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Abstract

This paper introduces cointegrating mixed data sampling (CoMiDaS) regressions, gener-
alizing nonlinear MiDaS regressions in the extant literature. Under a linear mixed-frequency
data-generating process, MiDaS regressions provide a parsimoniously parameterized nonlin-
ear alternative when the linear forecasting model is over-parameterized and may be infeasi-
ble. In spite of potential correlation of the error term both serially and with the regressors,
I find that nonlinear least squares consistently estimates the minimum mean-squared fore-
cast error parameter vector. The exact asymptotic distribution of the difference may be
non-standard. I propose a novel testing strategy for nonlinear MiDaS and CoMiDaS regres-
sions against a general but possibly infeasible linear alternative. An empirical application
to nowcasting global real economic activity using monthly covariates illustrates the utility
of the approach.
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1. Introduction

Since the introduction of nonlinearly specified mixed data sampling (MiDaS) regressions
by Ghysels et al. (2004) and Ghysels et al. (2007), the MiDaS methodology has been
adopted for a variety of applied and empirical topics in economics and finance, particularly
for the purposes of forecasting – e.g., Ghysels and Wright (2009), Armesto et al. (2010),
and Andreou et al. (2010b). The proliferation of empirical applications of MiDaS fore-
casting models include primarily output – e.g., Tay (2007), Clements and Galvão (2008,
2009), Hogrefe (2008), Benjanuvatra (2009), Frale and Montefort (2010), Marcellino and
Schumacher (2010), and Kuzin et al. (2011). Another common application of MiDaS is
to modeling volatility – e.g., Ghysels et al. (2006), Alper et al. (2008), Ghysels et al.
(2009), Chen and Ghysels (2010), and Ghysels and Valkanov (2010). Also, MiDaS forecast-
ing models have been applied to study the effects of high-frequency monetary policy shocks
(Armesto et al., 2009, Francis et al., 2010), inflation (Montefort and Moretti, 2010), and
the risk-return trade-off (Ghysels et al. 2005).

The principal advantage of the parsimonious nonlinear autoregressive distributed lag
(ADL) specification provided by the MiDaS approach lies in allowing regressors measured
at a much higher frequency than the regressand. In particular, if the high-low frequency
ratio exceeds the number of low frequency observations – e.g., 50 years of weekly data – a
linear ADL regression is infeasible. Adding regressors exacerbates this problem. For a lower
ratio, such a model may be feasible but simply not parsimonious. The MiDaS specification
offers a trade-off. The gain from a reduction in the dimension of the parameter space may
be quite large. In the extreme, an infeasible model becomes feasible. More generally, an
efficiency gain is possible. The price paid may be inconsistency from neglected nonlinearity,
if the MiDaS specification does not nest or at least approximate the data-generating process
(DGP).

This paper aims for three important contributions to the existing MiDaS literature. I
introduce cointegrating MiDaS (CoMiDaS) regressions, which nest stationary MiDaS re-
gressions as a special case. The generalization allows for the possibility of stochastic trends
common to the time series in the model. Cointegration in mixed-frequency and closely
related temporally aggregated models has been studied extensively. Such studies include
Granger (1990), Gomez and Maravall (1994), Granger and Siklos (1995), Marcellino (1999),
Haug (2002), Chambers (2003, 2009, 2010), Pons and Sansó (2005), Chambers and McCrorie
(2007), Seong et al. (2007), and Miller (2010, 2011). The mixed-frequency framework of
Ghysels et al. (2004) does not allow for the possibility of stochastic trends. On the other
hand, some authors who have worked with macroeconomic series believed to contain unit
roots but with unique stochastic trends, such as Clements and Galvão (2008), have taken
first differences. The CoMiDaS regressions I introduce nests both of these cases. The sta-
tistical analysis allows for the possibility of any number of trends, with these two cases as
the extremes.

Second, I allow for the realistic possibility that the error term is correlated both serially
and with the regressors. Although this allowance is somewhat standard for models with
I(1) series, since estimators may still be consistent, I allow correlation with both I(1) and
I(0) regressors. Such correlation causes inconsistency in estimating the parameters of the
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DGP. However, since MiDaS regressions are often used in forecasting, a more appropriate
outcome is to minimize mean-squared forecast error (MSFE) or a similar loss function.3 I
show that even with such correlation, the MiDaS specification may consistently estimate
the minimum MSFE parameter vector within the class of models nested by the MiDaS
specification and assuming a MiDaS DGP, as is assumed by Ghysels et al. (2004), Andreou
et al. (2010a), inter alia.

The extension of the MiDaS framework in these two directions provides a justification
for the MiDaS approach taken by previous authors, but develops a broader framework on
which to base further analysis.

Third, I propose a novel test of the MiDaS null against a more general alternative. Like
those of Andreou et al. (2010a), the proposed test is for in-sample rather than out-of-sample
fit. Their tests posit a specific weighting scheme nested by the MiDaS specification as the
null, with a maintained hypothesis that the DGP is nested by the MiDaS specification
under both the null and the alternative. In contrast, I make this assumption only under
the null. If estimating the linear ADL model is feasible (m is small), a likelihood ratio test
similar to that proposed for ADL models by Godfrey and Poskitt (1975) could be used to
test the MiDaS null.4 If estimating the linear ADL model is infeasible, which is precisely
the case in which one would expect the most gain from the parsimonious specification, the
Godfrey-Poskitt test is infeasible.

The test I propose is feasible in either case. Specifically, I base the test on a traditional
variable addition test (Wu, 1973), where the variables added are arbitrary linear combina-
tions of the high-frequency regressors. Although one of the tests proposed by Andreou et
al. (2010a) is also a variable addition test, it has a different null and requires m to be small
enough for the linear ADL estimator to be feasible. Whereas both their tests with MiDaS
alternatives are useful for testing one MiDaS specification against another, my proposed
test, like that of Godfrey and Poskitt (1975), is useful for distinguishing a general MiDaS
specification from a more general DGP with linear ADL structure.

The remainder of the paper is structured along the following lines. I outline the basic
cointegrating MiDaS regressions in Section 2 and present a somewhat more general coin-
tegrating regression with nonlinearity in the regression coefficients. I derive the difference
between the NLS estimator and the minimum MSFE parameter vector. In section 3, I
show the consistency of the regression coefficients and of the deep parameters underlying
these coefficients to the analogous minimum MSFE parameters. I derive the asymptotic
distributions of the respective differences, which may be Gaussian or nonstandard under
alternative assumptions. I then introduce the proposed test, evaluating both its asymptotic
distribution and small sample performance in Section 4. In Section 5, I present an illustra-
tive application to forecasting global real economic activity, and I conclude with Section 6.
An appendix contains proofs of the theoretical results.

3Clements and Hendry (1995) and Christofferson and Diebold (1998) suggested alternative measures for
forecasts from a cointegrated system, but I consider forecasts from only a single cointegrating regression.

4The Godfrey-Poskitt results are derived using an Almon lag – rather than exponential Almon lag –
specification. Similar results may hold for the exponential specification.
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2. CoMiDaS Regressions

Consider the task of forecasting the change in a macroeconomic series observed at a low
frequency, using lags of the same series, several series observed at a higher frequency during
the previous low-frequency period, and perhaps some additional regressors observed at the
previous low-frequency period. In levels, such a forecasting regression may be written as

yt+1 =
∑p

k=1
ρkyt+1−k + ϕ′wt + β′

∑m−1

k=0
Πk+1x

(m)
t−k/m + εt+1, (1)

where the superscript (m) denotes the higher frequency – specifically, m times the lower
frequency, and Πs is a diagonal matrix of unknown weights. The weight structure may differ
across regressors series, but for expositional simplicity I assume that all regressor series are
observed at the same frequency.

As an example, the best forecast of an annual series may use an annual average (average
or flat sampling) of each monthly regressor, in which case the optimal weights would be
1/m for each of these high-frequency regressors. End-of-period sampling (a special case of
selective or skip sampling), provides another example. That case assigns a unit to the first
weight and zeros to the remaining weights.

Subtracting yt from both sides and manipulating x
(m)
t−k/m under the assumption that

∑m−1
k=0 Πk+1 = I allows an error correction representation

4yt+1 =
(

ρ∗yt + ϕ′wt + β′xt
)

− ρ∗ (L)4yt − β′Π(L)4(1/m)x
(m)
t + εt+1, (2)

where ρ∗ ≡
∑p

k=1 ρk − 1, ρ∗ (z) ≡
∑p−1

k=1

∑p
s=k+1 ρsz

k−1 for p ≥ 2 and ρ∗ (z) = 0 for p = 1,

and where Π (z) ≡
∑m−2

k=0

∑m−1
s=k+1Πs+1z

k/m. I use the notation 4(1/m) to denote a high-

frequency difference, and I drop the superscript (m) from β′x
(m)
t to signify that this term

includes only low-frequency observations of the high-frequency regressors.
The above models are not parsimonious. For m sufficiently large, they may not even be

feasible. Ghysels et al. (2004) proposed MiDaS regressions, featuring an ADL with parsimo-
nious nonlinear specification to overcome the infeasibility. Under such a specification, the
weight matrices Πk are parameterized by γ, so that Π(z; γ) ≡

∑m−2
k=0

∑m−1
s=k+1Πs+1 (γ) z

k/m.
The MiDaS forecasting regression becomes

yt+1 =
∑p

k=1
ρkyt+1−k + ϕ′wt + β′

∑m−1

k=0
Πk+1(γ)x

(m)
t−k/m + ηt+1 (3)

in levels, or

4yt+1 =
(

ρ∗yt + ϕ′wt + β′xt
)

− ρ∗ (L)4yt − β′Π(L; γ)4(1/m)x
(m)
t + ηt+1 (4)

in differences, under this parameterization. The former is more similar to the I(0) MiDaS
regression of Ghysels et al. (2004), while the latter is more similar to the I(1) MiDaS
regression of Clements and Galvão (2008). When both low-frequency and high-frequency
regressors contain a mix of I(0) and I(1) series, the CoMiDaS regression

4yt+1 =
(

ρ∗yt + ϕ′

1w1t + β′1x1t
)

+ ϕ′

0w0t + β′0x0t (5)

− ρ∗ (L)4yt − β′Π(L; γ)4(1/m)x
(m)
t + ηt+1,
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where the subscripts 0 and 1 denote the order of integration, generalizes that in (4). As
Andreou et al. (2010a) noted, all of the terms with I(1) regressors are linear in parameters.

Since the weight matrices (Πs) are parameterized directly, there is no practical difference
between defining the lag polynomial in (3), (4), and (5) except that the latter two impose
that the weights sum to unity, resulting in m − 1 rather than m weight matrices. Typical
nonlinear weight specifications impose this restriction anyway.

The lag structure most commonly employed in the MiDaS literature is the exponential
Almon lag, modified from Almon (1965). For the first diagonal of the weight matrix, the
exponential Almon polynomial may be written as

π1,s (γ) z
s/m =

exp(γ1s+ γ2s
2)

∑m
j=1 exp(γ1j + γ2j2)

zs/m,

and the remaining diagonals are similar. The remaining diagonals may depend on γ1 and
γ2, if the weight structure is assumed to be the same for all regressor series, or they may
depend on additional pairs of parameter.

The literature posits alternative lag specifications, but the exponential Almon lag is em-
ployed for its flexibility in mimicking reasonable economic assumptions about the relation-
ship between the low- and high-frequency data. For example, if the regressand is observed
at the lower frequency due to average sampling and is cointegrated with the regressors, then
Chambers (2003) and Miller (2011) showed that average sampling the regressors is most
efficient. The exponential Almon lag achieves this for γ1 = γ2 = 0. If instead the optimal
scheme is thought to be end-of-period sampling, then the exponential Almon lag provides
an adequate approximation by setting, γ = (−5,−5) for m = 12, say. In the cointegrating
case, Miller (2011) showed that matching the aggregation scheme of the regressors to that
of the regressand is efficient in the absence of correlation of the error with the regressors.
Aggregating the regressors directly is more parsimonious than using a MiDaS approach,
but would be inappropriate when the regressand aggregation scheme is unknown. The ex-
ponential Almon lag can take other shapes, assigning more weights to middle observations
if, perhaps, seasonality is a concern.

2.1. Generalized Specification

As with a typical I(0) error-correction model, in order for the CoMiDaS regression to be
well-specified, there are three possibilities. Either all series are I(0), some series are I(1) but
no cointegrating relationships exist, (ρ∗, ϕ′

1, β
′

1)
′ = 0, or some series are I(1) but at least

one cointegrating relationship exists, ρ∗yt + ϕ′w1t + β′x1t ∼ I(0).
To simplify notation, let (p1t) denote the n1 unique common stochastic trends of the

I(1) vector (yt, w
′

1t, x
′

1t)
′ in (5), and let (p0t) denote an n0 series containing both the I(0)

regressors and any cointegrating combinations of the I(1) regressors. The regression has
n = n1 + n0 regressors: the number of stochastic trends of the I(1) series, plus the number
of cointegrating combinations of the I(1) series, plus the number of stationary covariates. A
univariate high-frequency (xt) spawns m regressors, but no more than one stochastic trend.
Such a stochastic trend may be shared with (yt) and (wt). Note that n1 = 0 if all series
are stationary, but that n0 = 0 cannot hold, except in the case of selective sampling, or



5

in the trivial case of no mixed frequencies. In other words, even when all high-frequency
regressors are I(1), there will generally be I(0) terms in (2), (4), and (5) due to the error
correction representation.

The regression may be rewritten as

4yt+1 = θ′1p1t + g′0 (θ) p0t + ηt+1 (6)

where θg×1 = (ρ∗, ϕ′

1, β
′

1, ρ
∗

1, ..., ρ
∗

p, ϕ
′

0, β
′

0, γ
′)′ is an element of the parameter space Θ ⊆ R

g

and g0 (θ) is a vector of linear and nonlinear functions. I refer to the models in (3)-(6) as
CoMiDaS regressions or CoMiDaS models.

If the model contains any unit roots, θ1 must be zero, because the cointegrating com-
binations of (yt, w

′

1t, x
′

1t)
′ are in (p0t) rather than (p1t). However, the dimension n1 of θ1

varies depending on the number of unit roots. To allow for their presence, but since the
stochastic trends are latent, I do not assume θ1 to be zero in estimation, and I estimate
all n coefficients. In other words, I do not impose a unit root. Nor do I impose a certain
number of trends. Although determining the number of trends may be desirable in certain
applications, it is not necessary in the present analysis.5

Imposing a unit root when the DGP does not contain one is clearly not desirable.
Clements and Hendry (1995) suggested not imposing a unit root, but Christofferson and
Diebold (1998) found that this leads to weaker forecasts when the DGP contains one.
Hansen (2010) recently suggested averaging forecasts from models in which a unit root is
imposed and not imposed when the smallest root of the DGP is uncertain but thought to
be near unity.

Aside from potential unit roots, there is a major difficulty to overcome in analyzing
the statistical properties of an estimator of θ using (6): potential correlation of (εt) both
serially and with the regressors. Although it is well-known that such correlations pose no
problem in the consistent estimation of the cointegrating vectors in a linear model, the
effects on forecasting and on coefficients of I(0) regressors under a nonlinear specification
are not obvious. I show that such correlation is not problematic for consistently estimating
the minimum MSFE parameter vector in either I(0) or I(1) cases.

In order to analyze the statistical properties of an NLS estimator of the CoMiDaS
regression in (6), I consider a more general model, which allows for nonlinearity in the
coefficients of all terms. The linear model in (2) may be written as very simply as

4yt+1 = p′tα+ εt+1, (7)

where pt = (p′0t, p
′

1t)
′. I assume that the DGP is linear, so that the minimum MSFE forecast

of 4yt+1 is given by E [4yt+1|Ft] = p′tα + E [εt+1|Ft]. I make a realistic allowance for the
error sequence to be correlated serially and with both the I(0) and I(1) regressors, so that
E [εt+1|Ft] 6= 0 in general.

As described above, forecasts are made using a general nonlinear model

4yt+1 = p′tg(θ) + ηt+1. (8)

5See Marcellino (1999) and Haug (2002) for discussions of such tests when the low-frequency series is
temporally aggregated.
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I define the space G ⊆ R
n such that g : Θ 7→ G, where n is the number of regressors, as

above.
I assume that

[N1] there exists θ ∈ Θ such that g(θ) = α,

so that the nonlinear model nests the linear DGP. Otherwise, there is a latent term in
the residual stemming from the nonlinear approximation. Correlation of this term with
the regressors may generate bias in the forecasts, and it is not obvious that such bias is
sufficiently small to be offset by the efficiency gain from the parsimonious specification.
Although my proposed test can provide evidence for or against the nonlinear specification
by allowing a general linear alternative, like Andreou et al. (2010a), I do not address this
difficulty in the asymptotic analysis of the estimators.

I consider (8) to be the model estimated henceforth. The CoMiDaS regression of interest
in (6) is a special – but important – case, with g(θ) = (g′0 (θ) , θ

′

1)
′.

2.2. Minimum MSFE Parameter Vector and NLS Estimation

The MSFE using the model in (8) may be written as

Q (θ) = E(E[εt+1 − p′t(g(θ)− α)|Ft])
2

by substituting (7). The first-order condition is

0 =
∂g′(θ)

∂θ
(M(g(θ)− α)−N),

where M ≡ Eptp
′

t and N ≡ Eptεt+1. M and N may be partitioned as

M =

[

M00 M01

M10 M11

]

=

[

Σpp ∆p1 + o (1)
∆′

p1 + o (1) TΩ11 + o (T )

]

, and

N =

[

N0

N1

]

=

[

σpε
δ′ε1 + o (1)

]

,

where Σpp ≡ Ep0tp
′

0t, ∆p1 ≡
∑

∞

k=0Ep0t4p
′

1,t−k, δε1 ≡
∑

∞

k=0Eεt+14p
′

1,t−k, and Ω11 =
∑

∞

k=−∞
E4p1t4p

′

1,t−k.
6 The remainder terms come from

∑

∞

k=T+1Ep0t4p
′

1,t−k, etc.
I assume that

[A1] M11 −M10M
−1
00 M10 is nonsingular for n1 > 0 and for any T , and that

[A2] Σpp is nonsingular,

6With I(1) series, the moment matrix M is a function of T . However, I suppress the argument to reserve
the notation MT for sample moment matrices below.
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which are sufficient to ensure the invertibility of M . As T → ∞, Assumption [A1] requires
only that Ω11 is nonsingular, since T−1(M11 −M10M

−1
00 M10) = Ω11 + op (1). I maintain

[A1] to ensure that M is invertible for any sample size. Assumption [A2] does not place
any unreasonable restrictions on the high-frequency regressors. If the increments of these
regressors are perfectly correlated, as in the case with interpolated series, then there is no
information gain from including the high-frequency increments. In that case, the increments
may be dropped, retaining only the levels (xt) observed at the lower frequency.

Under the additional assumptions that

[N2] ∂gi(θ)/∂θ exists and is bounded in a neighborhood of θmin for i = 1, . . . , n and that

[N3] g(θmin) ∈ int(G),

a solution to the minimization problem is given by g(θmin)− α = M−1N . The vector θmin

is the minimum MSFE parameter vector of the nonlinear model in (8). If the error is a
martingale difference sequence (an mds) with respect to (Ft), then N = 0 and p′tα gives
the optimal forecast. Deviations from N = 0 may occur because of correlation between the
error and regressors.

NLS is a natural estimator for forecasting with a nonlinear model. The NLS objective
function may be written as

QT (θ) =
1

2

∑

t
(εt+1 − p′t(g(θ)− α))2,

which has a first-order condition of

0 = T
∂g′(θ)

∂θ
(MT (g(θ)− α)−NT ),

where MT ≡ T−1
∑

t ptp
′

t and NT ≡ T−1
∑

t ptεt+1. A solution is given by g(θ̂NLS) − α =
M−1

T NT , similarly to g(θmin).

The difference g(θ̂NLS) − g(θmin) may be written as M−1
T PT , where PT ≡ (NT −N) −

(MT −M)M−1N . This difference reveals the extent to which the NLS estimator minimizes
MSFE, which is the aim of the next section.

3. Asymptotic Properties of the NLS Estimator

In order to carefully analyze the NLS estimator of θ in (8), I introduce additional notation
and rely on additional assumptions. Let bt ≡ (εt+1, p

′

0t,4p
′

1t)
′ denote the n+ 1 stationary

components of the DGP in (7), where (p0t) and (p1t) are the I(0) and I(1) regressors re-
spectively. Defining b0t ≡ (εt+1, p

′

0t)
′ and b1t ≡ 4p1t allows a useful alternative partition

bt = (b′0t, b
′

1t)
′. In the ensuing discussion, the partition vt = (v′0t, v

′

1t)
′ is conformable with

(b′0t, b
′

1t)
′.

I assume that

[A3] bt =
∑

∞

s=0Ψsvt−s where
∑

∞

k=0 s ‖Ψs‖ <∞, and that
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[A4] (vt) is iid with finite second and fourth moment matrices, and with zero third moment
matrix.

These assumptions allow multivariate versions of the LLN, CLT, and IP of Phillips and
Solo (1992). Assumption [A3] is quite general, allowing correlation serially and across series,
which applies to both the error, the I(0) regressors, and first-differences of the I(1) regressors.
The cases of iid and I(0) autoregressive regressors considered by Andreou et al. (2010a) is
a special case, up to the assumption on the third moment. The symmetry condition is not
essential, but makes the distributions below more tractable. As it turns out, when the error
is iid, as Andreou et al. (2010a) assume, asymmetry may be allowed.7

The main asymptotic results below should hold under more general assumptions, such
as those for weakly dependent heterogeneous processes considered by Davidson (1994), inter
alia. Such a generalization would allow for ARCH in both the regressors, as the third case
considered by Andreou et al. (2010a), and in the error term, for example.

The analogy between the MiDaS regressions in (4)-(6) and that of the more general
model in (8) requires some additional explanation in light of Assumption [A3]. The matrices
Ψs need not be square, in order to allow for the possibility of common innovations. In

particular, (4xt) and (4(1/m)x
(m)
t ) have common high-frequency innovations. For example,

letting vt ≡ (v
(2)
t , v

(2)
t−1/2), (4xt) has innovations of (vt), while (4(1/2)x

(2)
t ) has innovations

of (v
(2)
t ).

An invariance principle holds under Assumptions [A3] and [A4], such that T−1/2
∑[Tr]

t=1 bt ≡
Bn (r) → B (r) with B ≡ BM(Ω). B = (B′

0, B
′

1)
′ may be partitioned as above. The variance

Ω = ∆′ +Σ+∆ may be partitioned as

Ω =





ω2
ε ωεp ωε1

ωpε Ωpp Ωp1

ω1ε Ω1p Ω11



 or Ω =

[

Ω00 Ω01

Ω10 Ω11

]

similarly to (bt). In other words, Ω10 = (ω1ε,Ω1p), etc. Subscripts on the components Σ
and ∆ denote the same partition, and the variances and covariances Σpp, ∆p1, Ω11, σpε, and
δε1 are the same as those introduced in the previous section. As noted above, Ω11 > 0 due
to Assumption [A1], but this assumption does not rule out cointegration of (yt, w

′

1t, x
′

1t)
′ in

(5), because the cointegrating combinations are contained in (p0t).
All of the asymptotics in this paper are low-frequency asymptotics, but these may be

derived from a high-frequency DGP. Chambers (2003) derived low-frequency asymptotics
from a DGP defined by stocks and flows in continuous time using particular aggregations
schemes. Miller (2011) derived low-frequency asymptotics from a high-frequency DGP using
a general aggregation scheme that may include the MiDaS lag polynomials considered here.

3.1. Consistency

Of primary concern is the consistency of the coefficient vector g(θ̂NLS) to g(θmin), rather
than that of θ̂NLS to the deep parameter vector θmin, since the coefficient vector may be
compared directly with that of the linear DGP.

7See the last part of the proof of Lemma A1.
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The following lemma establishes consistency of the coefficient estimates.

Theorem 1. Under Assumptions [A1]-[A4] and [N1]-[N3], g(θ̂NLS) →p g(θmin) as T →
∞. Moreover, defining the partition g(θ) = (g′0(θ), g

′

1(θ))
′ such that g0(θ) and g1(θ) corre-

spond to the I(0) and I(1) regressors respectively, g1(θ̂NLS) = g1(θmin) +Op(T
−1).

The result is more robust than the consistency result of Andreou et al. (2010a) in the
sense that both I(0) and I(1) regressors are allowed and in the sense that consistency to
the minimum MSFE parameter vector does not require (εt+1,Ft) to be an mds. The error
may be correlated both serially and with the regressors. The second part of the result
establishes superconsistency for the coefficients corresponding to the I(1) regressors. Of
course, g1(θmin) = θ1,min in the CoMiDaS regression in (6).

The additional assumption that

[N3’] g−1 (θ) is continuous at θmin and θmin ∈ int(Θ)

allows consistency of the NLS estimator of the deep parameter vector θ.

Corollary 2. Under Assumptions [A1]-[A4], [N1]-[N2], and [N3’], θ̂NLS →p θmin

as T → ∞.

Note that since Θ is a subset of the real line that need not be compact or closed, a limiting
solution of ±∞ is still an interior solution as long as the derivative of g (θ) is zero at that
limit. In other words, g(θ) may have a horizontal asymptote. This allowance is important,
since the exponential Almon lag may best approximate particular weighting schemes as γ1
or γ2 approach ±∞. For example, end-of-period sampling is approximated as γ2 → −∞.

3.2. Asymptotic Distributions

For the purpose of forecasting, the limiting distribution of g(θ̂NLS) − g(θmin) is sufficient
to establish the asymptotic difference between an actual forecast and the minimum MSFE
forecast. To the extent that inference about the deep parameters is desirable, the limiting
distribution of θ̂NLS − θmin is also useful.

When first and second derivatives are taken with respect to g rather than θ, the gradient
and Hessian reduce to JT (g) ≡ T (MT (g(θ)− α)−NT ) and HT ≡ TMT . Note that when
evaluated at g(θmin), JT = −TPT . Define n × n diagonal the normalization matrix νT ≡
diag(T 1/2In0

, T In1
). Further, define

H ≡

[

Σpp 0
0

∫

B1B
′

1

]

and J ≡

[

(E′ ⊗ κ′)N (0,Ξ)
∫

B1dB
′

0κ− (
∫

B1B
′

1Ω
−1
11 − I)ζ

]

,

where Ξ ≡ E[b0tb
′

0t⊗ b0tb
′

0t]−E[b0t⊗ b0t]E[b′0t⊗ b
′

0t], κ ≡ (1,−N ′

0Σ
−1
pp )

′ is an (n0+1)-vector,
ζ ≡ (N ′

1−N ′

0Σ
−1
pp ∆p1)

′ is an n1-vector, and E
′ is the unitary matrix that selects all but the

first row of the following matrix of n0 + 1 rows.
Using these definitions, the following theorem holds.
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Theorem 3. Under Assumptions [A1]-[A4] and [N1]-[N3],

νT (g(θ̂NLS)− g(θmin)) →d H
−1J

as T → ∞.

The asymptotic rates are as expected, but this n×1 distribution is quite nonstandard when
(εt+1) is correlated serially and with the regressors. Normality holds for the coefficients of
the I(0) regressors, however the variance is exacerbated by deviations from Ep0tεt+1 = 0.

In the special case in which (εt+1) is uncorrelated with the regressors, N = 0 and the
n0 × (n0 + 1)2 matrix (E′ ⊗ κ′) becomes a matrix that selects rows (n0 + 1)j + 1, for
j = 1, . . . , n0, of the subsequent matrix of (n0+1)2 rows. Since Ξ is an (n0+1)2× (n0+1)2

matrix of Kronecker products, some algebra shows that the rows and columns of Ξ selected
are E[ε2t+1p0tp

′

0t]−E[εt+1p0t]E[εt+1p
′

0t], which simplifies to σ2εΣpp under the uncorrelatedness
assumption.

If, moreover, the model contains no I(1) regressors, the limiting distribution H−1J

reduces to σεΣ
−1/2
pp N(0, I) when N = 0. In other words, when all of the regressors are sta-

tionary, the error term is ideal, and the MiDaS specification nests the underlying DGP, the
NLS estimator of the coefficients – not of the deep parameters, which may enter nonlinearly
– has the same asymptotic distribution as the LS estimator of the linear model.

If, on the other hand, the model contains no I(0) regressors, the limiting distribution
H−1J reduces to σε(

∫

B1B
′

1)
−1/2N(0, I) when N = 0. This mixed normal distribution

validates hypothesis testing using standard critical values.
Since CoMiDaS models may contain I(1) regressors but almost always contain I(0)

regressors, the limiting distribution is generally σεH
−1/2N(0, I), a vector containing both

normal and mixed normal subvectors. These results are sensible in this special case, but
Theorem 3 is much more broadly applicable.

Obtaining the exact asymptotic distribution of the NLS estimator θ̂NLS of the deep
parameters is more involved, because the derivative structure is much more complicated.

I assume that

[N2’] the third derivative matrix of gi(θ) exists for i = 1, . . . , n, and ∂gi(θ)/∂θ∂θ
′ is bounded

in a neighborhood of θmin,

and define

J∗

T (θ) ≡ T (∂g′(θ)/∂θ)(MT (g(θ)− α)−NT ), and

H∗

T (θ) ≡ T (∂g′(θ)/∂θ)MT (∂g(θ)/∂θ
′) + T ((MT (g(θ)− α)−NT )

′ ⊗ I)(∂vec
(

∂g′(θ)/∂θ
)

/∂θ′)

to be the gradient vector and Hessian matrix with respect to θ. Again, these simplify at
θmin, since MT (g(θmin)− α)−NT = PT .

I do not assume that the parameters involved in the coefficients on the I(0) regressors
are distinct from those involved in the coefficients on the I(1) regressors. In particular, the
coefficient β1 in (5) is common to both. Recalling that θ ⊆ R

g and G ⊆ R
n, ∂g′(θ)/∂θ

is a g × n matrix. The n × n matrix MT may be partitioned into four blocks: a block
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with products of only I(0) regressors, a block with products of only I(1) regressors, and two
off-diagonal blocks with only cross-products of I(0) and I(1) regressors.

Sort and partition θ = (θ′0, θ
′

10, θ
′

11)
′, so that θ0 are g0 parameters only in terms with

I(0) regressors – e.g., γ in the weight functions above, θ10 are parameters in both terms
with I(0) regressors and terms with I(1) regressors – e.g., β1 in (5), and θ11 are parameters
only in terms with I(1) regressors – e.g., ρ∗ in (5). Let g1 ≡ g − g0, so that g1 denotes the
number of parameters in all terms with I(1) regressors: the rows of (θ′10, θ

′

11)
′.

The g × g matrix (∂g′(θ)/∂θ)MT (∂g(θ)/∂θ
′) may be partitioned into four blocks: a

g0 × g0 block with terms consisting of products of only I(0) regressors, two off-diagonal
blocks with terms consisting either of products of only I(0) regressors or cross-products of
I(0) and I(1) regressors, but no products of only I(1) regressors, and a g1 × g1 block with
terms consisting of products of only I(1) regressors, products of only I(0) regressors, and
cross-products.

Conformably with these blocks, define

G (θ) ≡

[

∂g0(θ)/∂θ
′

0 0
0 ∂g1(θ)/∂θ

′

1

]

,

and define the g × g diagonal normalization matrix ν∗T ≡ diag(T 1/2Ig0 , T Ig1). Finally,
define J∗(θ) ≡ G′(θ)J and H∗(θ) ≡ G′(θ)HG(θ). The following corollary holds using these
definitions.

Corollary 4. Under Assumptions [A1]-[A4], [N1], and [N2’]-[N3’],

ν∗T (θ̂NLS − θmin) →d H
∗(θmin)

−1J∗(θmin)

as T → ∞.

This distribution is g-dimensional, in contrast to the much less parsimonious n-dimensional
distribution of the preceding theorem.

Again, it is instructive to consider the special case of N = 0, in which (εt+1) is un-
correlated with the regressors. The distribution simplifies to σεH

∗(θmin)
−1/2N(0, I) in the

same way as above. And again, this distribution is a vector of normal and mixed normal
subvectors. In the case of only I(0) regressors, this may be written as

σε((∂g
′

0(θ)/∂θ0|θ=θmin
)Σpp(∂g(θ0)/∂θ

′

0|θ=θmin
))−1/2N(0, I)

which is analogous to results in Section 3.2 of Andreou et al. (2010a).8,9 Corollary 4 is more
widely applicable than their results, however.

8The variance of β̂NLS alone may be further isolated by conditioning on the remaining estimators in
θ̂NLS , as in line (3.4) of their paper.

9Even this special case generalizes the results Andreou et al. (2010a) in the sense that serial correlation
of the error is still allowed, as long as the regressors are strictly exogeneous.
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4. Testing for MiDaS and CoMiDaS

Mixed-frequency cointegrating regressions do not require a nonlinear MiDaS specification
when the regressand has been average sampled. Chambers (2003) and Miller (2011) showed
that the regressors should also be average sampled for maximum efficiency in that case,
unless any of the series exhibit substantial seasonality, which may introduce inefficiency
in estimating the long-run relationship. This recommendation holds regardless of whether
or not the series are stocks or flows. When the regressand has been sampled differently
– e.g., selectively sampled – the most efficient sampling method for the regressors when
N = 0 is to match that of the regressand (Miller, 2011). However, Miller (2011) showed
that efficiency gains are possible by exploiting serial correlation in the error term when
N 6= 0 and the regressand aggregation scheme is known. In this case, or with unknown
regressand aggregation scheme, or with I(0) series, and especially when the linear model is
over-parameterized or infeasible, a (Co)MiDaS specification is sensible.

Andreou et al. (2010a) propose several tests of particular weighting schemes such as
those mentioned above against alternatives of general nonlinear MiDaS specifications un-
der the maintained hypotheses of no error correlation and that the MiDaS specification
nests both the null and alternative. Using my notation, N = 0 under both their null and
alternative. Because of the (mixed) normality in the CoMiDaS framework when N = 0,
their testing strategy should also be valid for CoMiDaS models with strictly exogenous I(1)
regressors.

The CoMiDaS alternative is useful to reject specific nested nulls, such as average sam-
pling. However, a CoMiDaS null is more useful if the validity of the nonlinear specification
is questionable. The difficulty in testing for CoMiDaS against a general linear alterna-
tive lies in infeasibility of estimating the alternative or of calculating the score when m is
large. Unfortunately, this difficulty rules out traditional Wald, likelihood ratio, and La-
grange multiplier tests, such as the LR test proposed by Godfrey and Poskitt (1975) for a
non-exponential Almon lag structure.

4.1. Restricted Minimum MSFE Parameter Vector and NLS Estimation

For the subsequent test, a restricted minimum MSFE parameter vector and a restricted
nonlinear estimator are useful. In this case, Assumption [N1] is violated, except under the
null that the restricted and unrestricted estimators are equal. Let θ∗ ≡ minθ∈Θ ‖g(θ)− α‖
and τ∗ ≡ α − g(θ∗). The norm of the vector τ∗ reflects a lower bound on the difference
g(θ)−α, based on both the functional form g used and the underlying coefficients, but not
on the choice parameter vector θ. I assume that

[N1’] τ∗ exists and is unique

for identification. Note that in any CoMiDaS regression, τ∗,i = 0 for all i corresponding to
the I(1) regressors in (5), since CoMiDaS regressions are linear in these parameters.

The null that a particular MiDaS specification nests the DGP is equivalent to ‖τ∗‖ = 0,
in which case Assumption [N1] holds and all of the above asymptotics are valid. The
alternative that the MiDaS specification does not nest the DGP is equivalent to ‖τ∗‖ > 0.
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Of course, a rejection of the null may be a rejection of a particular lag structure, rather
than a rejection of nonlinearity in general.

A Lagrangian objective function for the minimum MSFE vector,

Q (θ) = E(E[εt+1 − p′t(g(θ)− α)|Ft])
2 + 2λ′(g(θ)− α− τ∗),

assigns a vector of Lagrange multipliers λ to the vector of constraints that |g(θ)− α| > |τ∗|.
10

The first-order conditions are

0 = (∂g′(θ)/∂θ)(M(g(θ)− α)−N + λ) and

0 = g(θ)− α− τ∗,

so that
τ∗ = g(θmin)− α =M−1(N − λ)

at the minimum. Under the null that ‖τ∗‖ = 0, λ = N , which is zero only if N = 0.
The NLS estimator under the same restriction has a Lagrangian given by

QT (θ) =
1

2

∑

t
(εt+1 − p′t(g(θ)− α))2 + Tλ′T (g(θ)− α− τ∗).

which has similar first-order conditions, so that

τ∗ = g(θ̂NLS)− α =M−1
T (NT − λT ) (9)

at the minimum.

4.2. A MiDaS Variable Addition Test

I propose a novel strategy to test the MiDaS null, based on possible neglected nonlinearity
in the estimated series of residuals (η̂t+1). Consider a simplified (Co)MiDaS regression,

yt+1 = p′tw(γ)β + ηt+1 (10)

with DGP given by
yt+1 = p′twβ + εt+1 (11)

where w(γ) is a weight vector and β is univariate – i.e., a single high-frequency series drives
m regressors. Additional regressors in (3) add unnecessary expositional complexity for
testing a single polynomial. The testing procedure would be exactly the same in that case.

The vector pt may be viewed either as a vector of high-frequency regressors, as in (3), or
as a single high-frequency regressor followed by high-frequency differences, as in (4). Note
that w(γ)β corresponds to g(θ) in (8) and elsewhere above, while wβ corresponds to α in
(7) and elsewhere above. The nonlinear model nests the linear model only under the null.

The NLS residual series is

η̂t+1 = εt+1 − p′t(w(γ̂)β̂ − wβ), (12)

10To form the Lagrangian, let the sign of each element λi of λ be positive if gi(θ)−αi > τ∗,i and negative
if gi(θ)− αi < τ∗,i, so that the second term of the objective function is non-negative for minimization.
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where the NLS subscript is omitted from the estimators for brevity. The second term of (12)
differs from zero asymptotically for two possible reasons. Either N 6= 0, so that NLS does
not consistently estimate wβ, which is not wminβmin in that case, or else the null is not true,
in which case w(γ) does not nest w and inconsistency results from neglected nonlinearity. If
only the first reason is true – the null still holds – then the deviation is exactly offset by the
correlation of (εt+1) with (pt), so that

∑

t η̂t+1pt equals zero up to numerical approximation
error.

If the second is true – the null does not hold – then the deviation of (w(γ̂)β̂ − wβ)
from zero may be picked up by an ancillary regression. Regressing (η̂t+1) onto (pt) is not
parsimonious and may be infeasible. Regressing (η̂t+1) onto (p′tw(γ̂)) is feasible, but suffers
from an endogeneity bias, since (p′tw(γ̂)) is correlated with (εt+1). A solution is offered by a
Wu-type variable addition test (Wu, 1973). Regressing (η̂t+1) onto (p′tw(γ̂)) should capture
all of the correlation between (εt+1) and (pt), as well as estimation error in (w(γ̂)β̂ − wβ)
from that correlation. (εt+1) should not be correlated with any other linear combination
of (pt). The remaining error in this ancillary regression stems from neglected nonlinearity
under the alternative. So, controlling for (p′tw(γ̂)), (η̂t+1) should not be correlated with
any other linear combination of (pt) under the null, but should be correlated under the
alternative.

Let p̂t = p′tw(γ̂) denote the estimated linear combination of high-frequency regressors
using NLS and let W denote an m× q matrix of q other arbitrary linear combinations. The
proposed test is based on the regression

η̂t+1 = p̂tς0 + p′tWς1 + et. (13)

A null of ς1 = 0 coincides with a MiDaS null – i.e., that (10) nests (11). Letting F denote
an F-test with this null, qF or an alternative test of ς1 = 0 may be used to test for MiDaS.

The fitted series (p̂t) is included to ensure that estimates of ς1 pick up only variations
in (p′tW ) orthogonal to (p̂t). Such variations increase the power of the test. To ensure
sufficient power, one may either choose multiple combinations in W , or run a preliminary
regression of (p̂t) onto (p′tW ). A lower R2 in this preliminary regression is desirable to
increase power. However, keeping in mind that both the regressand and regressors of such
a preliminary regression are linear combinations of the same high-frequency series, an R2

near unity should be expected.
In the sense of latent omitted variables, my proposed test shares some similarities with

the Wu-type test proposed by Andreou et al. (2010a). However, it differs substantially.
Most importantly, their test is designed with a null of a specific aggregation scheme nested
by MiDaS against an alternative of a more general MiDaS structure. They do not consider a
DGPmore general than a MiDaS regression. Second, they usem high-frequency instruments
rather than linear combinations of the high-frequency regressors. Their IV test is infeasible
when m is large relative to the sample size – precisely when the parsimonious MiDaS
specification is most useful.

The following proposition cements the easily conjectured asymptotic χ2 distribution of
the proposed test statistic in most cases.
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Proposition 5. Let pt = (xt,4
(1/m)x

(m)
t , ...,4(1/m)x

(m)
t−(m−1)/m)′ in (10) and (11) and

q < m. Under Assumptions [A1]-[A4], [N1’], and [N2]-[N3], the limiting distribution of the
(Co)MiDaS variable addition test statistic qF coincides with a χ2

q distribution when either

[a] (xt) is I(0), or

[b] (xt) is I(1) and strictly exogenous and (εt+1,Ft) is an mds,

as T → ∞.

Note that the asymptotic distribution of the test is robust to correlation of the regressors
and error term in the I(0) case, but not the I(1) case.

In the I(1) case, the error must be an mds sequence uncorrelated with the regressor at
all lags. If the mds assumption is violated, it may be possible to construct a Wald test with
a long-run variance estimator instead of the contemporaneous variance estimator of the
traditional F-test, along the lines discussed by Park and Phillips (1988). If the exogeneity
assumption is violated, it may be possible to correct for the resulting non-normality along
the lines of Phillips and Hansen (1990) or Park (1992). However, variance estimation in
these cases would be inconsistent due to correlation of the error with the I(0) regressors,
further complicating the test and its limit.

Fortunately, the violation occurs in only one of the (q + 1) elements of the regressor
vector. When the number of variables added in the variable addition test is large, the
non-normality of the single element may be diluted by the normality of the remaining
q elements, so that the chi-squared distribution is a rough approximation to the actual
distribution, which would involve stochastic integrals and nuisance parameters similar to
the limit in Theorem 3.

The model and DGP in (10) and (11) are simple, but the principles of the test extend
easily. For more complicated (Co)MiDaS models such as that in (5), the MiDaS specifica-
tions for each high-frequency regressor may be tested jointly or separately, depending on the
desired null. The exact testing strategy depends on the parametric modeling assumptions
underlying the nonlinear weight specification. The limiting distribution may be generalized
from Proposition 5.

4.3. Small-Sample Performance of the Test

I perform simulations of the DGP in (11) to evaluate size and power properties of the
proposed test using several nulls and alternatives. I set m = 12, as would be the case with
an annual regressand and monthly regressor, and I consider T = 25, 50, 100. If T represents
years in the sample, thenmT represents months in the sample. All of the asymptotics above
are as T → ∞, so the sample sizes here are quite small but realistic for macroeconomic
series.

I consider weights generated by 12 DGPs consisting of 6 nulls and 6 alternatives. The
null models nest the MiDaS specification in (10), using an exponential Almon lag with γ
equal to (0, 0), (−5,−5), (1, 1), (−0.5, 0.04), (0.5,−0.04), and (0.005, 0.02), labeled H0(j)
with j = 1, ..., 6. The first of these is simply a flat aggregation scheme characteristic of
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Figure 1: Three null weighting schemes and six alternative weighting schemes. Solid lines represent

the DGP, while dashed lines represent the closest approximation to the alternative DGPs using an

exponential Almon lag.

average sampling. The second two assign unit weights to the first high-frequency regressor
and the last high-frequency regressor, respectively, and zero to the remaining high-frequency
regressors, characteristic of selective sampling.

The last three are illustrated in the top panels of Figure 1. Specifically, H0(4) as-
signs more weight to the high-frequency regressors near the beginning and end of the low-
frequency interval, H0(5) assigns more to those in the middle, and H0(6) assigns a gently
increasing weight structure moving from the end to the beginning.

The bottom six panels of Figure 1 show six alternatives not nested by the exponential
Almon lag. These panels also show the best fit curve, in the sense of minθ∈Θ ‖g(θ)− α‖,
using the exponential Almon function. A higher-order exponential Almon lag could better
approximate some of these alternatives. Because the point of this exercise is to demonstrate
the power of the test, only the second-order exponential Almon lag described in Section 2 is
employed. Table 1 shows the weighting schemes for the six alternatives, labeled HA(j) with
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j = 1, ..., 6. The table shows raw weights w∗, with actual weights set to ws = w∗

s/
∑12

i=1w
∗

i .

Table 1: Alternative Weighting Schemes

w∗

1 w∗

2 w∗

3 w∗

4 w∗

5 w∗

6 w∗

7 w∗

8 w∗

9 w∗

10 w∗

11 w∗

12

HA(1) 1 2 4 8 16 32 32 16 8 4 2 1
HA(2) 0.90 0.91 0.92 0.93 0.94 0.95 0.95 0.94 0.93 0.92 0.91 0.90

HA(3) 1 1 1 1/2 1/2 1/2 1/4 1/4 1/4 1/2 1/2 1/2
HA(4) 32 72 102 92 82 72 62 52 42 32 22 12

HA(5) 30 31 32 42 32 31 32 42 32 31 30 30

HA(6) 30 31 32 30 31 32 30 31 32 30 31 32

HA(1) is intuitively similar to H0(5), but with a more precipitous and less smooth peak
in the middle. HA(2) is intuitively similar to H0(4) but flatter. Note that the exponen-
tial Almon function almost nests HA(2). HA(3) shows a quarterly pattern, if m = 12 is
interpreted as months, with more weight given to the last quarter (smallest index). This
weighting scheme might be reasonable for seasonal data in which the relationship modeled
holds better during, say, a high-volume transaction season. HA(4) shows a sharp seasonal
spike occurring at a time other than the ends or middle of the low-frequency period, and
HA(5) shows a bimodal weighting scheme. Finally, for a shorter cycle within each quarter,
say, HA(6) shows a repeating quarterly pattern.

These various null and alternative weighting schemes serve two purposes. I use each to
illustrate size and power of the MiDaS IV test. I use the rest as instruments. That is, the q
columns ofW are the 11 linear combinations other than the one used in the DGP. Omitting
the one used in the DGP rules out collinearity with (ẑt) – especially for the null models.

Letting u
(m)
t = (ε

(m)
t+1, x

(m)
t ) and

A =

[

0 0
0 %

]

and var($t) =

[

1 a
a 1

]

,

I consider a high-frequency DGP given by u
(m)
t = Au

(m)
t−1 +$t for % = 0, 1 and a = 0, 1/2.

As such, the regressor is I(%) and may or may not be correlated with the error term. I set
β = 10, and perform each simulation 10, 000 times.
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Table 2: Size and Power of the MiDaS Variable Addition Test

I(0) Regressors I(1) Regressors

a = 0 1/2 0 1/2

T = 25 50 100 25 50 100 25 50 100 25 50 100

H0(1) 0.10 0.04 0.03 0.10 0.05 0.03 0.09 0.04 0.03 0.12 0.09 0.12
H0(2) 0.16 0.09 0.06 0.15 0.09 0.07 0.16 0.09 0.06 0.46 0.75 0.98
H0(3) 0.16 0.09 0.07 0.15 0.09 0.06 0.16 0.09 0.07 0.15 0.08 0.06
H0(4) 0.10 0.05 0.03 0.10 0.04 0.03 0.09 0.05 0.03 0.15 0.14 0.26
H0(5) 0.10 0.04 0.03 0.10 0.05 0.03 0.10 0.04 0.03 0.10 0.05 0.05
H0(6) 0.10 0.04 0.03 0.09 0.04 0.03 0.10 0.05 0.03 0.10 0.06 0.07

HA(1) 0.90 1.00 1.00 0.97 1.00 1.00 0.94 1.00 1.00 0.98 1.00 1.00
HA(2) 0.22 0.31 0.64 0.28 0.46 0.84 0.22 0.33 0.67 0.31 0.54 0.90
HA(3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HA(4) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HA(5) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
HA(6) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2 shows percentages of rejections using a test with a nominal size of 0.05. These
are size under the six nulls and power against the six alternatives. The test appears to be
extremely powerful against all of the alternatives except HA(2) – even at the small sample
size of 25. Recall from Figure 1 that the exponential Almon lag approximates HA(2)
quite well, so no significant power should be expected against that alternative. Imposing
the Almon structure should not change the fit substantially, so a rejection might not be
desirable.

Compared to a nominal size of 0.05, the test appears to be undersized for many of the
nulls with a sample size as small as 50. For a sample size of 25, size distortion is more
noticeable. None of the sizes appear larger than 0.10 for T ≥ 50, except in cases with an
I(1) regressor correlated with the error term, which are not covered by Proposition 5.

Nevertheless, even in cases with an I(1) regressor correlated with the error term, size
distortion is not always discernible. The proof of Proposition 5 suggests that non-normality
is only problematic for the single I(1) regressor in (pt). The remaining m− 1 regressors are
I(0), and estimators of the corresponding coefficients are asymptotically normal, even with
such correlation. The numerical results suggest that the normality of the I(0) regressors
may in some sense dilute the non-normality of the single I(1) regressor. The case with
the most size distortion occurs under H0(2), a null that assigns a unit weight to the first
regressor, which is I(1), but zero weights to the remaining I(0) regressors. As the estimated
model approximates the null model, more weight is given to the asymptotically non-normal
coefficient estimates than to the asymptotically normal coefficient estimates. Similar intu-
ition holds for H0(4), where relatively more weight is given to the first regressor, though the
distortion is less dramatic. Asymptotic normality is also violated under the remaining four
nulls when a 6= 0, but the weight given to the asymptotically non-normal coefficient estimate
is small enough and the limiting distribution is close enough to a chi-squared distribution
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that the size distortion does not appear to be substantial.

5. An Application to Nowcasting Economic Activity

To illustrate the utility of CoMiDaS regressions, I consider a simple exercise of nowcasting
annual log global real economic activity (RGDP) using past RGDP and high-frequency
covariates measured over the same period.

A major factor of production in any modern economy is energy, and such economies are
highly dependent on hydrocarbons and their substitutes. Oil use is particularly prevalent
and its price naturally affects that of other energy sources. Although demand for and supply
of oil in the United States were major movers of oil prices before the 1970’s, the OPEC
era changed the landscape of oil supply in the 1970’s and into the 1980’s. By 1985-86, the
market power of OPEC collapsed. Moreover, in the last few decades the rise of demand in
emerging economies, such as China, has fueled large demand increases. With a relatively
inelastic supply of oil in both short- and long-run senses, demand has become an important
driver of price. Hotelling (1931) provided theoretical models for the price of an exhaustible
resource, such as oil. His perfect competition model provides a basis for a linear trend in the
log of prices. Under the more realistic assumption of imperfect competition, Hotelling noted
the importance of demand in determining price. Moreover, a number of recent papers have
emphasized the role of demand in determining oil prices – e.g., Barsky and Kilian (2004),
Kilian (2008, 2009), and Hamilton (2009).

Hamilton (2009) noted the stability of the relationship between US real GDP and US oil
consumption over time. Extrapolating such a relationship to other developed and developing
economies, and since oil is a factor production in global output and is traded globally, global
real economic activity is a reasonable proxy for oil demand. Miller and Ni (2011) also made
this argument, noting empirical evidence supporting cointegration of log real oil prices
(ROIL) with RGDP since 1986, but with a common stochastic trend fluctuating around
different linear trends.

Another type of series that may be tied to global real economic activity is an index for
international maritime shipping rates, such as the one constructed by Kilian (2009). His
purpose for creating this index was quite different – he used a shipping index as a proxy for
oil demand, later found to be cointegrated with oil prices by He et al. (2010). As noted by
Klovland (2002) and others, maritime shipping is linked with economic activity.11 In this
light, such an index may be viewed as a leading indicator of economic activity. The Baltic
Dry Index (BDI or RBDI for log real BDI) is one such index.

It is not surprising that once the logs of these series are linearly detrended12 the series are

11Klovland’s (2002) analysis focused on pre-WW1 data. Using more recent data from the World
Bank <http://data.worldbank.org> and UNCTAD <http://unctadstat.unctad.org>, international trade
accounted for roughly 21% of world GDP in 2009.

12Since even the nonlinear-in-parameters MiDaS model is still linear in data, detrending is a logical first
step for dealing with a model that contains such a trend. I do not specifically allow for deterministic trends
in the econometric specification above, since the asymptotic distributions would contain additional nuisance
parameters from these trends. In spite of the nuisance parameters, all of the qualitative results should hold
with the addition of general trends of polynomial asymptotic order.
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highly correlated. However, they are observed at different frequencies. Although RGDP
may be a demand proxy for ROIL and RBDI, the latter two are measured much more
frequently and accurately. Therefore, it is reasonable to use the informational content from
ROIL and RBDI to try to predict RGDP.

No assumptions about the direction of causality need to made – nor should they be.
Endogeneity may be expected in forecasting any of them using any of the others. Since the
specification above allows for the error to be correlated with the regressors, endogeneity
is not problematic from an econometric point of view. To highlight even more clearly the
robustness of the model for forecasting, I adopt a suboptimal modeling strategy of not
explicitly modeling lags of the indices in previous years, nor lags of the regressand beyond
the previous year. The error structure may therefore be correlated both serially and with
the regressors.

The model I estimate is adapted from (3) as

yt = δ′ct + ρyt−1 + β′
∑m−1

k=0
Πk+1(γ)x

(m)
t−k/m + ηt,

where ct = (1, t)′ and ρ is not restricted to unity. Rolling back the indices on the error
term and regressand for nowcasting rather than forecasting poses no econometric problem,
since endogeneity is allowed. The diagonal weight matrix Πs is 2×2 with diagonal elements
π1,s(γ1, γ2) and π2,s(γ3, γ4).

I use annual RGDP from 1985-2008 (T = 24) and monthly ROIL and RBDI over the
same period (m = 12).13 As a nowcasting exercise, I conduct one-step ahead forecasts of
RGDP using lagged RGDP and contemporaneous RBDI and ROIL for 2001 through 2008.
The smallest sample therefore has T1 = 16, while the largest has T1 = 23. Note that with
T = 24, m = 12, and two high-frequency regressors, a linear ADL model, with 29 parame-
ters, or 27 after the identifying restriction, would be infeasible. Average sampling reduces
the parameters to 5, while using the two exponential Almon lag polynomials described
above leaves 9.

Since the coefficients of the lag polynomial are exponential in their parameters, I restrict
the parameter space of γ to the hypercube bounded by (−5, 1) using a piecewise logistic
function with each piece having equal derivatives at zero. These bounds were chosen so as
not to restrict the weighting schemes for m = 12. There is no numerical difference – up to
rounding error – between, say, (γ1, γ2) = (−5,−5) and (γ1, γ2) = (−6,−5). The monotonic
transformation of the parameter space mutes the numerical sensitivity of the algorithm,
providing more stable parameter estimates.

With such a small sample in mind, the number of instruments for the test should be
kept to a minimal number, while still providing disparate weighting schemes. I choose three
instruments – using weighting schemes described byH0(5), HA(5), andHA(6) above – based
on diversity. I conduct tests on each of the two lag polynomials separately.

13The global real GDP series used in this study is from Angus Maddison’s historical statistics
(Maddison, 2010). Real oil price and real shipping rate series are created by dividing the West Texas
Intermediate spot oil price series and the Baltic Dry Index by the US producer price index (all commodities).
I take logs of the resulting series.
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Figure 2: (a) RGDP target and one-step AR(1) forecasts, and (b) RGDP target and one-step AR(1)

plus CoMiDaS nowcasts.

Table 3: Estimation of γ and VAT Results

RBDI ROIL

Subsample γ̂1 γ̂2 VAT γ̂3 γ̂4 VAT

1985-00 −0.00000154 −0.00001770 2.06 −0.00000007 −0.00000246 21.13
1985-01 −0.00000025 −0.00000658 2.10 −0.00000043 −0.00000280 18.27
1985-02 −0.00000082 −0.00001051 1.71 −0.00000011 −0.00000061 16.25
1985-03 −0.00007397 −0.00090516 1.44 0.00000046 0.00005264 7.30
1985-04 −0.02267300 −0.28054330 0.29 −0.00067434 0.00130722 4.18
1985-05 −0.00010143 −0.00129093 0.85 −0.00000433 −0.00003896 6.22
1985-06 −0.00000212 −0.00002778 0.61 −0.00000006 −0.00000060 6.58
1985-07 −0.00000092 −0.00001092 1.25 0.00000017 0.00000200 4.77

Table 3 summarizes the results of estimation and testing. The deep parameter vector γ
is estimated to be very close to zero and slightly negative for most of subsamples and lag



22

-0.5

0.0

0.5

1.0

1.5

2.0

Deviations from Real GDP (1990 Trillion GK$) of ...

One-step AR(1) Forecasts (triangles)

One-step AR(1) + CoMiDaS Nowcasts (squares)

-2.0

-1.5

-1.0

-0.5

2000 2001 2002 2003 2004 2005 2006 2007 2008

Figure 3: Deviations of one-step AR(1) forecasts and AR(1) plus CoMiDaS nowcasts from RGDP.

polynomials. This result suggests a nearly flat weighting scheme, with slightly more empha-
sis on recent RBDI and ROIL. In other words, shipping rates and oil prices in December are
slightly more influential than those in January for nowcasting RGDP. This result is sensible
in light of the results of Chambers (2003) and Miller (2011), which suggest that average
sampling of the regressors is most efficient when the regressand is aggregated in the same
way and the regression is cointegrating.

Compared to a χ2
3 critical value of 7.81 at 5% significance, I cannot reject the MiDaS null

for any of the subsamples for RBDI and most for ROIL. Non-rejection provides evidence
supporting the adequacy of CoMiDaS specification.14 In light of the simulation results in
Table 2, some size distortion is to be expected, since the series are most likely I(1) and
cointegrated, but the regressor is not strictly exogenous. Since the weights are estimated
to be close to flat – i.e., H0(1) , the size distortion is not likely to be severe.

Finally, Figures 2 and 3 show the CoMiDaS nowcasts and simple AR(1) forecasts for
2001-08, compared to the target expressed in trillions of 1990 Geary-Khamis dollars. 95%
confidence bands were calculated using a simple bootstrap, which should be conservatively
wide if serial correlation is present. The CoMiDaS nowcasts evidently track the target
more closely than the AR(1) forecasts until 2007, when both forecasts overshoot the target.
Overshooting in 2007 could result from revision of the 2007 RGDP datum following the
global recession that began in late 2007. The difference in 2008 becomes clear, as the
AR(1) forecast continues to overshoot, while that of the CoMiDaS nowcast corrects for the
recession. The correction comes from a precipitous drop in ROIL and RBDI that did not
occur until 2008.

14I cannot reject a null of flat aggregation against MiDaS, either, using an LR test similar to the LM test
of Andreou et al. (2010a). Results not shown.
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6. Concluding Remarks

The MiDaS specification introduced by Ghysels et al. (2004) provides a very useful parsimo-
nious specification for regression and forecasting using high-frequency regressors. Asymp-
totic analyses by Ghysels and his coauthors support a range of mixed-frequency models for
which the nonlinear ADL specification may be useful. This paper broadens this range sub-
stantially by introducing CoMiDaS regressions, allowing for the possibility of cointegration
of series that contain unit roots. Moreover, the asymptotic analysis allows for the possibility
of correlation of the error term serially and with both I(1) and I(0) regressors. In this light,
my results promote the MiDaS approach to mixed-frequency time series by extending the
validity of the approach.

Further, I present a simple variable addition test of the MiDaS null against a more
general ADL specification. The test is feasible even when the number of high-frequency
regressors is large relative to the low-frequency sample size, which is precisely when the
MiDaS specification is most useful. Both asymptotic and simulated results suggest that
the test suffers very little size distortion in most cases, while enjoying substantial power in
samples as small as T = 25.

An application to nowcasting global real economic activity using a lag and using con-
temporaneous real oil prices and an index of real maritime shipping prices illustrates the
utility of CoMiDaS regressions and of the proposed MiDaS variable addition test.

Appendix A: Proofs of the Theoretical Results

The following ancillary lemma collects results to make the ensuing proofs more tractable.

Lemma A1. Under Assumptions [A3]-[A4] and for an arbitrary (n0 + 1)-vector a with
finite norm,

[a] T−1
∑

t(b0tb
′

0t − Σ00)a→p 0

[b] T−1/2
∑

t(b0tb
′

0t − Σ00)a→d (In0+1 ⊗ a′)N (0,Ξ),

[c] T−1
∑

t p1tb
′

0t →d

∫

B1dB
′

0 +∆′

01, and

[d] T−2
∑

t p1tp
′

1t →d

∫

B1B
′

1.

The convergences in parts [b]-[d] are joint, but the limiting distribution in [b] is independent
of those in parts [c] and [d].

Proof of Lemma A1. Proofs of parts [a] and [b] for the univariate case are given by
Theorems 3.7 and 3.8 of Phillips and Solo (1992). By Assumption [A3], the vector b0tb

′

0ta
may be written as

∑∞

i=0
Ψiv0,t−iv

′

0,t−iΨ
′

ia+
∑∞

r=1

∑∞

i=0
Ψiv0,t−iv

′

0,t−i−rΨ
′

i+ra

+
∑∞

r=1

∑∞

i=0
Ψi+rv0,t−i−rv

′

0,t−iΨ
′

ia,
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where (v0,t) is an mds with respect to (Ft−1). This expression is

b0tb
′

0ta = (I ⊗ a′)Ξ00(L)w00,t + (I ⊗ a′)
∑∞

r=1
(Ξ0r(L)w0r,t + Ξr0(L)wr0,t),

using the matrix polynomial Ξrs(z) ≡
∑

∞

k=0(Ψk+r ⊗Ψk+s)z
k and wrs,t ≡ (v0,t−r ⊗ v0,t−s).

Similarly to Phillips and Solo (1992), a Beveridge-Nelson decomposition (Beveridge and
Nelson, 1981) may be applied to the matrix polynomial Ξrs(z), so that Ξrs(z) = Ξrs (1) −
(1− z) Ξ̃rs (z), where Ξ̃rs (z) =

∑

∞

i=0

∑

∞

j=i+1(Ψj+r ⊗ Ψj+s)z
i. Subtracting Eb0tb

′

0ta =
(I ⊗ a′)Ξ00(1)Ew00,t and adding across t shows that the summation in parts [a] and [b] is

(I ⊗ a′)
∑

t

[

Ξ00(1)(w00,t −Ew00,t) +
∑∞

r=1
(Ξ0r(1)w0r,t + Ξr0(1)wr0,t)

]

(14)

− (I ⊗ a′)
∑

t

[

Ξ̃00(L)4w00,t +
∑∞

r=1
(Ξ̃0r(L)4w0r,t + Ξ̃r0(L)4wr0,t)

]

,

and the leading term in square brackets drives the asymptotic results.
Under Assumptions [A3]-[A4] the LLN and CLT for variances of Phillips and Solo (1992)

apply directly for elements of wrs,t that are squares of single elements of vt. The general-
ization of their asymptotics to multivariate series requires generalizing the LLN and CLT
to covariances. I present only a sketch of the proof, since the details are tedious but follow
in a straightforward manner from Phillips and Solo (1992).

The matrix Ξ in the limiting variance of the CLT is the same as that defined in Section
3. Specifically,

Ξ ≡ E[b0tb
′

0t ⊗ b0tb
′

0t]−E[b0t ⊗ b0t]E[b′0t ⊗ b′0t]

= Ξ00(1)K00Ξ
′

00(1) +
∑∞

r=1
{Ξ0r(1)K0•Ξ

′

0r(1) + Ξr0(1)K0•Ξ
′

r0(1)

+ Ξ0r(1)K•0Ξ
′

r0(1) + Ξr0(1)K•0Ξ
′

0r(1)}

where

K00 ≡ E[v0tv
′

0t ⊗ v0tv
′

0t]−E[v0t ⊗ v0t]E[v′0t ⊗ v′0t]

K0• ≡ E[v0tv
′

0t ⊗ v0t−•v
′

0,t−•
]

K•0 ≡ E[v0,t−•v
′

0t ⊗ v0tv
′

0,t−•
]

are time-invariant by assumption, so that • is just a placeholder.
A sufficient condition that Phillips and Solo (1992) employ is that

∑

∞

s=1 sψ
2
s < ∞.

For the multivariate case, a representation element of the matrix (Ψi+r ⊗ Ψi+s) may be
written as ψjk,i+rψuv,i+s, such that Ψi+r = [ψjk,i+r] and Ψi+s = [ψuv,i+s]. The mul-
tivariate generalization is straightforward under the analogous sufficient condition that
∑

∞

s=0 s |ψjk,sψuv,s| <∞. Note that

∑∞

s=0
s |ψjk,sψuv,s| ≤

∑∞

s=0
smax

j,k
|ψjk,s|

2 ≤
∑∞

s=0
smax

j,k
|ψjk,s| ≤

∑∞

s=0
s ‖Ψs‖

which is finite under Assumption [A3]. The last equality follows from one of the relationships
between matrix norms presented by Lütkepohl (1996, pg. 111), for example. Similarly to
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Phillips and Solo (1992), the second square-bracketed term of (14) may be shown to be
op

(

T 1/2
)

, so that it may be ignored in both parts [a] and [b]. The limiting variance in part
[b] follows directly from the variance of the square-bracketed expression in the first term of
(14).

The proofs of parts [c] and [d] follow from standard asymptotic arguments using the
invariance principle of Phillips and Solo (1992).

Finally, the joint convergence and independence of the limiting distribution in part [b]
from those in [c] and [d] follows along logic similar to that of Chang et al. (2001). The joint

convergence follows from the convergence of T−1/2
∑[Tr]

t=1 bt under the stated assumptions.
Moreover, the leading term of (14) is a martingale under Assumption [A4], so that E[((v0,t⊗
v0,t) − E[v0,t ⊗ v0,t])v

′

s] = 0 for s 6= t. For s = t, the equality holds if the third moment
matrix of (vt) is zero. Since this expected value is zero, the limiting distribution in part
[b] is uncorrelated with the limiting Brownian motion B (r) in parts [c] and [d]. Normality
then implies independence. �

Proof of Theorem 1. As noted above, Assumptions [A1]-[A2] and [N1]-[N3] are sufficient
to write the difference g(θ̂NLS)−g(θmin) asM

−1
T PT , with PT = (NT −N)−(MT −M)M−1N

as defined above. Using parts [a] and [c] of Lemma A1, NT −N is op (1) for I(0) regressors
and Op (1) for I(1) regressors. Using part [a], [c], and [d], MT −M is op (1) for products
of I(0) regressors, Op (T ) for products of I(1) regressors, and Op (1) for cross-products of
I(0) and I(1) regressors. M is O (1) for products of I(0) regressors and cross-products, but
O (T ) for products of I(1) regressors. As a result, M−1 is O (1) in the upper left block, but
O
(

T−1
)

in all other blocks. Since N is O (1), the entire second term of PT is op (1) for
rows corresponding to the the I(0) regressors and Op (1) for those of the I(1) regressors, so
that the respective rows of PT itself are op (1) and Op (1). Finally, similarly to M−1, M−1

T

is Op (1) for products of I(0) regressors, but Op

(

T−1
)

for products of I(1) regressors and
cross-products, which gives the result. �

Proof of Corollary 2. The consistency in Theorem 1 is sufficient for the proof of the
corollary, if g (θ) is continuous at θmin, as I assume, and if θmin such that the first-order
condition of the MSFE minimization problem is satisfied. Assumptions [N1]-[N2] and [N3’]
are sufficient for the latter. �

Proof of Theorem 3. I employ the Wooldridge conditions for the proof of his Theorem
10.1 (Wooldridge, 1994, pg. 2711). Conditions (i)-(iii) of Wooldridge (1994) are satisfied
by Assumption [N3] and by construction of QT (θ) – in particular by the linearity of the
CoMiDaS regression in g.

It only remains to show the joint convergence of

(ν
−1/2
T HT (g(θmin))ν

−1/2
T , ν

−1/2
T JT (g(θmin))).

The convergence of

ν
−1/2
T HT (g(θmin))ν

−1/2
T = ν

−1/2
T TMT ν

−1/2
T →d H
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is an immediate consequence of parts [a], [c], and [d] of Lemma A1.

The convergence of ν
−1/2
T JT (g(θmin)) = −ν

−1/2
T TPT also follows from Lemma A1, but

is more involved. Looking at each component of PT separately,

M−1 =

[

Σ−1
pp +O

(

T−1
)

O
(

T−1
)

−T−1Ω−1
11 ∆

′

p1Σ
−1
pp + o

(

T−1
)

T−1Ω−1
11 + o

(

T−1
)

]

and

MT −M =

[

Op

(

T−1/2
)

Op (1)
Op (1) Op (T )

]

from parts [b], [c], and [d] of Lemma A1. T (MT −M)M−1 simplifies to

[ ∑

t p0tp
′

0t − Σpp 0
∑

t p1tp
′

0t −∆′

p1 T−1
∑

t p1tp
′

1t − Ω11

] [

Σ−1
pp 0

−Ω−1
11 ∆

′

p1Σ
−1
pp Ω−1

11

]

+

[

Op (1) Op (1)
Op (T ) Op (T )

]

using these asymptotic rates.
Partitioning PT = (P ′

0T , P
′

1T )
′ conformably with pt = (p′0t, p

′

1t)
′, it follows that

T 1/2P0T = T−1/2E′
∑

t
(b0tb

′

0t − Σ00)κ→d (E′ ⊗ κ′)N (0,Ξ)

where the convergence follows from part [b] of Lemma A1.
Further, P1T may be written as

P1T = T−1
∑

t
(p1tb

′

0t −∆′

01)κ−
(

T−2
∑

t
p1tp

′

1tΩ
−1
11 − I

)

ζ

so that convergence

P1T →d

∫

B1dB
′

0κ−

(
∫

B1B
′

1Ω
−1
11 − I

)

ζ

follows from parts [c] and [d] of Lemma A1. Finally, since the convergences are joint,
condition (iv) of Wooldridge (1994) is satisfied and the stated result is obtained. �

Proof of Corollary 4. The proof is similar to that of the preceding theorem, but [N2’]
and [N3’] are needed to ensure conditions (i) and (ii) of Wooldridge’s (1994) Theorem 10.1.
I next verify condition (iv) and then condition (iii) last.

To analyze the score, note that

(ν∗T )
−1J∗

T (θ) =

[

T−1/2 ∂g
′

0
(θ)

∂θ0
0

T−1 ∂g
′

0
(θ)

∂θ1
T−1 ∂g

′

1
(θ)

∂θ1

]

[

TP0T

TP1T

]

=

[

∂g′
0
(θ)

∂θ0
T 1/2P0T

∂g′
1
(θ)

∂θ1
P1T +

∂g′
0
(θ)

∂θ1
P0T

]

comes from the partitioning of θ = (θ′0, θ
′

10, θ
′

11)
′ discussed above. Convergence of T 1/2P0T

and P1T is the same as in the proof of the preceding theorem, so that (ν∗T )
−1J∗

T (θmin) →d

J∗(θmin).
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The first term of the Hessian (ν∗T )
−1(∂g′(θ)/∂θ)TMT (∂g(θ)/∂θ

′)(ν∗T )
−1 is





∂g′
0
(θ)

∂θ0
M00,T

∂g0(θ)
∂θ′

0

0

0
∂g′

1
(θ)

∂θ1
T−1M11,T

∂g1(θ)
∂θ′

1



+Op

(

T−1/2
)

using parts [a] and [c] of Lemma A1. The limiting distribution H(θmin) at θmin then follows
from parts [a] and [d]. To show that the remaining term is negligible, note that (TP ′

T ⊗ I)
is a g × gn matrix

The ng × g matrix of second derivatives ∂vec (∂g(θ)′/∂θ) /∂θ′ has only zeros in the
block consisting of the last ng1 rows and first g0 columns, due to the partitioning of θ =
(θ′0, θ

′

10, θ
′

11)
′. Scaling by (ν∗T )

−1 allows

(∂vec
(

∂g′(θ)/∂θ
)

/∂θ′)(ν∗T )
−1 =

[

T−1/2V00(θ) T−1V01(θ)
0 T−1V11(θ)

]

,

where the matrices V00(θ) (ng0 × g0), V11(θ) (ng1 × g1), and V01(θ) (ng0 × g1) are defined
by the second derivatives. Further, (TP ′

T ⊗ I) may be written as

(TP ′

T ⊗ I) =
[

(TP ′

0T ⊗ Ig) (TP ′

1T ⊗ Ig)
]

,

so that (TP ′

T ⊗ I)(∂vec (∂g′(θ)/∂θ) /∂θ′)(ν∗T )
−1 is

[

(T 1/2P ′

0T ⊗ Ig)V00(θ) (P ′

0T ⊗ Ig)V01(θ) + (P ′

1T ⊗ Ig)V11(θ)
]

,

which is Op (1) from the previous theorem. Premultiplying by (ν∗T )
−1 renders the entire term

Op

(

T−1/2
)

, so that it is asymptotically negligible. Condition (iv) of Wooldridge (1994) is
thus satisfied.

Finally, condition (iii) requires that an increasing sequence µT exists, such that µT (ν
∗

T )
−1 →

0 and
max
θ∈ΘT

∥

∥µ−1
T (HT (θmin)−HT (θ∗))µ

−1
T

∥

∥ = op (1) , (15)

where ΘT ≡ {θ∗ ∈ Θ : ||µT (θ∗ − θmin)|| ≤ 1} is a sequence of shrinking neighborhoods of
θmin.

The matrix inside the norm in (15) is

µ−1
T (h′(θmin)TMTh(θmin)− h′(θ∗)TMTh(θ∗))µ

−1
T (16)

− µ−1
T

(

(T ((g(θmin)− α)′MT −N ′

T )⊗ I)k(θmin)
−(T ((g(θ∗)− α)′MT −N ′

T )⊗ I)k(θ∗)

)

µ−1
T ,

where h(θ) ≡ ∂g(θ)/∂θ′ and k(θ) ≡ ∂vec(∂g′(θ)/∂θ)/∂θ′. Condition (iii) requires that there
exists a sequence (µT ) such that (16) is op (1).

Similarly to Chang et al. (2009), let µT = (ν∗T )
1−δ and θ∗ = θmin+(ν∗T )

1−δ for arbitrarily
small δ > 0. Moreover, let

g(θ∗) = g(θmin) +R0, h(θ∗) = h(θmin) +R1, and k(θ∗) = k(θmin) +R2 (17)
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with R0, R1, and R2 defined as conformable vectors or matrices. The elements of each of
these are at most Op(T

−1/2+δ/2) from the mean value theorem and the existence of third
derivatives of g(θ) assumed by [N2’].

The first term of (16) may be written as

(ν∗T )
δ−1(h′(θmin)TMTR1 +R′

1TMTh(θmin) +R′

1TMTR
′

1)(ν
∗

T )
δ−1

by expanding h′(θ∗)TMTh(θ∗) using (17). Since R1 is no larger than O(T−1/2+δ/2), νδT is
no larger than O(T δ), and from the convergence of the first term of the Hessian above, the
entire first term of (16) is no larger than Op

(

T−1/2+5δ/2
)

. There exists some small δ > 0
such that this is op (1).

The second term of (16) may be written as

(ν∗T )
δ−1((TPT ⊗ I)R2 + (R′

0TMT ⊗ I) (k(θmin) +R2))(ν
∗

T )
δ−1

using (17). By the same logic, this term is also op (1), so that (15) and, consequently,
condition (iii) of Wooldridge (1994) are satisfied. �

Proof of Proposition 5. Rewriting (13) as η̂t+1 = p′tW
∗ς + et, an F-test of the whole

regression takes the form qF = T (ς̂ − ς)′W ∗′MTW
∗(ς̂ − ς)/σ̂2e , where ς̂ is the least squares

estimator of ς and σ̂2e is the usual variance estimator of (et). The distribution for a test on
the subvector ς1 is based on that for the whole regression, but with reduced rank.

The least squares estimator may be written as ς̂ = (W ∗′MTW
∗)−1W ∗′λT using the

restricted estimator in (9) and the NLS residuals in (12). Furthermore, λT − λ may be
written as

λT − λ = (NT −N)− (MT −M)(g(θ̂NLS)− α)−M(g(θ̂NLS)− α− τ∗),

using the restricted estimator and the minimum MSFE parameter vector. When optimized
properly, the second term becomes (MT −M)τ∗ and the third term becomes zero. The
coefficient ς is equal to

ς = (W ∗′MW ∗)−1W ∗′N − (W ∗′MW ∗)−1W ∗′M(w(θmin)βmin − wβ)) = (W ∗′MW ∗)−1W ∗′λ

using the minimum MSFE parameter vector. Subtracting ς from ς̂ yields

ς̂ − ς = (W ∗′MTW
∗)−1W ∗′((NT −N)− (MT −M)ξ)

after some algebra, where ξ ≡ τ∗ +W ∗(W ∗′MW ∗)−1W ∗′λ.
Consider the case of part [a] with only I(0) regressors. Using the definitions of MT and

NT , the above expression may be further rewritten as

ς̂ − ς = (W ∗′MTW
∗)−1W ∗′E′

(

T−1/2
∑

t
(b0tb

′

0t − Σ00)
)

κ

with κ = (1,−ξ′)′. Using this notation, it is clear that

T 1/2(ς̂ − ς) →d (W ∗′ΣppW
∗)−1W ∗′(E′ ⊗ κ′)N (0,Ξ)
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by part [b] of Lemma A1. In order to show the chi-squared distribution, the exact variance
is necessary. Some rather tedious but straightforward algebra using standard results for
fourth moments of multivariate normal distributions shows that

(E′ ⊗ κ′)Ξ(E ⊗ κ) = (σ2ε + ξ′Σppξ − 2ξ′σpε)Σpp + (σpε − Σppξ)(σpε − Σppξ)
′

Under the null, τ∗ = 0 and λ = N = σpε, so that

W ∗′(E′ ⊗ κ′)Ξ(E ⊗ κ)W ∗ = (σ2ε − σεpW
∗(W ∗′ΣppW

∗)−1W ∗′σpε)W
∗′ΣppW

∗

and the asymptotic variance of the estimator is therefore

(σ2ε − σεpW
∗(W ∗′ΣppW

∗)−1W ∗′σpε)(W
∗′ΣppW

∗)−1.

To get a chi-squared distribution, the first factor must equal the probability limit of σ̂2e .
The estimator σ̂2e is equal to

σ̂2e = T−1
∑

t
ê2t = T−1

∑

t

(

εt+1 − p′tM
−1
T (NT − λT )− p′tW

∗(W ∗′MTW
∗)−1W ∗′λT

)2

using the expression for ς̂ above and the restricted estimator in (9). Expanding the square
yields

σ̂2e = T−1
∑

t
ε2t+1 −N ′

TM
−1
T NT + λ′T (M

−1
T −W ∗(W ∗′MTW

∗)−1W ∗′)λT . (18)

Under the null, the probability limit is in fact σ2e = σ2ε − σεpW
∗(W ∗′ΣppW

∗)−1W ∗′σpε.
Finally, the degrees of freedom of the limiting chi-squared distribution for the whole

regression comes from the rank q + 1 of W ∗′ΣppW
∗. The degrees of freedom for the test of

the subvector ς1 comes from the difference in rank between W ∗′ΣppW
∗ and w′Σppw, which

is q. This completes the proof of part [a].
More generally, the n-vector (pt) is assumed to be partitioned into I(0) and I(1) com-

ponents, but W ∗′ takes q + 1 linear combinations defined by the q variables added. These
linear combinations are themselves cointegrated regressors, and may be handled along the
lines of Park and Phillips (1989). Define a (q+1)× (q+1) orthogonal matrix A = (A0, A1)
such that AA′ = I and such that A′

0W
∗′pt ≡ z0t ∼ I(0) and A′

1W
∗′pt ≡ z1t. These matrices

rotate the regressor space so that the first component lies in the span of the (m − 1)-
dimensional cointegrating space and the second lies in the unidimensional space orthogonal
to the cointegrating space.

Much of the notation used in the remainder of the proof is recycled from Section 3,
with the difference being the rotation. I redefine bt ≡ (εt+1, z

′

0t,4z1t)
′ as a (q + 2)-vector,

b0t ≡ (εt+1, z
′

0t)
′, and b1t ≡ 4z1t, so that the limiting variance from an invariance principle

using (bt) is

Ω =





ω2
ε ωεz ωε1

ωzε Ωzz ωz1

ω1ε ω1z ω11



 or Ω =

[

Ω00 Ω01

Ω10 Ω11

]

in place of Ω in Section 3. All of the relevant variances in this proof are partitioned in the
same way. Brownian motions are redefined accordingly.
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I redefine the normalization matrix νT ≡ diag(T 1/2Iq, T ) to be a (q+1)×(q+1) diagonal
matrix. I redefine κ ≡ (1,−λ∗′0 Σ

−1
zz )

′ as a (q + 1)-vector, ζ ≡ (λ∗1 − δ′z1Σ
−1
zz λ

∗

0) as a scalar,
where λ∗ ≡ A′W ∗′λ is a (q + 1)-vector partitioned as λ∗ = (λ∗′0 , λ

∗

1)
′. I redefine E′ as the

unitary matrix that selects all but the first row of the following matrix of (q + 1) rows.
In part [b], there is at least one I(0) combination of (W ∗′pt) – i.e., z0t 6= 0. The estimator

may be written as
νTA

′(ς̂ − ς) = H−1
T JT

where HT ≡ ν−1
T AW ∗′TMTW

∗A′ν−1
T and JT ≡ ν−1

T A′W ∗′T ((NT − N) − (MT −M)ξ) are
redefined from Section 3 with

ξ ≡ τ∗ +W ∗A(A′W ∗′MW ∗A)−1λ∗

redefined from part [a] of this proof. Under the null, τ∗ = 0 and

HT =

[

T−1
∑

t z0tz
′

0t T−3/2
∑

t z0tz1t
T−3/2

∑

t z1tz
′

0t T−2
∑

t z
2
1t

]

→d

[

Σzz 0
0

∫

B2
1

]

≡ H,

and

JT =

[

J0T
J1T

]

→d

[

A′

0W
∗′(E′ ⊗ κ′)N (0,Ξ)

∫

B1dB
′

0κ− (
∫

B2
1ω

−1
11 − 1)ζ

]

≡ J,

where

J0T ≡ T−1/2E′
∑

t
(b0tb

′

0t − Σ00)κ

J1T ≡ T−1
∑

t
(z1tb

′

0t − δ′01)κ+ T−2
∑

t
(z21tω

−1
11 − T )ζ

using some algebra and limits along the same lines as the proof of Theorem 3. The variance
matrix Ξ is defined exactly as in Section 3.

The test statistic may be rewritten as

qF = (ς̂ − ς)′AνT ν
−1
T A′W ∗′TMTW

∗Aν−1
T νTA

′(ς̂ − ς)/σ̂2e

and it follows from above that νTA
′(ς̂ − ς) →d H

−1J and ν−1
T A′W ∗′TMTW

∗Aν−1
T →d H.

In order for J to be a multivariate normal vector, the I(1) regressor must be strictly ex-
ogenous. This assumption implies that the I(0) regressors, defined by first differences of the
I(1) regressor, are also strictly exogenous. However, I do not assume the I(0) regressors to
be strictly exogenous. This allowance serves two purposes: (i) it leaves open the possibility
for additional I(0) regressors, and, more importantly, (ii) it shows that only one element of
the multivariate normal vector is not robust to the assumption.

The variance of the first q elements of J is given by A′

0W
∗′(E′ ⊗ κ′)Ξ(E ⊗ κ)W ∗A0 =

(σ2ε − σεzΣ
−1
zz σzε)Σzz along exactly the same lines as the proof of part [a]. (This reduces

to σ2εΣzz when the I(0) regressors are strictly exogenous.) The covariances of each of
these elements with the remaining element of J is zero from the independence in Lemma
A1. Under the assumptions of both strict exogeneity and that the error sequence is an
mds, the distribution of the last element of J reduces to σε(

∫

B2
1)

1/2N(0, 1). Under these
assumptions, σ2ε − σεzΣ

−1
zz σzε = σ2ε , so that the distribution of J is σεH

1/2N(0, 1).
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The asymptotics for σ̂2e are similar to part [a]. Under the null, λT = NT , so that in
N ′

TW
∗(W ∗′MTW

∗)−1W ∗′NT is the second term of (18). This term may be rewritten as

T 1/2N ′

TW
∗Aν−1

T (ν−1
T A′W ∗′TMTW

∗Aν−1
T )−1ν−1

T A′W ∗′T 1/2NT

and it is clear that ν−1
T A′W ∗′TMTW

∗Aν−1
T →d H as above. The remaining factors,

ν−1
T A′W ∗′T 1/2NT and its transpose, have limits consisting of σzε and σεz as the first q
rows and columns, respectively, with the single remaining element of each being zero.
These zeros eliminate the last row and column of H, so that the result is σ̂2e →p σ2ε −
σεpW

∗A0(A
′

0W
∗′ΣppW

∗A0)
−1A′

0W
∗′σpε, or more simply σ2ε since σεp = 0 under these as-

sumptions. The degrees of freedom of the chi-squared limit follows similarly to that in part
[a]. �

Appendix B: Proofs of LLN and CLT for Covariances

(This appendix is not intended for publication and is included to support my claim in Lemma
A1. I closely follow results and proofs of Phillips and Solo, 1992, pp. 978-980 and 990-993,
contributing only by extending their results to covariances, a necessity for the multivariate
extension. Phillips and Solo covered autocovariances, but not general covariances.)

A representative element of the matrix polynomial Ξrs(z) may be written as crs(z) =
∑

∞

i=0 ψjk,i+rψuv,i+sz
k, so that a representative element of the vector in (14), up to premul-

tiplication by (I ⊗ a′), is

∑

t
ξυtξut =

∑

t

[

c00(1)(υtut − συu) + υtu
c
t−1 + utυ

c
t−1

]

(19)

−
∑

t

[

(1− L) ζ00,t +
∑∞

r=1
(1− L) ζ0r,t +

∑∞

r=1
(1− L) ζr0,t

]

where συu ≡ E[υtut], c̃ is defined relative to c in the same way as Ξ̃ is defined relative
to Ξ, ut and υt are arbitrary scalar elements of v0,t, u

c
t−1 ≡

∑

∞

r=1 c0r (1)ut−r, υ
c
t−1 ≡

∑

∞

r=1 cr0 (1) υt−r, and ζrs,t ≡ c̃rs (L) υt−rut−s.
The autocovariance structure of (ξυt) and (ξut) defined above is such that E [ξυtξu,t−k] =

συuck0 (1) and E [ξutξυ,t−k] = σuυc0k (1). Variances of (υ
c
t−1) and (uct−1) are σ

2
υ

∑

∞

r=1 c
2
r0 (1)

and σ2u
∑

∞

r=1 c
2
0r (1). I denote these by σ2υc and σ2uc and note that they are finite by As-

sumptions [A3] and [A4] and an obvious substitution in the proof of Lemma 3.6 of Phillips
and Solo (1992). Similarly, the covariances of these series, σ2uυc = σuv

∑

∞

r=1 c0r (1) cr0 (1) is
also finite under these assumptions.

The following Lemma is completely analogous to Lemma 5.9 of Phillips and Solo (1992).

Lemma B1. Under Assumptions [A3]-[A4], E(
∑

∞

r=1 ζ0r,T )
2,E(

∑

∞

r=1 ζr0,T )
2 <∞.

Proof of Lemma B1. I prove only the first result and appeal to symmetry for the second.
Note that

E(
∑∞

r=1
ζ0r,T )

2 =
∑∞

r=1

∑∞

i=0

∑∞

r′=1

∑∞

i′=0
c̃0r,ic̃0r′,i′E[υT−iυT−i′uT−i−ruT−i′−r′ ],
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which is only non-zero when r = r′ and i = i′, by the iid assumption and the fact that
r, r′ > 0. Hence, E(

∑

∞

r=1 ζ0r,T )
2 = σ2υσ

2
u

∑

∞

r=1

∑

∞

i=0 c̃
2
0r,i, and σ2υσ

2
u < ∞ by Assumption

[A4], even if (υt) = (ut). The rest of the proof follows that of Lemma 5.9 of Phillips and
Solo (1992) by showing that

∑

∞

r=1

∑

∞

i=0 c̃
2
0r,i <∞ under Assumption [A3]. �

Lemma LLN. Under Assumptions [A3]-[A4], T−1
∑

t ξυtξut →p 0 as T → ∞.

Proof of Lemma LLN. The proof requires that the six terms of (19) converge to zero
when divided by T . I show that four of them converge and appeal to symmetry for the
remaining two. That T−1

∑T
t=1 υtut →p συu is straightforward from an LLN for martingale

difference sequences. The proof that T−1
∑

t υtu
c
t−1 →p 0 follows along the same lines as

Phillips and Solo (1992, pg. 990, equation 42). I need only that σ2υc < ∞, which is shown
above. Similarly, T−1

∑

t

∑

∞

r=1 (1− L) ζ0r,t →p 0 follows along the same lines as Phillips and
Solo (1992, pg. 990, equation 41) using Lemma B1. Finally, T−1

∑

t (1− L) ζ00,t →p 0 also
follows along the same lines as Phillips and Solo (1992, pg. 991) under both Assumptions
[A3] and [A4]. �

Lemma CLT. Under Assumptions [A3]-[A4], T−1/2
∑

t ξυtξut →d N(0,Ξυu) as T → ∞,
where Ξυu ≡ c200(1)E(υtut − συu)

2 + σ2υσ
2
uc + σ2uσ

2
υc + συuσuυc + σuυσυuc.

Proof of Lemma CLT. Similarly to the proof of the LLN above, the last three terms of
(19) must converge to zero when divided by T 1/2, but I examine two and appeal to symmetry
for the remaining one. The limiting distribution follows from the first three terms of (19).

That T−1/2
∑

t

∑

∞

r=1 (1− L) ζ0r,t →p 0 follows from E(
∑

∞

r=1 ζ0r,T )
2 <∞ along the same

lines as in the LLN above using Lemma B1. Similarly, that (1− L)T−1/2
∑

t ζ00,t →p 0
follows from Eζ00,T < ∞, which may be verified under Assumptions [A3] and [A4]. The
last three terms are thus op

(

T 1/2
)

as required.
To get the limiting distribution from the first three terms is more involved, but follows

along the same lines as Phillips and Solo (1992, pp. 992-3). Defining Zt ≡ c00(1)(υtut −
συu) + υtu

c
t−1 + utυ

c
t−1, I need to verify that (a) T−1

∑T
t=1E[Z2

t 1(Z
2
t > εT )] → 0 and that

(b) T−1
∑

t Z
2
t →p EZ2

t . I also need an exact representation of EZ2
t to get the variance

of the limiting Gaussian. As long as EZ2
t < ∞, (a) follows from dominated convergence.

The bound on EZ2
t is confirmed below. Condition (b) requires T−1

∑

t(u
c
t−1)

2 →p σ
2
uc and

T−1
∑

t(υ
c
t−1)

2 →p σ
2
υc to be finite and time-invariant, which was already shown above.

Expand

EZ2
t = c200(1)E(υtut − συu)

2 + σ2υσ
2
uc + σ2uσ

2
υc + συuσuυc + σuυσυuc (20)

+ 2c00(1)E(υtut − συu)υtu
c
t−1 + 2c00(1)E(υtut − συu)utυ

c
t−1

and note that all of the terms in the first line of (20) are finite, as shown above. Both terms
in the second line of (20) contain an Ft-measurable series, and it follows that they have an
expected value of zero from the law of iterated expectations and the assumption of finite,
time-invariant third moments in Assumption [A4]. �
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The last step in the generalization is to extend the univariate covariance in Lemma CLT
to the multivariate variance Ξ in Lemma A1. The matrix K00 consists of elements of the
form E(υ1tu1t − συu)(υ2tu2t − συu). The scalar limit theory above considers explicitly the
case of υ1t = υ2t and u1t = u2t, but there is no loss of generality for different elements
υ1t, υ2t, u1t, u2t of the vector v0t. Since crs(z) =

∑

∞

i=0 ψjk,i+rψuv,i+sz
k was chosen for arbi-

trary j, k, u, v, it may represent any element of Ξrs(z) ≡
∑

∞

k=0(Ψk+r ⊗Ψk+s)z
k. Extending

to cross-products with other elements of Ξrs(z) would simply require c00(1)d00(1) in place
of c00 (1) in the variance above, where drs(z) would have exactly the same properties as
crs(z). Thus, the multivariate extension for the first term of Ξυu in Lemma CLT has a
variance of Ξ00(1)K00Ξ

′

00(1).
The second and third terms of Ξυu in Lemma CLT are σ2υσ

2
u

∑

∞

r=1 c
2
0r (1) and σ

2
uσ

2
υ

∑

∞

r=1

c2r0 (1) using the variances preceding Lemma B1. The multivariate extension of these terms
to

∑

∞

r=1 Ξ0r(1)K0•Ξ
′

0r(1) + Ξr0(1)K0•Ξ
′

r0(1) follows along the same lines as the first term.
For υ1t 6= υ2t and u1t 6= u2t, covariances would replace the variances σ2υ and σ2u for cross-
products, but these are finite since the variances are finite. They are incorporated in K0•

by its definition.
Finally, the last terms of Ξυu in Lemma CLT may be written as

συuσuυ
∑∞

r=1
c0r (1) cr0 (1) + σuυσυu

∑∞

r=1
cr0 (1) c0r (1)

using the covariances preceding Lemma B1. The multivariate extension simply requires
drs(z) again and different (finite) covariances in place of συu and σuυ for υ1t 6= υ2t and
u1t 6= u2t. All of these covariances are incorporated in K•0.
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