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Let Y be a p q  matrix whose elements i jy s  are differentiable functions of the elements rsx s  of a 

m n  matrix X.   We write  Y Y X  and say Y  is a matrix function of X.   Given such a set up 

we have mnpq  partial derivatives we can consider: 

i j

r s

y

x




      

i 1, , m

j 1, ,m

r 1, , p

s 1, ,q.











 

The question is how to arrange these derivatives.  Different arrangements give rise to different 

concepts of derivatives in matrix calculus. 

 

Concept 1 

The derivative of the p q  matrix Y with respect to the m n  matrix X is the  

pq mn matrix. 

 

11 11 11 11

11 m1 1n mn

p1 p1 p1 p1

11 m1 1n mn

1q 1q 1q 1q

11 m1 1n mn

pq pq pq pq

11 m1 1n mn

y y y y

x x x x

y y y y

x x x x
Y vec Y

X vec X
y y y y

x x x x

y y y y

x x x x

    
     
 
 
    

         
   

    
    


   

     

  

   

  

   

  

   

  

.







 

Notice that under this concept the mnpq  derivatives are arranged in such a way that a row of 

vec Y
,

vec X




 gives the derivatives of a particular element of Y with respect to each element of X and a 

column gives the derivatives of all the elements of Y with respect to a particular element of X.  

Notice also in talking about the derivatives of i jy  we have to specify exactly where the ith row is 

located in this matrix.  Likewise when talking of the derivatives of all the elements of Y with 

respect to particular element rsx  of X again we have to specify exactly where the s th column is 

located in this matrix. 
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This concept of a matrix derivative is strongly advocated by Magnus and Neudecker [see for 

example Magnus and Neudecker (1985) and Magnus (2010)].  The feature they like about it is that 

vec Y

vec X



 is a straight forward matrix generalization of the Jacobian Matrix for  y y x  where y 

is a p 1  vector which is a real value differentiable function of a m 1  vector x.  This Jacobian 

matrix is defined as / . y x  

 

Concept 2 

The derivative of the p q  matrix Y with respect to the m n  matrix X is the mp nq  matrix 

11 1n

m1 mn

Y Y

x x
Y

X
Y Y

x x

  
     

  
  

   



 



 

where rsY / x   is the p q  matrix given by 

11 1q

rs rs

rs
p1 pq

rs rs

y y

x x
Y

x
y y

x x

  
   

  
 
  

   



 



 

for r 1, ,m, s 1, ,n.    

 

This concept of a matrix derivative is discussed, for example, in Dwyer and MacPhail (1948), 

Dwyer (1967), Roger (1980) and Graham (1981). 

 
Concept 3 

Suppose y is a scalar but a differentiable function of all the elements of a m n  matrix X.  Then we 

could conceive of the derivative of y with respect to X as the m n  matrix consisting of all the 

partial derivatives of y with respect to the elements of X.  Denote this m n  matrix as 

11 1n

m1 mn

y y

x x
y

.
X

y y

x x
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We could then conceive of the derivative of Y with respect to X as the matrix made up of the 

i jy / X.   Denote this mp qn  matrix y / X.    This leads to the third concept of the derivative of 

Y with respect to X. 

 

The derivative of the p q  matrix Y with respect to the m n  matrix X is the mp nq  matrix 

11 1q

p1 pq

y y

X X
Y

.
X

y y

X X

  
     

  
  

   



 



 

This is the concept of a matrix derivative studied in detail by MacRae (1974) and discussed by 

Dwyer (1967), Roger (1980), Graham (1981) and others. 

 

From a theoretical point of view Parring (1992) argues that all three concepts are permissible as 

operators depending on which matrix or vector space we are operating in and how this space is 

normed. 

 

CASE WHERE Y IS A SCALAR 

 
Suppose Y is a scalar, y say.  This case is common in statistics and econometrics.  Then concept 2 

and concept 3 are the same and concept 1 is the transpose of the vec of either concept.  That is for y 

a scalar and X a m n  matrix 

y y y y
and vec .

X X X X

    
       

 

Examples where Y is a scalar  

1. Suppose y is the determinant of a non-singular matrix.  That is y X  where X is a non-

singular matrix. 

Then 

 1y
X vec X .

X


        

 

(1) 
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 From Eq.(1) it follows immediately that 

 1y y
X X .

X X
   

 
 

2. Consider y Y where Y X AX   is non-singular. 

Then 

 1 1y
Y A X Y A X Y .

X
    


 

It follows from Eq. (1) that 

    
     

1 1

1 1

y
Y Y A Y A vec X

X

Y vec X Y A Y A .

 

 

      
        

 

3. Consider y Z where Z X BX  . 

Then 

     1 1y
Z vec X B Z B Z

X
          

. 

It follows from Eq.(1) that 

 1 1y y
Z Z X B Z X B .

X X
      

 
 

4. Let y trAX . 

Then 

y
A

X

 


. 

It follows from Eq.(1) that 

 y
vec A .

X

 


 

5. Let y trX AX . 

Then 

  y
vec A X AX .

X

  


 

It follows from Eq.(1) that 

y y
A X AX.

X X
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6. Let y trXAX B . 

Then 

y y
B XA BXA

X X

     
 

. 

It follows from Eq.(1) that 

  y
vec B XA BXA .

X

   


 

**** 

 

These examples suffice to show that it is a trivial matter moving between the different concepts of 

matrix derivatives when Y is a scalar.  In the next section we derive transformation principles that 

allow us to move freely between the three different concepts of matrix derivatives in more 

complicated cases.  These principles can be regarded as a generalisation of the work done by Dwyer 

and Macphail (1948) and by Graham (1980). 

 

MATHEMATICAL PREREQUISITES 
 

1. Kronecker Products 

Let A = {aij} be a m x n matrix and B be a p x q matrix. The Kronecker product of A and B, 

denoted by A B is the mp x nq matrix given by  

11 1n

m1 mn

a B a B

A B .

a B a B

 
    
 
 


 


 

Let 

 

1

1 n

m

a

A a a .

a

 
 

  
   

   

Then 

 

1

1 n

m

a B

A B a B a B .

a B
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Moreover if x is a r x 1 vector then  

1

m

x a

x A

x a

 
 

   
   

  

so the ith row of x A is ix a  for i = 1,…,m. 

Similarly 

1 qx B x b x b     

so the jth column of x B is jx b  for j = 1,…,q. 

 

Locating the ith row and the jth column of A B  

The ith row 

If i is between 1 and p   1 ia b   

If i is between p+1 and 2p  2 ia b   

               

If i is between (m-1)p and pm  m ia b  . 

 

Write 

i (c 1)p i    

where c is between 1 and m, i is between 1 and p.  Then ith row of A B is  

 

 

eg.  Let A be 2 x 3, B be 4 x 5 and suppose I want the 7th row of A B . Write 

 

So c = 2, i 3 and 

 

 

Consider the n x n identity matrix In and write  n n
n 1 nI e e  . The ith column n

ie acts as a 

selection matrix. 

i.e. c m
ca e A  , i p

i
b e B.   

So 

m p
i c i

(A B) (e e )(A B)      . 



c ia b 

 7 2 1 4 3.  

2 3
7(A B) a b    
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The jth column 

Write 

 

with d between 1and n and j  between 1 and q. 

Then 
n q

j d dj j
(A B) a b (A B)(e e )      . 

 

2. Generalized Vecs and Rvecs 

Let A be a m x n matrix and write 

 

1

1 n

m

a

A a a

a

 
 

  
   

  . 

Then  

1

n

a

vecA

a

 
   
 
 

 ,  1 mrvecA a a   . 

Let A be a m x np matrix and write 

1 p
mxn mxn

A A A   
 

 . 

Then 

1

n

p

A

vec A

A

 
   
 
 

 . 

Similarly if B is np x q and write 

1
pxq

n
pxq

B

B

B

 
 
 
 
 
 

 . 

Then 

 p 1 nrvec B B B  . 

Relationships 

i) If A is m x np then 

n n(vec A) rvec A   

ii) A generalized vec can always be undone by taking an appropriate generalized rvec and 

vice versa. For example, if A is m x n and vecjA and rveciA exist then 

j (d 1)q j  
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m j

n i

rvec (vec A) A

vec (rvec A) A.




 

 
iii) Suppose a and b are vectors, b being p x 1.  Then 

 

p

p

vec (a b ) ab

rvec (a b) ba .

   
 

 

 

3. Elementary Matrices 

The elementary matrix mn
ijE is a m x n zero-one matrix whose elements are all zero except in the 

(i,j)th position which is 1. i.e.  

mn m n
ij i jE e e  . 

 

Recall for A and B m x n and p x q matrices respectively  

c i
i(A B) a b     . 

 

Hence, 

c i m p
q i c i

mp
ci

vec (A B) a b A e e B

A E B

    


 

Similarly,

 

qn
p j jd

rvec (A B) BE A


   . 

 

4. Commutation Matrix m nK  

If A is a m x n  matrix then Kmn is the mn x mn zero-one matrix defined by  

mnK vecA vecA  

Results about Kmn 

i) 

nm nm
11 n1

mn

nm nm
1m nm

E E

K

E E

 
 

  
 
 


 



 

ii) If A is m x n, B is p x q then 

(2)

(3) 
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1 1

m 1

pm q n

1 p

m p

a b

a b

K (A B) B A K

a b

a b

  
 
 
   
     
  
 
 
    







 

and    q n 1 nB A K B a B a .     

iii) ith row of Kpm(A     B) 

By a similar analysis to that of above. 

i c
pm i[K (A B)] a b      

for                          and 

 

mp
q pm i i c

vec [K (A B)] A E B    

iv) The j th column of   q nB A K  

By a similar analysis to that of above 

  q n djj
B A K b a


    

where  q
j d 1 j    and  

   n q
m q n d jj

rvec B A K A E B .


   

v) If X is a m n  matrix then  

   G m m mGvec X I I vec K vecX.    

**** 

5.  The Matrix mnU  

mnU  is the 2 2m n  matrix given by 

mn mn
11 1n

mn
mn mn
m1 mn

E E

U .

E E

 
 

  
 
 


 


 

Let A, B, C, D be r m, s m, n u    and n v  matrices respectively.  Then 

      mnA B U C D vecBA rvecC D .     

i (c 1)m i  
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RELATIONSHIPS BETWEEN THE DIFFERENT CONCEPTS 

We can use our generalized vec and rvec operators to spell out the relationships that exist between 

our three concepts of matrix derivatives.  We consider two concepts in turn. 

 

Concept 1 and Concept 2 

The submatrices in Y / X   are 

11 1q

rs rs

rs
p1 pq

rs rs

y y

x x
Y

x
y y

x x

  
   

  
 
  

   



 



 

for r 1, ,m   and s 1, ,n.    In forming the submatrix rsY / x   we need the partial derivatives 

of the elements of Y with respect to rsx .   When we turn to concept 1 we note that these partial 

derivatives all appear in a column of Y / X.    Just as we did in locating a column of a Kronecker 

product we have to specify exactly where this column is located in the matrix Y / X.    If s is 1 then 

the partial derivatives appear in the rth column, if s is 2 then they appear in the m r th  column, if 

s is 3 in the 2m r th  column and so on until s is n in which case the partial derivatives appear in 

the  n 1 m r th   column.  To cater for all these possibilities we say rsx  appears in the th  

column of Y / X   where 

 s 1 m r    

and s 1, ,n.    The partial derivatives we seek appear in that column as the column vector 

11

rs

p1

rs

1q

rs

pq

rs

y

x

y

x

.

y

x

y

x
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If we take the prvec  of this vector we get rsY / x   so 

rs p

Y
Y / x rvec

X


 
      

                                                      (7) 

where  s 1 m r,    for s 1, , n   and r 1, ,m.   

Now this generalized rvec  can be undone by taking the vec  so 

rs

Y Y
vec

X x


   
         

                                                         (8) 

If we are given Y / X   and we can identify the th  column of this matrix then Eq.(7) allows us 

to move from concept 1 to concept 2.  If, however, we have in hand Y / X   we can identify the 

submatrix rsY / x   and Eq.(8) will then allow us to move from concept 2 to concept 1. 

 

Concept 1 and Concept 3  

The submatrices in Y / X   are  

i j i j

11 1n

i j

i j i j

m1 mn

y y

x x
y

X
y y

x x

  
     
 
  

   



 



 

for i 1, , p   and j 1, ,q.   In forming the submatrix i jy / X   we need the partial derivative of 

i jy  with respect to the elements of X.  When we examine Y / X   we see that these derivatives 

appear in a row of Y / X.   

 

Again we have to specify exactly where this row is located in the matrix Y / X.    If j is 1 then the 

partial derivatives appear in the ith  row, if j 2  then they appear in the p i th  row, if j 3  then 

in the 2p i th row and so on until j q  in which case the partial derivative appear in  q 1 p i th   

row.  To cater for all possibilities we say the partial derivatives appear in the t th row of Y / X   

where 

 t j 1 p i    

and j 1, ,q.    In this row they appear as the row vector 

i j i j i j i j

11 m1 1n m n

y y y y
.

x x x x

    
      

    



12 
 

If we take the mvec  of this vector we obtain the matrix 

i j i j

11 m1

i j i j

1n mn

y y

x x

y y

x x

  
   
 
 
  

   



 



 

which is  i jy / X .    So we have 

i j
m

t

y Y
vec

X X 

         
                                                      (9) 

where  t j 1 p i,    for j 1, ,q   and i 1, ,p.   

As 

i j
m

t

yY
vec

X X

          
 

and this generalized vec can be undone by taking the rvec we have 

i j

t

yY
rvec .

X X

          
                                                       (10) 

If we have in hand Y / X   and if we can identify the t th row of this matrix the Eq.(9) allows us to 

move from concept 1 to concept 3.  If, however, we have obtained Y / X   so we can identify the 

submatrix i jy / X   of this matrix then Eq.(10) allows us to move from concept 3 to concept 1. 

 

Concept 2 and Concept 3  

Returning to concept 3, the submatrices of Y / X   are 

i j i j

11 1n

i j

i j i j

m1 mn

y y

x x
y

X
y y

x x

  
     
 
  

   



 



 

and the partial derivative i j

r s

y

x




 is given by the  r,s th  element of this submatrix.  That is 

i j i j

r s r s

y y
.

x X

  
    

 



13 
 

It follows that 

11 1q

rs rs

rs
p1 pq

rs rs

y y

X X
Y

.
x

y y

X X

      
         

    
     
          



 



                                           (11) 

Starting now with concept 2, the submatrices of Y / X   are 

1q11

rs rs

rs
p1 pq

rs rs

yy

x x
Y

x
y y

x x

 
   

  
 
  

   



 



 

and the partial derivative i j rsy / x   is the  i, j th element of this submatrix.  That is  

i j

r s rs i j

y Y
.

x x

  
     

 

It follows that  

11 1ni j i j

i j

m1 mni j i j

Y Y

x x
y

.
X

Y Y

x x

     
            
 

                     



 



                                            (12) 

If we have in hand y / X   then Eq.(11) allows us to build up the submatrices we need for Y / X.    

If however, we have a result for Y / X   then Eq.(12) allows us to obtain the submatrices we need 

for Y / X.   

 

Tranformation Principles One 

Several matrix calculus results when we use concept 1 involve Kronecker products whereas the 

equivalent results, using concepts 2 and 3 involve elementary matrices.  In this section we see that 

this is no coincidence. 

 

We have just seen that  
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p
rs

Y Y
rvec

x X 

       
                                                        (13) 

where  s 1 m r    and that  

i j
m

t

y Y
vec

X X 

         
                                                      (14) 

where  t j 1 p i.     Suppose now that Y / X A B     where A is a q n matrix and B is a 

p m  matrix. 

Then from Eq.(3) we have 

  m n
p rsrvec A B BE A ,    

so using Eq.(13) we have that 

mn
rs

rs

Y
BE A .

x

 


 

From Eq.(2) we have 

  q p
tm jivec A B A E B    

so from Eq.(14) 

 i j q p pq
ji ji

y
A E B B E A.

X

   


 

This leads us to our first transformation principle. 

 

The First Transformation Principle 

Let A be a q n  matrix and B be a p m  matrix.  Whenever 

Y
A B

X


 


 

regardless of whether A and B are matrix functions of X or not 

mn
rs

rs

Y
BE A

x

 


 

and 

i j pq
i j

y
B E A

X





 

and the converse statements are true also. 

 

**** 
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For this case 

   

mn mn
11 1n

m mn n
mn mn
m1 mn

BE A BE A
Y

I B U I A ,
X

BE A BE A

  
          


 


 

where mnU  is the 2 2m n  matrix, given by 

mn mn
11 1n

mn
mn mn
m1 mn

E E

U .

E E

 
 

  
 
 


 


 

From Eq.(6) 

      mnA B U C D vec BA rvecC D ,     

so 

  Y
vec B rvec A .

X

 


 

In terms of concept 3 for this case 

      

pq pq
11 1q

p pq q
pq pq
p1 pq

B E A B E A
Y

I B U I A vec B rvec A .
X

B E A B E A

  
            


 


 

In terms of the entire matrices we can express the First Transformation Principle by saying that the 

following statements are equivalent: 

  

  

Y
A B

X
Y

vec B rvec A
X
Y

vec B rvec A .
X


 


 

 


 

 

Examples of the Use of the First Transformation Principle 

1. Y A B   for A p m  and B n q.  

Then it is know that 

AXB
B A.

X

  


 

It follows that 

mn
rs

rs

AXB
A E B

x
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and 

 i j pq
i j

AXB
A E B

X


 


 

Moreover 

  AXB
vec A rvec B

X





 

  AXB
vec A rvec B .

X

  


 

 

2. Y XAX  where X  is a n n  symmetric matrix. 

Then it is know that 

n n n n
rs rs

rs

XAX
E AX XAE .

x


 


 

It follows that 

 i j n n n n
i j i j

XAX
E XA A XE

X


  


 

and that 

   n n

XAX
X A I I A X .

X

     


 

Moreover 

     

     

n n

n n

XAX
vec I rvec A X vec A X rvec I

X
Y

vec I rvec X A vec X A rvec I .
X

   


   


 

 

3. GY X I   where X  is a m n  matrix. 

We have seen that    G n m mGvec X I I vec K vec X    so 

 G
n m mG

X I
I vec K .

X

 
 


 

It follows that 

   G mn
m G m rs

rs

X I
vec K E

x

 



 

and 

   G k n 2
m G m i j

X I
vec K E where k G n.

X
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Moreover 

       

        

G
m mG n mG n

G
m mG n mG n

X I
vec vec K rvec I vec I rvec I

X
X I

vec vec K rvec I vec I rvec I .
X

 
 


   



 

 

4. 1Y AX B  where A  is p n  and B is n q. Then it is known that  

 1

i j 1 pq 1
i j

AX B
X A E B X .

X



 


   


 

It follows straight away that 

1
1 n n 1

rs
rs

AX B
AX E X B,

x


 

 


 

and that 

1
1 1AX B

B X AX .
X


    


 

Moreover 

  
1

1 1AX B
vec AX rvec X B

X


 

 


 

and 

  
1

1 1AX B
vec X A rvec B X .

X


     


 

 

5. Y AXBXC  where X  is m n,  A  is p m,  B  is n m  and C  is n q.  

Then it is well known that  

mn mn
rs rs

rs

AXBXC
A E BXC AXBE C.

x


 


 

It follows that 

 i j pq pq
i j i j

AXBXC
A E C X B B X A E C

X


        


 

and 

   AXBXC
C X B A C AXB .

X
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Moreover 

     AXBXC
vec A rvec BXC vec AXB rvecC .

X


 


 

and 

     AXBXC
vec A rvecC X B vec B X A rvecC .

X

         


 

As I hope these examples make clear this transformation principle ensure is a very easy matter to 

move from a result involving one of the concepts of matrix derivatives to the corresponding results 

for the other two concepts.  Although this principle covers a lot of cases, it does not cover them all.  

Several matrix calculus results for concept 1 involve multiplying a Kronecker product by a 

commutation matrix.  The following transformation principal covers this case. 

 

Transformation Principle Two 

Suppose then that 

   q p mn

Y
K C D D C K

X


   


 

where C is a p n  matrix and D is a q m  matrix.  Forming rsY / x   from this matrix requires that 

we first obtain the th  column of this matrix where  s 1 m r    and we take the prvec  of this 

column.  From Eq.(5) we get  

n m
sr

rs

Y
C E D

x

 


 

In forming i jy / X   from Y / X   we first have to obtain the t th  row of this matrix, for 

 t j 1 p i    and then we take the mvec  of this row.  The required matrix i jy / X   is the 

transpose of the matrix thus obtained.  From Eq.(4) we get 

 i j pq q p
i j ji

y
C E D D E C.

X

   


 

This leads us to our second transformation principle. 

 

The Second Transformation Principle 

Let C be a p n  matrix and D be a q m  matrix.  Whenever 

 qp

Y
K C D

X
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regardless of whether C and D are matrix functions of X or not 

n m
sr

rs

Y
C E D

x

 


 

i j q p
ji

y
D E C

X





 

and the converse statements are true also. 

**** 

 

For this case 

       

n m n m n m n m
11 n1 11 n1

m n m mn n
n m n m n m n m
1m n m 1m n m

C E D C E D E E
Y

I C I D I C K I D .
X

C E D C E D E E

    
                      

 
   

 
 

In terms of Y / X   we have 

   
qp q p
11 q1

p pq q
qp q p
1p q p

D E C D E C
Y

I D K I C .
X

D E C D E C

  
          


 


 

In terms of the full matrices we can express the Second Transformation Principle as saying that the 

following statements are equivalent: 

 

   

   

q p

m mn n

p pq q

Y
K C D

X

Y
I C K I D

X

Y
I D K I C .

X


 



   


   


 

As an example of the use of this second transformation principle let Y AX B  where A  is p n  

and B  is m q.   Then it is known that 

 pq

AX B
K B A .

X

  


 

It follows that 

m n
sr

rs

AX B
B E A

x
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and that 

 i j pq
ji

AX B
A E B .

X


 


 

In terms of the entire matrices we 

   

   

n n m m

q q p p

Y
I B K I A

X

Y
I A K I B .

X

    


   


 

**** 

 

Principle 2 comes into its own when it is used in conjunction with principle 1.  Many matrix 

derivatives come in two parts: one where principle 1 is applicable and the other where principle 2 is 

applicable. 

For example we often have 

 qp

Y
A B K C D ,

X


   


 

so we would apply principle 1 to the A B  part and principle 2 to the  q pK C D  part. 

 

Examples of the Combined Use of Principles One and Two 

1. Let Y X AX  where X  is m n,  A  is m m.  Then it is well known that 

   n n n n

X AX
K I X A I X A .

X

      


 

It follows that  

n m mn
sr rs

rs

X AX
E AX X A E

x

  


 

and that  

 i j n n n n
j i i j

X AX
A X E A X E .

X


 


 

Moreover 

        

        

mn n m mn mn n n

n n n n n n n n n n

X AX
K I AX I X A U K I AX vec X A rvec I .

X

X AX
I AX K I A X U I AX K vec A X rvec I .

X
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2. Let Y XAX  where X  is m n  and A is n n. Then it is known that 

n m mn
sr rs

rs

XAX
XAE E AX .

x

  


 

It follows that 

 i j mm mm
j i i j

XAX
E XA E XA

X


 


 

and 

   mm m m

XAX
K XA I XA I .

X

    


 

Moreover 

        m mn mn n m mn m

XAX
I XA K U I AX I XA K vec I rvec AX .

X

        


 

and 

        mm m mm m mm m m

XAX
K I XA U I XA K I XA vec I rvec AX .

X

          


 

 

3. Let Y AX BXC  where A  is p n,  B  is m m  and C  is n q.   Then it is known that 

 i j q p pq
ji i j

AX BXC
BXCE A B XA E C .

X


   


 

It follows using our principles that 

n m mn
sr rs

rs

AX BXC
CE BXC AX BE C

x

  


 

and that 

   q p

AX BXC
K A C X B C AX B .

X

        


 

In terms of the entire matrices we have 

       

      

       

      

m mn n m mn n

m mn n

p pq q p pq q

p pq q

AX BXC
I A K I BXC I AX B U I C

X
I A K I BXC vec AX B rvecC .

AX BXC
I BXC K I A I B XA U I C

X

I BXC K I A vec B XA rvecC .
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4. Let Y AXBX C  where A  is p m,  B  is n n  and C  is m q.   Then it is well known that 

   q p

AXBX C
K AXB C C XB A .

X

      


 

Using our principles we obtain 

n m mn
sr rs

rs

AXBX C
AXBE C AE BX C

x

  


 

and 

 i j qp pq
ji i j

AXBX C
CE AXB A E C XB .

X


   


 

Moreover, we have 

       

      

       
      

m mn n m mn n

m mn n

p pq q p pq q

m mn n

AXBX C
I AXB K I D I A U I BX C

X
I AXB K I D vec A rvec BX C .

AXBX C
I C K I B X A I A U I C XB

X

I AXB K I D vec A rvecC XB .

      


   

           


     

 

The following results are not as well known: 

 

5. Let Y D D  where D A BXC   with A p q, B p m   and C n q.  

Then from Lutkepohl (1996) p.191 we have  

 qq

D D
K C D B C D B.

X

       


 

Using our principles we obtain  

n m mn
sr rs

rs

D D
C E B D B DE C

x

    


 

and 

 i j qq qq
j i i j

D D
B DE C B DE C .

X
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In terms of the complete matrices we have 

       

      

       

      

m mn n m mn n

m mn n

q qq q q qq q

q qq q

D D
I C K I B D I D B U I C

X
I C K I B D vec D B rvecC .

D D
I B D K I C I B D U I C

X

I B D K I C vec B D rvecC .

        


     

         


      

 

 

6. Let Y DD  where D  is as in 5. 

Then from Lutkepohl (1996) p.191 again we have 

   pp

DD
K DC B DC B .

X

     


 

It follows that  

 

n m mn
sr rs

rs

i j pp pp
ji i j

DD
DC E B BE CD

x

DD
B E DC B E DC

X

    



    



 

or in terms of complete matrices 

       

      

       

      

m mn n m mn n

m mn n

p pp p p pp p

p pp p

DD
I DC K I B I B U I CD

X
I DC K I B vec B rvecCD

DD
I B K I DC I B U I DC

X

I B K I DC vec B rvec DC .

       


     

         


      

 

**** 
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