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ABSTRACT 

Simple theorems based on a mathematical property of 
vecY

vecX




provide powerful tools for 

obtaining matrix calculus results. By way of illustration, new results are obtained for matrix 

derivatives involving vecA, vechA, v(A) and vecX where X is a symmetric matrix. The 

analysis explains exactly how a log-likelihood function should be differentiated using matrix 
calculus. 
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1. Introduction1 

In a recent article Magnus (2010) advocates 
vecY

vecX



 as the concept of the matrix derivative 

to use for the differentiation of a matrix Y with respect to the matrix X. He does this on the 
grounds of mathematical correctness and mathematical convenience. As far as the first 
ground is concerned, Parring (1992) shows that the three concepts of the matrix derivative of 
Y with respect to X, commonly used in the literature, all qualify as permissible mathematical 
operators. It depends on the matrix or vector space you are working with and how this space 
is normed. (For relationships that exist between these three concepts see Turkington (2007)). 

However, I would agree with Magnus on the second ground. Certainly 
vecY

vecX



is the most 

convenient concept of a matrix derivative to work with out of the concepts he considers. 

Having said that, an argument can be made for working with
vecY

vecX




, which is just the 

transpose of the concept advocated by Magnus. But this transpose makes a difference in 
terms of mathematical convenience. 

In the next section it will be explained as succinctly as possible why from a practitioner’s 

point of view 
vecY

vecX




has certain mathematical advantages over all the other concepts of 

matrix derivatives used in the literature. Simple theorems involving this concept will be 
presented, whose proofs are almost trivial. However, taken together, these theorems provide 
powerful tools for deriving matrix calculus results. 

This is demonstrated both in section 3 and section 4 of the article. In section 3 use is made of 
these theorems to derive results, some of which are new, for derivatives involving vecA, 

vechA and v(A) where A is a square matrix. These three vectors are of interest to 

statisticians. In section 4 the same theorems are used to derive an easy method for obtaining 
derivatives involving the vecs of symmetric matrices from known matrix calculus results. 
Again this is of interest to statisticians as covariance matrices appear in log-likelihood 
functions. 

Section 5 brings the analysis together and demonstrates how matrix calculus should be used 
to correctly differentiate a log-likelihood function. The last section is reserved for a brief 
conclusion.  

  

                                                            
1 The author would like to acknowledge the kind hospitality of Nuffield College, Oxford. Work that lead to this 
paper was commenced when he was an academic visitor there in 2010. He would like to thank Helmut 
Lutkepohl for acting as a sounding board for problems whose solutions also contributed to the paper. He would 
also like to thank his colleague Les Jennings of the Department of Mathematics at the University of Western 
Australia for helpful suggestions. 
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/vecY vecX 2. Theorems involving                               f 

The main advantage of using this concept of a matrix derivative can be put succinctly in a 

few lines. Consider a m 1 vector  1 my y y   , a n 1  vector  1 nx x x   and   

any scalar function. Then using 
vecY

vecX




as our concept of a matrix derivative

1 my y y

   
     

   and
1 nx x x

        
   . Suppose y Ax , where A is a matrix of 

constants, that is, the elements of A are not scalar functions of x. Then, 

A
y x

 


 
 

, 

so for this important case the same functional relation exists between 



y

and 
x





as between y 

and x. 

Several of the following theorems involving 
vecY

vecX




arise from this notion.  

 

Theorem 1  

Let x be a n 1 vector whose elements are distinct. Then 

n
x

I
x





. 

Proof  

Clearly 

 1 n n n
1 n n

x x x
e e I    ,

x x x

         
   

where n
je is the jth column of In. 

 

Theorem 2  

Suppose x and y are two column vectors and y Ax  where A is a matrix of constants.  

Let z be a column vector. Then 
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z z
A    .

y x

 


 
 

Proof  

We know that for any scalar  ,  

A    .
y x

 


 
 

  

Write 

 1 pz z z    .   

Then 

1 p 1 p 1 pz z z z z z z z
A A A A    .

y y y x x x x x

                              
    

 

* * * * 

 

Theorem 3  

Suppose x and y are two column vectors such that  

y Ax  

where A is a matrix of constants and the elements of x are distinct. Then 

y x
  .

x y

  
    

 

Proof  

Using the advocated concept of a matrix derivative 
y

A    .
x

 


 But from theorem 2 

z z
A

y x

 


 
 

for any vector z. Taking z x gives 

x x
A

y x
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and as the elements of x are distinct by theorem 1, the derivative 
x

x




is the identity matrix so 

x y
A

y x

       
. 

Taking transposes gives the result.  

 

* * * * 

 

In using the recommended concept of a matrix derivative a backward chain rule applies (see 

Turkington (2004)) which is just the transpose of the chain rule reported by Magnus (see 

Magnus (2010)). That is, if y is a vector function of u and u is a vector function of x, so

y y(u(x))  then 

u y
y    .

x u

 
 

 
 

Using this result gives us the following theorem. 

Theorem 4 

For any vectors x and y 

y x y
 .

x x x

  


  
 

Proof  

Write y y(x(x)) and apply the backward chain rule.  

 

* * * * 
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v(A)3. Theorems concerning derivatives involving vecA, vechA and           f 

Let ijA {a } be a n n matrix and partition A into its columns so  1 nA a a  where aj 

is the jth column of A for j 1,  , n  . Then vecA is the 2n 1 vector given by 

 1 nvecA a a
   , that is, to form vecA we stack the columns of A underneath each 

other. VechA is the 
1

n(n 1) 1
2

   vector given by 

 11 n1 22 n 2 nnvechA a a a a a    .     

That is, to form vechA we stack the elements of A on and below the main diagonal one 

underneath the other. The vector v(A) is the is the 
1

n(n 1) 1
2

  vector given by 

 11 n1 32 n 2 nn 1v(A) a a a a a 
    . 

That is, we form v(A) by stacking the elements of A below the main diagonal, one beneath 

the other. These vectors are important for statisticians and econometricians. If A is a 

covariance matrix then vecA contains the variances and covariances but with the covariances 

duplicated. The vector vechA contains the variances and covariances without duplication and 

v(A) contains the covariances without the variances. 

Regardless as to whether A is symmetric or not, the elements in vechA and v(A)  are distinct. 

The elements in vecA are distinct provided A is not symmetric. If A is symmetric the 

elements of vecA are not distinct. So from theorem 1 we have  

1
n(n 1)

2

vechA
I

vechA 




  
for all A 

1
n(n 1)

2

v(A)
I

v(A) 




  
for all A 

2n

vecA
I

vecA




                 
provided A is not symmetric.                f 

What 
vecA

vecA




 is in the case where A symmetric is discussed in section 4. 
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Regardless of the nature of A, it is well known that there exist 21
n(n 1) n

2
  and 

21
n(n 1) n

2
  zero-one matrices Ln and nL  respectively, such that  

nL vecA vechA  

and 

nL vecA v(A)   .  

If A is symmetric then 

nN vecA vecA  

where 2n nnn

1
N (I K )

2
  and Knn is a commutation matrix, so for this case 

n nL N vecA vechA  

and 

nL NvecA v(A).  

The matrices LnNn and n nL N are not zero-one matrices. However, along with Ln and nL , they 

form a group of matrices known as elimination matrices. The difference in the operation of Ln 

and LnNn on vecA is this. The matrix Ln chooses ija  for i > j for vechA directly from vecA, 

whereas LnNn recognises that A is symmetric and forms ija  for vechA using ij ji
ij

a a
a

2


 .  

For special cases there exist zero-one matrices called duplication matrices which take us back 

from vechA and v(A)  to vecA. If A is symmetric there exists a 2 1
n n(n 1)

2
  zero-one 

matrix Dn such that 

nD vechA vecA . 

If A is strictly lower triangular then  

nL v(A) vecA  . 
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For an excellent discussion of the special matrices associated with vecA, vechA and v(A)
and their properties see Magnus (1988). 
 

Consider  any scalar function. Then the same relationships exist between 
vecA





, 
vechA






and 
v(A)





as exist between vecA, vechA and v(A) respectively.  

Thus for general A 

n

n

L
vechA vecA

L    .
vecAv(A)

 


 

 




 

 
 

For symmetric A 

                                               

n nL N                                                (1)
vechA vecA

 


 
 

 
n nL N    .

vecAv(A)

 



 

 

                                                       
nD

vecA vechA

 


 
 

 

and for A a strictly lower triangular matrix 

nL    .
vecA v(A)

 
 
 

 

Using the theorems of section 3 we can prove the following results. 

 

Theorem 5 

n
vecA

D                          if A is symmetric
vechA

 


 

                                      
n

vecA
L                          if A is not symmetric.

vechA
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Proof   

If A is symmetric nvecA D vechA and the result follows. For the case where A is not 

symmetric consider 

nvechA L vecA   .  

By theorem 2 we have that for any vector z 

n
z z

L   .
vechA vecA

 


 
 

Taking z = vecA gives 

n
vecA vecA

L
vechA vecA

 


 
 

and as A is not symmetric the elements of vecA are distinct, so by theorem 1  

2n

vecA
I

vecA




  

 and 

n
vecA

L
vechA





. 

 

* * * * 

 

Theorem 6 

n
vechA

D
vecA





                   if A is symmetric 

         n
vechA

L
vecA

 


                  if A is not symmetric. 

 

Proof  

A trivial application of theorem 3. 

 

* * * * 
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The method used in theorem 5 can also be used to quickly derive results about elimination 
matrices, duplication matrices and the matrix Nn. Consider for example the case where A is a 
symmetric n n matrix so 

n nL N vecA vechA   .  

By theorem 2 for any vector z 

n n
z z

L N    .
vechA vecA

 


 
 

Take z = vechA. Then 

n n n n n
vechA vechA

L N L N D
vechA vecA

 
 

 
 

by theorem 6. 

But as the elements of vechA are distinct  

1
n(n 1)

2

vechA
I

vechA 





, 

so 

n n n 1
n(n 1)

2

L N D I    .                                                        (2)


  

 

4. Theorems concerning derivatives involving vecX where X is symmetric 

Consider X a n n symmetric matrix and let x = vecX. Then the elements of x are not distinct 
and one of the implications of this is that  

2n

x
I    .

x





 

Consider the 2 2 case. Then 

11 21

21 22

x x
X

x x

 
  
 

 

and  11 21 21 22x x x x x  , so 
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11 21 21 22

1 0 0 0

0 1 1 0x x x x x
  .

0 1 1 0x x x x x

0 0 0 1

 
                 
 
 

 

Clearly this matrix is not the identity matrix. What it is, is given by the following theorem 
whose proof again calls on our results of section 3. 

 

Theorem 7 

Let X be a n n symmetric matrix. Then 

n n
vecX

D D    .
vecX

 


 

Proof   

As X is a n n symmetric matrix 

nvecX D vechX  

so it follows from theorem 2 that for any vector z  

n
z z

D    .
vecX vechX

 


 
 

Take z = vecX so  

n n n
vecX vecX

D D D                                           (3)
vecX vechX

   
 

 

by theorem 5. 

 

* * * * 

 

The fact that in the case where X is a n n  symmetric matrix n n
vecX

D D
vecX

 


means that all 

the usual rules of matrix calculus, regardless of what concept of a matrix derivative one is 
using, do not apply for vecX where X is symmetric. However theorem 4, coupled with 
theorem 7, provides a quick and easy method for finding the results for this case using known 
matrix calculus results. 
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Consider again x = vecX with X a symmetric matrix. Let 
y

x




denote the matrix derivative we 

would get if we differentiated y with respect to x using the concept of differentiation 
advocated but ignoring the fact that X is a symmetric matrix.  Then the full import of theorem 
4 for this case is given by the equation 

y x y
   .                                                              (4)

x x x




 


 
 

Combining Eqs. (3) and (4) give the following theorem. 

 

Theorem 8   

Consider y = y(x) with x = vecX and X is a n n symmetric matrix. Let 
y

x




denote the 

derivative of y with respect to x obtained when we ignore the fact that X is a symmetric 
matrix. Then 

n n
y y

D D    .                                                         (5)
x x




 
  

 

* * * * 

 

A few examples will suffice to illustrate the use of this theorem. (For the rules referred to in 
these examples see Turkington (2004), Lutkepohl (1996) or Magnus and Neudecker (1999)). 

 

For x with distinct elements and A a matrix of constants we know that  

x Ax
2(A A )x   .

x

  


 

It follows that when x = vecX and X is a n n symmetric matrix 

n n
x Ax

2D D (A A )x   .
x

   


 

 

For X non-singular but non-symmetric matrix 
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1X
Xvec(X )

vecX




 

so for X non-singular but symmetric 

1
n n

X
XD D vecX    .

vecX
 


 

For X a n n non-symmetric matrix, A and B matrices of constants 

vecAXB
B A

vecX

  


 

so for X a n n symmetric matrix 

n n
vecAXB

D D (B A )    .
vecX

   
  

 

All results using either 
vecY

vecX




or 
vecY

vecX



(in which case we have to take transposes) can be 

adjusted in this way to allow for the case where X is a symmetric matrix. 

 

5. The Matrix Differentiation of a Log-Likelihood Function. 

Suppose we are dealing with a statistical model that has a log-likelihood function ( ) where 

  is a vector containing the parameters of the model. Then we can always partition   as 

( v )     where v vech  and  is a covariance matrix associated with the model. The 

problem is that ( ) is never expressed in terms of v. Rather it is written in terms of  . The 

question then is how do we form 
v





. The results of the previous section allow us to do this. 

As  is a symmetric matrix and assuming it is n n we have from theorem 8 that  

n nD D    .
vec vec




 
  
 

 

But from Eq. (1) we also have 

n nL N    ,
v vec

 


  
 

 

so 

n n n n nL N D D D
v vec vec
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as by Eq. (2) n n n 1
n(n 1)

2

L N D I


 . Our method then is to differentiate the log likelihood 

function with respect to vec ignoring the fact that   is symmetric. Then premultiply the 

result by nD  . Note that from theorem 5, n
vec

D
v

  


 so we could write if we like that 

vec

v v vec




  


  
 

                            

which resembles a backward chain rule. This is approach was taken by Turkington (2004). 

 

A simple example illustrates this method. Magnus and Neudecker (1980) consider a sample 
of size m from a n dimensional distribution of a random vector y with mean vector µ and a 
positive definite covariance matrix  . The parameters of this model are ( v )     where 

v vech  and the log likelihood function, apart from a constant, is 

11 1
( )  mlog tr Z   

2 2
     

 

where 

m

i i

i 1

Z (y )(y )    . 


    

Now 

1log1 1
m tr Z

vec 2 vec 2 vec

 
  


   

  


 

and 

1log
vec    .

vec





 


 

 

Using the backward chain rule 

1 1 1
1 1

1

tr Z vec tr Z
( )vecZ

vec vec vec

  
  

  
 



  
    

  
 

so 

1 1 1 1 11 1 1
 mvec ( )vecZ ( )vec(Z m )

vec 2 2 2
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and 

1 1
n

1
D ( )vec(Z m )

v 2
      




 

which is the same result Magnus and Neudecker obtained using differentials.  

 

Conclusion 

It goes without saying that the correct use of matrix calculus to differentiate a log likelihood 
function is of great interest to a statistician who wants to apply classical statistical procedures 
centred around the likelihood function. Once the method is understood using matrix calculus 
in these procedures, it is no more difficult than the use of ordinary calculus in every day 
mathematical problems.  Moreover, there is no need to first resort to matrix differentials as 
advocated by Magnus and Neudecker (1999). Rather, using rules which are generalizations of 
the product rule and chain rule of ordinary calculus, one can easily derive the derivatives 

required in classical statistics using either 
vecY

vecX



, as advocated by Magnus, or 

vecY
   .

vecX
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