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Abstract

This paper examines the robustness of alliance formation in a three-player, two-stage game

in which each of two players compete against a third player in disjoint sets of contests.

Although the players with the common opponent share no common interests, we find that

under the lottery contest success function (CSF) there exists a range of parameter configu-

rations in which the players with the common opponent have incentive to form an alliance

involving a pre-conflict transfer of resources. Models that utilize the lottery CSF typically

yield qualitatively different results from those arising in models with the auction CSF (Fang

2002). However, under the lottery and the auction CSFs, the parameter configurations within

which players with a common opponent form an alliance are closely related. Our results,

thus, provide a partial robustness result for ‘enemy-of-my-enemy-is-my-friend’ alliances.

JEL Classification: C72, D74
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1 Introduction

Utilizing a two-stage game of alliance formation and multi-battle conflict, this paper ex-

amines the robustness of ‘enemy-of-my-enemy-is-my-friend’ alliances across two benchmark

contest success functions (henceforth CSFs), the lottery and auction CSFs. Our focus is

on alliance formation in the case that alliance members lack common interests other than

a common opponent. In this framework, battle lines are exogenous as in the economics of

alliances literature originating with Olson (1965) and Olson and Zeckhauser (1966).1 The

combination of exogenous battle lines with alliance benefits that are both rival and excludable

provides a point of departure from the alliance as a public good approach and a formaliza-

tion of the logic that the ‘enemy of my enemy is my friend.’ In equilibrium, pre-conflict

transfers of resources among alliance members affect the strategic choices of the common

enemy, thereby creating strategic externalities. Thus, even if ex post transfers between the

two alliance members are not feasible, there exists a range of parameters in which strategic

externalities are sufficient to generate individually rational ex ante transfers of resources.

Under the lottery CSF at each component contest, each player’s probability of winning a

given component contest is proportional to his share of the total resources allocated to that

contest. This corresponds to the commonly used case of the general-ratio form Tullock CSF

with r = 1.2 Alternatively, if the outcome in each of the component contests, or battlefields,

is determined by the auction CSF, then within each contest the winner is the player that

allocates the higher level of resources to that contest. This corresponds to the limiting case

of the general-ratio form Tullock CSF with r = ∞. These two benchmark CSFs capture

extreme points in the spectrum of exogenous noise in the CSFs in the component contests.

The auction CSF has no noise, and the lottery CSF has a large amount of noise.3

In this paper, we characterize — for both the case that ex post transfers among alliance

members are feasible and the case that they are not — the parameter configurations in which,

under the lottery CSF, the players with the common opponent have incentive to form, prior

to the conflict with the common opponent, an alliance involving an individually rational

ex ante transfer of resources. The corresponding characterization for the auction CSF is

1See also Sandler and Cauley (1975), Sandler (1977, 1999), Murdoch and Sandler (1982, 1984), Arce M.
and Sandler (2001), and Ihori and McGuire (2007).

2Under the general ratio-form CSF, if player A allocates ai to the contest and player B allocates bi to the
contest, then ar

i
ar

i +br
i

is the probability that player A wins the contest. The case where r = 1 corresponds to
the lottery CSF and r =∞ to the auction CSF. The parameter, r, specifies the level of noise or randomness
in the contest. As r increases the amount of exogenous noise in the CSF decreases.

3For more information on the level of noise implied in the lottery CSF, see Konrad and Kovenock (2009).
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given by Kovenock and Roberson (2010a).4 In comparing the regions of alliance formation

under the lottery and auction CSFs, we find that the ranges of parameter configurations in

which the players with the common opponent have incentive to form an alliance involving

a pre-conflict transfer of resources are nearly identical. This applies to both alliances with

and without commitment. In those parameter configurations in which the alliance formation

boundaries differ under the two CSFs, the alliance formation boundary under the all-pay

auction CSF model is less stringent than the one for the lottery CSF (i.e. alliance formation

is more likely when the CSF has less exogenous noise). This paper, thus, provides a partial

robustness result for ‘enemy-of-my-enemy-is-my-friend’ alliances.

In general, large fluctuations in the level of exogenous noise in the general ratio-form

contest success function result in qualitatively different equilibrium behavior. In particular,

Baye, Kovenock, and de Vries (1994) and Alcalde and Dahm (2009) both show that in the

case of a single contest with two players,5 there is a structural break in the nature of the

equilibrium strategies at r = 2. If r ≥ 2, then there exists an equilibrium which exhibits

properties that are similar to the unique equilibrium in the two-player all-pay auction, with

the auction CSF (see Hillman and Riley 1989 and Baye, Kovenock and de Vries 1996). The

condition that r ≥ 2 implies that the amount of noise in the CSF must be sufficiently small.

When r < 2 (as with the lottery CSF), this relationship breaks down. In this context, Fang

(2002) shows that several results that arise under the auction CSF, such as Baye, Kovenock,

and de Vries’s (1993) exclusion principle6 and Che and Gale’s (1998) result on caps on

lobbying,7 fail to hold under the lottery CSF.

Furthermore, in two-player games involving competition over a set of component contests

that are structurally linked there are a number of important differences between the outcomes

arising under the lottery CSF and those arising under the auction CSF.8 This includes games

where the objective is to win a majority of contests (for the lottery CSF see Snyder 1989

and Klumpp and Polborn 2006 and for the auction CSF see Szentes and Rosenthal 2003 and

Laslier 2003), games of attack and defense of a network of targets (for the lottery CSF see

Clark and Konrad 2007 for the auction CSF see Kovenock and Roberson 2010c), and the case

4Under the auction CSF, this game becomes a multi-player, multi-front variation of the Colonel Blotto
game.

5Alcalde and Dahm (2009) allow for two or more players.
6Baye, Kovenock, and de Vries’s (1993) exclusion principle states that a revenue maximizing auctioneer

may have incentive to exclude a bidder with a high valuation for the prize in order to foster competition
among a set of bidders with lower valuations for the prize.

7Che and Gale (1998) show that an exogenous cap on bids may provide a competitive advantage to a
player with a lower valuation and thereby increase the expected revenue from the contest.

8See Kovenock and Roberson (2010b) for a survey of this literature.
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of a budget constraint on expenditures across the set of component contests (for the lottery

CSF see Friedman 1958 and Robson 2005 for the auction CSF see Roberson 2006 and Hart

2008). In general, the difference in the outcomes for these multiple contest games centers on

the fact that under the auction CSF a mixed strategy is a multidimensional joint distribution

function and the linkages between the contests lead to endogenous correlation structures

in the equilibrium mixed strategies. Conversely, under the lottery CSF the assumption

of exogenous noise generates a situation in which the first-order conditions may be used

to characterize the pure-strategy equilibrium. This marginal analysis frequently leads to

tradeoffs that are qualitatively different from those arising under the auction CSF.

Although the exogenous battle lines feature of the model examined here is most closely

aligned with the economics of alliances literature, there are a number of related approaches

to the alliance formation problem.9 Closely related to our focus is the literature on truels.

For example Dimico and Seidmann (2010) examine a three-player model involving three

component contests in which the outcome at each component contest is determined by the

aggregate resource levels of the groups engaged in that component contest.10 Also related

are the three-player one-cake and three-player three-cake problems examined by Skaperdas

(1998). However, each of these formulations of the alliance problem differs from our focus

in that battle lines are endogenous and any combination of players may form an alliance

that competes against the remaining player. Thus, these models show how players optimally

choose a common opponent and the nature of the resulting competition. In contrast, by

emphasizing exogenous battle lines and the resulting alliance transfers, the focus of our

model is on situations in which rational actors face an exogenously determined common

opponent. Clearly, there are number of instances in which historical and/or geopolitical

realities create such an environment. In such cases, our analysis shows that the strategic

externalities arising from the presence of a common enemy are largely robust to fluctuations

to the specification of the contest success function.

The rest of the paper is laid out as follows. Section 2 provides a formal description of

the two-stage alliance formation game. In section 3 we provide sufficient conditions for the

existence of a self-enforcing alliance without commitment when the component contests have

the lottery CSF and compare those conditions to the ones arising under the auction CSF. In

section 4 we relax the assumption that ex post transfers are not possible and examine the

nature of alliances when the alliance members act cooperatively as a single entity. Section 5

9For surveys of the alliance literature see Bloch (2009) and Konrad (2009).
10See also Shubik (1954), Kilgour and Brams (1997) and Bossert, Brams, and Kilgour (2002).
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concludes.

2 The Model

We examine a two-stage game that builds upon Friedman’s (1958) multi-item contest model.11

There are three players, {A, x, y}, and two disjoint sets of contests in which each component

contest has the lottery CSF. The disjoint sets of contests correspond to separate fronts in a

larger conflict. There are a number of classic examples of this type of conflict (e.g. World

War II in which Germany faced the Allied forces and the Soviet Union on disjoint fronts).

Players A, x, and y are initially endowed with a fixed amount of a one-dimensional

resource denoted RA, Rx, and Ry, respectively. Resource endowments are strictly positive

and cannot be consumed. Therefore any unused resources have no value. It is assumed that

all players are risk neutral. Let Ij = {1, 2, . . . , nj} denote the set of nj contests in which

player A is competing with player j ∈ {x, y}. Winning contest i ∈ Ij has value vi,j to both

players A and j. Denote the total value of the set Ij of contests as: Vj ≡
�

i∈Ij
vi,j.

In the first stage, players x and y may choose to form an alliance. Rather than examine

the transfers that arise under a particular transfer game, our focus is on sufficient conditions

for a reallocation of resources among the alliance members to be Pareto improving for the

alliance members. That is, a self-enforcing alliance without commitment is said to exist if

there exist resource transfers, among the players with the common opponent, that increase

the payoffs of both players in their respective second-stage set of contests against the common

opponent. Clearly, there exist a number of possible transfer games that would implement

such Pareto improving transfers (see Kovenock and Roberson 2010a for further details).

Following a positive net transfer of � from j to −j, the resulting budget constraints faced by

j and −j are R
�
j ≡ Rj − � and R

�
−j ≡ R−j + �, respectively.

In the second stage, player A observes the updated budget constraints faced by players

x and y and then x and y individually compete with A in their respective sets of contests

subject to the updated budget constraints determined in the first stage. The timing of the

two-stage game is summarized as follows:

1. The two players facing the common opponent (players x and y) have the opportunity

to reallocate resources among themselves.

11See also Robson (2005) who examines several extensions of Friedman (1958) including allowing for the
noise parameter, r, to take any value in (0,1].
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2. Player A observes players x’s and y’s updated resource constraints, and then players x

and y individually compete against the common opponent, A, in their respective sets

of contests.

3 Alliances Without Commitment

Given the nature of the game, a subgame perfect equilibrium may be derived using backward

induction. We begin by solving for the Nash equilibrium in stage two, given that players x’s

and y’s updated resource constraints are given by R
�
x and R

�
y respectively. Given the optimal

strategies in stage two, we then investigate the stage one resource transfers.

Stage Two

The second stage of this game consists of two disjoint sets of two-player contests between A

and j ∈ {x, y}. Player A allocates RA across the two disjoint sets of contests Ix and Iy. Each

player j ∈ {x, y} allocates his entire budget across his set Ij of contests. Resource allocations

are made simultaneously. In the set of contests, Ij, players A and j each maximize their

expected payoff subject to the constraint that the sum of their individual resource allocation

is no greater than their respective resource endowment. Because unused resources have no

value, in any equilibrium this constraint is binding.

Friedman (1958) characterizes the optimal resource allocations in the two-player multi-

item contest with the lottery CSF. Let RA,j denote the total amount of resources that player

A allocates across the set of contests, Ij. Let rA,i,j denote player A’s resource allocation to

contest i ∈ Ij, and let ri,j denote the resource allocation by player j ∈ {x, y} to contest

i ∈ Ij. As the first stage results in players x and y facing budget constraints of R
�
x and

R
�
y respectively, the pure-strategy Nash equilibrium resource allocations to contest i ∈ Ij

are given by: r∗i,j = (vi,j/Vj)R
�
j and r∗A,i,j = (vi,j/Vj)RA,j for players j and A respectively.

Intuitively, each player’s allocation to battlefield i is equal to the value of that battlefield

relative to the total value of all the battlefields in multi-item contest Ij multiplied by that

player’s total resource endowment. Let uA,i,j and UA,j denote player A’s payoff in contest

i ∈ Ij and the sum of his payoffs across the set of contests Ij, respectively. Similarly, for

j ∈ {x, y} let ui,j and Uj denote player j’s payoff in contest i ∈ Ij and the sum of his

payoffs across the set of contests Ij, respectively. In equilibrium, the total expected payoffs
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for players j ∈ {x, y} and A are:

E[U∗
j ] =

�

i∈Ij

E[u∗i,j] =
�

i∈Ij

r∗i,j
r∗i,j + r∗A,i,j

vi,j =
R

�
j

R
�
j + R∗

A,j

Vj (1)

and

E[U∗
A,j] =

�

i∈Ij

E[u∗A,i,j] =
�

i∈Ij

r∗A,i,j

r∗i,j + r∗A,i,j

vi,j =
R∗

A,j

R
�
j + R∗

A,j

Vj (2)

Observe that the fraction of the total value of the set Ij that a player expects to win is

equal to the ratio of the total amount of resources that he allocates to the set divided by the

sum of all resources allocated to the set. Because player A’s optimal allocation of resources

to each component contest i ∈ Ij depends only on the relative value of that battlefield and

player A’s total allocation of resources to the set Ij of contests, RA,j, characterizing player

A’s optimal division of resources to the two sets of contests Ix and Iy implicitly provides the

optimal allocations of resources to each of the component contests. We now solve for player

A’s optimal division of resources to the sets Ix and Iy of contests.

Theorem 1. If the combination of the updated resource constraints (R
�
x, R

�
y, RA) and the total

values for the two sets of contests Ix and Iy (i.e. Vx and Vy respectively) satisfy the condition

((R
�
jR

�
−j)

1/2/(RA +R
�
−j)) < (Vj/V−j)1/2 < ((RA +R

�
j)/(R

�
jR

�
−j)

1/2) for some j ∈ {x, y}, then

to the set Ij of contests player A allocates

R∗
A,j =

�
VjR

�
j

V−jR
�
−j

�
RA + R

�
−j

�
−R

�
j

1 +

�
VjR

�
j

V−jR
�
−j

(3)

and to the set I−j of contests player A allocates

R∗
A,−j = RA −

�
VjR

�
j

V−jR
�
−j

�
RA + R

�
−j

�
−R

�
j

1 +

�
VjR

�
j

V−jR
�
−j

. (4)

Conversely, if (Vj/V−j)1/2 ≤ ((R
�
jR

�
−j)

1/2/(RA + R
�
−j)) then player A allocates no resources

to the set Ij of contests and all of his resources, RA, to the set I−j of contests. In this case,

it is clear that no self-enforcing alliance without commitment forms.

Proof. Given that the updated budget constraints faced by j and −j are R
�
j and R

�
−j, re-
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spectively, player A’s optimization problem is given by:

max
RA,j ,RA,−j

E(UA,j) + E(UA,−j) s.t. RA,j + RA,−j ≤ RA

or equivalently

max
RA,j ,RA,−j

RA,j

R
�
j + RA,j

Vj +
RA,−j

R
�
−j + RA,−j

V−j s.t. RA,j + RA,−j ≤ RA

Because the sum E(UA,j) + E(UA,−j) is increasing in both RA,j and RA,−j player A

optimally sets R∗
A,j + R∗

A,−j = RA. Let E(UA) ≡ E(UA,j) + E(UA,−j). It is worth noting

that E(UA) is strictly concave in (RA,j, RA,−j). Thus, the first-order conditions are both

necessary and sufficient for an interior local maximum. At an interior equilibrium, the first-

order conditions imply that player A chooses RA,j and RA,−j such that

VjR
�
j

(R
�
j + R∗

A,j)
2

=
V−jR

�
−j

(R
�
−j + R∗

A,−j)
2

Solving the first-order conditions for R∗
A,j yields:

R∗
A,j =

�
VjR

�
j

V−jR
�
−j

(RA + R
�
−j)−R

�
j

1 +

�
VjR

�
j

V−jR
�
−j

Finally, see that player A need not allocate a strictly positive level of resources to both

Ij and I−j. It may be readily confirmed that if (Vj/V−j)1/2 ≤ ((R
�
jR

�
−j)

1/2/(RA +R
�
−j)) then

the marginal return to player A for allocating his last unit of resources to the set I−j of

contests exceeds the marginal payoff from the first unit of resources allocated to set Ij. In

this case, player A optimally allocates zero resources to the set Ij of contests and all of his

resources, RA, to the set I−j. In such a case, player j’s payoff is equal to Vj. Obviously, if the

initial endowments warrant player A allocating no resources to set Ij, then because player

j cannot strictly increase his payoff, by transferring resources to player −j, a self-enforcing

alliance without commitment does not arise.

Because self-enforcing alliances without commitment arise only in interior equilibria, we

focus on the case where player A allocates a strictly positive level of resources to both sets

of contests Ij and I−j. Substituting equations (3) and (4) into equation (1) it follows that

the equilibrium total expected payoff for player j is

7



E(U∗
j ) =

VjR
�
j +

�
VxR

�
xVyR

�
y

Rx + Ry + RA
(5)

and for player −j is

E(U∗
−j) =

V−jR
�
−j +

�
VxR

�
xVyR

�
y

Rx + Ry + RA
. (6)

Player A’s total expected payoff is the sum of his payoffs from both sets of contests Ix and

Iy. Substituting equations (3) and (4) into equation (2) yields player A’s equilibrium total

expected payoff:

E(U∗
A) = E(U∗

A,x) + E(U∗
A,y) =

RA(Vx + Vy) +
��

R�
yVx −

�
R�

xVy

�2

Rx + Ry + RA
. (7)

Examining equation (7), it is apparent that player A’s equilibrium total expected payoff

is increasing in the difference between (R
�
yVx)1/2 and (R

�
xVy)1/2. Conversely, because this

is a constant-sum game, the sum of player x’s and y’s equilibrium total expected payoffs

decreases as this difference increases.

Stage One

In stage one, players x and y have the opportunity to transfer resources among themselves.

We focus on self-enforcing alliances without commitment in which only mutually beneficial

exchanges of resources take place. If player j transfers a strictly positive amount, � > 0,

of resources to player −j, then player A observes this alliance transfer and allocates his

resources across the sets of contests Ij and I−j taking into account player j’s and −j’s

updated budget constraints.

As outlined previously, a self-enforcing alliance without commitment forms only if, in the

absence of an alliance transfer, player A would choose to allocate a strictly positive level

of resources to each set of contests. Thus, we restrict our attention to interior equilibria.

Without loss of generality, consider the case where player j transfers � > 0 to player −j.

Note that equations (5) and (6) may now be written as:

E(U �
j ) =

Vj(Rj − �) +
�

Vj(Rj − �)V−j(R−j + �)

Rx + Ry + RA
(8)
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E(U �
−j) =

V−j(R−j + �) +
�

Vj(Rj − �)V−j(R−j + �)

Rx + Ry + RA
(9)

Theorem 2. If the combination of the initial resource constraints (Rx, Ry, RA) and the total

values for the two sets of contests Ix and Iy (i.e. Vx and Vy respectively) satisfy the condition
��

RjR−j/(RA + R−j)
�

<
�

(Vj/V−j) for some j ∈ {x, y}, then a self-enforcing alliance

without commitment exists (in which player j transfers a positive level of resources to player

−j) if and only if the condition
�
(Rj −R−j)/

�
2
�

RjR−j

��
>

�
(Vj/V−j) holds.

Proof. It may be readily verified that the conditions of Theorem 2 imply that, in the absence

of any alliance transfers, player A allocates a strictly positive level of resources to each set of

contests. Thus, any transfer from player j to player −j yields the expected utilities, E(U �
j )

and E(U �
−j), given equations (8) and (9) above. A Pareto improving transfer from player

j to player −j exists if and only if
∂E(U�

j )

∂�

��
�=0

> 0 and
∂E(U�

−j)

∂�

��
�=0

> 0. If both inequalities

hold, then there exists a strictly positive transfer from player j to player −j that strictly

increases both players’ expected payoffs. It is straightforward to show that
∂E(U�

j )

∂�

��
�=0

> 0 if

and only if the initial conditions satisfy:

Rj −R−j

2
�

RjR−j

>

�
Vj

V−j
(a)

Likewise, it can be easily verified that
∂E(U�

−j)

∂�

��
�=0

> 0 if and only if

Rj −R−j

2
�

RjR−j

> −

�
V−j

Vj
(b)

Note that condition (a) implies condition (b). Thus, if player j is willing to transfer a portion

of his endowment, player −j is always willing to accept the gift. That is, for any transfer

from player j to player −j, the direct benefit to player −j from the additional resources

alway overcomes the indirect effect from the strategic shift in player A’s resources towards

the set I−j of contests. Moreover, note that because the right hand side of condition (a)

is strictly positive, if a transfer of resources occurs, it must be the case that Rj > R−j.

Thus, transfers always flow from the resource wealthy player to the resource poor player.

Therefore, if condition (a) holds, then no transfers from −j to j will occur.

As previously mentioned, the specific choice of the transfer depends on the specification

of the transfer game. Condition (a) given above provides a necessary condition for a strictly

9



positive transfer to arise in equilibrium. Surprisingly, the boundary for alliance formation

established in condition (a) is equivalent to one of the boundaries established in Kovenock

and Roberson (2010a) (heretofore referred to as KR).

KR examines the formation of self-enforcing alliances without commitment using two

disjoint Colonel Blotto games (with auction CSFs in each component contest) in the second

stage. Figure 1 shows, under the two CSFs, player A’s expected payoffs in the set of contests

against player j as a function of RA,j. As illustrated in panel (b) of Figure 1, under the

auction CSF player A’s marginal payoff in each game is constant for RA,j ∈ [0, R
�
j]. However,

for RA,j > R
�
j, player A experiences diminishing marginal returns. In contrast, as illustrated

in panel (a), under the lottery CSF player A faces diminishing marginal returns for all values

of RA,j.

Under the auction CSF, KR demonstrate that if (V−j/Vj) ≥ (R
�
−j/R

�
j) and

1 −
�

(V−jR
�
jR

�
−j/Vj) > R

�
j then player A optimally sets R∗

A,j > R
�
j and R∗

A,−j > R
�
−j.

In this case, player A equates his marginal returns across the two sets of contests Ix and Iy,

and in each set of contests player A is in the region of diminishing marginal returns. For such

parameter configurations, condition (a) outlined above provides a necessary and sufficient

condition for mutually beneficial alliance transfers to arise. Note that for such parameter

configurations, the alliance formation boundaries are identical under both the lottery and

auction CSFs.

If (V−j/Vj) > (R
�
−j/R

�
j) and 0 < 1 −

�
(V−jR

�
jR

�
−j/Vj) ≤ R

�
j, then KR show that as

player A equates his marginal returns across the two sets of contests Ix and Iy he enters the

region of diminishing marginal returns in game G−j (i.e. player A sets R∗
A,−j > R

�
−j) but will

remain in the region of constant marginal returns in game Gj (i.e. player A sets R∗
A,j < R

�
j).

In this case, mutually beneficial transfers from player j to player −j exist if and only if

Rj + R−j > 2

�
VjR−j

V−jRj
. (c)

For such parameter configurations, the alliance formation boundaries arising under the two

CSFs diverge.

Figure 2 illustrates, for fixed values of RA, Vj, and V−j, the relationship between the

alliance formation boundaries under the two CSFs. Equation (a) provides the boundary for

alliance formation under the lottery CSF and is illustrated in Figure 2 by the bold (linear) line

segment. Under the lottery CSF, alliances will form in the region above this line. This line is

also the boundary for alliance formation under the auction CSF when (V−j/Vj) ≥ (R
�
−j/R

�
j)
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and 1−
�

(V−jR
�
jR

�
−j/Vj) > R

�
j. In such cases, the boundary delineating the region in which

self-enforcing alliances without commitment form is the same under both CSFs. The concave

line segment dividing Region 2 from Region 3 provides the alliance formation boundary for

the auction CSF model when (V−j/Vj) > (R
�
−j/R

�
j) and 0 < 1 −

�
(V−jR

�
jR

�
−j/Vj) ≤ R

�
j.

That is, if the combination of the initial endowments (Rx, Ry) and the total values for the two

sets of contests (Vx, Vy) lies in Region 3, then a self-enforcing alliance without commitment

forms under the auction CSF but not under the lottery CSF.

Numerical Example

Suppose the initial endowments (Rx, Ry, RA) are given by (32, 2, 20) and the valuations,

(Vx, Vy), are given by (3, 12). In the absence of alliance transfers, player A’s optimal strategy

is to allocate 4 units of resources to the set of contests in which he competes against player x

(Ix) and 16 units of resources to the set in which he competes against player y (Iy). Players

x’s and y’s total expected payoffs are (8/3) and (4/3), respectively. Notice that if j = x and

−j = y, then in this case condition (a) is satisfied. Thus, self-enforcing alliances without

commitment forms and the alliance transfers flow from player x to player y. Such alliance

transfers are individually rational for both players x to y up until the alliance formation

boundary where (R
�
x − R

�
y)/(2

�
R�

xR
�
y) = (1/2). For example, consider an alliance transfer

of one unit of resources from player x to player y. The updated resource constraints are

R
�
x = 31 and R

�
y = 3. Given these updated resource constraints, player A optimally divides

his resources among the two sets of contests according to R∗
Ax ≈ 1.934 and R∗

Ay ≈ 18.067. In

this case, the new total expected payoffs are E(Ux) ≈ 2.834 and E(Uy) ≈ 1.709. Notice that

such a transfer between the alliance members strictly increases both players’ total expected

payoffs.

4 Alliances With Commitment

We now contrast the above characterization of self-enforcing alliances without commitment,

with that for alliances with full commitment (i.e. we now allow for ex post transfers among

alliance members). That is, players x and y pool their resources in the first stage and then as

a single entity, denoted xy, compete against player A in the second stage. Let Rxy ≡ Rx+Ry

and Vxy ≡ Vx + Vy. Finally, let Ixy ≡ Ix ∪ Iy. Observe that this game is a two-player multi-

item Tullock contest between xy and A on the set Ixy. In examining such an alliance, an

issue that arises is how the winnings are distributed among the alliance members. Moreover,
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as frequently examined in the contest-theoretic literature on alliances, there is also an issue

regarding credible commitment to the distribution scheme. We digress from these issues,

and instead focus on the conditions under which the payoff to the alliance exceeds the sum

of the payoffs to players x and y when they act as singletons. Let E(Ua
x ) and E(Ua

y ) be

the equilibrium payoffs to players x and y, respectively, when they form an alliance with

complete commitment and let E(Uxy) ≡ E(Ua
x ) + E(Ua

y ). If E(Uxy) > E(U∗
x) + E(U∗

y ), then

there exists a sharing rule in which E(Ua
x ) > E(U∗

x) and E(Ua
y ) > E(U∗

y ). Thus, an alliance

with complete commitment forms if and only if E(Uxy) > E(Ux) + E(Uy).

Theorem 3. In an alliance with complete commitment the alliance sets (R
�
x/R

�
y) = (Vx/Vy).

Thus, transfers take place if and only if the initial endowments satisfy (R
�
x/R

�
y) �= (Vx/Vy).

Specifically, player j transfers a positive level of resources to player −j if and only if

(R
�
j/R

�
−j) > (Vj/V−j).

Proof. In an alliance with complete commitment, the alliance maximizes their joint payoff

subject to the alliance budget constraint: R
�
x + R

�
y ≤ Rxy. Thus, the second stage amounts

to a two player, multi-item Tullock contest between the alliance, xy , and player A on

the set of contests, Ixy. Let rxy,i and rA,i denote the allocations to contest i ∈ Ixy by

the alliance xy and player A, respectively. Applying Friedman’s (1958) characterization of

equilibrium, the optimal resource allocation to each component contest i ∈ Ixy is given by:

r∗xy,i = (vi/Vxy)Rxy and r∗A,i = (vi/Vxy)RA. Thus, for each j ∈ {x, y} the alliance, allocates

R
�
j =

�
i∈Ij

(vi/Vxy)Rxy = (Vj/Vxy)Rxy to the set Ij of contests. It follows directly that the

alliance sets (R
�
x/R

�
y) = (Vx/Vy). As a result, alliance transfers between players x and y arise

if and only if (R
�
x/R

�
y) �= (Vx/Vy). Specifically, player j transfers a strictly positive level of

resources to player −j when (R
�
j/R

�
−j) > (Vj/V−j).

Remarkably, KR show that under the auction CSF the equilibrium for the alliance with

full commitment involves setting (R
�
x/R

�
y) = (Vx/Vy). That is, the boundary for resource

transfers in the alliance with full commitment is equivalent under the two CSFs. This

boundary is illustrated in Figure 2 as the line R
�
j = (Vj/V−j)R

�
−j. If the the combination of

the initial endowments (Rx, Ry) and the total values for the two sets of contests (Vx, Vy) lies on

either side of this line, then an alliance with complete commitment forms under both CSFs.

When this occurs the alliance transfers shift the resource constraints of players x and y toward

this alliance boundary. It is also worth noting the relationship between the formation of self-

enforcing alliances without commitment and alliances with full commitment. In both types

of alliances, the alliance transfers shift the alliance members resource constraints towards the
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line R
�
j = (Vj/V−j)R

�
−j. But, in the case of the self-enforcing alliance without commitment,

incentive compatibility prevents the alliance from reaching such allocations.

5 Conclusion

In examining the robustness of ‘enemy-of-my-enemy-is-my-friend’ alliances, we find that,

for a non-empty subset of initial configurations, the boundary for alliance formation under

the lottery CSF corresponds exactly with the alliance boundary arising under the auction

CSF. Moreover, if the players can form an alliance with complete commitment, then the

outcomes in the two models are equivalent. The boundary for self-enforcing alliances without

commitment under the Lottery CSF diverges from the boundary under the auction CSF once

the player’s resource endowments cross a threshold. Over this range, the alliance region under

the auction CSF is strictly larger, and as a consequence, there exist parameter configurations

for which alliances form under the auction CSF but not under the lottery CSF. Given that

in a host of single and multiple contest applications the lottery CSF and the auction CSF

yield qualitatively different equilibrium predictions, we find it quite surprising that alliances

formed by players who share no common interest other than a common opponent are largely

robust to the specification of the contest success function.
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Figure 1: Player ’s expected payoff in 
the set  of contests under the lottery and 
auction CSFs 
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Figure 2: Boundaries of alliance formation for 
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