints than the overall time constraint (
1

365
n

m i
i

d d
=

+ ≤∑ ), the fishermen’s overall maximisation 

problem can be formulated as allocating vessel time to the profit and cost functions (4), (7) and (8), 

describing second step profit maximisation/cost minimisation i.e.: 

1 ,..., , 1 1 1

1

( , , ) ( , , ) ( )

. .      365

q m

q qh

i i i i i i i i m md d d h h
n

m i
i

Max p r d C y r d p y C d

s t d d

π
+ +

=

− + +

+ ≤

∑ ∑ ∑

∑
 (9) 

 

with the following first order conditions for profit maximum (assuming the restriction is binding) 3:  

 

( , , )                         for 1,...

( , , )                         for 1,...

( )                        

i i i

i

i i i

i

m m

m

p r d i h
d

C y r d i h q
d

C d
d

δπ λ
δ

δ λ
δ

δ λ
δ

= =

= = +

=

  (10) 

 

Here λ  is the shadow price of vessel time originating from the overall time constraint 

(i.e. the marginal profit that could be reaped by allocating an extra unit of vessel time to the most 

profitable alternative task). If the time constraint is binding, the shadow price of vessel time will be 

positive ( 0λ > ) while if it is not binding, the shadow price will be zero ( 0λ = ). This is the 

fisherman’s maximisation problem from which we will derive estimable output supply and input 

demand equations as well as parameter restrictions that can be used to test the model. The model is 

illustrated in the top graph of figure 1 were we have species profit rate   t
iπ%  up the y-axis and time t 

out the x-axis. The illustrated fishery targets three species (A, B and C) where the curves labelled A, B 

and C are their respective profit rates as functions of time t (corresponding to (2)). The horizontal 

punctured line is the marginal savings in maintenance costs resulting from increasing time allocation to 
                                                 
3 We also assume an interior solution so that none of the non negativity constraints are binding (i.e 
. 10, 0,..., 0m qd d d> > > . 
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maintenance in optimum (i.e. /m mdC dd− ). Since maintenance costs are not affected by the timing of 

vessel maintenance, the same marginal cost savings apply over the entire season (i.e. no seasonal 

variation) and this is then equal to the shadow cost of vessel time. The optimal timing of in harbour 

maintenance is the two maintenance periods indicated below the graph. This is optimal because profit 

rates from fishing in these periods are below the marginal maintenance costs saved from allocating time 

to maintenance. During the remaining time, the vessel is allocated to each of the three indicated 

fisheries because profit rates of the respective fisheries are larger than the alternative marginal savings 

of allocating vessel time to maintenance. 

Intuitively if the shadow price falls to zero then no maintenance costs are saved by 

allocating more vessel time to in harbour maintenance. In this situation the vessel has idle time in 

harbour where no maintenance is performed. In this case the different fisheries are separable and there 

is no production jointness because the fisherman can allocate more time to one fishery without reducing 

vessel time to other fisheries or maintenance by reducing idle harbour time. 

If on the other hand the shadow price is positive, this implies that there is no idle harbour 

time so that all vessel time is allocated to a profitable task (either profitable fishing or cost saving in 

harbour maintenance time) in which case production jointness may occur. However, even when the 

shadow price of vessel time is positive, this mechanism of jointness may be blocked. If a price (or 

other) chock to a fishery results in reallocation of other inputs than vessel time, then the shadow price of 

vessel time will not be affected. Further if marginal maintenance cost savings are insensitive to the 

amount of time allocated to maintenance (so that the shadow price is more or less constant) then 

production jointness may still be close to zero because time substitution is with maintenance – not other 

fisheries. Thus, in addition to a positive shadow price of vessel time, production jointness in this type of 

fishery requires that: 

1) Time allocation to a fishery is responsive to price (or other) chocks to a fishery, and that  

2) Marginal maintenance cost savings (the shadow price of vessel time) is responsive to 

changes in time allocation to maintenance. 

If these conditions hold (substantial) jointness may occur. 
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Thus the proposed theoretical model does not as such imply anything about the strength 

of production jointness – this is an empirical question. However, as we will see, the model does have 

important implications for how to specify a model for estimating production jointness. It is therefore 

critical to understand the underlying assumptions and discuss their applicability to the purse seiner 

fishery that we are modelling. 
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Figure 1: Jointness through allocatable fishing days input 
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In the maximisation problem (9) we have no other binding constraints than the overall time constraint. 

Critical for this is the following assumption: 

  

Assumption 1: When ever fishing is optimal, maintenance is the best alternative application of vessel 

time. 

This assumption requires that profit rate curves of fisheries with overlapping seasons always intercept at 

a point in time where the common profit rate is bellow the marginal value of investing vessel time in 

maintenance. This implies that there will always be maintenance time between the time slots that it is 

optimal to allot to fisheries with overlapping seasons as illustrated in the top figure for fisheries A and 

B. This ensures that the only interaction between tasks is through the common shadow price of vessel 

time (i.e. that the only mechanism of jointness is the common shadow price of time provided by the 

maintenance alternative. If maintenance is the best alternative, then a chock to another fishery that does 

not affect the shadow price will not affect the other fisheries. 

The bottom figure illustrates a plausible situation where this assumption does not hold. 

The marginal profit curves of the two fisheries A and B with overlapping seasons intersect at a point 

with so high a profit rate that no time is allocated to maintenance between the time slots allocated to the 

two species. Here a chock to fishery A could affect fishery B even if the shadow price remains 

unchanged. Without a change in the shadow price, the stop time of fishery B is not affected, however, a 

shift in profitability of A could affect the start time of this fishery if the intersection of the two fisheries 

marginal cost curves (the point AB) is shifted, even though the shadow price remains unaffected. In this 

situation there is another mechanism for production jointness between these two specific fisheries so 

that another binding constraint is required in (9), and so our specification no longer applies. 

In conclusion, the model (9) is only applicable in this form if it is reasonable to assume 

that there is no seasonality of maintenance and if it is reasonable to assume that the time slots allocated 

for all individual species are ‘separated’ by maintenance time slots4. 

 
                                                 
4 Clearly the theoretical model (9) is easily augmented to take account of such additional mechanisms of jointness. 
Two interacting fisheries can be described by a joint profit function conditional on allocated total vessel time to 
these two species. Then insert this into (9) in place of the two separable species profit functions. However, in this 
paper we use the simple specification (9) 
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3. Implications of the model 

In this section we derive a number of empirically testable implications of the model. We develop a 

constrained version of the fisherman’s maximisation problem that is useful for empirical applications 

and show that the same testable implications apply, and we also prove propositions that are useful for 

drawing conclusions about the unconstrained profit function from estimations based on the constrained 

problem. 

 

The specified theoretical model (9) has a number of implications that provide us with empirically 

testable parameter restrictions and aids the interpretation of results. 

The core result from the model is the first order conditions for profit maximum (10). 

These implicitly define allocated vessel time to each task 1,..., ,..., ,i q md d d d  as functions of market 

prices, quota constraints and the shadow price of time, i.e.: 

( , , )        where  for 1,...  and  for 1,...
            +   -  -                                                                                              

( )
     

i i i i i i i

m m

d d w r w p i h w y i h q

d d

λ

λ

= = = = = +

=

%

%
                      

         -  

 (11) 

with the indicated partial derivative signs. If the time constraint is binding ( 0λ > ), we have: 

1

( ) ( , , ) 365
q

m i i
i

d d w rλ λ
=

+ =∑% %    (12) 

which implicitly defines 0λ >  as a function of market prices and quota constraints. Here derivatives of 

the shadow price λ  with respect to output price and constraint can be found by implicit differentiation: 

1

/ ( ( )) 0
q

i m i

ii i

d d d
w w

δ δ δδλ
δ δ δλ δλ=

= − + >∑    (13) 

This allows us to easily derive a number of useful implications. Differentiating (5) for i=1...h and using 

(11) and (13) to sign derivatives, we have that: 
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0

           +       +      -     +       

0
   where  for 1,..  and  for 1,..

            +     -     +       

i i i i

i i i i

i i i

j i j i i i i

dy y y d
dp p d p

dy y d
dw d w w p i h w y i h q

δ δ δ δλ
δ δ δλ δ

δ δ δλ
δ δλ δ

= + ≥

= ≤
= = = = +

    

      (14) 

with the indicated partial and total derivative signs. 

As we have noted above, maintenance costs mC  may by highly responsive to allocated 

time (i.e. when fishing days are close to being quasi fixed). Thus capturing this interaction correctly 

when undertaking empirical modelling is important. However, sound estimates of depreciation and  

future maintenance expenditures due to postponed maintenance that are critical elements of 

maintenance costs ( mC ) are not available in many practical applications. On the other hand sound 

estimates of the total amount of fishing days input are often available. It may therefore be preferable to 

undertake empirical investigation of the constrained problem of allocating vessel time only among 

fishing tasks conditional on the total number of fishing days input ( totd ) available for use by the 

fisherman (i.e. 
1

( , , )
q

i i tot
i

d w r dλ
=

≤∑ % where 365tot md d= −  implying the constraint m md d= on 

maintenance time). This is in fact what we choose to do in the following empirical section and so it is 

useful to develop results for this problem also. 

This condition problem is found from (9) by adding the constraint m md d= i.e.: 

1 ,..., 1 1 1

1

( , , ) ( , , ) ( )

. .     (365 )

q

q qh

i i i i i i i i m md d h h
n

i m tot
i

Max p r d C y r d p y C d

s t d d d

π
+ +

=

− + +

≤ − =

∑ ∑ ∑

∑
 (15) 
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The corresponding constrained set of first order conditions (10) apply (where 
( )m m

m

C d
d

δ λ
δ

=  is 

dropped), implying the same implicit allocation functions as (11) (except that m md d= , implying that 

0mdδ
δλ

= ). Thus the equation corresponding to (13) becomes: 

1

/ ( ( )) 0
c q

i i
c

ii i

d dd
d w w

δ δλ
δ δλ=

= − >∑    (16) 

 

where 
c

c

d
d

 indicates total derivatives in the constrained problem (15). Differentiating (5) for i=1...k and 

using (11) and (16) to sign derivatives we have that: 

             +       +      -     +  

    where  for 1,...  and  for 1,....
            +     -     +  

c c c
i i i i

c c
i i i i

c c c
i i i

c c
j i j i i i i

d y y y d d
d p p d d p

d y y d d
d w d d w w p i h w y i h q

δ δ δ λ
δ δ δλ

δ δ λ
δ δλ

= +

=
= = = = +

    

      (17) 

 

with the indicated partial derivative signs. The following propositions follow directly. 

 

Proposition 1: In both (9) and (15) all variable output derivatives with respect to other output prices and 

constraints are non-positive, i.e. 0i

j

dy
dp

≤  for j=1...h, j i≠  and 0i

j

dy
dy

≤  for j=h+1....q 

 

Proof: Follows directly from (14) and (17) 

 

When the only mechanism of jointness is through changes in the shadow price of vessel time, a rise in 

time allocation to a fishery causing a rise in the shadow price must result in allocation reductions to all 

other fisheries (complementarity is ruled out)  
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Proposition 2: In both (9) and (15) for the derivatives of any two outputs i, j with respect to any two not 

overlapping prices or constraints k, ,l the following ratio equality applies / /j ji i

l l k k

dy dydy dy
dw dw dw dw

=  

where  or k k k kw p w y= =  and  or l l l lw p w y= = , whichever applies. 

 

Proof: Follows directly when inserting from (14) and (17) 

 

Intuitively these regularities of output derivatives with respect to other outputs, result from all these 

interactions working through the allocatable input shadow price. Both propositions emit constraints 

implied by the assumed model that are easily empirically tested. 

When investigating the constrained problem, it is useful to know what implications can 

be drawn concerning the unconstrained problem. Here the following proposition and corollary are 

useful.  

 

Proposition 3: All variable output derivatives with respect to other output prices and constraints 

applying to a constrained problem (15) are numerically larger or numerically equal to the corresponding 

derivatives applying to the corresponding unconstrained problem (9). 

 

Proof: comparing (13) and (16) it is clear that 0
i

d
dw
λ< ≤

c

c
i

d
d w

λ
 for  or i i i iw p w y= =  

which ever applies. Using this when comparing the relevant derivatives in (14) and (17) 

the propositions follow. 

 

Corollary to proposition 3: All variable output derivatives with respect to their own output price 

applying to a constrained problem are numerically smaller or numerically equal to the corresponding 

derivatives applying to the corresponding unconstrained problem. 
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Proof: Using 0
i

d
dw
λ<

c

c
i

d
d w

λ≤  when comparing the relevant derivatives in (14) and (17) 

the corollary follows. 

 

Corollary to proposition 3: If fishing days are in fact a quasi fixed ( /m mdC dd → ∞ ), the solution to 

problem (9) approaches that of (15) so that the difference between the constrained and unconstrained 

solutions goes to zero. 

 

Proof: Since /m mdC dd → ∞  implies that 0mdδ
δλ

→ , the corollary follows directly 

from (14) and (17). 

 

The intuition is that the optimal reduction in output caused by e.g. a price or quota increase for another 

input when the allocatable input is fixed, will be mediated when the allocatable input is allowed to be 

adjusted (upwards) in response to the price/quota rise because this mediates the initial rise in the 

shadow price of the allocatable input. In the same way the optimal increase in output from a rise in its 

price is greater in the unconstrained problem since time to maintenance here is also allowed to adjust 

downward, freeing more vessel time for reallocation. Finally, as these mediating affects approach zero 

so must the difference between the two problem solutions. 

 The important take-away point is that results from the estimations based on the 

constrained problem are ‘correct’ if fishing days are quasi fixed and that they overestimate cross effects 

and underestimate own price effect if fishing days are not quasi fixed. 

 

4. Description of empirical example and data  

In this section we describe the Norwegian purse seine fishery between 1992 and 1999 and the available 

data. 

The Norwegian purse seine fleet targets a number of different species (capelin, herring 

and mackerel) that are subject to individual (non-tradable) quota regulation. In addition a number of 
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unregulated species are targeted mainly Atlantic horse mackerel and sand eel distributed over the 

fishing season as well as over a large geographic area. Capelin is harvested in the Baltic Sea and at Jan 

Mayen during spring and autumn, spring-spawning herring is caught along the Norwegian coast during 

spring and autumn, and mackerel and North Sea herring are harvested in the North Sea during summer 

and autumn. The fishing seasons of the main species are illustrated in table 1    

 

Table 1 Fishing season for the Norwegian purse seiner fleet, by species, area, gear and 
month 
 
  month Jan  Feb March April may June July Aug Sept Oct Nov Dec 
Species Area Gear             
Capelin Barents 

sea 
PS4)

 X X X X         

Capelin Iceland PS      X X  X  X     
BW1) Norwegian 

sea 
PT5)     X X X X X    

BW1) Atlantic PT X X X X         
Mackerel Norway PS        X X X   
Mackerel North sea PS     X X X X X X X  
NSH2) North sea PS     X X X X X X X X 
SSH3) Norway PS X X X       X X X 
 X indicates in what months and areas each species is fished. 
Source: Ekerhovd (2007) 
1) Blue whiting 
2) North Sea herring  
3) Spring-spawning herring 
4) Purse seine gear 
5) Pelagic trawl gear 
 
Initial econometric estimation reveals a singularity problem due multicollinearity between mackerel and 

North Sea herring. These species are harvested within the same geographical areas and under similar 

environmental conditions and quotas are determined under similar regulation principles. We there for 

use a Fisher index to aggregate the harvesting of North Sea herring and mackerel. In addition, the fisher 

index is used for aggregating the harvested of the unregulated species into a single output. 

We do not have data indicating the extent of idle harbour time nor the precise timing of 

each fishery nor the distribution of maintenance (in harbour) time. Thus we are not able to check 

directly if vessels are constrained in their fishing days input nor if species time slots are separated by 

periods of maintenance (as implied by assumptions 1). However, fishing seasons span the entire year 

and after aggregation of North Sea herring and mackerel no species have seasons that overlap both 

geographically and in time and so the assumptions do not seem unreasonable in our case.  
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 The individual non-transferable vessel quotas for regulated species are grandfathered on 

an annual basis5. Generally allocated quotas are utilized and so our assumption of binding quota 

constraints seems reasonable.6  

 Our panel dataset is provided by The Norwegian Directorate of Fisheries and Statistics 

Norway and consists 84 purse vessels with 250 annual observations in all between 1992 and 1999 (so 

an average of about 3 observations per vessel). Vessels are sampled randomly on annual basis (with 

participation varying between 26 and 40 vessels in the data period). Thus the panel is unbalanced with 

45 vessels participating 1 or 2 years, 23 vessels participating between 3 and 5 years, and 17 vessels 

participating more than 5 years. 

 

The data set contains annual landings in tons and sales revenue for each species for each vessel enabling 

us to calculate average output prices for each vessel. Costs for various input types for each vessel are 

also registered. Input price indexes are calculated using the relevant Statistics Norway price indices and 

assumed to apply for all vessels. In addition various indicators characterizing size etc. of each boat are 

available. The sample consists of 89 vessels having an average length of 50 meters and an average 

tonnage of 672 gross register tonnages (Table 1). Capacity costs (maintenance, insurance, depreciation 

etc.) on average account for about 39% of the total gross costs, the crews salary accounts for about 

39%7, fuel expenditures account for about 9%), and vessel cost like ice, food account for another about 

9%.  

 Table 1 shows values and quantities of landings and costs for the sample of purse 

seiners.8 The gross earnings (landing values) indicate that 31% in generated by spring spawning-

herring, 49% is obtained by the mackerel and herring harvested in the North Sea, capelin (9%) and 

unregulated species (10%).  

                                                 
5 However, permission has sometimes been given to sell quotas allotted to vessels being scrapped during the 
current season.  
6 This is based on communication with the Directorate Fisheries in Norway. 
7 The salary for the crew members  is typically a fixed share of the total landed value 
8 The purse seine vessels having individual quotas for blue whiting are not included in the sample 
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Table 1. Summary statistics of sample purse seines vessel 1992-1999  
Catch and vessel characteristics  Mean of all observations Standard deviation 
89 Vessels, 250 Observations    
Fishing days 273.32 43.21 
Vessel tonnage (GRT) 672.78 253.60 
Length (Meters) 50.74 9.11 
Quantity of spring spawning herring 2609.4 1548.8 
Quantity of capelin 2023.1 2261.7 
Quantity of mackerel and North Sea herring 2191.9 878.0 
Quantity of unregulated species 1192.2 1343.8 
Value of spring spawning herring landings 4473.8 2823.0 
Value of capelin landings 1294.1 1324.1 
Value of mackerel/North Sea herring 
landings 

7047.0 2143.6 

Value of landings of unregulated species  1456.7 1476.8 
Vessel costs 1154.5 736.4 
Fuel costs  1044.9 431.4 

Source: The Norwegian Directorate of Fisheries and Statistics Norway. 
1) The quantities are in tons, prices in 1000 Norwegian kroner. 
2) The vessel cost is defined as cost for ice, bait, provisions and other unspecified costs. 
 

5. Estimation 

In this section we develop our empirical application based on the constrained problem (15). We 

estimate the input demand/ output supply system and present results which we compare with other 

studies of the Norwegian purse seine fishery for same time period. 

 

We only observe total profit, total fishing days input and totals of other inputs – not allocations to each 

fishery. For this reason we choose the normalized quadratic form because it has the advantage that the 

dual problem can be derived explicitly. 

We now introduce the normalized quadratic functional specification (with nr  as the 

numeraire) of profit and cost functions for each species (see Kohli, 1993 for a classical fisheries 

application of this functional form): 

 ½[      '] /    

n

n i
i n n i i i n

i

r
r d

r r d p r A r
p
r

π

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

 for i=1,...h  (18) 
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where iA  are matrices of parameters. We insert these quadratic specifications into (15) and derive total 

profit as the following function of total fishing days and prices of other inputs and outputs (See 

appendix for details): 
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(19) 

 

The k subscripts in the parameter matrix A indicate coefficients in the linear part of the quadratic 

function, and the kk subscript indicates the constant. 

 For the normalized quadratic specification this is the aggregated profit function for a 

fishery with quota regulation for some outputs, where jointness is caused by the predetermined but 

allocatable input of total fishing days. The profit function in (19) is like a standard NQF, except that the 

total number of fishing days totd  is included as a fixed input. In addition it must satisfy the constraints 

implied by propositions 1 and 2 derived above. Finally, we can use proposition 3 and correlaries to 

make inferences concerning, e.g., production jointness in the unconstrained problem (9). 

 

 

 

 



 FOI Working Paper 2010/8   
   

 22

Applying the normalized quadratic functional form 

We have one unrestricted (aggregated) output and three quota restricted outputs (spring-spawning 

herring, capelin and the North Sea herring and mackerel aggregate). Capacity costs and maintenance go 

to producing the fishing days input on which we condition. The salary for the crew member is typically 

a fixed share of the total landed value and we assume that this cost element can be treated as part of 

profit (i.e. that fishing is in effect a joint venture project). Thus we assume that output of each fishery is 

produced using fishing days, fuel and vessel costs (with the underlying skipper and crew input, reaping 

residual profit) where we use vessel cost as the numeraire input. 

From the profit function (19) we derive the systems of supply and demand functions to 

be estimated. The supply function for the unregulated output is found by differentiation (19):  

1 1 11 1 11 12
1 1 2 1 2 2 2

21

( / ) ( ) ( / ) ( / )
q

j
yk yd tot yy yy j yr yr

j

dy a a d a p r a y a r r a r r
dp

π
=

= = + + + + +∑  (20) 

The demand function for fuel input becomes: 

1 1 11 1 11 12
1 1 2 1 2 2 2

21

( / ) ( ) ( / ) ( / )
q

j
rk rd tot ry ry j rr rr

j i
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=
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Finally the demand equation for vessel cost input (the numeraire) becomes: 
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 (22) 

 

and so, the corresponding unit price of vessel costs is used for normalization. A number of parameters 

enter several equations of the system, and in addition we have the usual symmetry restrictions (here 

only one 11 11
yr rya a= ). The regressors include prices of variable inputs and outputs, the fixed quantities of 

quoted regulated species (spring-spawning herring, capelin and the North Sea herring and mackerel 

aggregate) and the allocatable total input of fishing days. 
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We assume that coefficients are homogenous across vessels except for the fixed effects 

in each equation. However, we assume that variation in fixed effects between vessels is proportional to 

vessel tonnage (i.e. we estimate with a homogenous constant term but include vessel tonnage as an 

explanatory variable to capture this in all equations). In addition, the annual stock fluctuations of 

unregulated species may affect the harvest and as control for this we have included annual dummies 

into each model equation (20)-(22). 

 

Selection and endogeneity issues 

If panel participation was endogenous, we would have a potential selection bias problem. However, the 

panel participants are randomly selected by the Norwegian Fisheries Directorate following procedures 

developed by Statistics Norway and there is virtually no attrition (fishermen that do not report when 

selected to the panel) because the reported variables are a mandatory part of the Norwegian fisheries 

regulation system. 

The main endogeneity issue here arises because, the system (20) to (22) is estimated 

conditional on fishing days and using imputed prices. The total number of fishing days may be decided 

on as an integrated part of the fisherman’s short-run problem and so this variable is potentially 

endogenous and should be instrumented. We use ‘vessel age’ as an instrument (since required 

maintenance and thereby maintenance time presumably correlates with vessel age whereas there is no 

reason to suspect that vessel age should be affected by, e.g., the relative input and output price 

fluctuations that generate fishing day endogeneity). Technically we use three stages least squares 

estimation (3SLS). With only one instrument we cannot test instrument validity, but significance of the 

instrumental estimation is checked with a Hausman test (comparing 3SLS estimates with SUR estimates 

of the same system) showing that there is no significant difference between the SUR and 3SLS.9 

Unfortunately this is because our instrument is weak.10 As emphasized by Bound, Jaeger and Baker 

(1995), use of weak instruments may in itself result in biased estimates so we have settled on our SUR 
                                                 
9 The Hausman test statistics is 8.26 so that significance of instrumentation is just rejected (the critical value chi-
square (4) 5% value is 9.488).  
 
10 We have tried to include regional dummies and vessel length in the instrument set without a significant increase 
in instrument strength. We have also tried using lagged variables as instruments but this critically reduced our 
unbalanced panel. 
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estimation as the result that we are most comfortable with. However, the fact that the limited 

information contained in our data prevents a proper instrumentation of fishing days is worrying. 

 

Estimation and results 

The estimated parameters from the restricted SUR estimation of the system (20) – (22) are presented in 

Table 2. The model clearly significant and captures a large part of the variation in left hand variables 

(with R2 values for unrestricted output, fuel input and vessel input are respectively 0.510, 0.945 and 

0.784). Four cross equation restrictions implied by the theoretical system (symmetry and parameter 

equality involving 11 11 11, ,yy rr yra a a ) have been accepted and imposed on the unrestricted system11. Since we 

just have one unregulated species, only the implication of proposition 1 (that all cross effects are non-

positive) can be tested in our case. A Wald test of jointly restricting all three effects to zero is clearly 

accepted (see table 5) and none are significantly positive and so, according to this test, our estimations 

are consistent with the assumed model. 

                                                 
11 The Wald test of imposing all four restrictions is clearly accepted with the test statistics of 3.87 substantially 
below the critical 5% χ2(4)-value of 9.488. 
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Table 2. Estimated parameter values for model with allocatable input jointness 1) 
Parameter Coeff. t-value  Parameter Coef. t-value 
Unres. output    Vessel Input    

11
yya  433.963 1.54 -( 22

kd dra a+ ) 0.595 0.76 
11
yra  -156.119 -3.68 -½ dda  -0.002 -1.17 
1
yda  9.122 3.28 -½ 11

yya  -216.981 -1.54 
12
yya  0.499 1.81 22

yya  4.79*10-7 0.05 
13
yya  0.300 0.41 23

yya  7.59*10-5 -1.95 
14
yya  -0.094 -0.63 24

yya  6.86*10-6 0.79 

βy -0.880 -1.09 33
yya  5.57*10-5 1.04 

   34
yya  -4.37*10-

5 
-1.58 

Fuel Input   44
yya  6.06*10-6 1.41 

11
rya  -156.11 -3.68 - 11

yra  156.119 3.68 
11
rra  295.48 3.33 -½ 11

rra  -147.742 -3.33 
1
rda  -0.80 -4.31 βx2 -0.179 -1.89 
12
rya  0.008 0.58    
13
rya  -0.08 -1.75    
14
rya  -0.015 -1.90    

βx1 -0.381 -8.37    
1) Parameter values for the annual dummies are not included in table 2. Coefficients to βy, βx1, β x2 reflect the 
variation in fixed effects between vessels assumed to be proportional to vessel tonnage (TE), i.e. we include vessel 
tonnage as an explanatory variable to capture this in all equations, and the corresponding parameters are βy, βx1, 
βx2. 
 

 

In table 3 we show derived own- and cross-prise elasticities with respect to inputs and unrestricted 

output. Own price elasticities of fuel and vessel inputs are significant and have the expected negative 

relationships, though numerically smaller than one. The estimated own price elasticity of output is small 

and insignificant. This is not surprising since these vessels typically focus their efforts on high value 

quoted species and therefore are less responsive to price changes in unregulated low valued species. 

The cross price elasticities between inputs are also significant with the positive sign implying that the 

inputs are gross substitutes. The cross-prise elasticities between unrestricted output and inputs have the 

expected signs but only elasticities with respect to fuel are significant. 
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Table 3. Own and cross price elasticities of input and outputs1) 

 Quantity 
Prices Output Fuel Vessel input 
Output 0.061 0.125** 0.026 

 (0.041) (0.034) (0.079) 
Fuel -0.079** -0.795** 0.579** 

 (0.022) (0.239) (0.202) 
Vessel input 0.019 0.671** -0.605** 

 (0.040) (0.234) (0.228) 
** Significant at 5% level.  
The parentheses contain the standard errors on the estimates. 
 
 

Several other studies have estimated models for the Norwegian purse fleet using more or less the same 

data. Asche, Gordon and Jensen (2007) estimating a normalized quadratic profit function find an 

insignificant own price elasticity for the harvest of unregulated output.12 Nøstbakken (2006), Bjørndal 

and Gordon (2000) estimating a cost function for the Norwegian purse fleet find small elasticities for 

inputs.13 Weninger also reports inelastic- input price response for purse seiner fishery operating in the 

surf clam and ocean quahog fishery.14 When comparing with our results, it is important to remember 

that our elasticities are conditional on fixed input of fishing days while all the above cited studies allow 

adjustments of input of fishing days. We know from the corollary to proposition 3 that conditional 

output own-price elasticities are numerically smaller then unconditional elasticities. Given this and 

other differences in model structure and data, the basic behavioural reactions implied by the estimated 

allocatable input model seem reasonable and generally consistent with other comparable studies. 

Of primary interest here is how the shift in structural model (from the standard jointness 

structure, usually applied to the jointness structure using the fixed but allocatable input we have 

developed) affects parameter estimates indicating production jointness. For this we compare the model 

                                                 
12 Asche, Gordon and Jensen (AGJ) estimate a symmetric quadratic profit function on Norwegian purse seiners. 
Similar to the purse seine vessels addressed in the present study. The specification in AGJ is includes unrestricted 
output, operating cost including fuel, wages, insurance, bait and other variables cost expressed as the operating 
cost per fishing day. In AGJ the elasticity on unrestricted output is insignificant, and the elasticity on operating 
cost is small (-0.12) but significant. In this study we find similar to AGJ and insignificant elasticity on unregulated 
output, and the elasticities on fuel (-0.795) and vessel input (-0.605) are statistical significant.    
13 Bjørndal and Gordon (2000), Nøstbakken (2006) are estimating translog cost function for the Norwegian purse 
seine fleet. They studies are applying data on the same fleet as addressed in present study, which is based on the 
period 1994-1996 in Bjørndal and Gordon and 1998-2000 in Nøstbakken. The input elasticity on fuel is -0.046 in 
Nøstbakken and -0.18 in Bjørndal, moreover is reported elasticity on vessel input, which incorporates insurance, 
maintenance, bait and other cost.  
14 Weninger (1998) is estimating a translog cost function for the Mid-Atlantic surf clam and quahog fishery in 
United States.  The input elasticities on fuel is 0.28, moreover is found an elasticity on 0.72 for fishing gear.  
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we have estimated with a corresponding ‘standard’ normalized quadratic multi-output model (the only 

difference being that the number of fishing days is dropped as a regressor).15 Table 4 presents 

elasticities of intensity expressing the per-cent effect on inputs and the unrestricted output of a 1% 

increase in restricted outputs and fixed fishing days inputs for both models. Table 5 presents Wald tests 

of jointly restricting various sets of these effects to zero in both models. 

 

Table 4. Elasticity with respect to restricted outputs and fishing days (N)1) 

Quantity  Output Fuel Vessel input 
Model with allocatable input jointness: 
Fixed input 

Fishing days included 

Fishing days  1.295** 0.592** 0.032 
 (0.395) (0.137) (0.237) 
    
  
Regulated  outputs    
Spring-spawning herring 0.735* -0.066 0.464** 
 (0.421) (0.114) (0.168) 
North Sea herring and mackerel 0.206 0.292* 0.592* 
 (0.519) (0.167) (0.344) 
Capelin -0.0952 0.065* 0.174 
 (0.152) (0.034) (0.143) 
    
Model with standard jointness: 
 

Fishing days not included 

Regulated outputs    
Spring-spawning herring 0.311 -0.127 0.428** 
 (0.387) (0.136) (0.173) 
North Sea herring and mackerel 1.149** 0.412** 0.677** 
 (0.421) (0.198) (0.347) 
Capelin -0.003 0.079 0.235 
 (0.148) (0.042) (0.145) 

** Significant at 5% level. * Significant at 10% level. 
1) The parentheses contain the standard errors on the estimates. 

 

The first four rows show intensity elasticities implied by the allocatable input jointness structure while 

the following three rows show corresponding elasticities implied by the standard jointness structure. 

The first row shows intensity elasticities with respect to fishing days where we see a 

substantial positive and significant effect on unrestricted output and fuel input which is as expected – 

but there is a curiously small and insignificant effect on vessel input. The Wald test of jointly restricting 

                                                 
15 The estimated parameters for the translog system without the number of fishing days are presented in table 2A 
in the Annex. 
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these effects to zero is clearly rejected (see table 5). The next three rows show intensity elasticities with 

respect to restricted outputs. We see that increasing the constrained outputs generally has the expected 

positive effect on input use (where one elasticity is significant at the 5% level and three others are 

significant at the 10% level). The Wald test of jointly restricting these effects to zero is also clearly 

rejected (see table 5). 

Our main interest is the intensity elasticities with respect to the unrestricted output in the 

first column where we see that the allocatable input jointness structure implies insignificant effects. A 

Wald test of jointly restricting all three effects to zero is clearly accepted (see table 5). We know from 

proposition 1 that our theoretical model implies that these effects are non-positive so on this point our 

estimations are (as already noted) consistent with the assumed model. Given our model, this suggests 

that effects are close to zero. We further know from proposition 3 that corresponding unrestricted 

elasticities (where fishing days are allowed to adjust) are numerically smaller (or equal to) the estimated 

elasticities conditional on fixed fishing days input. Thus, our results imply that the Norwegian purse 

seiner fleet is not characterised by production jointness. 

Turning to the effects implied by the standard jointness structure in the next 3 rows we 

see the same pattern of effects on inputs with elasticities that tend generally to be larger – as we would 

expect since this model allows adjustment of fishing days input. The corresponding Wald test of jointly 

restricting to zero is also clearly rejected (see table 5). However, the pattern of effects on the 

unrestricted output is substantially different. Estimating with the standard jointness structure implies 

significant spill over effects between restricted and unrestricted species and complementarity 

relationship between unrestricted output and North Sea herring and mackerel. The corresponding Wald 

test of jointly restricting affects to zero is clearly rejected (see table 5) in contrast to acceptance under 

the standard jointness structure. 
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Table 5. Wald test of joint hypothesis for purse seine vessels  

Null hypothesis Test statistics Critical value 
5% 

Degrees of 
freedom 

Conclusion1)

 Allocatable input jointness (Fishing days included)
Zero effect of fishing days on 
unrestricted output and inputs  

25.67 9.488 4 Reject null 

Zero effect of restricted output 
on unrestricted input  

29.33 16.92 9 Reject null 

Zero effect of restricted output 
on unrestricted output  

4.38 7.815 3 Cannot reject 
null 

 Standard jointness (Fishing days not included)
     
Zero effect of restricted output 
on unrestricted input  

36.50 16.92 9 Reject null 

Zero effect of restricted output 
on unrestricted output  

18.18 7.815 3 Reject null 

     
  

 
 

Thus it seems that the main effect of changing the jointness structure of the model is that the implied 

production jointness with a standard structure disappears when the allocatable input structure is used. 

The effects of this model change on other elasticities are less significant. Comparing this with the 

literature, our result contrasts earlier findings in the Norwegian purse seine fishery by Asche, Gordon 

and Jensen (2007) and Ekerhovd (2007) who find evidence of substantial spill over effects between 

restricted and unrestricted species. These studies use the ‘standard’ jointness structure and our results 

suggest that this may explain why our results differ. Thus when we model jointness in what we have 

argued to be the structurally correct way, the effect disappears. 
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6. Conclusion 

The main contribution of this paper is that we develop a structural model of the mechanism casing 

jointness between the different basically separable fisheries undertaken by a purse seine net fishery. In 

this model production jointness between different fisheries can only be through the mechanism of 

allocating fishing day input. If the vessel has idle time in harbour (not used for maintenance, rigging, 

etc.) then input of fishing days is not restricted. In this case there is no output jointness because fishing 

day input to a given fishery can be increased without reducing input to other fisheries by reducing idle 

harbour time. If, on the other hand, there is no idle harbour time so that all vessel time is allocated to 

either fishing or maintenance, etc., jointness may occur. If a price (or other) chock to a fishery results in 

a change in allocation of vessel time to this fishery then the shadow price of vessel time will be 

affected. If in addition, time allocation to maintenance is unresponsive to changes in the shadow price 

(i.e. if fishing days are close to being a quasi fixed input) then this reallocation will affect fishing days 

allocation to other fisheries causing production jointness.  This foundation provides a framework for 

understanding and empirically modelling the interactions between different fisheries undertaken by 

such an industry.    

We derive a number of implications that can be used to test and interpret empirical 

applications based on the model. Assuming the normalized quadratic form, we estimate a model based 

on this set up for the Norwegian purse seine fishery and find that it implies non-jointness which 

contrasts the findings of prior studies of this fishery, using the standard multi-input multi-output profit 

function forms. Since the endogeneity issues in connection with our estimation are not optimally 

resolved, this outcome should be interpreted with caution. However, it does illustrate the potential 

practical importance of modelling the underlying jointness in the way we suggest. 

 The structural model of jointness we propose may also have different implications for the 

design of regulation schemes than do standard multi species models. This could be an interesting 

direction for future research. 
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Appendix A 

 

From (15) we have::  
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⎢ ⎥
⎢ ⎥⎣ ⎦

 

The k subscripts indicate coefficients in the linear part of the quadratic function and the 

kk subscript indicates the constant.  

  

Inserting (15) into (12) and differentiating the corresponding lagrangian 

1 1

( )
q q

i tot i
i i

L d dπ λ
= =

= − −∑ ∑  we get shadow prices for predetermined (in the first production step) but 

allocatable inputs: 
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for 1...
/ - 0         where  

for 1...
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Dividing by nr  and subtracting the equation for output q after inserting 
1

1

q

q tot i
i

d d d
−

=

= −∑  and collecting 

terms we get for each species i:  
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where 1 2 ... qw w w w⎡ ⎤= ⎣ ⎦ and 1 2 ... qd d d d⎡ ⎤= ⎣ ⎦  and the last equation (the sum restriction) 

can be written: 
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giving the matrix equation covering all q equations: 

/ / 0tot n nAd bd Bw r Cr rα + + + + =%% %%%    (A5) 

 

 

Solving for d gives  

1( / / ) / /tot n n tot n nd A bd Bw r Cr r bd Bw r Cr rβ β−= + + + = + + +%% % %%  (A6) 

Inserting (A6) in (A1) we have: 
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      (A7) 

which like above by factoring out and collecting terms gives: 
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where iA%  is symmetric. Adding over outputs and defining   iA A=∑ % (which then is also symmetric) 

we have: 
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 (A9) 

This is the aggregated profit function in (16) 
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Appendix B 

Table 2A. The estimated parameter values from the translog system without including 

fishing days1) 

Parameter Coeff. t-value  Parameter Coef. t-value 
Unres. output    Vessel Input   

11
yya  739.281 2.75 22

kd dra a+    
11
yra  -191.684 -3.72 -½ dda    
1
yda    -½ 11

yya  -369.640 -2.75 
12
yya  0.213 0.80 22

yya  3.68*10-6 -0.38 
13
yya  1.684 2.73 23

yya  6.15*10-5 -1.56 
14
yya  -0.003 -0.02 24

yya  9.83*10-6 1.10 

βy -1.363 -1.68 33
yya  5.05*10-5 0.90 

   34
yya  -6.06*10-

5 
-2.19 

Fuel Input   44
yya  8.70*10-6 1.98 

11
rya  -191.684 -3.72 - 11

yra  191.684 3.72 
11
rra  119.500 3.33 -½ 11

rra  -59.750 -1.32 
1
rda    βx2 -0.187 -1.89 
12
rya  0.017 0.93    
13
rya  -0.117 -2.08    
14
rya  -0.018 -1.88    

βx1 -0.374 -6.74    
1) The parameter values for the annual dummies are not included in the Table 2. 

 
 
 
 
 
 
 
 
 
 
 


