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Theory and Empirical Evidence  

 

 

Anders Holm* and Mads Meier Jæger** 

 

 

Abstract: 

Most studies which use Mare’s (1980, 1981) seminal model of educational transitions find that the 

effect of family background variables decreases across educational transitions. Cameron and 

Heckman (1998, 2001) have argued that this “waning coefficients” phenomenon might be driven by 

selection on unobserved variables. This paper, first, analyzes theoretically how selection on 

unobserved variables leads to waning coefficients and, second, illustrates empirically how selection 

affects estimates of the effect of family background variables on educational transitions. Our 

empirical analysis which uses data from the United States, United Kingdom, Denmark, and the 

Netherlands shows that the effect of family background variables on educational transitions is 

largely constant across transitions when we control for selection on unobserved variables. We also 

discuss the inherent difficulties in estimating educational transition models which deal effectively 

with selection on unobserved variables. 
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Robert Mare’s (1979, 1980, 1981) model of educational transitions represents one of the major 

methodological contributions to the literature on the impact of family background on educational 

success. Instead of years of completed schooling and linear regression models, Mare suggested to 

treat educational attainment as a sequence of transitions from lower to higher educational levels. 

The principal advantages of Mare’s educational transition model are first, that it is invariant to 

changes in the overall distribution for education over time, second, that the model conforms better 

to the way most sociologists think about educational attainment (as a sequence of transitions) and, 

third, that it allows researchers to model the effect of family background variables on the 

probability of making successive educational transitions. 

 

The Mare model is, and for long time has been, highly influential in applied research (e.g., Garnier 

and Raffalovich 1984; Cobalti 1990; Heath and Clifford 1990; Shavit and Blossfeld 1993; Hansen 

1997; Shavit and Westerbeek 1998; Vaid 2004). One of the consistent findings from applied 

research using the Mare model is that the effect of family background variables decreases or 

“wanes” across educational transitions. Several theories such as the theories of Maximally 

Maintained Inequality (Raftery and Hout 1993) and Effectively Maintained Inequality (Lucas 2001) 

have been proposed as substantive explanations of this “waning coefficients” phenomenon.  

 

In two influential papers, Cameron and Heckman (1998, 2001) argue that the waning coefficients in 

the Mare model may just be an artifact of an arbitrary choice of parameterization and selection on 

unobserved variables. Selection implies that the group at risk of making educational transitions 

becomes increasingly selective at higher transitions. For example, it is reasonable to assume that the 

group of youth that makes the transition from elementary school to high school on average has 

lower academic ability than the group that makes the transition from high school to college. If 

academic ability or some other important factor that affects the transition probability is not 

observed, the effect of this unobserved variable causes systematic bias in the estimated effects of 

observed family background variables on the probability of making successive educational 

transitions. Mare himself (1979, 1980, 1981, 1993) has noted that selection on unobserved variables 

might lead to bias in the Mare model. 
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In this paper we address the crucial question of how selection on unobserved variables affects 

estimates of the effect of observed family background variables in educational transition models. 

Given the popularity of the Mare model in applied research but, at the same time, the lack of 

attention to the role of selection in this type of model, it is essential to explicate how selection 

affects empirical estimates of the effect of family background on educational transitions.
1
 The paper 

contributes to the existing literature in two areas: theoretical clarification of the role of selection on 

unobserved variables in the Mare model and empirical illustration of the impact of selection bias in 

empirical analysis. 

 

First, we show theoretically how selection on unobserved variables leads to bias in estimates of the 

effect of explanatory variables on the probability of making successive educational transitions. For 

simplicity, we propose a Mare model with only two transitions: (1) the transition from elementary 

school to high school (or a similar type of upper secondary education) and (2), conditional on 

having made the first transition, the transition from high school to college (or a similar type of 

higher education). The theory behind our approach easily generalizes to situations with more than 

two educational transitions. We show that parameter bias in the Mare model originates in two 

phenomena: selection on unobserved variables which leads to downward bias in the effect of family 

background variables at higher educational transitions (i.e., waning coefficients) and scaling effects 

(different variances in the distributions of unobservables in the populations at risk of making 

successive educational transitions) which lead to upward bias. In empirical applications it is usually 

not possible to distinguish between bias arising from selection on unobserved variables and scaling 

effects (see Mare 2006). 

 

Second, using data from four countries (the United States, the United Kingdom, Denmark, and the 

Netherlands) we provide empirical illustrations of how selection on unobserved variables affects 

estimates of the effect of family background on the probability of making educational transitions. 

                                                 
1
 Several studies deal with other aspects of the Mare model such as improvements in identification from repeated 

measurements of family background variables (Lucas 2001) and a more parsimonious formulation of the Mare model 

along the lines of Anderson’s (1984) Stereotype Ordered regression model (Hauser and Andrew 2006). With the 

exception of Breen and Jonsson (2000) we are not familiar with any study in sociology that addresses selection on 

unobserved variables in educational transition models. In the economics literature selection bias in educational 

transition models is more often dealt with (e.g., Chevalier and Lanot 2002; Lauer 2003; Arends-Kuenning and Duryea 

2006; Colding 2006) 
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Our analysis is built around trying to distinguish between two alternative hypotheses: a “waning 

coefficients” hypothesis claiming that the effect of family background declines across educational 

transitions (Raftery and Hout 1993; Lucas 2001) and a “constant inequality” hypothesis arguing 

that, due to selection on unobserved variables, the effect of family background is constant across 

transitions. We use non-parametric Manski bounds (Manski 1995; Horowitz and Manski 1998) to 

show that, when not imposing any parametric assumptions about the transition probabilities in the 

four countries under study, our data alone cannot distinguish between the waning coefficients and 

the constant inequality hypotheses. In other words, the data is equally consistent with both 

hypotheses. To distinguish between the two hypotheses we need to apply parametric assumptions 

similar to those in the Mare model. We assume bivariate normal distributions for the two 

educational transitions and estimate simple and bivariate probit transition models. The bivariate 

probit model is a generalization of the simple univariate probit which is very similar to the 

univariate logit model; the latter being the typical parametric choice in the Mare model. When 

estimating simple probit models for the individual countries we find the typical waning coefficients 

pattern reported in previous studies. When estimating bivariate probit models for each country 

which allow for a correlation between the unobserved variables in each transition we also find 

waning coefficients. However, due to small sample sizes the correlation between the unobservables 

in the two transitions is very poorly identified. Finally, when pooling the data for three of the four 

countries (the Netherlands is excluded in this part of the analysis) and using country-specific 

transition rates at each of the two transitions as instruments our bivariate probit model shows that, 

consistent with the constant inequality hypothesis, the effect of family background is largely 

constant across educational transitions. The models which use the pooled data also provide credible 

estimates of the correlation between the unobservables in the two transitions.  

 

We conclude, first, that selection (and scaling) effects appear to have a significant impact on 

substantive conclusions regarding the impact of family background on educational transitions. 

Second, we find that it is necessary to impose parametric assumptions on transition probabilities to 

deal with selection and to distinguish between competing hypotheses. Third, we conclude that it is 

difficult to estimate educational transition models which deal effectively with selection on 

unobserved variables.  

 

1. Selection in Educational Transition Models 
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1.1 The Basic Model 

Mare’s (1979, 1980, 1981) original transition model consists of a sequence of binary logit models in 

which the dependent variables are dummy variables for making the j’th educational transition 

conditional on previously having made the j-1’th transition. Our model consists of only two 

transitions and, for expository reasons we prefer the probit specification to the logit specification 

used by Mare.  

 

Define the two latent stochastic variables
*

1y  and 
*

2y  which capture the propensity to make transition 

1 and 2 in an educational system. As described previously, transition 1 represents the transition 

from elementary school to high school (or equivalent upper secondary schooling such as A levels in 

the UK or the Gymnasium in Denmark) and transition 2 represents the transition from high school 

to higher education (for example, college, university, or university-college education). These types 

of transitions exist in most Anglo-American and Western European educational systems. We 

assume that in order for individuals to complete transition 2 they must first successfully complete 

transition 1. We never observe the latent variables 
*

1y  and 
*

2y  but instead two binary variables y 

indicating if individuals actually make each of the educational transitions. These binary variables 

are defined as 1jy  if 
* 0jy  and 0 otherwise, j = 1,2, with j indexing transitions. 

 

The likelihood that an individual makes each educational transition depends on a set of observed 

variables (for example, parental education and income, academic ability, and motivation) and some 

unobserved variables. The process of educational transitions can be represented by the following 

system of regression equations 

 

*

1 1 1 1

*

2 2 2 2

y x e

y x e
, 

 

where xj, j = 1,2 represents observed variables for each transition and ej, j = 1,2 represent error 

terms that capture the effect of unobserved variables. We assume that the error terms are distributed 

as 
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1

2

( , )
e

N
e

0 Σ , 

where 

 

1

1
Σ . 

 

The coefficient  captures the correlation between the unobserved variables in each educational 

transition. Our reason for choosing the probit specification over the logit used by Mare (1980, 1981) 

is that the probit specification allows us to estimate  and thereby to take into account the fact that 

the unobserved variables that affect the propensity to make each educational transition are 

correlated across transitions. We label this model the bivariate probit selection model. In empirical 

analysis we cannot identify the variance of either of the error terms e. This is always the case in the 

probit model and we normalize the variances to 1. 

 

1.2 Selection Effects 

The fundamental problem in analyzing educational transitions in the model presented above is that 

the probability of making the second transition depends on whether or not individuals have 

previously made the first transition; i.e., the group at “risk” of making the second transition is 

always a selected sample. In this section we explain how sample selection might lead to bias in 

educational transition models. We first give an intuitive explanation of how selection works and 

then present a formal statistical account of selection bias. 

 

-- FIGURE 1 ABOUT HERE -- 

 

Figure 1 shows the relationship between the latent propensity to make the first transition,
*

1y  and a 

hypothetical explanatory variable, x. The shaded area represents the distribution of the data. In 

Figure 1 the threshold for making the first transition is represented by the horizontal axis. 

Empirically, educational systems differ with regard to the strength of the selection at the first 

transition. This difference can be conceptualized by shifting the horizontal axis up or down.  
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Students with high values of x, for example parental education, have a higher propensity to make 

the first transition than students with low values of x and thus a higher probability of actually 

making this transition. However, students with identical values of x also have different probabilities 

of making the first transition. This difference is caused by unobserved factors, for example 

academic ability or motivation which, in addition to x, also affect whether students make the first 

transition. Consequently, student with low values of x but with high values of unobserved factors 

tend also to make the first transition. This is not the case for students with high values of x who tend 

to make the first transition irrespective of their values on the unobserved factors. Thus, among 

students with low values of x we typically expect a large amount of selection on unobserved 

characteristics whereas is not to the case for students with high values of x. This difference in the 

impact of the unobservables is important when we later inspect non-parametric bounds for the 

relationship between x and the probability of making the second transition. 

 

-- FIGURE 2 ABOUT HERE -- 

 

From Figure 1 we are able to estimate the true relationship between x and y1 because we use the 

whole sample. Now imagine a high correlation between 
*

1y  and 
*

2y  meaning that the x-y1 and the x-

y2 plots look very similar. We would then illustrate the relationship between x and y2 as shown in 

Figure 2. The dotted horizontal line shows the threshold for making the first transition.
2
 The 

distribution above the horizontal dotted line is the empirical relationship between x and 
*

2y  which is 

observed in the data (since we only observe whether 
*

2y  is above or below the threshold for making 

the second transition, here indicated by the x-axis). From the figure it is evident that because of the 

selection at the first transition which leaves only a subpopulation of the whole sample at risk of 

making the second transition we estimate a biased regression slope for the relationship between x 

and 
*

2y  (the dashed slope) if we only use data for those individuals who made the first transition. 

The reason why we observe this pattern is that students with low values of x in the sample of 

individuals who made the first transition have higher values on the unobservables than students in 

the whole sample (and vice versa for students with high values of x). Sample selection thus means 

that the empirical relationship between x and y2 is biased downwards. Note that this empirical 

                                                 
2
 Due to the probabilistic relationship between 

* *

1 2 and y y  this thresholds should not be a horizontal line but rather a 

jittered curve along the horizontal axis. However, for simplicity it is represented in Figure 2 by a straight line. 
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relationship is different from the true causal relationship between x and the probability of making 

the second transition which is shown by the solid slope. 

 

1.3 Scaling Effects 

Selection potentially induces two different types of bias in the estimated effects of family 

background variables on educational transitions. The first type of bias originates in the problem of 

using a selected sample and leads to downward bias in parameter estimates. This bias is illustrated 

above. The second bias originates in a scaling problem which is caused by the fact that the 

distribution of the unobservables is different in the selected sample and in the whole sample. It 

turns out that the variance in the selected sample is smaller than the variance in the whole sample 

(intuitively, this happens because students become more similar on unobserved characteristics at 

higher transitions). In binary probability models such as the Mare model the variance of the error 

term is not identified and must be normalized (in the probit model the variance is normalized to 1 

and in the logit model the variance is normalized to 
2 / 3 ). Furthermore, binary probability models 

do not identify the actual regression coefficients associated with explanatory variables but only the 

regression coefficients divided by the error variance in the probability (probit/logit) model. 

However, since the variance in the selected sample is lower than the variance in the whole sample 

the regression coefficients for the effect of family background variables in the second transition are 

upwardly biased when we analyze the selected sample because the denominator (in the case of the 

probit) is smaller than 1 (assuming that the variance in the selected sample is 0.8 and the true 

regression coefficient is 1 it is easy to illustrate the upward bias from scaling. For transition 1 we 

get: 1/1 1  and for transition 2 we get: 1/ 0.8 1.25 ). We formally show the bias from 

scaling in Appendix 1. 

 

1.4 Selection and Scaling Effects in a Formal Model 

We now present the selection problem in a formal model. This formal model leads to a natural 

statistical way of dealing with selection bias. Our aim is to analyze how selection and scaling 

affects the estimated effects of family background variables on the probability of making the second 

transition.  

 

We study the conditional probability of making the second transition and decompose this 

probability into three different components: (1) the true effect of the observed family background 
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variables (the x’s), (2) the selection effect, and (3) the scaling effect. Our decomposition is based on 

an approximation which has been shown to work well for  correlation coefficients up to 0.8 

(Nicoletti and Peracchi 2001; see Appendix 2 for a derivation of the approximation). The 

approximation is a convenient way of representing attenuation bias (the combined effect of 

selection and scaling bias) and has the following form 

 

 
2 2 1 1

2 1
22

1 1 1 1 1 1

1 | 1

1

x x
P Y Y

x x x

. (1) 

 

Equation 1 shows the approximation of the probability of making the second transition conditional 

on having made the first transition. The true effects of the family background variables on the 

probability of making the second transition is represented by the term 2 2x . Unfortunately, because 

of selection and scaling we do not estimate these true effects but instead biased effects. The 

selection term is 1 1( )x  and arises from selection in the first transition. The scaling term is 

22

1 1 1 1 1 11 x x x and captures the standard deviation in the selected sample. What 

we then estimate in empirical applications is the combination of the true and the attenuation effects. 

That is, we estimate 
2 1 2( 1| 1)P Y Y x  where 

 

 
2 2 1 1

2
22

1 1 1 1 1 11

x x
x

x x x

. (2) 

 

Since most often we do not have any information on the actual magnitude of the selection and the 

scaling effect we cannot determine the severity of the parameter bias. However, to investigate the 

likely direction of the selection bias we note (following Wooldridge 2002) that 

 

1 1
1 1 1 1 1 1 1

1

x
x x x

x
. 
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This means that if we assume that 1  > 0 (i.e., if some of the family background variables have a 

positive effect on the probability of making the first transition), we find that 1 1

1

0
x

x
. If we 

furthermore assume that the correlation between the unobservables in the two transitions is positive, 

i.e., 0  (which makes intuitive sense), we observe that for high values of x we get a relatively 

small (positive) selection effect (
1 1x  is “small”) and for small values of x we get a relatively 

large (positive) selection effect (i.e., 
1 1x  is “large”). This relationship is illustrated in Figure 2. 

Consequently, the total effect of x in the denominator is likely to be smaller than the “true” 

effect 2 . Hence, from the selection effects we expect that < 2 .  

 

With regard to the scaling effect we find that 
2* 2

2 1 1 1 1 1 1 1| 0 1Var Y Y x x x  (cf. 

Appendix 1). This means that the conditional variance is always smaller than the unconditional 

variance. Accordingly, the scaling effect, the denominator in Equation (2), tends to inflate the 

estimate of the combined effect  compared to the true effect 2 . 

  

In summary, we have two interrelated processes that might generate attenuation bias in the 

estimated effects of family background variables in the second transition: selection effects which 

lead to downward bias and scaling effects which lead to upward bias. Furthermore, in addition to 

the observed data we also need to apply additional parametric assumptions on the model governing 

selection and true effects to distinguish between true and attenuation effects.  

 

1.5 Manski Bounds 

Cameron and Heckman (1998) argue that the Mare model imposes a set of arbitrary parametric 

assumptions. In order to investigate the extent to which parametric assumptions in the Mare model 

affect substantive conclusions we implement a simple non-parametric approach which does not 

involve any parametric assumptions about the relationship between the x variables and the 

probability of making the second educational transition. Manski (1995) and Horowitz and Manski 

(1998) show how one can use so-called “Manski bounds” to bound true probabilities in data with 

selection without making any distributional assumptions. In our application we use Manski bounds 

to bound the true probability of making the second transition 2 1|P Y x  using only the observed 
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data. The Manski bounds are useful because they represent a baseline model which can be used to 

determine if the data alone allows us to distinguish between the waning coefficients and the 

constant inequality hypotheses.  

 

The Manski bounds are defined as 

 

2 1 1 2 2 1 1 1

data data

1| , 1 1| 1| 1| , 1 1| 0 |P Y x Y P Y x P Y x P Y x Y P Y x P Y x
 

 

 

These bound exist because  

 

2 2 1 1 2 1 1

2 1 1 1

1| 1 | , 1 1| 1 | , 0 0 |

1 | , 1 1| 0 |

P Y x P Y x Y P Y x P Y x Y P Y x

P Y x Y P Y x P Y x
 

and 

 

2 2 1 1 2 1 1

2 1 1

1| 1 | , 1 1| 1 | , 0 0 |

1 | , 1 1|

P Y x P Y x Y P Y x P Y x Y P Y x

P Y x Y P Y x
 

 

Furthermore, the bounds are informative because 

 

2 1 1 1 2 1 1

upper bound lower bound

1| , 1 1 | 0 | 1 | , 1 1 |P Y x Y P Y x P Y x P Y x Y P Y x
 

. 

 

The Manski bounds provide a basis for assessing the effects of family background variables on the 

probability of making the second educational transition. The bounds may be so wide that they are 

equally consistent with both the waning coefficients and the constant inequality hypotheses. As 

shown above, the width of the bound depends on the fraction of students that does not make the first 

transition 1 0 |P Y x  because this fraction determines the magnitude of the selection at the first 

transition. Consequently, the lower is the selection at this transition the narrower the Manski bounds 

will be. In order to further narrow the bounds one has to make assumptions regarding the transition 

probabilities. The Mare model assumes, first, that the effects of observed family background 

variables are homogenous, second, that there is no selection on unobserved variables and, third, that 
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the transition probabilities are modeled either as probits or logits. The bivariate probit selection 

model we present in section 1.1 relaxes the assumption of no selection on unobservables but 

maintains the other two assumptions (see also Poirier (1980) and Wynand and van Praag (1981)). 

 

2. Empirical Application  

In the first part of the paper we show theoretically how selection on unobserved variables and 

scaling effects might lead to bias in the estimated effects of family background on the probability of 

making successive educational transitions. Furthermore, we have presented the bivariate probit 

selection model as an alternative approach which corrects for selection on unobserved variables. 

Finally, we have proposed Manski bounds as a way of bounding the effect of family background 

variables on educational transitions without making any distributional assumptions. 

 

In the second part of the paper we provide empirical illustrations of how selection on unobserved 

variables affects estimates of the effect of family background on the probability of making 

educational transitions and how different empirical strategies yield different conclusions. We 

analyze data from four countries: the United States (US), the United Kingdom (UK), Denmark, and 

the Netherlands. These countries were chosen, first, because the structure of educational transitions 

is similar, and second, because the countries differ substantially with regard to how large a 

proportion of a cohort of youth that makes the first and second transitions. In the US a large 

proportion of students make the first transition (high school) but a smaller proportion of the students 

who make the first transition also make the second transition (higher education) (see Table 1). By 

contrast, in the UK, Denmark, and the Netherlands much fewer students make the first transition 

but, if they make the first transition, they have a relatively high probability of also making the 

second transition. The four countries thus differ substantially with regards to the degree of selection 

at the first and second transitions. The four countries were also chosen because the available data 

for each country (except the US) is a cohort study (which reduces cohort heterogeneity) and 

because the data includes information on respondents’ academic ability (which is typically seen as 

one of the major unobserved variables). The data sets are presented below. 

 

Our empirical analysis is built around attempting to distinguish between the waning coefficients and 

the constant inequality hypotheses. The former hypothesis states that the effect of family 

background decreases across educational transitions and the latter hypothesis states that the effect is 
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constant across transitions. Distinguishing between these two different hypotheses is important for 

theoretical and substantive reasons and has been a recurring theme in the literature using the Mare 

model. We begin the empirical analysis in section 3 below by presenting the results from the 

Manski bounds approach which does not impose any assumptions. We then proceed by estimating 

more complex parametric models such as the Mare model and the bivariate probit selection model. 

 

2.1 Data 

2.1.1 The US 

For the US we use data from the National Longitudinal Survey of Youth (NLSY79). The NLSY79 

is a longitudinal study of a nationally representative sample of approximately 12,700 young men 

and women who were between 14 and 22 years old when they were first interviewed in 1979 (see 

Center for Human Resource Research 2006). In the empirical analysis we only use the 6,111 

respondents from the cross-sectional sample and exclude respondents from the supplementary and 

military samples. The variables used are described below 

 

2.1.2 The UK 

For the UK we use data from the National Child Development Study (NCDS). The NCDS is a 

longitudinal study of all children (approximately 17,500) born during the first week of March 1958 

in the UK (see Plewis et al. 2004). The NCDS respondents have been followed since birth and 

surveys have been carried out in 1965, 1969, 1974, 1981, 1991, and 1999/2000. 

 

2.1.3 Denmark 

For Denmark we use data from the Danish Youth Longitudinal Study (DYLS). The DYLS is a 

longitudinal study of a nationally representative sample of 3,151 men and women who were born in 

or around 1954 (see Jæger and Holm 2007). The DYLS respondents were first interviewed in 1968 

at age 14 and have since been interviewed in 1970, 1973, 1976, 1992, 2001, and 2004. 

 

2.1.4 The Netherlands 

For the Netherlands we use data from the Noord-Brabant cohort study (NB). The NB is a 

longitudinal study of a sample of 5,771 men born in or around 1940 in the province of Noord-

Brabant in the Netherlands. The NB respondents were first interviewed in 1952 and have since been 

interviewed in 1957-59, 1983, and 1993 (see van Praag 1992). Due to particular sample selection 
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criteria in the later waves and considerable attrition the NB cannot be regarded as nationally 

representative. 

 

2.2 Variables 

2.2.1 Dependent Variables: Educational Transitions 

We construct dummy variables for all four countries which take the value 1 if respondents have 

completed educational transition 1 (into upper secondary education) and 2 (into higher education), 

and 0 otherwise. 

 

In the analysis we consider respondents to have completed upper secondary education (transition 1) 

if they report the following degrees: 

 

 NLSY79: High school or GED degree. 

 NCDS: A-level qualifications (see Jackson et al. 2007). 

 DYLS: Upper secondary education or equivalent degree (see Jæger and Holm 2007). 

 NB: 5-6 years of high school (HAVO, VWO) or more (see de Haan 2005). 

 

We consider respondents to have completed higher education (transition 2) if, in addition to having 

completed upper secondary education (transition 1), they report the following degrees: 

 

 NLSY79: College degree. 

 NCDS: Higher qualifications or University degree. 

 DYLS: Intermediate or higher (University) tertiary education degree. 

 NB: Higher vocational education (HBO) or University degree. 

 

-- TABLE 1 ABOUT HERE -- 

 

Table 1 show that in the US almost 85 percent of the respondents make the first transition. By 

contrast, only around 26 percent of the respondents make this transition in Denmark. Transition 

probabilities for the first transition in the UK and the Netherlands are around 37 percent. The table 

also shows that the conditional transition probabilities into higher education are much higher in the 

Netherlands, UK, and Denmark compared to in the US. Consequently, it appears that selection is 
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low on the first transition and high on the second transition in the US but that the opposite is the 

case in the other countries. 

 

-- TABLE 2 ABOUT HERE -- 

 

2.2.2 Explanatory Variables 

We include five family background and two individual-level variables in the analyses. These 

variables have often been used in previous studies on educational transitions and are, with noted 

exceptions, comparable across the four data sets. Descriptive statistics are shown in Table 2. 

 

Family background variables one and two variables are father and mother’s education measured by 

years of completed schooling in the US, UK, and Denmark. In the NB parents’ education is 

measured using a five-point ordinal scale with the values zero through four indicating increasing 

levels of education, 0 = first level school, 1 = second level, first stage (LAVO, VGLO, MAVO), 2 = 

second level, second stage (HBS, MMS, HAVO,VWO), 3 = third level, first stage (HBO), and 4 = 

third level, second stage (WO). 

  

The third variable is gross monthly family income. In the NLSY79 family income is measured in US 

dollars in 1980 (i.e., when respondents were 15-23 years old) and, if data on family income was 

missing in 1980, data for 1978 or 1979 (indexed to 1980 level) was used. In the NCDS family 

income is measured in Pounds Sterling when respondents were 16 years old. In the DYLS family 

income is measured in Danish Kroner when respondents were 14 years old. In the NB the only 

available measure of family income is a dummy variable indicating if family income exceeds 6,000 

Dutch Guilders. However, as many respondents do not have any information on family income we 

chose not to include this variable in the analysis for the Dutch data. In the empirical analysis we 

standardize all family income variables. 

  

The fourth and fifth family background variables are, respectively, family type (with a dummy 

variable for having been raised in a single-parent household) and number of siblings. 

 

It was not possible to construct a measure of Socioeconomic Status (SES) that was comparable 

across the four surveys. 
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The two individual-level variables are the respondent’s sex (with a dummy variable for female) and 

cognitive ability. In the NLSY79 we measure the respondent’s cognitive ability by his or her 1980 

score on the Armed Forces Qualification Test (AFQT). In the NCDS we use the respondent’s total 

score on the General Ability Test (carried out at age 11). In the DYLS we use as our measure of 

cognitive ability the individual scores from a Principal Component Analysis of three tests of math, 

reading, and spatial ability carried out when respondents were 14 years old. Finally, in the NB we 

use a similar measure of cognitive ability extracted from a factor analysis of 10 test items in 

different subjects carried out when respondents were 12 years old. In the empirical analysis we 

standardize all cognitive ability variables. 

 

3. Results 

The results section is divided into three subsections. In the first subsection we illustrate the 

magnitude of the selection problem. In the second subsection we present results from the initial 

analysis using the Manski bounds. In the third subsection we present results from simple probit and 

bivariate probit selection models.  

 

-- FIGURE 3 ABOUT HERE-- 

 

In this first section we provide a simple illustration of the magnitude of selection in the four 

countries. Figure 3 displays the ratio between the regression coefficients from simple probit 

regressions for the effect of father and mother’s education and family income on the probability of 

making the first and the second transition plotted against the fraction of youth that makes the first 

transition. The figure shows that the larger is the proportion of youth that makes the first transition 

the larger is the effect of the family background variables in the second transition relative to the 

effect in the first transition. This finding clearly illustrates that a selection process exists since an 

“easy pass” in the first transition (with respect to the impact of family background) leads to a 

“tough” pass in the second transition and vice versa. 

 

In order to further develop the analysis we calculate the non-parametric Manski bounds for the 

relationship between father’s education (averaged by mother’s education
3
) and the probability of 

                                                 
3
 We compute the average bounds by non-parametric kernel regression methods as described in Manski (1997). 
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making the second transition. We use father’s education as the explanatory variable in this part of 

the analysis because most studies find that father’s education is one of the major family-background 

determinants of children’s educational outcomes. The Manski bounds for the effect of father’s 

education in our four countries are shown in Figures 4-7.  

 

-- FIGURES 4-7 ABOUT HERE -- 

 

In addition to the Manski bounds, the figures also plot the estimated effects of father’s education on 

the probability of making the second transition (conditional on having made the first transition) 

from a simple probit model which does not account for selection at the first transition. In the probit 

model we control for mother’s education. This is appropriate as the Manski bounds are averages by 

mother’s education. Both father and mother’s education enters the probit model as linear predictors.  

 

In the US which has the lowest level of selection at the first transition we find that the Manski 

bounds are quite narrow and suggest a positive relationship between father’s education and the 

probability of making the second transition. By contrast, the largely flat line for this effect in the 

simple probit model suggests that father’s education does not have any effect on the probability of 

making the second transition. In the other three countries which have relatively strong selection at 

the first transition both the Manski bounds (which are much wider than in the US) and the simple 

probit analyses suggest that, if students make the first transition, father’s education does not have 

any significant effect on the probability of making the second transition. Substantively, these results 

support the waning coefficients hypothesis since, as can be seen in Table 3 below, simple probit 

models indicate that father’s education has a strong effect on the probability of making the first 

transition. 

 

Our simple non-parametric approach suggests that the waning coefficients hypothesis is supported 

by the data. However, this approach does not address the problem that the population at risk of 

making the second transition in each country is selective. In order to address the selection problem 

we need to make distributional assumptions about the processes that govern educational transitions. 

As presented in section 1.1, we make the assumption that the latent propensity to make both 

educational transitions is jointly normally distributed. By doing so we propose a parametric 

structure which allows us to model the selection on unobserved variables as a bivariate normal 
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process and to estimate the correlation between the unobserved variables in the two transitions, . 

It should be kept in mind that although our bivariate probit selection model in theory deals with 

selection on unobserved variables there is no guarantee that our empirical data will accurately 

identify the selection process and the correlation between the unobservables. Selection models are 

often difficult to estimate and it is well-know that the correlation coefficient  has low statistical 

power (Copas and Li 1997; Angrist 2001). This turns out also to be the case in our analysis. 

However, when pooling the data sets for the US, UK, and Denmark and including instrumental 

variables we get stable results. 

 

-- TABLE 3 ABOUT HERE -- 

 

Table 3 shows results of the simple and bivariate probit models estimated separately for each 

country. In addition, we estimate models both with and without cognitive ability to account for the 

indirect effect of family background on educational transitions that runs through cognitive ability 

(“primary effects”; see Jackson et al. 2007).
4
 From Table 3 we find that the difference in model fit 

(evaluated by the log-likelihood) between the simple and bivariate probit models is very small. For 

the UK, Denmark, and the Netherlands we obtain very small chi-square test statistics and thus 

insignificant likelihood ratio tests when comparing the fit of the simple and bivariate probit 

selection models. For the US we find that the bivariate model has a significantly better fit than the 

simple model. However, apart from the correlation coefficients  (which only appears in the 

bivariate model) the estimated effects of the family background variables on the probability of 

making the two educational transitions is very similar in the simple and bivariate models. This 

result suggests that they explain the observed patterns in the data about equally well. Substantively, 

with the exception of the US, we find that the effects of father and mother’s education and family 

income decline from the first to the second transition. This pattern is consistent with the waning 

coefficients hypothesis, especially in the models that also control for cognitive ability. Finally, we 

find that none of the correlation coefficients  in the bivariate probit models are significant. This 

does not imply that there is no selection but rather that the sample sizes in the individual data sets 

are too small to obtain reliable estimates of the correlation among the unobservables. In other 

words, we may have insufficient data to properly identify the selection on unobserved variables. 

                                                 
4
 The bivariate probit selection models were estimated using Stata’s “heckprob” routine. 
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This result is substantively important because the data sets used to analyze educational transitions 

often are of comparable size to the ones we use in this analysis.  

 

In order to improve our ability to identify selection on unobserved variables in the bivariate probit 

selection model we pool the data from the NLSY79, NCDS, and DYLS into a single data set. The 

Dutch NB data was not included in this pooled data set because some of the explanatory variables 

were missing or were not comparable to the other data sets. The pooled data set is much larger (N = 

9,552) and provides some further opportunities to study the selection process. 

 

In the bivariate probit selection models reported in Table 3 the selection model is only identified on 

the basis of the parametric assumption of joint normality for the error terms. This is a strong 

theoretical assumption, and the bivariate models might also be difficult to estimate empirically. To 

improve identification we exploit the availability of data from different countries in the pooled data 

set to construct instrumental variables. Our instrumental variables are the country-specific transition 

rates at the first and second transitions calculated as the fractions of respondents in our samples that 

pass the two educational transitions.
5
 For the second transition, we furthermore construct 

instruments that capture the fraction of the whole sample that makes the second transition and the 

fraction that makes the second transition conditional on having made the first transition (i.e., the 

conditional fraction). The idea behind using the fractions that passes each transition as instruments 

is that we capture cross-national variation in the structural difficulty in passing the two transitions. 

We then use the fraction passing the two transitions as instrumental variables in the bivariate probit 

selection model to obtain non-parametric identification of the correlation coefficient, . This 

approach works because, as shown in Equation (2), the effect of the independent variables in the 

first transition are now linearly independent of the effect of the independent variables in the second 

transition. We can tentatively investigate instrument validity by examining changes in parameter 

estimates in the models using respectively fractions and country dummy variables as instruments 

and by comparing model fit in the two model specifications. 

                                                 
5
 Instrumental variables are variables that enter only one equation in a simultaneous-equation model in order to identify 

other equations in the model (see Pearl 2000). In our application we cannot use country dummy variables as 

instrumental variables because they would appear (in identical form) in both equations in our model. We were unable to 

find any useful instruments measured at the individual level and which were available in all three data sets. However, 

future research which deals with selection problems in educational transition models should develop instruments that 

differ across educational transitions 
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-- TABLE 4 ABOUT HERE -- 

 

Table 4 shows results from the simple and bivariate probit selection models estimated on the pooled 

data set. Again, we estimate models with and without cognitive ability to gauge the indirect effects 

of the family background variables running through cognitive ability.  

 

From the table we find, first, that there is a significant difference in model fit between the models 

which include country dummy variables and the models which include the instruments measuring 

the fractions passing upper secondary and higher education. However, judging from the small 

differences between the estimated effects of the family background variables in the two different 

model types we conclude that, although significantly different in terms of model fit, the two models 

yields similar substantive results. 

 

There is an interesting difference in the effect of the conditional fractions instruments in the simple 

and bivariate probit selection models. The effect of the conditional fraction that makes the second 

transition on the probability of making the second transition is positive in both models but 

substantially larger in the simple probit than in the bivariate models. This is a consequence of 

selection bias. In the simple probit model the effect of the conditional fraction instrument captures 

both the structural difficulty of making the second transition but also how many people failed the 

first transition. The higher is the fraction that makes the first transition (as in the US) the higher is 

the fraction that is likely to fail the second transition due to unobserved variables. The bivariate 

probit model takes unobserved factors into account and here the conditional fractions instrument 

captures how difficult the second transition is for students with identical values on observed and 

unobserved characteristics. 

 

The instrument measuring the fraction of the total sample that makes the second transition has a 

negative effect on the probability of making the second transition in the simple probit model which 

controls for cognitive ability but is insignificant in the model without cognitive ability. This result 

can be explained by the fact that the conditional fractions instrument is already included as an 

explanatory variable. Consequently, the total fractions instrument captures the effect of the 

likelihood of making the second transition over and above the effect captured by the conditional 
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fractions instrument; i.e., it measures the effect of having a large group of students which has made 

the first transition and which has the opportunity to make the second transition. In the simple probit 

model the total fraction is either insignificant (when we do not control for cognitive ability) or 

negative (when we control for cognitive ability). In the bivariate probit selection model the total 

fraction is highly significant and positive indicating that, once we account for selection, the larger is 

the fraction of students that has the opportunity to make the second transition the larger is the 

fraction that actually makes this transition.  

 

Moving on to the effects of the family background variables we find clear differences between the 

simple and bivariate probit selection models. In the simple probit models we find evidence of 

waning coefficients and lower significance levels for the effects of father and mother’s education 

and, especially, for the effect of family income. In the simple probit model that includes cognitive 

ability family income has a highly significant positive effect on the probability of making the first 

transition ( 0.087 , t = 4.73). In the second transition family income is no longer significant 

( 0.027 , t = 1.33). In the model that does not include cognitive ability family income is 

significant at the second transition, but here the effect is upwardly biased due to the omission of 

cognitive ability. The effects of parents’ education and their significance also decrease at transition 

2 in the simple probit models. Together, the results from the simple probit models support the 

waning coefficients hypothesis.  

 

In the bivariate probit models in which we allow for a correlation among the unobservables across 

transitions we find little or no evidence of waning coefficients. The effects of parents’ (and 

especially mother’s) education decrease slightly at the second transition remain highly significant. 

We observe the same pattern across the different specifications of the bivariate probit model. Most 

striking, however, is the fact that the effect of family income which “waned” considerably in the 

second transition in the simple probit model is very strong and highly significant in the bivariate 

selection model. Consequently, our analysis suggests that in our pooled data set selection on 

unobserved variables appears to be particularly strongly related to families’ economic resources.
6
 In 

                                                 
6
 We also included interaction terms between family income and the fractions instruments/country dummies in the 

models to test for country-specific parental income effects. With the exception of one statistically significant interaction 

term for the UK we did not find any interaction effects. 
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sum, our analysis using bivariate probit selections models suggest that the constant inequality 

hypothesis is more plausible than the waning coefficients hypothesis. 

 

Finally, we note an interesting feature of the estimated correlation coefficients  in the bivariate 

probit selection models. The correlation coefficient  measures the degree to which students’ 

unobserved characteristics are correlated across educational transitions. In the bivariate model that 

does not control for cognitive ability we find a highly significant correlation coefficient of about 0.8 

indicating that approximately two thirds ( 2 20.811 0.658 ) of the unobserved characteristics of 

students are common across transitions. In the model that controls for cognitive ability this share is 

only about one fourth ( 2 20.512 0.262 ). Consequently, cognitive ability accounts for about 40 

percent of the unobserved characteristics in the model that does not control for cognitive ability. 

This number is very high and suggests that cognitive ability is a very important determinant of 

educational attainment. 

 

4. Conclusion 

The Mare model of educational transitions has been highly influential in applied research on 

educational stratification. Although it represents a major improvement over previous statistical 

models, the Mare model is inherently susceptible to bias arising from selection on unobserved 

variables. Mare noted the risk of bias from selection in his original work, but most applied research 

does not address selection bias. 

 

In this paper we study the impact of selection on unobserved variables in the educational transition 

model with two transitions. In the first part of the paper we show theoretically that biased parameter 

estimates of the effect of family background variables may arise from two phenomena: selection on 

unobserved variables (which, due to increasing selectivity, leads to downward bias) and scaling 

effects (which, due to different sample variances in the distributions of unobservables, leads to 

upward bias).  

 

In the second part of the paper we present results from an empirical analysis which illustrates the 

impact of selection bias on substantive results in the model with two educational transitions. In the 

empirical analysis we seek to distinguish between a “waning coefficients” and a “constant 

inequality” hypothesis. We use data from four countries and different empirical strategies to 
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determine how many assumptions regarding the data generating process we need to distinguish 

between the two competing hypotheses. Using non-parametric Manski bounds we find that in three 

out of four countries the data is equally consistent with both hypotheses. We then impose a 

parametric structure on the data generating process and estimate simple and bivariate probit models. 

The bivariate probit model accounts for selection on unobserved variables by assuming a bivariate 

normal structure for the unobservables in the two educational transitions. Our empirical results 

using the simple probit model (similar to the standard Mare model) support the waning coefficients 

hypothesis. However, when we pool the data our bivariate probit model suggests that the effect of 

family background is largely constant across educational transitions. Consequently, when we take 

selection on unobserved variables into account our results support the constant inequality 

hypothesis. Our analysis, although only illustrative, then suggests that selection on unobserved 

variables has a profound impact on the estimated effects of family background on the probability of 

making successive educational transitions. 

 

The main contribution of this paper is to show that selection on unobserved variables matters. Our 

empirical results indicate that the waning coefficients pattern found in previous studies using the 

Mare model, at least to some extent, are likely to be driven by selection on unobserved variables. 

Consequently, in line with Cameron and Heckman (1998, 2001) we urge analysts which use the 

Mare model to pay explicit attention to selection bias.  

 

The second contribution of the paper is to show that our ability to distinguish between competing 

hypotheses regarding the effect of family background on educational success depends critically on 

the number of assumptions we make regarding the data generating process. If we do not wish to 

make any assumptions we are typically not able to distinguish very accurately between competing 

hypotheses (unless we have very large samples). The Mare model imposes a parametric structure on 

the data generating process and assumes no selection on unobserved variables. We extend the Mare 

model by means of a bivariate probit model to allow for selection on unobserved variables. Our 

bivariate probit selection model is easily estimated using standard software. However, the 

parametric assumption regarding the distribution of the unobservables in the bivariate probit 

selection model is not testable. This means that we have no way of testing whether our assumption 

regarding the unobserved part of the selection process is plausible. Furthermore, in the empirical 
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analysis we find that we need auxiliary information in the form of instrumental variables to properly 

estimate the correlation between the unobservables in the two educational transitions. 

 

In summary, our bivariate approach is no “magic bullet” which solves the problem of selection on 

unobserved variables in educational transition models. Essentially, in the future we need more and 

better data to estimate educational transition models. Bigger data sets would enable a more accurate 

identification of the underlying distributions of the unobservables. Better data sets would include 

variables explicitly designed to capture the selection process at the different educational transitions. 
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Appendix 1. The Effect of Scaling on the Estimated Parameters in the Second Educational 

Transition 

Define the Inverse Mills’ Ratio as  

 

1 1
1 1

1 1

x
x

x
, 

 

where . and .  are the standard normal density and distribution functions (Heckman 1979). 

Note that * 2 * *

2 2 1| 0Var Y Var Y Y  because  

 

2* * * 2 2

2 1 2 1 1 1 1 1 1 1| 0 | 0 1Var Y Y Var Y Y x x x   

 

(Maddala 1983; Heckman 1979). Indeed, 2 *

2 1| 0Var Y Y  as the term 

2

1 1 1 1 1 10 1x x x . Also note that this relationship only exists because of the 

assumption of joint normality. 
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Appendix 2. The Approximation to the Conditional Probability of Making the Second 

Educational Transition 

In this appendix we derive the expression in Equation (1) which we use to show analytically the 

effect of selection and scaling on the conditional probability of making the second transition. The 

joint probability of making both the first and the second transition is 

1 2 2

* * * *

2 1 1 1 1 2 2 2 2 1

0 0

2 1
1 2 1

2

1| 1 ,

|
,

1x x

P Y Y y x y x y y

e e
e e e

 

where 
2 1 2 1|e e e e . Hence the mean and variance of 2 1|e e depends on the value of the outer 

integrand and has no closed form solution. However, noting that * *

2 1 2 2 1 1| 0E Y Y x x  

and 
2* * 2

2 1 1 1 1 1 1 1var 0 | 0 1Y Y x x x  suggests that we may approximate the 

conditional distribution of 2 1|e e with: 

2 2 1 1
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FIGURE 1. The Relationship between Passing the First Transition and Background Characteristics 
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FIGURE 2. Relationship between Passing the Second Transition and Background Characteristics 
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FIGURE 3. Illustration of the Relative Magnitude of some Family Background Variables in the 

Second Transition 
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FIGURE 4. Manski Bounds for the Probability of Making the Second Transition, NLSY79. Father’s 

Education Averaged by Mother’s Education 
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FIGURE 5. Manski Bounds for the Probability of Making the Second Transition, NCDS. Father’s 

Education Averaged by Mother’s Education 
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FIGURE 6. Manski Bounds for the Probability of Making the Second Transition, DYLS. Father’s 

Education Averaged by Mother’s Education 
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FIGURE 7. Manski Bounds for the Probability of Making the Second Transition, NB. Father’s 

Education Averaged by Mother’s Education 
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TABLE 1. Transition Probabilities into Upper Secondary and Higher Education 

 Sample 

 NLSY79 NCDS DYLS NB 

Proportion of sample that makes the 

first transition into upper secondary 

education 

 

0.848 

 

0.372 

 

0.261 

 

0.375 

Proportion of sample that made the first 

transition that also makes the second 

transition into higher education 

 

0.403 

 

0.796 

 

0.663 

 

0.863 

Sample size 6,029 7,903 2,660 1,440 
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TABLE 2. Descriptive Statistics. Means and Standard Deviations 

 Sample 

 NLSY79 NCDS DYLS NB 

Total sample Mean SD Mean SD Mean SD Mean SD 

Father’s education (Years) 11.90 3.58 10.03 2.02 9.62 2.70 2.43* 0.85 

Mother’s education (Years) 11.69 2.71 9.99 1.60 8.88 2.39 2.15* 0.64 

Family income 0.06 0.99 0.79 0.68 0.08 0.99 - - 

Gender (1 = female) 0.47 - 0.55 - 0.46 - - - 

Lone parent (1 = raised in a single-

parent household) 

 

0.20 

 

- 

 

0.09 

 

- 

 

0.03 

 

- 

 

- 

 

- 

No. siblings 3.16 2.12 2.37 1.78 2.19 1.41 5.83 3.34 

Cognitive ability 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 

         

Sample completing upper secondary 

education 

        

Father’s education 12.19 3.45 10.91 2.73 11.18 3.01 2.87* 1.16 

Mother’s education 11.94 2.59 10.67 2.16 10.21 2.71 2.51* 0.91 

Family income 0.14 1.00 0.98 0.73 0.42 1.25 - - 

Gender (1 = female) 0.50 - 0.51 - 0.43 - - - 

Lone parent (1 = raised in a single-

parent household) 

 

0.18 

 

- 

 

0.06 

 

- 

 

0.03 

 

- 

 

- 

 

- 

No. siblings 3.04 2.02 1.89 1.36 1.81 1.06 5.55 2.61 

Cognitive ability 0.17 0.94 0.45 0.77 0.40 0.57 0.42 0.63 

Note: * Father and mother’s education are measured by five ordered levels coded as 0-4.
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TABLE 3. Results from Simple and Bivariate Probit Selection Models. Parameter Estimates with T-Statistics in Parenthesis 

 NLSY79 NCDS DYLS  NB 

 Simpl

e 

probit 

Simple 

probit 

Bivariat

e 

probit 

Bivariat

e 

probit 

Simple 

probit 

Simple 

probit 

Bivariat

e 

probit 

Bivariat

e 

probit 

Simpl

e 

probit 

Simple 

probit 

Bivariat

e 

probit 

Bivariat

e 

probit 

Simpl

e 

probit 

Simpl

e 

probit 

Bivariat

e 

probit 

Bivariat

e 

probit 

 

Transition to Upper Secondary Education 

Father’s 

education 

0.039 

(3.95) 

0.009 

(0.58) 

0.0415 

(4.13) 

0.009 

(0.79) 

0.159 

(10.68

) 

0.120 

(7.69) 

0.160 

(10.71) 

0.120 

(7.68) 

0.111 

(6.50) 

0.072 

(3.82) 

0.110 

(6.44) 

0.073 

(3.86) 

0.452 

(7.47) 

0.418 

(6.83) 

0.456 

(7.54) 

0.422 

(6.85) 

Mother’s 

education 

0.077 

(6.10) 

0.045 

(3.32) 

0.081 

(6.32) 

0.048 

(3.54) 

0.202 

(10.40

) 

0.157 

(7.75) 

0.201 

(10.33) 

0.127 

(7.74) 

0.104 

(5.74) 

0.105 

(5.27) 

0.106 

(5.86) 

0.103 

(5.17) 

0.327 

(3.98) 

0.327 

(3.91) 

0.317 

(3.96) 

0.322 

(3.69) 

Family 

income 

0.178 

(4.99) 

0.053 

(1.39) 

0.173 

(4.90) 

0.055 

(1.45) 

0.163 

(4.60) 

0.096 

(2.53) 

0.163 

(4.62) 

0.096 

(2.53) 

0.065 

(1.63) 

0.068 

(1.58) 

0.065 

(1.66) 

0.071 

(1.63) 

- - - - 

Gender 0.302 

(5.48) 

0.304 

(5.19) 

0.306 

(5.56) 

0.303 

(5.19) 

-0.186 

(4.24) 

-0.299 

(6.31) 

-0.186 

(4.25) 

-0.299 

(6.31) 

-0.021 

(0.30) 

0.029 

(0.37) 

-0.037 

(0.52) 

0.043 

(0.55) 

- 

 

- - - 

Lone 

parent 

-0.401 

(6.38) 

-0.343 

(5.11) 

-0.413 

(6.56) 

-0.359 

(5.38) 

-0.331 

(4.00) 

-0.254 

(2.85) 

-0.333 

(4.03) 

-0.254 

(2.85) 

-0.126 

(0.56) 

-0.146 

(0.60) 

-0.140 

(0.62) 

-0.148 

(0.61) 

- - - - 

No. 

siblings 

-0.040 

(3.21) 

-0.016 

(1.25) 

-0.041 

(3.32) 

-0.019 

(1.45) 

-0.152 

(10.80

) 

-0.099 

(6.47) 

-0.152 

(10.81) 

-0.099 

(6.47) 

-0.087 

(3.08) 

-0.091 

(2.91) 

-0.085 

(3.03) 

-0.091 

(2.93) 

-0.021 

(1.34) 

-

0.065 

(4.47) 

-0.019 

(1.26) 

-0.064 

(4.34) 

Cognitive 

ability 

- 0.636 

(15.70

) 

- 0.637 

(15.84) 

- 0.679 

(23.77

) 

- 0.679 

(23.76) 

- 1.023 

(15.41

) 

- 1.027 

(15.48) 

- 0.256 

(6.68) 

- 0.256 

(6.65) 

  

Transition to Higher Education  

Father’s 

education 

0.083 

(9.52) 

0.052 

(5.56) 

0.085 

(9.79) 

0.051 

(5.61) 

0.072 

(3.54) 

0.059 

(2.77) 

0.043 

(1.54) 

0.061 

(1.71) 

-0.048 

(1.79) 

-0.057 

(2.07) 

-0.099 

(4.22) 

-0.024 

(0.55) 

-0.064 

(0.70) 

-

0.080 

(0.87) 

0.359 

(5.24) 

0.251 

(0.40) 

Mother’s 

education 

0.074 

(6.36) 

0.039 

(3.22) 

0.081 

(6.32) 

0.044 

(3.70) 

0.073 

(2.82) 

0.064 

(2.36) 

0.037 

(1.04) 

0.066 

(1.41) 

0.008 

(0.29) 

0.009 

(0.32) 

-0.049 

(1.91) 

0.043 

(1.03) 

0.119 

(0.97) 

0.121 

(0.98) 

0.300 

(3.83) 

0.281 

(1.27) 

Family 

income 

0.098 

(3.85) 

0.024 

(0.91) 

0.173 

(4.90) 

0.030 

(1.14) 

0.102 

(1.70) 

0.072 

(1.13) 

0.060 

(0.91) 

0.073 

(1.06) 

0.003 

(0.06) 

0.011 

(0.20) 

-0.028 

(0.60) 

0.031 

(0.56) 

- - - - 

Gender 0.137 

(3.49) 

0.222 

(4.66) 

0.306 

(5.56) 

0.251 

(5.46) 

-0.150 

(1.97) 

-0.229 

(2.85) 

-0.104 

(1.27) 

-0.233 

(2.00) 

0.124 

(1.02) 

0.151 

(1.23) 

0.089 

(0.90) 

0.132 

(1.10) 

- - - - 

 

Lone 

parent 

-0.074 

(1.21) 

0.009 

(0.14) 

-0.413 

(6.56) 

0.047 

(0.78) 

-0.129 

(0.81) 

-0.124 

(0.75) 

-0.042 

(0.25) 

-0.128 

(0.70) 

-0.212 

(0.60) 

-0.192 

(0.54) 

-0.091 

(0.32) 

-0.232 

(0.71) 

- - - - 

No. 

siblings 

-0.036 

(2.98) 

-0.016 

(1.33) 

-0.41 

(3.32) 

-0.019 

(1.51) 

-0.041 

(1.53) 

-0.009 

(0.31) 

0.000 

(0.01) 

-0.010 

(0.23) 

-0.061 

(1.06) 

-0.064 

(1.10) 

0.020 

(0.36) 

-0.094 

(1.66) 

0.046 

(1.32) 

0.055 

(1.55) 

-0.007 

(0.40) 

-0.023 

(0.12) 

Cognitive 

ability 

- 0.627 

(21.24

) 

- 0.681 

(24.00) 

- 0.577 

(10.93

) 

- 0.588 

(2.72) 

- 0.229 

(2.11) 

- 0.560 

(1.83) 

- 0.179 

(1.22) 

- 0.280 

(3.16) 

 - - 0.842 

(0.34) 

0.934 

(0.10) 

- - -0.373 

(1.24) 

0.024 

(0.05) 

- - -0.904 

(0.89) 

0.557 

(0.89) 

- - 0.995 

(1.28) 

0.924 

(0.27) 
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Log-

Likelihoo

d 

-

3445.0 

-

3049.7 

-3441.6 -3046.6 -

2919.4 

-

2527.0 

-2918.7 -2527.0 -

1141.1 

-987.1 -1140.4 -986.7 -690.0 -

667.7 

-689.6 -667.3 

Sample 

size 

3,949 3,990 1,613 1,440 
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TABLE 4. Results from Simple and Bivariate Probit Selection Models with Instruments. Parameter 

Estimates with T-Statistics in Parenthesis 

 Models without cognitive ability Models with cognitive ability 

 Simple 

probit 

Bivariate 

probit 

 

Simple probit, 

country dummies 

Bivariate 

probit, 

country 

dummies 

Simple 

probit 

Bivariate 

probit 

Simple 

probit, 

country 

dummies 

Bivariate 

probit, 

country 

dummies 

 

Transition to Upper Secondary Education 

Father’s 

education 

0.079 

(11.02) 

0.084 

(11.91) 

0.077 

(10.60) 

0.082 

(11.45) 

0.049 

(6.24) 

0.056 

(7.65) 

0.045 

(574) 

0.0472 

(6.06) 

Mother’s 

education 

0.097 

(11.02) 

0.100 

(11.57) 

0.102 

(11.52) 

0.105 

(12.02) 

0.069 

(7.38) 

0.067 

(7.61) 

0.076 

(8.03) 

0.0775 

(8.26) 

Family income 0.142 

(8.27) 

0.139 

(8.29) 

0.142 

(8.23) 

0.138 

(8.23) 

0.087 

(4.73) 

0.037 

(1.97) 

0.087 

(4.69) 

0.089 

(4.04) 

Gender -0.009 

(0.30) 

0.015 

(0.50) 

0.002 

(0.08) 

0.025 

(0.83) 

-0.067 

(2.07) 

-0.011 

(0.36) 

-0.052 

(1.60) 

-0.037 

(1.14) 

Lone parent -0.360 

(7.43) 

-0.352 

(7.36) 

-0.358 

(7.37) 

-0.352 

(7.32) 

-0.283 

(5.46) 

0.276 

(5.51) 

-0.282 

(5.40) 

-0.292 

(5.61) 

No. siblings -0.076 

(9.12) 

-0.076 

(9.14) 

-0.077 

(9.13) 

-0.076 

(9.17) 

-0.038 

(4.24) 

-0.040 

(4.69) 

-0.039 

(4.31) 

-0.040 

(4.43) 

Cognitive ability - - - - 0.692 

(32.38) 

0.674 

(34.28) 

0.699 

(32.42) 

0.696 

(32.44) 

US - - 1.608 

(32.04) 

1.606 

(32.20) 

- - 2.088 

(36.91) 

2.09 

(36.91) 

UK - - 0.136 

(3.29) 

0.143 

(3.45) 

- - 0.183 

(4.17) 

0.126 

(2.74) 

Fraction passing 

upper secondary 

2.936 

(39.51) 

3.015 

(35.28) 

- - 3.785 

(43.50) 

3.749 

(43.57) 

- - 

  

Transition to Higher Education 

Father’s 

education 

0.071 

(9.37) 

0.083 

(12.04) 

0.071 

(9.37) 

0.082 

(11.85) 

0.042 

(5.27) 

0.046 

(5.95) 

0.042 

(5.27) 

0.045 

(5.83) 

Mother’s 

education 

0.060 

(6.19) 

0.083 

(9.33) 

0.060 

(6.19) 

0.084 

(9.38) 

0.036 

(3.49) 

0.045 

(4.52) 

0.036 

(3.49) 

0.046 

(4.53) 

Family income 0.069 

(3.52) 

0.113 

(6.25) 

0.069 

(3.52) 

0.112 

(6.16) 

0.027 

(1.33) 

0.044 

(2.16) 

0.027 

(1.33) 

0.043 

(2.10) 

Gender 0.081 

(2.20) 

0.062 

(1.89) 

0.081 

(2.20) 

0.067 

(2.03) 

0.112 

(2.91) 

0.098 

(2.61) 

0.112 

(2.91) 

0.102 

(2.72) 

Lone parent -0.105 

(1.89) 

-0.186 

(3.62) 

-0.105 

(1.89) 

-0.184 

(3.57) 

-0.023 

(0.39) 

-0.055 

(0.96) 

-0.023 

(0.39) 

-0.052 

(0.92) 

No. siblings -0.039 

(3.70) 

-0.057 

(5.97) 

-0.039 

(3.70) 

-0.057 

(5.92) 

-0.018 

(1.58) 

-0.023 

(2.16) 

-0.018 

(1.58) 

-0.023 

(2.13) 

Cognitive ability - - - - 0.594 

(24.22) 

0.678 

(25.28) 

0.594 

(24.22) 

0.676 

24.84) 

US - - -0.769 

(11.32) 

-0.009 

(0.08) 

- - -0.493 

(7.05) 

-0.059 

(0.48) 

UK - - 0.409 

(5.77) 

0.358 

(5.90) 

- - 0.421 

(5.82) 

0.425 

(6.29) 

Total fraction 

passing higher 

education 

0.078 

(0.16) 

2.528 

(6.31) 

- - -0.827 

(1.66) 

2.521 

(4.46) 

- - 

Conditional 

fraction passing 

higher education 

3.009 

(20.13) 

1.255 

(4.34) 

  2.431 

(15.58) 

1.555 

(5.70) 

  

 - 0.811 

(5.01) 

- 0.799 

(5.05) 

- 0.512 

(3.91) 

- 0.488 

(3.82) 

Log-Likelihood -

7697.9 

-7674.6 -7687.2 -7664.7 -6761.9 -6751.4 -6746.7 -6737.0 

Sample size 9,552 

 


