ECONOMICS

DIFFERENT CONCEPTS OF MATRIX CALCULUS

by

Darrell A Turkington

Business School
The University of Western Australia

DISCUSSION PAPER 11.03

DIFFERENT CONCEPTS OF MATRIX CALCULUS

by

Darrell A Turkington
Business School
The University of Western Australia

DISCUSSION PAPER 11.03

Let Y be a $\mathrm{p} \times \mathrm{q}$ matrix whose elements $\mathrm{y}_{\mathrm{ij}} \mathrm{s}$ are differentiable functions of the elements $\mathrm{X}_{\mathrm{rs}} \mathrm{s}$ of a $\mathrm{m} \times \mathrm{n}$ matrix X . We write $\mathrm{Y}=\mathrm{Y}(\mathrm{X})$ and say Y is a matrix function of X . Given such a set up we have mnpq partial derivatives we can consider:

$$
\begin{array}{ll}
& i=1, \ldots, m \\
\frac{\partial y_{i j}}{\partial x_{r s}} \quad \begin{array}{l}
j=1, \ldots, m \\
r
\end{array}=1, \ldots, p \\
& s=1, \ldots, q .
\end{array}
$$

The question is how to arrange these derivatives. Different arrangements give rise to different concepts of derivatives in matrix calculus.

Concept 1

The derivative of the $\mathrm{p} \times \mathrm{q}$ matrix Y with respect to the $\mathrm{m} \times \mathrm{n}$ matrix X is the $\mathrm{pq} \times \mathrm{mn}$ matrix.

$$
\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\frac{\partial \operatorname{vec} \mathrm{Y}}{\partial \operatorname{vec} \mathrm{X}^{\prime}}=\left(\begin{array}{ccccccc}
\frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{1 \mathrm{n}}} & \cdots & \frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{mn}}} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{1 \mathrm{n}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{mn}}} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{1 \mathrm{n}}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{mn}}} \\
\vdots & & \vdots & & \vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{1 \mathrm{n}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{mn}}}
\end{array}\right) \text {. }
$$

Notice that under this concept the mnpq derivatives are arranged in such a way that a row of $\frac{\partial \mathrm{vec} \mathrm{Y}}{\partial \mathrm{vec} \mathrm{X}^{\prime}}$, gives the derivatives of a particular element of Y with respect to each element of X and a column gives the derivatives of all the elements of Y with respect to a particular element of X . Notice also in talking about the derivatives of y_{ij} we have to specify exactly where the ith row is located in this matrix. Likewise when talking of the derivatives of all the elements of Y with respect to particular element X_{rs} of X again we have to specify exactly where the s th column is located in this matrix.

This concept of a matrix derivative is strongly advocated by Magnus and Neudecker [see for example Magnus and Neudecker (1985) and Magnus (2010)]. The feature they like about it is that $\frac{\partial \operatorname{vec} \mathrm{Y}}{\partial \mathrm{vec} \mathrm{X}^{\prime}}$ is a straight forward matrix generalization of the Jacobian Matrix for $\mathbf{y}=\mathbf{y}(\mathbf{x})$ where \mathbf{y} is a $p \times 1$ vector which is a real value differentiable function of a $m \times 1$ vector \mathbf{x}. This Jacobian matrix is defined as $\partial \mathbf{y} / \partial \mathbf{x}^{\prime}$.

Concept 2

The derivative of the $\mathrm{p} \times \mathrm{q}$ matrix Y with respect to the $\mathrm{m} \times \mathrm{n}$ matrix X is the $\mathrm{mp} \times \mathrm{nq}$ matrix

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{X}}=\left(\begin{array}{ccc}
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{11}} & \cdots & \frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{1 \mathrm{n}}} \\
\vdots & & \vdots \\
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{mn}}}
\end{array}\right)
$$

where $\delta \mathrm{Y} / \delta \mathrm{x}_{\mathrm{rs}}$ is the $\mathrm{p} \times \mathrm{q}$ matrix given by

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{rs}}}
\end{array}\right)
$$

for $r=1, \ldots, m, s=1, \ldots, n$.

This concept of a matrix derivative is discussed, for example, in Dwyer and MacPhail (1948), Dwyer (1967), Roger (1980) and Graham (1981).

Concept 3

Suppose y is a scalar but a differentiable function of all the elements of amxn matrix X. Then we could conceive of the derivative of y with respect to X as the $m \times n$ matrix consisting of all the partial derivatives of y with respect to the elements of X. Denote this $m \times n$ matrix as

$$
\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}}{\partial \mathrm{x}_{1 \mathrm{n}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{mn}}}
\end{array}\right) .
$$

We could then conceive of the derivative of Y with respect to X as the matrix made up of the $\gamma \mathrm{y}_{\mathrm{ij}} / \gamma \mathrm{X}$. Denote this $\mathrm{mp} \times \mathrm{qn}$ matrix $\gamma \mathrm{y} / \gamma \mathrm{X}$. This leads to the third concept of the derivative of Y with respect to X .

The derivative of the $\mathrm{p} \times \mathrm{q}$ matrix Y with respect to the $\mathrm{m} \times \mathrm{n}$ matrix X is the $\mathrm{mp} \times \mathrm{nq}$ matrix

$$
\frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\frac{\gamma \mathrm{y}_{11}}{\gamma \mathrm{X}} & \cdots & \frac{\gamma \mathrm{y}_{1 \mathrm{q}}}{\gamma \mathrm{X}} \\
\vdots & & \vdots \\
\frac{\gamma \mathrm{y}_{\mathrm{p} 1}}{\gamma \mathrm{X}} & \cdots & \frac{\gamma \mathrm{y}_{\mathrm{pq}}}{\gamma \mathrm{X}}
\end{array}\right) .
$$

This is the concept of a matrix derivative studied in detail by MacRae (1974) and discussed by Dwyer (1967), Roger (1980), Graham (1981) and others.

From a theoretical point of view Parring (1992) argues that all three concepts are permissible as operators depending on which matrix or vector space we are operating in and how this space is normed.

CASE WHERE Y IS A SCALAR

Suppose Y is a scalar, y say. This case is common in statistics and econometrics. Then concept 2 and concept 3 are the same and concept 1 is the transpose of the vec of either concept. That is for y a scalar and X a $\mathrm{m} \times \mathrm{n}$ matrix

$$
\begin{equation*}
\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}} \text { and } \frac{\partial \mathrm{y}}{\partial \mathrm{X}}=\left(\operatorname{vec} \frac{\delta \mathrm{y}}{\delta \mathrm{X}}\right)^{\prime} . \tag{1}
\end{equation*}
$$

Examples where Y is a scalar

1. Suppose y is the determinant of a non-singular matrix. That is $\mathrm{y}=|\mathrm{X}|$ where X is a nonsingular matrix.

Then
$\frac{\partial \mathrm{y}}{\partial \mathrm{X}}=|\mathrm{X}|\left[\operatorname{vec}\left(\mathrm{X}^{-1}\right)^{\prime}\right]^{\prime}$.

From Eq.(1) it follows immediately that
$\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}}=|\mathrm{X}|\left(\mathrm{X}^{-1}\right)^{\prime}$.
2. Consider $y=|Y|$ where $Y=X^{\prime} A X$ is non-singular.

Then
$\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=|\mathrm{Y}|\left(\mathrm{AX} \mathrm{Y}^{-1^{\prime}}+\mathrm{A}^{\prime} \mathrm{XY}^{-1^{\prime}}\right)$.
It follows from Eq. (1) that

$$
\begin{aligned}
\frac{\partial \mathrm{y}}{\partial \mathrm{X}} & =|\mathrm{Y}|\left\{\left[\left(\mathrm{Y}^{-1} \otimes \mathrm{~A}\right)+\left(\mathrm{Y}^{-1} \otimes \mathrm{~A}^{\prime}\right)\right] \operatorname{vec} \mathrm{X}\right\}^{\prime} \\
& =|\mathrm{Y}|(\operatorname{vec} \mathrm{X})^{\prime}\left[\left(\mathrm{Y}^{-1^{\prime}} \otimes \mathrm{A}^{\prime}\right)+\left(\mathrm{Y}^{-1^{\prime}} \otimes \mathrm{A}\right)\right] .
\end{aligned}
$$

3. Consider $\mathrm{y}=|\mathrm{Z}|$ where $\mathrm{Z}=\mathrm{XB} \mathrm{X}^{\prime}$.

Then
$\frac{\partial \mathrm{y}}{\partial \mathrm{X}}=|\mathrm{Z}|(\operatorname{vec} \mathrm{X})^{\prime}\left[\left(\mathrm{B} \otimes \mathrm{Z}^{-1^{\prime}}\right)+\left(\mathrm{B}^{\prime} \otimes \mathrm{Z}^{-1}\right)\right]$.
It follows from Eq.(1) that

$$
\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}}=|\mathrm{Z}|\left(\mathrm{Z}^{-1} \mathrm{XB}+\mathrm{Z}^{-1^{\prime}} \mathrm{XB}^{\prime}\right) .
$$

4. Let $y=\operatorname{trAX}$.

Then
$\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\mathrm{A}^{\prime}$.
It follows from Eq.(1) that

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{X}}=\left(\operatorname{vec} \mathrm{A}^{\prime}\right)^{\prime} .
$$

5. Let $\mathrm{y}=\operatorname{tr}^{\prime} \mathrm{A} \mathrm{A}$.

Then

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{X}}=\left(\operatorname{vec}\left(\mathrm{A}^{\prime} \mathrm{X}+\mathrm{AX}\right)\right)^{\prime} .
$$

It follows from Eq.(1) that $\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}}=\mathrm{A}^{\prime} \mathrm{X}+\mathrm{AX}$.
6. Let $\mathrm{y}=\operatorname{tr} \mathrm{XAX}{ }^{\prime} \mathrm{B}$.

Then

$$
\frac{\delta \mathrm{y}}{\delta \mathrm{X}}=\frac{\gamma \mathrm{y}}{\gamma \mathrm{X}}=\mathrm{B}^{\prime} \mathrm{XA}^{\prime}+\mathrm{BXA} .
$$

It follows from Eq.(1) that

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{X}}=\left(\operatorname{vec}\left(\mathrm{B}^{\prime} \mathrm{XA}^{\prime}+\mathrm{BXA}\right)\right)^{\prime} .
$$

These examples suffice to show that it is a trivial matter moving between the different concepts of matrix derivatives when Y is a scalar. In the next section we derive transformation principles that allow us to move freely between the three different concepts of matrix derivatives in more complicated cases. These principles can be regarded as a generalisation of the work done by Dwyer and Macphail (1948) and by Graham (1980).

MATHEMATICAL PREREQUISITES

1. Kronecker Products

Let $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\}$ be a $\mathrm{m} \mathrm{x} n$ matrix and B be apxq matrix. The Kronecker product of A and B , denoted by $A \otimes B$ is the $m p x q$ matrix given by

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right)
$$

Let

$$
\mathrm{A}=\left(\begin{array}{c}
\mathrm{a}^{{ }^{\prime}} \\
\vdots \\
\mathrm{a}^{\mathrm{m}^{\prime}}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{a}_{1} & \ldots & \mathrm{a}_{\mathrm{n}}
\end{array}\right) .
$$

Then

$$
A \otimes B=\left(\begin{array}{c}
a^{1^{\prime}} \otimes B \\
\vdots \\
a^{m^{\prime}} \otimes B
\end{array}\right)=\left(\begin{array}{lll}
a_{1} \otimes B & \ldots & a_{n} \otimes B
\end{array}\right) .
$$

Moreover if x is a r x 1 vector then

$$
\mathrm{x}^{\prime} \otimes \mathrm{A}=\left(\begin{array}{c}
\mathrm{x}^{\prime} \otimes \mathrm{a}^{\mathrm{a}^{\prime}} \\
\vdots \\
\mathrm{x}^{\prime} \otimes \mathrm{a}^{\mathrm{m}^{\prime}}
\end{array}\right)
$$

so the $i^{\text {th }}$ row of $x^{\prime} \otimes A$ is $x^{\prime} \otimes a^{i^{\prime}}$ for $i=1, \ldots, m$.
Similarly

$$
\mathrm{x} \otimes \mathrm{~B}=\mathrm{x} \otimes \mathrm{~b}_{1} \ldots \mathrm{x} \otimes \mathrm{~b}_{\mathrm{q}}
$$

so the $j^{\text {th }}$ column of $x \otimes B$ is $x \otimes b_{j}$ for $j=1, \ldots, q$.
$\underline{\text { Locating the } i^{\text {th }} \text { row and the } \mathrm{j}^{\text {th }} \text { column of } \mathrm{A} \otimes \mathrm{B}}$
The $\mathrm{i}^{\text {th }}$ row
If i is between 1 and p

$$
a^{1^{\prime}} \otimes b^{i^{\prime}}
$$

If i is between $\mathrm{p}+1$ and 2 p
$\mathrm{a}^{2^{\prime}} \otimes \mathrm{b}^{\mathrm{i}^{\prime}}$

If i is between ($\mathrm{m}-1$) p and pm

$$
\mathrm{a}^{\mathrm{m}^{\prime}} \otimes \mathrm{b}^{\mathrm{i}^{\prime}}
$$

Write

$$
\mathrm{i}=(\mathrm{c}-1) \mathrm{p}+\overline{\mathrm{i}}
$$

where c is between 1 and m , $\overline{\mathrm{i}}$ is between 1 and p . Then $\mathrm{i}^{\text {th }}$ row of $\mathrm{A} \otimes \mathrm{B}$ is

$$
\mathrm{a}^{\mathrm{c}^{\prime}} \otimes \mathrm{b}^{\mathrm{i}}
$$

eg. Let A be 2×3, B be 4×5 and suppose I want the $7^{\text {th }}$ row of $A \otimes B$. Write

$$
7=(2-1) 4+3 .
$$

So $\mathrm{c}=2, \overline{\mathrm{i}}=3$ and

$$
(A \otimes B)_{7 \bullet}=a^{2^{\prime}} \otimes b^{3^{\prime}}
$$

Consider the nx n identity matrix I_{n} and write $\mathrm{I}_{\mathrm{n}}=\left(\begin{array}{lll}\mathrm{e}_{1}^{n} & \cdots & e_{n}^{n}\end{array}\right)$. The $\mathrm{i}^{\text {th }}$ column e_{i}^{n} acts as a selection matrix.

$$
\text { i.e. } \mathrm{a}^{\mathrm{c}^{\prime}}=\mathrm{e}_{\mathrm{c}}^{\mathrm{m}^{\prime}} \mathrm{A}, \mathrm{~b}^{\mathrm{i} \prime}=\mathrm{e}_{\mathrm{i}}^{\mathrm{p}^{\prime}} \mathrm{B} .
$$

So

$$
(A \otimes B)_{i \bullet}=\left(e_{c}^{m^{\prime}} \otimes e_{i}^{p^{\prime}}\right)(A \otimes B) .
$$

The $j^{\text {th }}$ column
Write

$$
\mathrm{j}=(\mathrm{d}-1) \mathrm{q}+\overline{\mathrm{j}}
$$

with d between 1and n and $\overline{\mathrm{j}}$ between 1 and q .
Then

$$
(A \otimes B)_{\cdot j}=a_{d} \otimes b_{j}=(A \otimes B)\left(e_{d}^{n} \otimes e_{j}^{q}\right) .
$$

2. Generalized Vecs and Rvecs

Let A be a m x n matrix and write

$$
\mathrm{A}=\left(\begin{array}{c}
\mathrm{a}^{{ }^{\prime}} \\
\vdots \\
\mathrm{a}^{\mathrm{m}^{\prime}}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{a}_{1} & \cdots & \mathrm{a}_{\mathrm{n}}
\end{array}\right) .
$$

Then

$$
\operatorname{vec} A=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right), \text { rvecA }=\left(\begin{array}{lll}
a^{1^{\prime}} & \cdots & a^{m^{\prime}}
\end{array}\right) .
$$

Let A be a m x np matrix and write

$$
\mathrm{A}=\left(\begin{array}{ccc}
\mathrm{A}_{1} & \cdots & \mathrm{~A}_{\mathrm{p}} \\
\mathrm{mxn} & & \underset{\mathrm{mxn}}{ }
\end{array}\right) .
$$

Then

$$
\operatorname{vec}_{\mathrm{n}} \mathrm{~A}=\left(\begin{array}{c}
\mathrm{A}_{1} \\
\vdots \\
\mathrm{~A}_{\mathrm{p}}
\end{array}\right) .
$$

Similarly if B is $n p x q$ and write

$$
\mathrm{B}=\left(\begin{array}{c}
\mathrm{B}_{1} \\
\mathrm{pxq} \\
\vdots \\
\mathrm{~B}_{\mathrm{n}} \\
\mathrm{pxq}
\end{array}\right) .
$$

Then

$$
\operatorname{rvec}_{\mathrm{p}} \mathrm{~B}=\left(\begin{array}{lll}
\mathrm{B}_{1} & \cdots & \mathrm{~B}_{\mathrm{n}}
\end{array}\right) .
$$

Relationships
i) If A is $\mathrm{m} x \mathrm{np}$ then

$$
\left(\operatorname{vec}_{\mathrm{n}} \mathrm{~A}\right)^{\prime}=\operatorname{rvec}_{\mathrm{n}} \mathrm{~A}^{\prime}
$$

ii) A generalized vec can always be undone by taking an appropriate generalized rvec and vice versa. For example, if A is $m x n$ and $\operatorname{vec}_{j} A$ and $\operatorname{rvec}_{i} A$ exist then

$$
\begin{aligned}
\operatorname{rvec}_{\mathrm{m}}\left(\operatorname{vec}_{j} A\right) & =A \\
\operatorname{vec}_{\mathrm{n}}\left(\operatorname{rvec}_{\mathrm{i}} A\right) & =A .
\end{aligned}
$$

iii) Suppose a and b are vectors, b being $\mathrm{p} \times 1$. Then

$$
\begin{aligned}
& \operatorname{vec}_{\mathrm{p}}\left(\mathrm{a}^{\prime} \otimes \mathrm{b}^{\prime}\right)=\mathrm{ab}^{\prime} \\
& \operatorname{rvec}_{\mathrm{p}}(\mathrm{a} \otimes \mathrm{~b})=\mathrm{ba}^{\prime} .
\end{aligned}
$$

3. Elementary Matrices

The elementary matrix $E_{\mathrm{ij}}^{\mathrm{mn}}$ is a m x n zero-one matrix whose elements are all zero except in the $(\mathrm{i}, \mathrm{j})^{\text {th }}$ position which is 1 . i.e.

$$
\mathrm{E}_{\mathrm{ij}}^{\mathrm{mn}}=\mathrm{e}_{\mathrm{i}}^{\mathrm{m}} \mathrm{e}_{\mathrm{j}}{ }^{\prime} .
$$

Recall for A and $B m x n$ and $p x q$ matrices respectively

$$
(\mathrm{A} \otimes \mathrm{~B})_{i \bullet}=\mathrm{a}^{\mathrm{c}^{\prime}} \otimes \mathrm{b}^{\mathrm{i}^{\prime}}
$$

Hence,

$$
\begin{align*}
\operatorname{vec}_{\mathrm{q}}(\mathrm{~A} \otimes \mathrm{~B})_{\mathrm{i}} & =a^{\mathrm{c}} \mathrm{~b}^{\mathrm{i}^{\prime}}=A^{\prime} e_{\mathrm{c}}^{\mathrm{m}} e_{\mathrm{i}}^{\mathrm{p}} \mathrm{~B} \\
& =A^{\prime} E_{\mathrm{ci}}^{\mathrm{mp}} \mathrm{~B} \tag{2}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\operatorname{rvec}_{\mathrm{p}}(\mathrm{~A} \otimes \mathrm{~B})_{\cdot j}=\mathrm{BE}_{\mathrm{jd}}^{\mathrm{qn}} \mathrm{~A}^{\prime} . \tag{3}
\end{equation*}
$$

4. Commutation Matrix K_{mn}

If A is a $m \mathrm{xn}$ matrix then K_{mn} is the $\mathrm{mn} \mathrm{x} m \mathrm{~m}$ zero-one matrix defined by

$$
\mathrm{K}_{\mathrm{m}} \mathrm{vec} \mathrm{~A}=\operatorname{vec}^{\prime} \mathrm{A}^{\prime}
$$

Results about $K_{m n}$
i) $\quad K_{m n}=\left(\begin{array}{ccc}\mathrm{E}_{11}^{\mathrm{nm}} & \cdots & \mathrm{E}_{\mathrm{n} 1}^{\mathrm{nm}} \\ \vdots & & \vdots \\ \mathrm{E}_{1 \mathrm{~m}}^{\mathrm{nm}} & \cdots & \mathrm{E}_{\mathrm{nm}}^{\mathrm{nm}}\end{array}\right)$
ii) If A is $m x n, B$ is $p x q$ then

$$
\mathrm{K}_{\mathrm{pm}}(\mathrm{~A} \otimes \mathrm{~B})=\left(\begin{array}{c}
a^{1^{\prime}} \otimes \mathrm{b}^{1^{\prime}} \\
\vdots \\
a^{\mathrm{m}^{\prime}} \otimes \mathrm{b}^{1^{\prime}} \\
\vdots \\
a^{1^{\prime}} \otimes \mathrm{b}^{\mathrm{p}^{\prime}} \\
\vdots \\
a^{\mathrm{m}^{\prime}} \otimes \mathrm{b}^{\mathrm{p}^{\prime}}
\end{array}\right)=(\mathrm{B} \otimes \mathrm{~A}) \mathrm{K}_{\mathrm{qn}}
$$

and $(B \otimes A) K_{q n}=\left(B \otimes a_{1} \ldots B \otimes a_{n}\right)$.
iii) $\quad i^{\text {th }}$ row of $K_{p m}(\mathrm{~A} \otimes \mathrm{~B})$

By a similar analysis to that of above.

$$
\left[K_{p m}(A \otimes B)\right]_{i \bullet}=a^{\mathrm{i}^{\prime}} \otimes \mathrm{b}^{\mathrm{c}^{\prime}}
$$

for $\mathrm{i}=(\mathrm{c}-1) \mathrm{m}+\mathrm{i}$ and

$$
\operatorname{vec}_{q}\left[\mathrm{~K}_{\mathrm{pm}}(\mathrm{~A} \otimes \mathrm{~B})\right]_{\mathrm{i} \bullet}=\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{i} \mathrm{c}}^{\mathrm{mp}} \mathrm{~B}
$$

iv) The jth column of $(B \otimes A) K_{q n}$

By a similar analysis to that of above

$$
\left((\mathrm{B} \otimes \mathrm{~A}) \mathrm{K}_{\mathrm{qn}}\right)_{\cdot \mathrm{j}}=\mathrm{b}_{\overline{\mathrm{j}}} \otimes \mathrm{a}_{\mathrm{d}}
$$

where $\mathrm{j}=(\mathrm{d}-1)_{\mathrm{q}}+\overline{\mathrm{j}}$ and

$$
\operatorname{rvec}_{m}\left((B \otimes A) K_{q n}\right)_{\bullet j}=A E_{d \bar{j}}^{n q} B^{\prime}
$$

v) If X is a $m \times n$ matrix then

$$
\operatorname{vec}\left(X \otimes I_{G}\right)=\left(I_{m} \otimes \operatorname{vec}_{\mathrm{m}} K_{\mathrm{mG}}\right) \operatorname{vec} X
$$

5. The Matrix \mathbf{U}_{mn}

U_{mn} is the $\mathrm{m}^{2} \times \mathrm{n}^{2}$ matrix given by

$$
\mathrm{U}_{\mathrm{mn}}=\left(\begin{array}{ccc}
\mathrm{E}_{11}^{\mathrm{mn}} & \cdots & \mathrm{E}_{1 \mathrm{n}}^{\mathrm{mn}} \\
\vdots & & \vdots \\
\mathrm{E}_{\mathrm{m} 1}^{\mathrm{mn}} & \cdots & \mathrm{E}_{\mathrm{mn}}^{\mathrm{mn}}
\end{array}\right)
$$

Let A, B, C, D be $r \times m, s \times m, n \times u$ and $n \times v$ matrices respectively. Then

$$
(\mathrm{A} \otimes \mathrm{~B}) \mathrm{U}_{\mathrm{mn}}(\mathrm{C} \otimes \mathrm{D})=\left(\operatorname{vec} B \mathrm{~A}^{\prime}\right)\left(\operatorname{rvec}^{\prime} \mathrm{D}\right)
$$

RELATIONSHIPS BETWEEN THE DIFFERENT CONCEPTS

We can use our generalized vec and rvec operators to spell out the relationships that exist between our three concepts of matrix derivatives. We consider two concepts in turn.

Concept 1 and Concept 2

The submatrices in $\delta \mathrm{Y} / \delta \mathrm{X}$ are

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{rs}}}
\end{array}\right)
$$

for $\mathrm{r}=1, \ldots, \mathrm{~m}$ and $\mathrm{s}=1, \ldots, \mathrm{n}$. In forming the submatrix $\delta \mathrm{Y} / \delta \mathrm{x}_{\mathrm{rs}}$ we need the partial derivatives of the elements of Y with respect to x_{rs}. When we turn to concept 1 we note that these partial derivatives all appear in a column of $\partial \mathrm{Y} / \partial \mathrm{X}$. Just as we did in locating a column of a Kronecker product we have to specify exactly where this column is located in the matrix $\partial \mathrm{Y} / \partial \mathrm{X}$. If s is 1 then the partial derivatives appear in the r th column, if s is 2 then they appear in the $m+r$ th column, if s is 3 in the $2 \mathrm{~m}+\mathrm{r}$ th column and so on until s is n in which case the partial derivatives appear in the $(\mathrm{n}-1) \mathrm{m}+\mathrm{r}$ th column. To cater for all these possibilities we say x_{rs} appears in the ℓ th column of $\partial \mathrm{Y} / \partial \mathrm{X}$ where

$$
\ell=(\mathrm{s}-1) \mathrm{m}+\mathrm{r}
$$

and $s=1, \ldots, n$. The partial derivatives we seek appear in that column as the column vector

$$
\left(\begin{array}{c}
\frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots \\
\frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots \\
\frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots \\
\frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{rs}}}
\end{array}\right) .
$$

If we take the rvec ${ }_{p}$ of this vector we get $\delta \mathrm{Y} / \delta \mathrm{x}_{\mathrm{rs}}$ so

$$
\begin{equation*}
\delta \mathrm{Y} / \delta \mathrm{x}_{\mathrm{rs}}=\operatorname{rvec}_{\mathrm{p}}\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\cdot \ell} \tag{7}
\end{equation*}
$$

where $\ell=(\mathrm{s}-1) \mathrm{m}+\mathrm{r}$, for $\mathrm{s}=1, \ldots, \mathrm{n}$ and $\mathrm{r}=1, \ldots, \mathrm{~m}$.
Now this generalized rvec can be undone by taking the vec so

$$
\begin{equation*}
\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\cdot \ell}=\operatorname{vec}\left(\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}\right) \tag{8}
\end{equation*}
$$

If we are given $\partial \mathrm{Y} / \partial \mathrm{X}$ and we can identify the ℓ th column of this matrix then Eq.(7) allows us to move from concept 1 to concept 2 . If, however, we have in hand $\delta \mathrm{Y} / \delta \mathrm{X}$ we can identify the submatrix $\delta \mathrm{Y} / \delta \mathrm{x}_{\mathrm{rs}}$ and Eq.(8) will then allow us to move from concept 2 to concept 1.

Concept 1 and Concept 3

The submatrices in $\gamma \mathrm{Y} / \gamma \mathrm{X}$ are

$$
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{1 \mathrm{n}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{mn}}}
\end{array}\right)
$$

for $\mathrm{i}=1, \ldots, \mathrm{p}$ and $\mathrm{j}=1, \ldots, \mathrm{q}$. In forming the submatrix $\gamma \mathrm{y}_{\mathrm{ij}} / \gamma \mathrm{X}$ we need the partial derivative of y_{ij} with respect to the elements of X . When we examine $\partial \mathrm{Y} / \partial \mathrm{X}$ we see that these derivatives appear in a row of $\partial \mathrm{Y} / \partial \mathrm{X}$.

Again we have to specify exactly where this row is located in the matrix $\partial \mathrm{Y} / \partial \mathrm{X}$. If j is 1 then the partial derivatives appear in the ith row, if $j=2$ then they appear in the $p+i$ th row, if $j=3$ then in the $2 p+i$ th row and so on until $j=q$ in which case the partial derivative appear in $(q-1) p+i$ th row. To cater for all possibilities we say the partial derivatives appear in the t th row of $\partial \mathrm{Y} / \partial \mathrm{X}$ where

$$
\mathrm{t}=(\mathrm{j}-1) \mathrm{p}+\mathrm{i}
$$

and $j=1, \ldots, q$. In this row they appear as the row vector

$$
\left(\frac{\partial y_{i j}}{\partial x_{11}} \cdots \frac{\partial y_{i j}}{\partial x_{m 1}} \cdots \frac{\partial y_{i j}}{\partial x_{1 n}} \cdots \frac{\partial y_{i j}}{\partial x_{m n}}\right)
$$

If we take the $\mathrm{vec}_{\mathrm{m}}$ of this vector we obtain the matrix

$$
\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{m} 1}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{1 \mathrm{n}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{mn}}}
\end{array}\right)
$$

which is $\left(\gamma \mathrm{y}_{\mathrm{ij}} / \gamma \mathrm{X}\right)^{\prime}$. So we have

$$
\begin{equation*}
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\operatorname{vec}_{\mathrm{m}}\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\mathrm{t}}\right)^{\prime} \tag{9}
\end{equation*}
$$

where $t=(j-1) p+i$, for $j=1, \ldots, q$ and $i=1, \ldots, p$.
As

$$
\operatorname{vec}_{\mathrm{m}}\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\mathrm{t}}=\left(\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}\right)^{\prime}
$$

and this generalized vec can be undone by taking the rvec we have

$$
\begin{equation*}
\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{t}=\operatorname{rvec}\left(\frac{\gamma \mathrm{y}_{\mathrm{i} \mathrm{j}}}{\gamma \mathrm{X}}\right)^{\prime} . \tag{10}
\end{equation*}
$$

If we have in hand $\partial \mathrm{Y} / \partial \mathrm{X}$ and if we can identify the t th row of this matrix the Eq.(9) allows us to move from concept 1 to concept 3. If, however, we have obtained $\gamma \mathrm{Y} / \gamma \mathrm{X}$ so we can identify the submatrix $\gamma \mathrm{y}_{\mathrm{ij}} / \gamma \mathrm{X}$ of this matrix then Eq.(10) allows us to move from concept 3 to concept 1.

Concept 2 and Concept 3

Returning to concept 3 , the submatrices of $\gamma \mathrm{Y} / \gamma \mathrm{X}$ are

$$
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{11}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{1 \mathrm{n}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{m} 1}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{mn}}}
\end{array}\right)
$$

and the partial derivative $\frac{\partial y_{i j}}{\partial x_{r s}}$ is given by the (r, s) th element of this submatrix. That is

$$
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{rs}}}=\left(\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}\right)_{\mathrm{rs}} .
$$

It follows that

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\left(\begin{array}{ccc}
\left(\frac{\gamma \mathrm{y}_{11}}{\gamma \mathrm{X}}\right)_{\mathrm{rs}} & \cdots & \left(\frac{\gamma \mathrm{y}_{1 \mathrm{q}}}{\gamma \mathrm{X}}\right)_{\mathrm{rs}} \tag{11}\\
\vdots & \vdots \\
\left(\frac{\gamma \mathrm{y}_{\mathrm{p} 1}}{\gamma \mathrm{X}}\right)_{\mathrm{rs}} & \cdots & \left(\frac{\gamma \mathrm{y}_{\mathrm{pq}}}{\gamma \mathrm{X}}\right)_{\mathrm{rs}}
\end{array}\right)
$$

Starting now with concept 2 , the submatrices of $\delta \mathrm{Y} / \delta \mathrm{X}$ are

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\left(\begin{array}{ccc}
\frac{\partial \mathrm{y}_{11}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{1 \mathrm{q}}}{\partial \mathrm{x}_{\mathrm{rs}}} \\
\vdots & & \vdots \\
\frac{\partial \mathrm{y}_{\mathrm{p} 1}}{\partial \mathrm{x}_{\mathrm{rs}}} & \cdots & \frac{\partial \mathrm{y}_{\mathrm{pq}}}{\partial \mathrm{x}_{\mathrm{rs}}}
\end{array}\right)
$$

and the partial derivative $\partial \mathrm{y}_{\mathrm{ij}} / \partial \mathrm{x}_{\mathrm{rs}}$ is the (i, j) th element of this submatrix. That is

$$
\frac{\partial \mathrm{y}_{\mathrm{ij}}}{\partial \mathrm{x}_{\mathrm{rs}}}=\left(\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}\right)_{\mathrm{ij}} .
$$

It follows that

$$
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\left(\frac{\delta \mathrm{Y}}{\partial \mathrm{x}_{11}}\right)_{\mathrm{ij}} & \cdots & \left(\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{1 \mathrm{n}}}\right)_{\mathrm{ij}} \tag{12}\\
\vdots & & \vdots \\
\left(\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{m} 1}}\right)_{\mathrm{ij}} & \cdots & \left(\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{mn}}}\right)_{\mathrm{ij}}
\end{array}\right) .
$$

If we have in hand $\gamma \mathrm{y} / \gamma \mathrm{X}$ then Eq.(11) allows us to build up the submatrices we need for $\delta \mathrm{Y} / \delta \mathrm{X}$. If however, we have a result for $\delta \mathrm{Y} / \delta \mathrm{X}$ then Eq.(12) allows us to obtain the submatrices we need for $\gamma \mathrm{Y} / \gamma \mathrm{X}$.

Tranformation Principles One

Several matrix calculus results when we use concept 1 involve Kronecker products whereas the equivalent results, using concepts 2 and 3 involve elementary matrices. In this section we see that this is no coincidence.

We have just seen that

$$
\begin{equation*}
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\operatorname{rvec}_{\mathrm{p}}\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\bullet \ell} \tag{13}
\end{equation*}
$$

where $\ell=(\mathrm{s}-1) \mathrm{m}+\mathrm{r}$ and that

$$
\begin{equation*}
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\operatorname{vec}_{\mathrm{m}}\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}\right)_{\mathrm{t}_{0}}\right)^{\prime} \tag{14}
\end{equation*}
$$

where $\mathrm{t}=(\mathrm{j}-1) \mathrm{p}+\mathrm{i}$. Suppose now that $\partial \mathrm{Y} / \partial \mathrm{X}=\mathrm{A} \otimes \mathrm{B}$ where A is a $\mathrm{q} \times \mathrm{n}$ matrix and B is a $\mathrm{p} \times \mathrm{m}$ matrix.

Then from Eq.(3) we have

$$
\operatorname{rvec}_{\mathrm{p}}(\mathrm{~A} \otimes \mathrm{~B})_{\bullet \ell}=\mathrm{BE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{~A}^{\prime},
$$

so using Eq.(13) we have that

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{BE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{~A}^{\prime} .
$$

From Eq.(2) we have

$$
\operatorname{vec}_{\mathrm{m}}(\mathrm{~A} \otimes \mathrm{~B})_{\mathrm{t}}=\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{qp}} \mathrm{~B}
$$

so from Eq.(14)

$$
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{qp}} \mathrm{~B}\right)^{\prime}=\mathrm{B}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{pq}} \mathrm{~A} .
$$

This leads us to our first transformation principle.

The First Transformation Principle

Let A be a $q \times n$ matrix and B be a $p \times m$ matrix. Whenever

$$
\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{A} \otimes \mathrm{~B}
$$

regardless of whether A and B are matrix functions of X or not

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{BE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{~A}^{\prime}
$$

and

$$
\frac{\gamma y_{i j}}{\gamma \mathrm{X}}=\mathrm{B}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{~A}
$$

and the converse statements are true also.

For this case

$$
\frac{\delta Y}{\delta X}=\left(\begin{array}{ccc}
\mathrm{BE}_{11}^{m \mathrm{~m}} \mathrm{~A}^{\prime} & \cdots & \mathrm{BE}_{1 n}^{m \mathrm{~m}} \mathrm{~A}^{\prime} \\
\vdots & & \vdots \\
\mathrm{BE}_{\mathrm{m} 1}^{\mathrm{mn}} \mathrm{~A}^{\prime} & \cdots & \mathrm{BE}_{\mathrm{mn}}^{\mathrm{mn}} \mathrm{~A}^{\prime}
\end{array}\right)=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{~B}\right) \mathrm{U}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{~A}^{\prime}\right)
$$

where $U_{m n}$ is the $\mathrm{m}^{2} \times \mathrm{n}^{2}$ matrix, given by

$$
\mathrm{U}_{\mathrm{mn}}=\left(\begin{array}{ccc}
\mathrm{E}_{11}^{\mathrm{mn}} & \ldots & \mathrm{E}_{1 \mathrm{n}}^{\mathrm{mn}} \\
\vdots & & \vdots \\
\mathrm{E}_{\mathrm{m} 1}^{\mathrm{mn}} & \ldots & \mathrm{E}_{\mathrm{mn}}^{\mathrm{mn}}
\end{array}\right) .
$$

From Eq.(6)

$$
(A \otimes B) U_{m n}(C \otimes D)=\left(\operatorname{vec} B A^{\prime}\right)\left(\operatorname{rvec}^{\prime} D\right)
$$

so

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{X}}=(\operatorname{vec} \mathrm{B})\left(\operatorname{rvec} \mathrm{A}^{\prime}\right)
$$

In terms of concept 3 for this case

$$
\frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\mathrm{B}^{\prime} \mathrm{E}_{11}^{\mathrm{pq}} \mathrm{~A} & \ldots & \mathrm{~B}^{\prime} \mathrm{E}_{1 q}^{\mathrm{pq}} \mathrm{~A} \\
\vdots & & \vdots \\
\mathrm{~B}^{\prime} \mathrm{E}_{\mathrm{p} 1}^{\mathrm{pq}} \mathrm{~A} & \ldots & \mathrm{~B}^{\prime} \mathrm{E}_{\mathrm{pq}}^{\mathrm{pq}} \mathrm{~A}
\end{array}\right)=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~B}^{\prime}\right) \mathrm{U}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~A}\right)=\left(\operatorname{vec} \mathrm{B}^{\prime}\right)(\operatorname{rvec} \mathrm{A}) .
$$

In terms of the entire matrices we can express the First Transformation Principle by saying that the following statements are equivalent:

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{A} \otimes \mathrm{~B} \\
& \frac{\delta \mathrm{Y}}{\delta \mathrm{X}}=(\operatorname{vec} \mathrm{B})\left(\operatorname{rvec} \mathrm{A}^{\prime}\right) \\
& \frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\operatorname{vec} \mathrm{B}^{\prime}\right)(\operatorname{rvec} \mathrm{A}) .
\end{aligned}
$$

Examples of the Use of the First Transformation Principle

1. $\mathrm{Y}=\mathrm{A} \times \mathrm{B}$ for $\mathrm{A} \mathrm{p} \times \mathrm{m}$ and $\mathrm{B} \mathrm{n} \times \mathrm{q}$.

Then it is know that

$$
\frac{\partial \mathrm{AXB}}{\partial \mathrm{X}}=\mathrm{B}^{\prime} \otimes \mathrm{A} .
$$

It follows that

$$
\frac{\delta \mathrm{AXB}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{AE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{~B}
$$

and

$$
\frac{\gamma(\mathrm{AXB})_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{~B}^{\prime}
$$

Moreover

$$
\begin{aligned}
\frac{\delta A X B}{\delta X} & =(\operatorname{vec} A)(\operatorname{rvec} B) \\
\frac{\gamma \mathrm{AXB}}{\gamma \mathrm{X}} & =\left(\operatorname{vec} \mathrm{A}^{\prime}\right)\left(\operatorname{rvec} \mathrm{B}^{\prime}\right) .
\end{aligned}
$$

2. $\mathrm{Y}=\mathrm{XAX}$ where X is a $\mathrm{n} \times \mathrm{n}$ symmetric matrix.

Then it is know that

$$
\frac{\delta \mathrm{XAX}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{E}_{\mathrm{rs}}^{\mathrm{n}} \mathrm{AX}+\mathrm{XAE}_{\mathrm{rs}}^{\mathrm{nn}} .
$$

It follows that

$$
\frac{\gamma(\mathrm{XAX})_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{E}_{\mathrm{ij}}^{\mathrm{nn}} \mathrm{XA}^{\prime}+\mathrm{A}^{\prime} \mathrm{XE}_{\mathrm{ij}}^{\mathrm{nn}}
$$

and that

$$
\frac{\partial \mathrm{XAX}}{\partial \mathrm{X}}=\left(\mathrm{X}^{\prime} \mathrm{A} \otimes \mathrm{I}_{\mathrm{n}}\right)+\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{~A}^{\prime} \mathrm{X}\right) .
$$

Moreover

$$
\begin{aligned}
& \frac{\delta X A X}{\delta X}=\left(\operatorname{vec}_{n}\right)\left(\operatorname{rvec} A^{\prime} X\right)+\left(\operatorname{vec} A^{\prime} X\right)\left(\operatorname{rvec}_{n}\right) \\
& \frac{\gamma Y}{\gamma X}=\left(\operatorname{vec}_{n}\right)\left(\text { rvec } X^{\prime} A\right)+\left(\operatorname{vec} X^{\prime} A\right)\left(\operatorname{rvec}_{n}\right)
\end{aligned}
$$

3. $\mathrm{Y}=\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}$ where X is a $\mathrm{m} \times \mathrm{n}$ matrix.

We have seen that $\operatorname{vec}\left(X \otimes I_{G}\right)=\left(I_{n} \otimes \operatorname{vec}_{m} K_{m G}\right) \operatorname{vec} X$ so

$$
\frac{\partial\left(\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}\right)}{\partial \mathrm{X}}=\mathrm{I}_{\mathrm{n}} \otimes \mathrm{vec}_{\mathrm{m}} \mathrm{~K}_{\mathrm{mG}} .
$$

It follows that

$$
\frac{\delta\left(\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}\right)}{\delta \mathrm{x}_{\mathrm{rs}}}=\left(\operatorname{vec}_{\mathrm{m}} \mathrm{~K}_{\mathrm{Gm}}\right) \mathrm{E}_{\mathrm{rs}}^{\mathrm{mn}}
$$

and

$$
\frac{\gamma\left(\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}\right)}{\gamma \mathrm{X}}=\left(\operatorname{vec}_{\mathrm{m}} \mathrm{~K}_{\mathrm{Gm}}\right)^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{kn}} \text { where } \mathrm{k}=\mathrm{G}^{2} \mathrm{n} \text {. }
$$

Moreover

$$
\begin{aligned}
& \frac{\delta\left(\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}\right)}{\delta X}=\operatorname{vec}\left(\operatorname{vec}_{\mathrm{m}} \mathrm{~K}_{\mathrm{mG}}\right)\left(\operatorname{rvec} \mathrm{I}_{\mathrm{n}}\right)=\left(\operatorname{vec} \mathrm{I}_{\mathrm{mG}}\right)\left(\operatorname{rvec} \mathrm{I}_{\mathrm{n}}\right) \\
& \frac{\gamma\left(\mathrm{X} \otimes \mathrm{I}_{\mathrm{G}}\right)}{\gamma \mathrm{X}}=\operatorname{vec}\left(\operatorname{vec}_{\mathrm{m}} \mathrm{~K}_{\mathrm{mG}}\right)^{\prime}\left(\operatorname{rvec} \mathrm{I}_{\mathrm{n}}\right)=\left(\operatorname{vec} \mathrm{I}_{\mathrm{mG}}\right)\left(\operatorname{rvec} \mathrm{I}_{\mathrm{n}}\right) .
\end{aligned}
$$

4. $\mathrm{Y}=\mathrm{AX}^{-1} \mathrm{~B}$ where A is $\mathrm{p} \times \mathrm{n}$ and B is $\mathrm{n} \times \mathrm{q}$. Then it is known that

$$
\frac{\gamma\left(\mathrm{AX}^{-1} \mathrm{~B}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=-\mathrm{X}^{-1^{\prime}} \mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{~B}^{\prime} \mathrm{X}^{-1^{\prime}}
$$

It follows straight away that

$$
\frac{\delta \mathrm{AX}^{-1} \mathrm{~B}}{\delta \mathrm{x}_{\mathrm{rs}}}=-\mathrm{AX}^{-1} \mathrm{E}_{\mathrm{rs}}^{\mathrm{nn}} \mathrm{X}^{-1} \mathrm{~B},
$$

and that

$$
\frac{\partial \mathrm{AX}}{} \mathrm{~A}^{-1} \mathrm{~B},-\mathrm{B}^{\prime} \mathrm{X}^{-1^{\prime}} \otimes \mathrm{AX}^{-1}
$$

Moreover

$$
\frac{\delta A X^{-1} B}{\delta X}=-\left(\operatorname{vec} A^{-1}\right)\left(\operatorname{rvec} X^{-1} B\right)
$$

and

$$
\frac{\gamma \mathrm{AX}^{-1} \mathrm{~B}}{\gamma \mathrm{X}}=-\left(\operatorname{vec} \mathrm{X}^{-1^{\prime}} \mathrm{A}^{\prime}\right)\left(\operatorname{rvec} \mathrm{B}^{\prime} \mathrm{X}^{-1^{\prime}}\right) .
$$

5. $\mathrm{Y}=\mathrm{AXBXC}$ where X is $\mathrm{m} \times \mathrm{n}, \mathrm{A}$ is $\mathrm{p} \times \mathrm{m}, B$ is $\mathrm{n} \times \mathrm{m}$ and C is $\mathrm{n} \times \mathrm{q}$. Then it is well known that

$$
\frac{\delta A X B X C}{\delta x_{r s}}=\mathrm{AE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{BXC}+\mathrm{AXBE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{C} .
$$

It follows that

$$
\frac{\gamma(\mathrm{AXBXC})_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{C}^{\prime} \mathrm{X}^{\prime} \mathrm{B}^{\prime}+\mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{C}^{\prime}
$$

and

$$
\frac{\partial \mathrm{AXBXC}}{\partial \mathrm{X}}=\left(\mathrm{C}^{\prime} \mathrm{X}^{\prime} \mathrm{B}^{\prime} \otimes \mathrm{A}\right)+\left(\mathrm{C}^{\prime} \otimes \mathrm{AXB}\right)
$$

Moreover

$$
\frac{\delta A X B X C}{\delta X}=(\operatorname{vec} A)(\operatorname{rvec} B X C)+(\operatorname{vec} A X B)(\operatorname{rvec} C) .
$$

and

$$
\frac{\gamma \mathrm{AXBXC}}{\gamma \mathrm{X}}=\left(\operatorname{vec} \mathrm{A}^{\prime}\right)\left(\mathrm{rvec} \mathrm{C}^{\prime} \mathrm{X}^{\prime} \mathrm{B}^{\prime}\right)+\left(\operatorname{vec} \mathrm{B}^{\prime} \mathrm{X}^{\prime} \mathrm{A}^{\prime}\right)\left(\operatorname{rvec}^{\prime}\right) .
$$

As I hope these examples make clear this transformation principle ensure is a very easy matter to move from a result involving one of the concepts of matrix derivatives to the corresponding results for the other two concepts. Although this principle covers a lot of cases, it does not cover them all. Several matrix calculus results for concept 1 involve multiplying a Kronecker product by a commutation matrix. The following transformation principal covers this case.

Transformation Principle Two

Suppose then that

$$
\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{qp}}(\mathrm{C} \otimes \mathrm{D})=(\mathrm{D} \otimes \mathrm{C}) \mathrm{K}_{\mathrm{mn}}
$$

where C is a $\mathrm{p} \times \mathrm{n}$ matrix and D is a $\mathrm{q} \times \mathrm{m}$ matrix. Forming $\partial \mathrm{Y} / \partial \mathrm{x}_{\mathrm{rs}}$ from this matrix requires that we first obtain the ℓ th column of this matrix where $\ell=(\mathrm{s}-1) \mathrm{m}+\mathrm{r}$ and we take the $\mathrm{rvec}_{\mathrm{p}}$ of this column. From Eq.(5) we get

$$
\frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{CE}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{D}^{\prime}
$$

In forming $\gamma \mathrm{y}_{\mathrm{ij}} / \gamma \mathrm{X}$ from $\partial \mathrm{Y} / \partial \mathrm{X}$ we first have to obtain the t th row of this matrix, for $t=(j-1) p+i$ and then we take the vec_{m} of this row. The required matrix $\gamma y_{i j} / \gamma \mathrm{X}$ is the transpose of the matrix thus obtained. From Eq.(4) we get

$$
\frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\left(\mathrm{C}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{D}\right)^{\prime}=\mathrm{D}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{qp}} \mathrm{C} .
$$

This leads us to our second transformation principle.

The Second Transformation Principle

Let C be a $\mathrm{p} \times \mathrm{n}$ matrix and D be a $\mathrm{q} \times \mathrm{m}$ matrix. Whenever

$$
\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{qp}}(\mathrm{C} \otimes \mathrm{D})
$$

regardless of whether C and D are matrix functions of X or not

$$
\begin{aligned}
& \frac{\delta \mathrm{Y}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{CE} \mathrm{E}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{D}^{\prime} \\
& \frac{\gamma \mathrm{y}_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{D}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{qp}} C
\end{aligned}
$$

and the converse statements are true also.

For this case

$$
\frac{\delta Y}{\delta X}=\left(\begin{array}{ccc}
C E_{11}^{n \mathrm{~m}} \mathrm{D}^{\prime} & \ldots & C E_{n 1}^{\mathrm{nm}} \mathrm{D}^{\prime} \\
\vdots & & \vdots \\
C E_{1 m}^{n \mathrm{~m}} \mathrm{D}^{\prime} & \ldots & C E_{n m}^{n \mathrm{~m}} \mathrm{D}^{\prime}
\end{array}\right)=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{C}\right)\left(\begin{array}{ccc}
\mathrm{E}_{11}^{\mathrm{nm}} & \ldots & \mathrm{E}_{n 1}^{\mathrm{nm}} \\
\vdots & & \vdots \\
\mathrm{E}_{1 \mathrm{~m}}^{\mathrm{nm}} & \ldots & E_{n \mathrm{~nm}}^{\mathrm{nm}}
\end{array}\right)\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{D}^{\prime}\right)=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{C}\right) \mathrm{K}_{m \mathrm{n}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{D}^{\prime}\right) .
$$

In terms of $\gamma \mathrm{Y} / \gamma \mathrm{X}$ we have

$$
\frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\begin{array}{ccc}
\mathrm{D}^{\prime} \mathrm{E}_{11}^{\mathrm{qp}} \mathrm{C} & \ldots & \mathrm{D}^{\prime} \mathrm{E}_{\mathrm{q1}}^{\mathrm{qP}} \mathrm{C} \\
\vdots & & \vdots \\
\mathrm{D}^{\prime} \mathrm{E}_{1 \mathrm{p}}^{\mathrm{qp}} \mathrm{C} & \ldots & \mathrm{D}^{\prime} \mathrm{E}_{\mathrm{qp}}^{\mathrm{qp}} \mathrm{C}
\end{array}\right)=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{D}^{\prime}\right) \mathrm{K}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}\right) .
$$

In terms of the full matrices we can express the Second Transformation Principle as saying that the following statements are equivalent:

$$
\begin{aligned}
& \frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{qp}}(\mathrm{C} \otimes \mathrm{D}) \\
& \frac{\delta \mathrm{Y}}{\delta \mathrm{X}}=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{C}\right) \mathrm{K}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{D}^{\prime}\right) \\
& \frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{D}^{\prime}\right) \mathrm{K}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}\right) .
\end{aligned}
$$

As an example of the use of this second transformation principle let $Y=A X^{\prime} B$ where A is $p \times n$ and B is $\mathrm{m} \times \mathrm{q}$. Then it is known that

$$
\frac{\partial \mathrm{AX}^{\prime} \mathrm{B}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{pq}}\left(\mathrm{~B}^{\prime} \otimes \mathrm{A}\right) .
$$

It follows that

$$
\frac{\delta \mathrm{AX}^{\prime} \mathrm{B}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{B}^{\prime} \mathrm{E}_{\mathrm{sr}}^{\mathrm{mn}} \mathrm{~A}^{\prime}
$$

and that

$$
\frac{\gamma\left(\mathrm{AX}^{\prime} \mathrm{B}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{pq}} \mathrm{~B}^{\prime} .
$$

In terms of the entire matrices we

$$
\begin{aligned}
& \frac{\delta \mathrm{Y}}{\delta X}=\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{~B}^{\prime}\right) \mathrm{K}_{\mathrm{nm}}\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{~A}^{\prime}\right) \\
& \frac{\gamma \mathrm{Y}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~A}^{\prime}\right) \mathrm{K}_{\mathrm{qp}}\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~B}\right) .
\end{aligned}
$$

Principle 2 comes into its own when it is used in conjunction with principle 1. Many matrix derivatives come in two parts: one where principle 1 is applicable and the other where principle 2 is applicable.
For example we often have

$$
\frac{\partial \mathrm{Y}}{\partial \mathrm{X}}=\mathrm{A} \otimes \mathrm{~B}+\mathrm{K}_{\mathrm{qp}}(\mathrm{C} \otimes \mathrm{D})
$$

so we would apply principle 1 to the $A \otimes B$ part and principle 2 to the $K_{q p}(C \otimes D)$ part.

Examples of the Combined Use of Principles One and Two

1. Let $Y=X^{\prime} A X$ where X is $m \times n, A$ is $m \times m$. Then it is well known that

$$
\frac{\partial \mathrm{X}^{\prime} \mathrm{AX}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{nn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{X}^{\prime} \mathrm{A}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{X}^{\prime} \mathrm{A}\right) .
$$

It follows that

$$
\frac{\delta X^{\prime} \mathrm{AX}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{E}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{AX}+\mathrm{X}^{\prime} \mathrm{AE}_{\mathrm{rs}}^{\mathrm{mn}}
$$

and that

$$
\frac{\gamma\left(\mathrm{X}^{\prime} \mathrm{AX}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{AXE}_{\mathrm{ji}}^{\mathrm{nn}}+\mathrm{A}^{\prime} \mathrm{XE}_{\mathrm{ij}}^{\mathrm{nn}}
$$

Moreover

$$
\left.\begin{array}{l}
\frac{\delta X^{\prime} A X}{\delta X}=K_{m n}\left(I_{n} \otimes A X\right)+\left(I_{m} \otimes X^{\prime} A\right) U_{m n}=K_{m n}\left(I_{n} \otimes A X\right)+\left(\operatorname{vec} X^{\prime} A\right)(r v e c \\
I_{n}
\end{array}\right) .
$$

2. Let $Y=X A X^{\prime}$ where X is $m \times n$ and A is $n \times n$. Then it is known that

$$
\frac{\delta \mathrm{XAX}^{\prime}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{XAE}_{\mathrm{sr}}^{\mathrm{nm}}+\mathrm{E}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{AX}^{\prime} .
$$

It follows that

$$
\frac{\gamma\left(\mathrm{XAX}^{\prime}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{E}_{\mathrm{ji}}^{\mathrm{mm}} \mathrm{XA}+\mathrm{E}_{\mathrm{ij}}^{\mathrm{mm}} \mathrm{XA}^{\prime}
$$

and

$$
\frac{\partial \mathrm{XAX}^{\prime}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{m} \mathrm{~m}}\left(\mathrm{XA} \otimes \mathrm{I}_{\mathrm{m}}\right)+\left(\mathrm{XA}^{\prime} \otimes \mathrm{I}_{\mathrm{m}}\right) .
$$

Moreover
$\frac{\delta X A X^{\prime}}{\delta X}=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{XA}\right) \mathrm{K}_{\mathrm{mn}}+\mathrm{U}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes A X^{\prime}\right)=\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{XA}\right) \mathrm{K}_{\mathrm{mn}}+\left(\operatorname{vec} \mathrm{I}_{\mathrm{m}}\right)\left(\mathrm{rvec} A X^{\prime}\right)$.
and
$\frac{\gamma X A X^{\prime}}{\gamma X}=K_{m m}\left(I_{m} \otimes X A^{\prime}\right)+U_{m m}\left(I_{m} \otimes X A^{\prime}\right)=K_{m m}\left(I_{m} \otimes X A^{\prime}\right)+\left(v e c I_{m}\right)\left(r v e c A X^{\prime}\right)$.
3. Let $\mathrm{Y}=\mathrm{AX}^{\prime} \mathrm{BXC}$ where A is $\mathrm{p} \times \mathrm{n}, \mathrm{B}$ is $\mathrm{m} \times \mathrm{m}$ and C is $\mathrm{n} \times \mathrm{q}$. Then it is known that

$$
\frac{\gamma\left(\mathrm{AX}^{\prime} \mathrm{BXC}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{BXCE}_{\mathrm{ji}}^{\mathrm{qp}} \mathrm{~A}+\mathrm{B}^{\prime} \mathrm{XA}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{C}^{\prime} .
$$

It follows using our principles that

$$
\frac{\delta A X^{\prime} \mathrm{BXC}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{CE}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{BXC}+\mathrm{AX}^{\prime} \mathrm{BE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{C}
$$

and that

$$
\frac{\partial \mathrm{AX}^{\prime} \mathrm{BXC}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{qp}}\left(\mathrm{~A} \otimes \mathrm{C}^{\prime} \mathrm{X}^{\prime} \mathrm{B}^{\prime}\right)+\left(\mathrm{C}^{\prime} \otimes \mathrm{AX} \mathrm{X}^{\prime} \mathrm{B}\right)
$$

In terms of the entire matrices we have

$$
\begin{aligned}
& \frac{\delta A X^{\prime} B X C}{\delta X}=\left(I_{m} \otimes A\right) K_{m n}\left(I_{n} B X C\right)+\left(I_{m} \otimes A X^{\prime} B\right) U_{m n}\left(I_{n} \otimes C\right) \\
& =\left(I_{m} \otimes A\right) K_{m n}\left(I_{n} \otimes B X C\right)+\left(v e c A X^{\prime} B\right)(r v e c C) . \\
& \frac{\gamma \mathrm{AX}^{\prime} \mathrm{BXC}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{BXC}\right) \mathrm{K}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~A}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~B}^{\prime} \mathrm{XA}^{\prime}\right) \mathrm{U}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}^{\prime}\right) \\
& =\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{BXC}\right) \mathrm{K}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~A}^{\prime}\right)+\left(\operatorname{vec} \mathrm{B}^{\prime} \mathrm{XA}^{\prime}\right)\left(\mathrm{rvec} \mathrm{C}^{\prime}\right) .
\end{aligned}
$$

4. Let $\mathrm{Y}=\mathrm{AXBX}{ }^{\prime} \mathrm{C}$ where A is $\mathrm{p} \times \mathrm{m}, \mathrm{B}$ is $\mathrm{n} \times \mathrm{n}$ and C is $\mathrm{m} \times \mathrm{q}$. Then it is well known that

$$
\frac{\partial \mathrm{AXBX}}{} \mathrm{C}^{\prime} \mathrm{X}^{\prime}=\mathrm{K}_{\mathrm{qp}}\left(\mathrm{AXB} \otimes \mathrm{C}^{\prime}\right)+\left(\mathrm{C}^{\prime} \mathrm{XB}^{\prime} \otimes \mathrm{A}\right)
$$

Using our principles we obtain

$$
\frac{\delta A X B X^{\prime} \mathrm{C}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{AXBE}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{C}+\mathrm{AE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{BX}^{\prime} \mathrm{C}
$$

and

$$
\left.\frac{\gamma(\mathrm{AXBX}}{}{ }^{\prime} \mathrm{C}\right)_{\mathrm{ij}} \mathrm{CE}_{\mathrm{ji}}^{\mathrm{qp}} \mathrm{AXB}+\mathrm{A}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pq}} \mathrm{C}^{\prime} \mathrm{XB}^{\prime} .
$$

Moreover, we have

$$
\begin{aligned}
& \frac{\delta A X B X^{\prime} \mathrm{C}}{\delta X}=\left(\mathrm{I}_{\mathrm{m}} \otimes A X B\right) \mathrm{K}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{D}\right)+\left(\mathrm{I}_{\mathrm{m}} \otimes A\right) \mathrm{U}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{BX}^{\prime} \mathrm{C}\right) \\
& =\left(I_{m} \otimes A X B\right) K_{m n}\left(I_{n} \otimes D\right)+(\operatorname{vec} A)\left(r v e c B X^{\prime} C\right) . \\
& \frac{\gamma \mathrm{AXBX}{ }^{\prime} \mathrm{C}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{C}\right) \mathrm{K}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~B}^{\prime} \mathrm{X}^{\prime} \mathrm{A}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~A}^{\prime}\right) \mathrm{U}_{\mathrm{pq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}^{\prime} \mathrm{XB}^{\prime}\right) \\
& =\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{AXB}\right) \mathrm{K}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{D}\right)+\left(\operatorname{vec}^{\prime}\right)\left(\operatorname{rvec} \mathrm{C}^{\prime} \mathrm{XB}^{\prime}\right) .
\end{aligned}
$$

The following results are not as well known:
5. Let $Y=D^{\prime} D$ where $D=A+B X C$ with $A p \times q, B p \times m$ and $C n \times q$. Then from Lutkepohl (1996) p. 191 we have

$$
\frac{\partial \mathrm{D}^{\prime} \mathrm{D}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{qq}}\left(\mathrm{C}^{\prime} \otimes \mathrm{D}^{\prime} \mathrm{B}\right)+\mathrm{C}^{\prime} \otimes \mathrm{D}^{\prime} \mathrm{B}
$$

Using our principles we obtain

$$
\frac{\partial \mathrm{D}^{\prime} \mathrm{D}}{\partial \mathrm{x}_{\mathrm{rs}}}=\mathrm{C}^{\prime} \mathrm{E}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{~B}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{DE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{C}
$$

and

$$
\frac{\gamma\left(\mathrm{D}^{\prime} \mathrm{D}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{B}^{\prime} \mathrm{DE}_{\mathrm{ji}}^{\mathrm{qq}} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{DE}_{\mathrm{ij}}^{\mathrm{qq}} \mathrm{C}^{\prime}
$$

In terms of the complete matrices we have

$$
\begin{aligned}
& \frac{\partial D^{\prime} D}{\partial X}=\left(I_{m} \otimes C^{\prime}\right) K_{m n}\left(I_{n} \otimes B^{\prime} D\right)+\left(I_{m} \otimes D^{\prime} B\right) U_{m n}\left(I_{n} \otimes C\right) \\
& =\left(I_{m} \otimes C^{\prime}\right) K_{m n}\left(I_{n} \otimes B^{\prime} D\right)+\left(\operatorname{vec} D^{\prime} B\right)(\operatorname{rvec} C) . \\
& \frac{\gamma D^{\prime} \mathrm{D}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~B}^{\prime} \mathrm{D}\right) \mathrm{K}_{\mathrm{qq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~B}^{\prime} \mathrm{D}\right) \mathrm{U}_{\mathrm{qq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}^{\prime}\right) \\
& =\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{~B}^{\prime} \mathrm{D}\right) \mathrm{K}_{\mathrm{qq}}\left(\mathrm{I}_{\mathrm{q}} \otimes \mathrm{C}^{\prime}\right)+\left(\operatorname{vec} \mathrm{B}^{\prime} \mathrm{D}\right)\left(\operatorname{rvec} \mathrm{C}^{\prime}\right) .
\end{aligned}
$$

6. Let $\mathrm{Y}=\mathrm{DD}^{\prime}$ where D is as in $\underline{5}$.

Then from Lutkepohl (1996) p. 191 again we have

$$
\frac{\partial \mathrm{DD}^{\prime}}{\partial \mathrm{X}}=\mathrm{K}_{\mathrm{pp}}\left(\mathrm{DC}^{\prime} \otimes \mathrm{B}\right)+\left(\mathrm{DC}^{\prime} \otimes \mathrm{B}\right)
$$

It follows that

$$
\begin{aligned}
& \frac{\delta \mathrm{DD}^{\prime}}{\delta \mathrm{x}_{\mathrm{rs}}}=\mathrm{DC}^{\prime} \mathrm{E}_{\mathrm{sr}}^{\mathrm{nm}} \mathrm{~B}^{\prime}+\mathrm{BE}_{\mathrm{rs}}^{\mathrm{mn}} \mathrm{CD}^{\prime} \\
& \frac{\gamma\left(\mathrm{DD}^{\prime}\right)_{\mathrm{ij}}}{\gamma \mathrm{X}}=\mathrm{B}^{\prime} \mathrm{E}_{\mathrm{ji}}^{\mathrm{pp}} \mathrm{DC}^{\prime}+\mathrm{B}^{\prime} \mathrm{E}_{\mathrm{ij}}^{\mathrm{pp}} \mathrm{DC}^{\prime}
\end{aligned}
$$

or in terms of complete matrices

$$
\begin{aligned}
& \frac{\delta D D^{\prime}}{\delta X}=\left(\mathrm{I}_{\mathrm{m}} \otimes D C^{\prime}\right) \mathrm{K}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{~B}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{m}} \otimes B\right) \mathrm{U}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{CD}\right) \\
& =\left(\mathrm{I}_{\mathrm{m}} \otimes \mathrm{DC}^{\prime}\right) \mathrm{K}_{\mathrm{mn}}\left(\mathrm{I}_{\mathrm{n}} \otimes \mathrm{~B}^{\prime}\right)+(\operatorname{vec} B)\left(\operatorname{rvec} C D^{\prime}\right) \\
& \frac{\gamma D^{\prime}}{\gamma \mathrm{X}}=\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~B}^{\prime}\right) \mathrm{K}_{\mathrm{pp}}\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{DC}^{\prime}\right)+\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{~B}^{\prime}\right) \mathrm{U}_{\mathrm{pp}}\left(\mathrm{I}_{\mathrm{p}} \otimes \mathrm{DC}^{\prime}\right) \\
& =\left(I_{p} \otimes B^{\prime}\right) K_{p p}\left(I_{p} \otimes D C^{\prime}\right)+\left(\operatorname{vec} B^{\prime}\right)\left(r v e c D C^{\prime}\right) .
\end{aligned}
$$

ECONOMICS DISCUSSION PAPERS 2009		
DP NUMBER	AUTHORS	TITLE
09.01	Le, A.t.	ENTRY INTO UNIVERSITY: ARE THE CHILDREN OF IMMIGRANTS DISADVANTAGED?
09.02	Wu, Y.	CHINA'S CAPITAL STOCK SERIES BY REGION AND SECTOR
09.03	Chen, M.H.	UNDERSTANDING WORLD COMMODITY PRICES RETURNS, VOLATILITY AND DIVERSIFACATION
09.04	Velagic, R.	UWA DISCUSSION PAPERS IN ECONOMICS: THE FIRST 650
09.05	McLure, M.	ROYALTIES FOR REGIONS: ACCOUNTABILITY AND SUSTAINABILITY
09.06	Chen, A. and Groenewold, N .	REDUCING REGIONAL DISPARITIES IN CHINA: AN EVALUATION OF ALTERNATIVE POLICIES
09.07	Groenewold, N. and Hagger, A.	THE REGIONAL ECONOMIC EFFECTS OF IMMIGRATION: SIMULATION RESULTS FROM A SMALL CGE MODEL.
09.08	Clements, K. and Chen, D.	AFFLUENCE AND FOOD: SIMPLE WAY TO INFER INCOMES
09.09	Clements, K. and Maesepp, M.	A SELF-REFLECTIVE INVERSE DEMAND SYSTEM
09.10	Jones, C.	MEASURING WESTERN AUSTRALIAN HOUSE PRICES: METHODS AND IMPLICATIONS
09.11	Siddique, M.A.B.	WESTERN AUSTRALIA-JAPAN MINING CO-OPERATION: AN HISTORICAL OVERVIEW
09.12	Weber, E.J.	PRE-INDUSTRIAL BIMETALLISM: THE INDEX COIN HYPTHESIS
09.13	McLure, M.	PARETO AND PIGOU ON OPHELIMITY, UTILITY AND WELFARE: IMPLICATIONS FOR PUBLIC FINANCE
09.14	Weber, E.J.	WILFRED EDWARD GRAHAM SALTER: THE MERITS OF A CLASSICAL ECONOMIC EDUCATION
09.15	Tyers, R. and Huang, L.	COMBATING CHINA'S EXPORT CONTRACTION: FISCAL EXPANSION OR ACCELERATED INDUSTRIAL REFORM
09.16	Zweifel, P., Plaff, D. and Kühn, J.	IS REGULATING THE SOLVENCY OF BANKS COUNTERPRODUCTIVE?
09.17	Clements, K.	THE PHD CONFERENCE REACHES ADULTHOOD
09.18	McLure, M.	THIRTY YEARS OF ECONOMICS: UWA AND THE WA BRANCH OF THE ECONOMIC SOCIETY FROM 1963 TO 1992
09.19	Harris, R.G. and Robertson, P.	TRADE, WAGES AND SKILL ACCUMULATION IN THE EMERGING GIANTS
09.20	Peng, J., Cui, J., Qin, F. and Groenewold, N.	STOCK PRICES AND THE MACRO ECONOMY IN CHINA
09.21	Chen, A. and Groenewold, N .	REGIONAL EQUALITY AND NATIONAL DEVELOPMENT IN CHINA: IS THERE A TRADE-OFF?

ECONOMICS DISCUSSION PAPERS		
	$\mathbf{2 0 1 0}$	
DP NUMBER	AUTHORS	TITLE
10.01	Hendry, D.F.	RESEARCH AND THE ACADEMIC: A TALE OF TWO CULTURES
10.02	McLure, M., Turkington, D. and Weber, E.J.	A CONVERSATION WITH ARNOLD ZELLNER

10.22	McLure, M.	ASSESSMENTS OF A. C. PIGOU'S FELLOWSHIP THESES
10.23	Poon, A.R.	THE ECONOMICS OF NONLINEAR PRICING: EVIDENCE FROM AIRFARES AND GROCERY PRICES
10.24	Halperin, D.	FORECASTING METALS RETURNS: A BAYESIAN DECISION THEORETIC APPROACH
10.25	Clements, K.W. and Si. J.	THE INVESTMENT PROJECT PIPELINE: COST ESCALATION, LEAD-TIME, SUCCESS, FAILURE AND SPEED
10.26	Chen, A., Groenewold, N. and Hagger, A.J.	THE REGIONAL ECONOMIC EFFECTS OF A REDUCTION IN CARBON EMISSIONS
10.27	Siddique, A., Selvanathan, E.A. and Selvanathan, S.	REMITTANCES AND ECONOMIC GROWTH: EMPIRICAL EVIDENCE FROM BANGLADESH,
INDIA AND SRI LANKA		

	ECONOMICS DISCUSSION PAPERS			
$\begin{array}{l}\text { DP } \\ \text { NUMBER }\end{array}$	AUTHORS	TITLE		
11.01	Robertson, P.E.	$\begin{array}{l}\text { DEEP IMPACT: CHINA AND THE WORLD } \\ \text { ECONOMY }\end{array}$		
11.02	Kang, C. and Lee, S.H.	$\begin{array}{l}\text { BEING KNOWLEDGEABLE OR SOCIABLE? } \\ \text { DIFFERENCES IN RELATIVE IMPORTANCE OF } \\ \text { COGNITIVE AND NON-COGNITIVE SKILLS }\end{array}$		
11.03	Turkington, D.	DIFFERENT CONCEPTS OF MATRIX CALCULUS	$\}$	Colley, J. and Tyers, R.
:---				
11.04				
11.05				

