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by 
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Abstract 

In this study we propose a methodology that allows one to obtain consistent estimates 

of a system of equations involving an input distance function along with the first order 

equations that relate to shadow cost minimizing behaviour.  In addition, we show that 

previously proposed methods are likely to produce inconsistent estimates, even under 

a fairly weak set of assumptions regarding the data generating process (DGP).  Our 

model is closely related to a random effects shadow prices model recently proposed 

by Karagiannis et al (2006).  However, in our model we express the first order 

equations in ratio form, which allows us to ensure that our estimates are invariant to 

the choice of normalizing input.  An empirical application of this model involving 

panel data on US electricity generation firms is presented, where we find that 

technical inefficiency is the largest contributor to cost inefficiency, and that the 

majority of allocative mistakes involve under use of fuel relative to the other inputs.  
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1. Introduction 

In this paper we describe the outcomes of a research project that began some years 

ago.  The aim of the study is to identify a suitable way of estimating a system of 

equations involving an input distance function along with the associated first order 

conditions for shadow cost minimisation.  The estimation of a model such as this 

allows one to obtain information on the structure of production (estimates of 

production elasticities, economies of scale and scope, etc.) plus firm-specific 

measures of technical and allocative efficiencies.  Given that a handful of authors had 

already worked on systems estimation of distance functions, we expected that this 

task would be fairly straight forward.  However, we found that it was a very 

challenging task. 

In the following discussion we review a number of previous studies in this area.  In 

doing so we are critical of some aspects of these studies.  However, we wish to stress 

that our aim is not criticism in itself, since we think that these past papers make a 

number of valuable contributions, but our principal aim is to understand these 

methods and attempt to refine them if possible.1 

Why are we interested in estimating a distance function embedded in a system of 

equations?  Why do we not simply estimate the input distance function as a single 

equation?  Systems estimation has a number of potential advantages.  First, the 

inclusion of extra information may result in more efficient econometric estimates of 

the parameters.  Second, it allows one to formally test the hypothesis of systematic 

deviations from cost minimising behaviour.  Third, the issue of potentially 

endogenous regressors in the distance function could be addressed using these first 

order equations.  Fourth, the systems approach may permit one to obtain firm-specific 

allocative inefficiency measures as a by-product of estimation.  This could allow one 

to avoid the necessity for the calculation of allocative inefficiency measures in a 

                                                 

1 In fact the reader should note that one of the co-authors of this paper (Lovell) is also the co-author of 
two of the past papers that we review and find fault with.  
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second stage, which generally involves the solution of a non-linear optimising 

problem for each data point when a flexible functional form is used.2  

Grosskopf and Hayes (1993) appear to be the first authors to have estimated an input 

distance function system.  Their model involves a generalized Leontief functional 

form, and is estimated using seemingly unrelated regression (SUR) methods.  Possible 

endogeneity in the input variables is dealt with by regressing each input quantity 

variable on a vector of instruments and then using the input quantity predictions in the 

SUR estimation.  Unfortunately, this method is unlikely to provide consistent 

estimates when a non-linear model (such as the generalised Leontief) is used.3   

Technical inefficiency in the input distance function equation in the Grosskopf and 

Hayes (1993) model is accommodated by using the moment-based estimator proposed 

in Aigner, Lovell and Schmidt (1977).  The specified model motivates allocative 

mistakes in terms of shadow prices deviating from observed prices.  The error terms 

in the first order equations are designed to capture these mistakes.  However, it 

appears that the model implicitly imposes the restriction that for the average firm 

observed and shadow prices coincide (because the error terms are assumed to have 

zero mean), which is born out in the results they obtain. Furthermore, the analysis 

does not attempt to predict optimal input combinations, nor allocative or cost 

efficiency scores. 

Subsequent papers have proposed models which do not assume that the shadow price 

deviations must have zero mean.  In a series of papers, Baños-Pino, Fernandez-Blanco 

and Rodriguez-Alvarez (2002), Rodriguez-Alvarez and Lovell (2004) and Rodriguez-

Alvarez, Fernandez-Blanco and Lovell (2004) make use of a translog functional form, 

and allow a non-zero mean for the shadow price deviations.  The proposed 

econometric models are fairly simple to estimate, however our analysis below 

suggests that the estimators are unlikely to produce consistent estimators because of 

                                                 

2 An alternative way to achieve many of these aims could be to estimate a shadow cost function in a 
system of equations.  However, this is a messy exercise which has a number of challenging aspects. 
Greene (2007) surveys the issues, and Kumbhakar and Tsionas (2005) propose a Bayesian approach.  
3 For a general discussion of instrumental variables estimation in non-linear models, see Amemiya 
(1985). 
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correlation between the error terms and the regressors (unless all firms make identical 

allocative mistakes).   

In a recent working paper, Karagiannis et al (2006) have proposed some alternative 

models that can be used to estimate a shadow prices system.  Their method is 

designed to address the inconsistency problems in the above models.  However, our 

analysis suggests that their models can be criticised because they are not invariant to 

the choice of normalising input, and in addition their fixed effects models are likely to 

produce inconsistent estimates when allocative mistakes differ (in a non-structured 

manner) across observations. 

In addition to these papers that model allocative mistakes using shadow prices, 

another series of papers – by Atkinson and Primont (2002), Atkinson, Honerkamp and 

Cornwell (2003), Atkinson, Färe and Primont (2003) and Atkinson and Halabi (2005) 

– have proposed methods which model the allocative mistakes in terms of shadow 

input quantities.  This approach has the advantage that optimal input combinations, 

plus allocative or cost efficiency scores are easily obtained as a by-product of the 

estimation process.  However, some challenging (perhaps insurmountable) estimation 

issues are also encountered in these models when allocative mistakes differ (in a non-

structured manner) across observations.  These issues are discussed in some detail 

below. 

Overall, from our initial assessment of these two alternatives (the use of shadow input 

prices versus shadow input quantities) it seemed to us that the use of shadow input 

quantities was the more natural way to proceed, since the standard underlying 

economic model (of shadow cost minimisation) assumes that input quantities are 

endogenous (choice) variables while price information is assumed exogenous (i.e., 

firms are price takers, such that they are too small to influence the market price by 

their actions).  However, as we argue below, the data generating process (DGP) 

implied by the use of shadow input quantities produces an econometric model with a 

number of (apparently intractable) estimation issues.  As a result, the model that we 

propose in this paper involves the use of shadow input prices. 

The remainder of this paper is divided into sections.  In Section 2 we outline a data 

generating process that accommodates both management errors and non-management 
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errors.  In Section 3 we investigate the viability of some econometric models that 

involve shadow input quantities, while in Section 4 we evaluate econometric models 

involving shadow input prices.  In Section 5 we describe how efficiency measures can 

be derived in these two cases.  In Section 6 we present our proposed methodology, 

and then in Section 7 we provide an empirical application of this model involving 

panel data on US electricity companies.  Some concluding comments are made in 

Section 8. 

 

2. The data generating process 

In recent decades, very few econometrics papers carefully outline the assumed data 

generating process (DGP) which underlies the model that is being estimated.4  In 

many papers one will find some hints as to what the author may believe forms part of 

the DGP, such as some mention of measurement error or endogenous feedback, but 

rarely is the DGP clearly defined. 

The foundation stone of this paper is the DGP.  This is required, because without an 

assumed DGP, it is very difficult for one to discuss the relative merits of alternative 

approaches to the modelling of a production process using an input distance function 

that is estimated econometrically in a system of equations, along with the first order 

conditions for (shadow) cost minimisation. 

To begin with we define the following variables: 

1( ,..., )K Kx x R+= ∈x  is a K×1 vector of input quantities; 

1( ,..., )M My y R+= ∈y  is M×1 vector of output quantities; and 

1( ,..., )K Kw w R+= ∈w  is a K×1 vector of input prices. 

Following Färe and Primont (1995), we define the production technology as 

 }producecan:),{( yxyx=T . (2.1) 
                                                 

4 Papers such as those by Simar and Wilson (2000, 2007) which develop bootstrapping methods for 
non-parametric data envelopment analysis (DEA) models are notable exceptions.  However, most 
recent papers involving econometric analyses of production models have said very little about assumed 
DGP’s, compared to earlier papers such as that by Zellner, Kmenta and Drèze (1966). 



 6

Given the assumption of weak disposability in inputs, this production technology can 

be also represented by an input distance function 

 ( , ) { : ( / , ) }supD T
π

π π= ∈y x x y , (2.2) 

where π  is the (scalar) distance function value, such that 1 π< < ∞ .  A value of 1π =  

implies no technical inefficiency.  That is, the firm is operating on the surface of the 

production technology. 

We assume that the firm faces exogenously determined vectors of input prices and 

output quantities, and attempts to select a vector of input quantities so as to minimise 

the cost of producing this vector of outputs.  In this situation (and given that the 

technology is convex and strongly disposable in inputs) the technology can be 

equivalently described using the cost function 

{ }( ) | ( , ) 1minC D′= ≥
x

y,w w x y x . (2.3) 

The first order conditions associated with this minimisation problem are:5 

 ( , )
( , )

D
C

∂
=

∂
y x w
x y w

, (2.4) 

or equivalently 

 ( , ) , 1,...,
( , )

i

i

wD i K
x C

∂
= =

∂
y x

y w
. (2.4a) 

This relation can also be expressed in terms of the elasticities 

 ln ( , ) , 1,...,
ln ( , )

i i

i

w xD i K
x C

∂
= =

∂
y x

y w
, (2.4b) 

which is useful when dealing with logarithmic functional forms, such as the translog. 

 

                                                 

5 See Färe and Primont (1995). 
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A world containing no errors 

In the first instance we could assume that we have a special error-free world where 

the management of the firm is always perfect.  That is, it chooses a technically 

efficient input vector on the boundary of the production technology, such 

that ( , ) 1D =y x , and the technically efficient input vector is also allocatively efficient, 

such that w′x = C(y,w).  Consequently cost is minimised and equation (2.4) is always 

satisfied.   

A world containing management errors 

We then relax this strong assumption and introduce errors due to management 

inefficiency into this model.  Following Farrell (1957), we introduce two types of 

management inefficiency: technical inefficiency (producing below the production 

technology) and allocative inefficiency (choosing an input mix which differs from that 

at the point of cost minimisation).   

There are two alternative ways in which analysts normally introduce technical 

inefficiency.  One option is to append a one-sided error term to the output quantities, 

to reflect the degree to which the achieved output falls short of the potential output.  

The second option is to append a one-sided error term to the input quantities, to reflect 

the degree to which the quantity of input used exceeds the minimum feasible input 

level.  Given that we are considering an input distance function in this paper, it is 

natural for one to consider the latter option.6  Thus we allow for the possibility that x 

is technically inefficient and define the technically efficient input vector as 

1( ,..., )te te te
Kx x=x , where 

 exp( ) , 1,...,te
i ix x u i K= − = , (2.5) 

                                                 

6 When an input-conserving orientation has been selected, D(y,x) and C(y,w) provide primal and dual 
representations of the technology. In this context modelling technical efficiency with an output-
expanding orientation seems contradictory, but several studies have compared input-oriented and 
output-oriented estimates of technical efficiency in this context, an early and influential example being 
Atkinson and Cornwell (1994). 
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and u is a non-negative scalar.7 

In the case of modelling allocative inefficiency (in inputs) we also have two 

alternative choices, in terms of how we can introduce the errors.  One option is to 

specify variables that are known as shadow input prices, which represent the input 

price vector that would render the technically efficient scaling of the observed input 

quantity vector allocatively efficient.  The second option is to specify shadow input 

quantities, which represent the technically efficient input quantity vector that is 

allocatively efficient for the observed input price vector.  For the present, we will use 

the latter option, since the primary interest is generally in determining the inefficient 

input quantities and hence the efficiency scores.  However, we will return to 

discussion of the former option in the next section.   

We define the shadow input vector as the cost efficient input vector 1( ,..., )ce ce ce
Kx x=x , 

where 

 / exp( ) , 1,...,ce te
i i ix x i Kη= = , (2.6) 

where 1( ,..., )Kη η=η  is a K×1 vector of scalar input quantity adjustments.8  In the 

event that the firm uses the cost-minimising input mix, this vector will be a vector of 

zeros.   

The vector, η , has K elements, but only K-1 of them are uniquely defined.  This is 

because the production technology is given and hence movement from the point tex  to 
cex  can be fully described by the differences in the directions of the two rays which 

pass through these two points (because the points themselves will be defined by the 

intersections of these rays and the technology).   

The direction of a ray from the origin which passes through the point tex  can be 

described by deflating the vector by an arbitrarily chosen element: 

                                                 

7 A multiplicative form has been chosen here because it allows one to avoid the possibility that a 
negative shadow quantity is specified.  Note that exp( )u π=  = D(y,x). 
8 It follows from equations (2.5) and (2.6) that the cost-efficient input vector can be expressed in terms 
of the observed input vector as exp( ) exp( ) exp( ) , 1,...,ce

i i i i ix x u x u i Kη η= − = − =  
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1 1/ ( / ,..., / ,1)te te te te te te
K K K Kx x x x x−=x .  Thus, we have a set of K-1 ratios which fully 

describe the direction of this ray.  In a similar way, we can define the direction of the 
cex  vector as: 1 1/ ( / ,..., / ,1)ce ce ce ce ce ce

K K K Kx x x x x−=x .   

The degree to which these two directions differ can then be fully described by the K-1 

ratios 

 [ ]
[ ]

1 1

1 1

1 1

1 1

/ / /,..., ,1
/ / /

exp( ),...,exp( ),1

exp( ),...,exp( ),1

ce ce ce ce ce ce
K K K K

te te te te te te
K K K K

K K K

K

x x x x x
x x x x x

η η η η

θ θ

−

−

−

−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

= − −

=

x
x

, (2.7) 

where, once again, if 1 1( ,..., )Kθ θ −=θ  is a vector of zeros, this implies allocative 

efficiency. 

However, it is important to note that the parameterisation in equation (2.7) is not 

identical to setting one of the iη  equal to 0, such as Kη .  This is because this would 

result in the imposition of the assumption that the K-th shadow input quantity is such 

that / =1ce te
K Kx x .  That is, the K-th shadow input quantity is equal to the K-th 

technically efficient input quantity.  This assumption has been made in Atkinson et al 

(2002), for example. As we explain later in this paper, this is an unusual restriction 

which will have the effect of producing incorrect efficiency measures when the 

assumption is (almost invariably) false. 

As a consequence, it is important that the economic model is defined in terms of the 

ratio variables and the θ  vector from equation (2.7).  That is, such that for the i-th 

input we have 

 / exp( ), 1,..., 1
/

ce ce
i K

ite te
i K

x x i K
x x

θ= = − . (2.8) 
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This proves to be a natural thing to do since the input distance function must be, by 

definition, homogenous of degree 1 in input quantities,9 which is normally achieved 

via deflation by an arbitrarily chosen input variable.10 

Another way of writing equation (2.8) is as 

 / exp( ) / exp( ) /ce ce te te
i K i i K i i Kx x x x x xθ θ= = ,     i = 1,…,K-1, (2.9) 

where the second equality holds because the radial technical efficiency (from equation 

2.5) cancels out in the ratio of technically efficient input quantities. 

In Figure 1 we provide a diagrammatic representation of these efficiency concepts 

using a simple two-input example.  We have drawn an isoquant, Isoq(y), representing 

the boundary of the production technology (for a given output vector, y), and an iso-

cost line, IC(w), reflecting the input price ratio.  The point of tangency between 

Isoq(y) and IC(w) provides the shadow input vector xs , where cost is minimised, and 

so the shadow input vector xs is the cost minimising input vector xce.  Furthermore, 

proportional contraction of the x vector by multiplying by exp( )u− , until it reaches 

the boundary of the technology, produces the technically efficient input vector, 

exp( )te u= −x x . 

An iso-cost line corresponding to shadow prices, IC(ws), is also presented in Figure 1.  

Shadow prices, ws, are those prices that would ensure that the technically efficient 

input vector, tex , was also the cost minimising input vector.  The shadow price 

concept provides an alternative way (relative to shadow input quantities) of reflecting 

deviations from allocative efficiency.  This option is discussed in the next section. 

 

                                                 

9 See Färe and Primont (1995). 
10 This problem is closely related to a parallel debate regarding normalisation procedures in cost 
function estimation.  For more information, see Kumbhakar and Karagiannis (2004) and references 
cited therein. 
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Figure 1:  Shadow cost minimisation 

 

A world containing management errors and uncontrollable errors 

Next we need to introduce some sources of “noise” into this model.  Before doing this 

we must first carefully ask the question: What factors lead to technical inefficiency 

and allocative inefficiency?  In both cases we assume that it is due to poor 

management.  For example, consider the case of a dairy factory that converts raw milk 

into cheese, butter, etc.  Examples of technical inefficiency could be allowing some of 

the raw milk to spoil because of not carefully monitoring the vat temperatures, or 

could be scheduling labour shifts so that in some periods there are idle staff while in 

other periods there is a shortage of staff.   

Examples of allocative inefficiency could be choosing the wrong capital to labour 

mix, perhaps as a consequence of not being fully aware of all technology options or 

alternatively incorrectly forecasting the time-path of wage rates and interest rates 

when choosing a piece of long-lived processing equipment (e.g. with a life of 10-15 

years). 

The above errors are assumed to be under the control of the managers.  Alternatively, 

those errors which are arguably not under the control of managers could include 

• 
• 

• 

x1 

x2 

x 
tex  

IC(w) 

IC(ws) 

Isoq(y) 

xs = cex  
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unanticipated random events such as a drought which may reduce the supply of raw 

milk; a labour strike or an industrial accident disrupting production; or a sudden 

change in government policy affecting wage rates or fuel prices, etc.   

However, it is not clear where one should draw the line between those factors that the 

manager should be able to control or reasonably foresee and those that are “random”.  

The issue of bad luck versus bad management is a fuzzy area indeed.  Is it reasonable 

to expect that a manager should be able to forecast wage changes due to 

macroeconomic cycles but not those due to government policy changes?  Could one 

argue that a good manager should be carefully reading the newspapers so that he/she 

can anticipate the effects of government policy changes as well?  

Anyway, for now we will assume that we are able to conceptually differentiate 

between errors due to bad luck and those due to bad management.  Where do we 

introduce these new random (uncontrollable) error terms into our model?  For items 

such as industrial accidents we could append error terms to the outputs (cheese and 

butter), while for labour strikes and droughts we could append error terms to the input 

quantities.  For the case of unanticipated changes in wage rates we could append error 

terms to the input prices or to the input quantities, to explain why the firm is not 

operating at the optimal point.  To be consistent with our current choice in modelling 

input allocative efficiency deviations via shadow input quantities, we will put this 

error term on the input quantities for now. 

A world containing management errors, uncontrollable errors and econometrician 

errors 

Up until now we have implicitly assumed that the econometrician is “perfect”.  That 

is, perfect in terms of measuring all variables and in specifying the model (functional 

form, variables to include, etc.).  This is unlikely to be true in practice.  First we 

consider the possibility of measurement error.  Have we correctly measured the prices 

faced by the firm?  Consider the case of wage rates.  In most cases an econometrician 

will either use wage rates reported by a statistical agency for a particular geographical 

region (e.g., a country or a region within the country) which are an average for all 

industries or for a broad industry group (such as the manufacturing sector).  They will 

hence be only an approximate measure of the actual wage rates paid by a particular 
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milk factory.  Alternatively we could have data on both wage costs and hours worked 

for each firm, which will allow us to calculate an implicit wage rate for each firm.  

This may appear to be a much better source of wage rate data, but if different firms 

employ different mixes of skilled/unskilled workers then this wage rate measure is 

likely to contain a lot of measurement error as well.  

We could provide a similar discussion of likely measurement errors in all other input 

prices (in particular, capital will be problematic).  Furthermore, there are likely to be 

measurement errors in input quantities, where measurement of the flow of services 

from capital will be a large source of headaches, and labour measures such as hours 

worked will be affected by quality and skill differences across firms.  The raw milk 

input may also be affected by measurement errors.  For example, via mistakes in 

recording quantities collected, or in trying to deal with differences in milk fat contents 

across different regions – where we could use either litres of milk or kilograms of 

milk fat as our output measure – neither of which are able to capture all the 

dimensions of milk quality – and hence are likely to be subject to measurement error. 

Output measures are unlikely to escape measurement error issues either.  For 

example, how do we measure the quantity of cheese produced given that a range of 

different products (cheddar, camembert, etc.) are produced in the different factories?  

We could use revenue as a proxy, but if different factories face different prices (for a 

fixed product quality) we will obtain errors.  Alternatively if we use physical quantity 

of cheese in total kilograms, different product mixes will introduce errors.  Clearly 

measurement errors are also a potential problem in output quantities.11 

An additional issue is that of model specification errors – in functional form and 

variable selection.  If we choose a translog functional form for our econometric model 

(for example), it will provide a second order approximation to the true functional 

relationship, and hence some approximation errors are likely to remain.  Our model 

might also suffer from omitted variable bias – for example due to the omission of a 

variable reflecting the different regulatory environments in which different firms 

operate, etc.  In this paper we will aggregate the errors due to variable measurement 
                                                 

11 In many of the cases we discuss, the aggregation of different items could be achieved by the use of 
index number formula, such as the Fisher index, if sufficient data was available.  This would reduce 
measurement error, but is unlikely to remove it completely. 
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and model specification together into a single category that we will label 

“econometrician error”. 

Some notation 

We now have identified three different categories of errors, which we label: 

1. management error; 

2. uncontrollable error (bad weather, strikes, etc.); and 

3. econometrician error. 

The notation for the management (inefficiency) error terms has already been defined.  

The notation for the uncontrollable error terms will be x
iτ  for the error associated with 

the i-th input quantity and y
iτ  for the error associated with the i-th output quantity.  

The notation for the econometrician error terms will be x
ie  for the error associated 

with the i-th input quantity, y
ie  for the error associated with the i-th output quantity 

and w
ie  for the error associated with the i-th input price.   

Note that all error terms could either increase or decrease the value of the associated 

variable, with the exception of the technical inefficiency error, which can only 

increase inputs.  Also note that all error terms are multiplicative in nature.  This is 

done because measures of technical efficiency (TE) and allocative efficiency (AE) are 

generally defined in a multiplicative manner, and logarithmic functional forms are 

generally used in these models (i.e., the Cobb-Douglas and translog forms).12 

Given these error terms, we can also define notation for various different versions of 

the quantity and price variables in our model.  For example, for the case of input 

quantities we define the following notation: 

1. observed input quantities, x ; 

2. actual input quantities, acx  (observed input quantities with econometrician 

errors removed); 

                                                 

12 Multiplicative errors also have the advantages that the error term prevents the possibility of negative 
price or quantity measures and provides a natural way of mitigating heteroskedastic problems. 
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3. planned input quantities, plx  (actual input quantities with unpredictable errors 

removed); 

4. technically efficient input quantities, tex  (planned input quantities with the 

technical inefficiency error removed); and 

5. cost efficient input quantities, cex  (technically efficient input quantities with 

the allocative inefficiency errors removed). 

Hence, using our newly defined notation we can write 

 exp( )ce x x
i i i i i ix x u v eη= − + + + . (2.10) 

That is, the cost efficient value of the i-th input is equal to the observed value, 

combined with technical, allocative, unpredictable and econometrician errors.  In a 

similar manner we can describe the components of observed output quantities and 

observed input prices as: 

 exp( )pl y y
i i i iy y v e= +  (2.11) 

and 

 exp( )ac w
i i iw w e= , (2.12) 

respectively. 

For the case of output quantities we can define: 

1. observed output quantities, y ; 

2. actual output quantities, acy  (observed output quantities with econometrician 

errors removed); and 

3. planned output quantities, ply  (actual output quantities with unpredictable 

errors removed). 

Furthermore, for the case of input prices we can define: 

1. observed input prices, w ; and 

2. actual input prices, acw  (observed input prices with econometrician errors 

removed). 
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Can we identify all of these errors? 

Observationally, it is practically impossible to distinguish between errors due to 

“unpredictable events” and those due to “econometrician error”.  Hence, one normally 

lumps these two items together into a single category called “random errors” – which 

we will denote by x
iε  for the i-th input quantity, y

iε  for the error associated with the i-

th output quantity and w
iε  for the error associated with the i-th input price.   

It is also difficult to distinguish between random errors and inefficiency errors, unless 

one is willing to make some additional assumptions.  For example, if one has access 

to panel data, one can assume that inefficiency is invariant over time, and hence use a 

fixed effects or random effects panel data model to disentangle these two sources of 

error.  However, if the panel is longer than a few years, the assumption of time-

invariant inefficiency becomes questionable.  In this instance some authors instead try 

to account for time variation by allowing the inefficiency parameters to be a function 

of a time trend.   

If one does not have access to panel data (i.e., one has only a single cross-section of 

data on a group of firms) then the options narrow.  In the case of technical 

inefficiency, one can use distributional assumptions, such as assuming that the 

technical inefficiency error term has a half-normal distribution while the noise terms 

have normal distributions, to allow one to estimate the model using maximum 

likelihood.13  For the allocative efficiency side of things one is normally forced to 

assume that the errors in the first-order equations are either all due to allocative 

inefficiency or alternatively all due to random noise.  In the later case one can 

introduce a parameter to allow some degree of allocative inefficiency, but this 

parameter would take a fixed value across all the firms, which would be a strong 

assumption in most situations.14  

                                                 

13 For example, see the stochastic production frontier model described in Aigner et al (1977). 
14 For example, see Baños-Pino et al. (2002). It is also possible to weaken this assumption by making 
the allocative mistakes a systematic function of firm-specific factors that are likely to reflect 
management ability, such as the age, education and experience levels of the manager.  For example, see 
Ferrier & Lovell (1990). 
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In the following two sections we investigate the feasibility of econometric estimation 

of a system of equations that involves both management and non-management errors.  

In particular, in Section 3 we consider the case of shadow input quantities while in 

Section 4 we consider shadow input prices. 

3. An econometric model involving shadow input quantities 

We specify a translog functional form for the production technology  

0
1 1 1 1

1 1 1 1

1ln ( , ) ln ln ln ln
2

1 1ln ln ln ln
2 2

K K K M

i i ij i j i i
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M M K M

ij i j ij i j
i j i j

D x x x y

y y x y

α α α β

β γ

= = = =

= = = =

= + + +

+ +

∑ ∑∑ ∑

∑∑ ∑∑

y x
, (3.1) 

where the associated first order equations are, from (2.4b): 
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Homogeneity of degree one in inputs implies the parametric restrictions 
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1
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i
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α
=

=∑       
1

0
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ij
j
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=

=∑    and   
1

0, 1,...,
J

ij
j

i Kγ
=

= =∑ , (3.2) 

while the symmetry restrictions due to Young’s theorem are 

 ij jiα α=    and   , ,ij ji i jβ β= ∀ . (3.2a) 
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The imposition of the homogeneity restrictions is equivalent to dividing all inputs and 

the distance term by an arbitrarily chosen input.  If we choose the K-th input we 

obtain15 
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and the K-th share equation will be 

 
1

1
1

K

K j
j

S S
−

=

= −∑ . (3.3b) 

A model with management errors 

In the above model we have implicitly assumed a world free of errors.  That is, in 

terms of management errors, we have assumed that  

 te ce
i i ix x x= = . 

If we allow the possibility of management errors such as technical inefficiency, we 

would then have 

 exp( )te
i ix x u= −  

or in logarithms 

 ln lnte
i ix x u= − . 

                                                 

15 Note that we multiply the left hand side of the share equations by /K Kx x  so that all input variables 
are in ratio form. 
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If we replace every occurrence of ix  in the system of equations in (3.3) with 

exp( )ix u−  we find that the u term only appears on the end of the distance equation, 

because the homogeneity condition ensures that it cancels out in all the other ratio 

terms.  That is, we obtain:16 
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Furthermore, if we permit allocative inefficiency we have 

 / exp( ) /ce ce
i K i i Kx x x xθ=  

or in logarithms 

 ( ) ( )ln / ln /ce ce
i K i K ix x x x θ= + . 

If we now replace every occurrence of /i Kx x  in the first order equations in (3.4a) 

with exp( ) /i i Kx xθ  we obtain the following set of equations17 
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16 Since the K-th share equation needs to be omitted when SUR estimation is applied (because of 
singularity in the covariance matrix), we do not include it here.   
17 Note that there is no need for one to adjust the distance function equation with this allocative 
inefficiency error because the observed data point will by definition differ from the frontier surface by 
the amount of technical inefficiency. 
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In this set of equations and in many other equations in this paper we suppress the 

notation for the observational unit – so as to reduce notational clutter.  If this was not 

our practice, in the case of cross-sectional data we would normally put a n subscript 

on the inputs, outputs and error terms to indicate that these vary across firms 

(n=1,2,…,N),18 while the values of the , andα β γ  parameters are assumed to be fixed 

across observations.  Thus we should emphasise that the values of the u and iθ  

management errors in these models vary across observations.   

The above point is important because in some papers (e.g., Atkinson and Primont, 

2002), the authors argue that estimating a model in which the iθ  are random variables 

(perhaps with a non-zero mean) is too difficult, and hence suggest that it is easier to 

model them parametrically.  However, since one is unable to estimate a model with 

more parameters than observations, this requires the imposition of restrictions – such 

as the assumption that the iθ  take a fixed value over all firms.  As we shall explain 

shortly, assumptions such as this are in conflict with observed data and are hence 

likely to produce questionable results.19 

Estimation 

Now let us consider the estimation of this system of equations using econometric 

methods.  It is evident that one can safely estimate the distance function in equation 

(3.5) using a single equation method, such as the COLS method,20 even though the 

observed data that is being used is not allocatively efficient.21 However the share 

equations are more problematic.  The iθ  terms appear in both a linear and an 

exponential form.  It appears to be impossible for one to isolate these terms so that the 

                                                 

18 If we had panel data we would also use a t subscript to denote time periods (t=1,2,…,T). 
19 This comment applies equally to models in which the allocative efficiency parameters are made a 
systematic function of a time trend variable or some other exogenous factors. 
20 See Lovell et al. (1994) or Coelli and Perelman (1999) for discussion of the COLS method.  
21 This is essentially the result provided in Coelli (2000). 
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likelihood function can be derived.  Thus MLE does not appear to be a feasible option 

here. 

Perhaps we could alternatively use GMM?  To this end, let us rearrange equation 

(3.5a) so that all random terms are included in an aggregate error term.22  The new 

system we obtain is: 
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and 
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The error terms in these equations have the form 

 d uξ =   (3.7) 

and 
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It is not clear how one could use GMM to estimate the share equations in equation 

(3.6a) because the error term in (3.7a) is a function of the input quantities and input 

prices.  Some past studies have used input prices as instruments in this type of model.  

However, our derivations suggest that this may not be wise – unless the allocative 

                                                 

22 Here we have assumed that the iθ  have zero means to simplify the discussion.  If this was not the 
case we would have K-1 extra parameters to estimate, but the conclusions regarding the viability of 
GMM would not be changed.  
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inefficiency term truly follows the restricted parametric structure implied by the 

model. 

A model with management and uncontrollable errors 

Now let us consider the case where we consider the possibility of random errors (i.e., 

the ε ’s) in our model.  In this case we take the system of equations in (3.5) that 

contains management errors and replace every occurrence of ix , iy  and iw  with 

exp( )x
i ix ε , exp( )y

i iy ε  and exp( )w
i iw ε , respectively. 

In this case the model becomes 
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In this case the corresponding error terms in equations (3.6-3.6a) will now contain the 

following more complicated expressions  
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With these new random error terms included, estimation becomes even more 

complicated.  First, it is clear that all equations in the system are likely to be affected 

by an errors-in-variables problem if one attempted to use OLS or SUR.  One could 

alternatively attempt to use GMM – however the choice of instruments seems to be 

even more limited than before, given that the error terms are functions of the inputs, 

outputs and input prices.23  Finally, the MLE option is again infeasible because of the 

non-linear way in which the error terms enter the first order equations. 

 

Past papers 

Atkinson and Primont (2002) estimate a translog input distance function system using 

panel data on US electric utilities.24  Their model is motivated in terms of shadow 

input quantities.  In their econometric model they model technical inefficiency as a 

firm-specific parametric (quadratic) function of time, while they model allocative 

inefficiency deviations as non-firm-specific parametric (cubic) functions of time.   

Using their notation, shadow input quantities, *
ix , are defined as those variables which 

solve the cost minimisation problem (that, is the problem defined in our equation 2.3).  

They permit observed input quantities to differ from these shadow input quantities via 

the notation *
i i ix x k=  (Atkinson and Primont, 2002, p206).  In estimation they add the 

restriction that for one input variable (they select last one listed in the input vector) 

the ik  value is restricted to be equal to one for all firms and all time periods (Atkinson 

and Primont, 2002, p212).  This restriction imposes the assumption that for one input 
                                                 

23 Also, even if one was able to identify good instruments, the model is non-linear and hence IV 
estimation will be generally inconsistent (Amemiya, 1985). 
24 Note that this paper uses similar methods to those used in Atkinson, Honerkamp and Cornwell 
(2003) and Atkinson, Färe and Primont (2003). 
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variable the observed quantity and the shadow quantity must be equal.  This case is 

illustrated in Figure 2, where the imposition of the constraint that *
1 1x x=  means that 

the shadow input vector, *x , does not correspond to the cost minimising input vector, 
cex , except by chance.  This in turn implies that estimates of allocative and cost 

efficiency will almost invariably be biased.  

Atkinson and Primont (2002) argue that it is more convenient to specify the distance 

function in a form similar to equation (3.1) and impose the required homogeneity 

restrictions during estimation, rather than expressing it in the deflated form as in 

equation (3.3).  As they correctly note, this has no effect on the estimates obtained.  

Furthermore, they choose to specify the first order conditions with input prices used 

as dependent variables25 and they also append to each equation an “error term with 

zero mean”.  However there is no discussion of the likely sources of these errors.   

 

 

 

 

 

 

 

 

 

Figure 2:  Constraining one input to be optimal 

 

                                                 

25 This seems a bit unusual, since their theoretical model has input prices as exogenous variables. 
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Thus, it appears that their share equations would be (using our notation) 
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where iλ  is an error term with zero mean. 

The system of equations involving the distance function and these K input price 

equations is estimated using GMM involving the use of the Newey and West (1987) 

heteroskedasticity and autocorrelation adjustments.  The authors refer to possible 

endogeneity in right-hand side variables, but are not explicit about the likely sources 

of these problems, and hence it is difficult to judge the quality of their chosen 

instruments from a theoretical perspective.  They estimate their model using 

instrument sets that include output quantities and input prices, plus dummy variables 

and time trends.26  They test for the validity of over-identifying restrictions using the 

Hansen (1982) J-test and conclude that their instrument set is valid.   

It is important to emphasise that this particular model involves the brave assumption 

that all firms in the sample have exactly the same allocative mistake attributes in any 

one particular year.  That is, (using our notation) one must have int itθ θ=  for all 

n=1,...,N.  This is very unlikely given that different managers tend to have different 

skill sets.27   

Given that the assumption is incorrect, we have int it intθ θ τ= + , where intτ  is a zero 

mean random variable.  Substituting this into equation (3.10), rearranging and 

including firm and time subscripts we obtain 

                                                 

26 This suggests that they believe that the input price and output quantity variables are exogenous, as 
would be implied from their theoretical model, yet they do not explicitly state this. 
27 Note that the imposition of similar parametric restrictions (relating to allocative mistakes) have been 
widespread in both cost and input distance function systems.   
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Thus we see that the disturbance term contains input quantities, input prices and 

output quantities.  Hence, it is apparent that GMM involving any of these instruments 

will produce inconsistent estimates – if the int itθ θ=  assumption is incorrect. 

 

4. An econometric model involving shadow input prices 

Given that the estimation of a shadow input quantity model appears to be very 

challenging, let us now instead consider the shadow input prices option.  In this case 

we replace equation (2.6) with an equation that describes the relationship between the 

input prices and the shadow input prices, 1( ,..., )s s s
Kw w=w  

 / exp( ) , 1,...,s
i i iw w i Kκ= = , (4.1) 

where 1( ,..., )Kκ κ=κ  is a K×1 vector of scalar input price adjustments.  In the event 

that the firm uses the cost-minimising input mix, this vector will be a vector of zeros.   

With this set of shadow prices we now take equations (3.5-3.5a) and do two things.  

First, we set the iθ  to zero, since we are not modelling shadow input quantities.  

Second, given allocative inefficiency of the form 
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 exp( )s
i i iw wκ= , 

we replace every occurrence of iw  with exp( )i iwκ  to obtain  
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The main difference between equations (4.3a) and (3.5a) is that the allocative 

efficiency parameter no longer appears on the right hand side of the share equations.  

One would expect that this would make estimation easier,28 but this is not the case. 

Past papers 

Baños-Pino et al (2002) estimate a translog input distance function along with the set 

of share equations, using time-series data on Spanish railways.29  They assume that 

the firms attempt to minimise cost, and hence that input quantities are endogenous, 

while output quantities and input prices are exogenous.  They motivate the possibility 

of allocative inefficiency via a discussion of deviations between observed price ratios 

and shadow price ratios.30 

To estimate a system of equations involving the input distance function and the above 

share equations they appear to be implicitly rearranging equation (4.3a) to obtain 

(using our notation) 

                                                 

28 Note that the value of Kκ  can be obtained from the homogeneity adding up conditions if it is needed. 
29 Note that this paper uses similar methods to those used in Rodriguez-Alvarez and Lovell (2004) and 
Rodriguez-Alvarez, Fernandez-Blanco and Lovell (2004) 
30 Their model uses the notation ik  instead of the exp( )iκ  notation we use above. 
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They then appear to replace the messy term in the square brackets with a constant 

parameter iA  and append an error term iλ  to capture “the effects of random noise” 

(Baños-Pino et al, 2002, p.197).31  There is no discussion of the likely sources of this 

random noise.  Thus the share equations become 
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Given that the term in the square brackets in equation (4.4) is unlikely to be identical 

across all observations, we need to rewrite equation (4.5) as 
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where 
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This error term involves both input quantities and input prices.  Thus OLS methods 

are likely to be inconsistent and GMM/IV methods are likely to suffer from a lack of 

valid instruments. 

They state that since the input variables are assumed to be endogenous, they will be 

correlated with the errors in their model (though it is not clear how this conclusion is 

                                                 

31 In their distance function equation they indicate that they assume that the error term has two 
components in the spirit of Aigner et al (1977).  The technical inefficiency error term is assumed to 
have an i.i.d. half-normal distribution while the random noise error term is assumed to have an i.i.d. 
normal distribution. 
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reached).  They hence use instrumental variables to overcome this perceived problem.  

The instruments they choose are various Spanish macro economic variables: fixed 

capital, employees in agriculture and automobile gasoline consumption.  There is no 

discussion as to why these variables are likely to be valid instruments.  That is, why 

they should be correlated with the input quantities but uncorrelated with the 

disturbance terms. 

They indicate that they estimate the model using iterated seemingly unrelated 

regressions (ITSUR), with a correction for autocorrelation.  It is not clear how the 

composed error structure in the distance function, nor the instrumental variables, are 

incorporated into this particular estimation technique.  In fact, it is not clear to us how 

this technique could be implemented.  Perhaps, some form of maximum likelihood 

estimation (MLE) is used – however the likelihood function (which would be very 

complicated) is not presented. 

After econometric estimation, they then calculate (for each observation in the sample) 

measures of the degree of allocative inefficiency by calculating ratios of observed 

price ratios over predicted shadow price ratios (see their equation 22).  This 

calculation implicitly assumes that the error terms in their share equations are 

attributed to allocative mistakes.32  This appears to be in conflict with the description 

of the error terms in the share equations as being due to “the effects of random noise” 

(Baños-Pino et al, 2002, p.197).  

In a recent paper, Karagiannis et al (2006) make note of some of the above estimation 

issues and propose some alternative methods.  Their models involve the use of the 

Balk (1997) normalisation 

 
1 1 1

exp( )
K K K

s
j j j j j j j

j j j
x w x w x w κ

= = =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ , (4.7) 

which normalises shadow prices so that shadow cost must equal actual cost. 

By inserting this into equation (4.3a), taking logs and rearranging one obtains 

                                                 

32 This result can be easily illustrated by noting that the observed values of the i iw x  in their equation 
(22) will be equal to the predictions from their equation (19’) plus the estimated residuals. 
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Karagiannis et al (2006) estimate this model using MLE.33  In the distance function 

equation they assume u has a half normal distribution, and append a “stochastic noise 

term”, v.  They provide no discussion of the sources of this noise.  They assume the 

iκ  in equation (4.7) have a multivariate normal distribution with mean vector μ  and 

variance covariance matrix Σ .  It is assumed that v and u are distributed 

independently of each other and of the κ .  The ln ix  are assumed to be the 

endogenous variables, and hence the likelihood function involves a Jacobian term to 

reflect this.   

The above model does require one to assume that there are no non-management errors 

in the first-order equations, but otherwise seems promising.  However, one fault we 

have noted is that these authors have chosen to arbitrarily drop one of the log-share 

equations when constructing the ML estimator.  In our assessment this is not required 

because the log-shares need not add to one (nor to any other constant) and hence the 

system need not be singular.  Furthermore, the estimates obtained will not be invariant 

to the choice of which log-share equation is dropped. In Section 6 we propose an 

adjustment to this model which deals with these issues. 

Karagiannis et al (2006) also propose another model that involves fixed effects.  They 

note that if one has access to panel data, that one could choose to not model the iκ  as 

error components (as described above), and instead model them as parameters which 

are fixed over time for each firm (or alternatively are a firm-specific function of a 

time-trend variable).  They note that the advantage of this is that they “can append 

statistical noise terms in all equations in the system”.  Thus in the share equations they 

no longer need to assume that all errors are due to allocative inefficiency, and are able 

                                                 

33 They also derive additional models with an additive allocative mistake formulation of s
i i iw w k= + .  

However this model seems less attractive since the MLE methods are complicated by the necessity to 
ensure that the predicted shadow prices remain non-negative. 



 31

to “account for the possibility of omitted variables and measurement error in the 

dependent variables”.   

Unfortunately, in our assessment, this fixed effects model will face additional 

problems because the Balk normalisation is incompatible with this model.  Consider 

the case where we have panel data on N firms in T time periods.  If one assumes that 

the n-th firm has fixed values of iκ  over time, it is easy to show that, in general, 

equation (4.7) cannot be satisfied if 1T >  (with the exception of some trivial cases).  

This is because the number of equations exceeds the number of unknowns.34  Hence 

econometric estimation will suffer from problems similar to those seen in equation 

(4.6).  That is, since the Balk normalisation cannot be assumed, equation (4.8) will 

essentially become 

( )
1

1 1
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i i
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j j
j j
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where 
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This suggests that the fixed effects MLE methods used in Karagiannis et al (2006) 

will produce inconsistent estimates.  It also suggests that any attempt at using OLS or 

GMM/IV will also be problematic for the reasons discussed above. 

 

 

 

                                                 

34 See Appendix 1 for further explanation. 
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5. Calculation of efficiency scores 

Shadow input quantities model 

If the (substantial) estimation problems described in Section 3 can be overcome, the 

calculation of firm-specific efficiency scores is an easy process when a shadow input 

quantities model has been estimated (as we have noted in the introduction).  First one 

uses the estimated value of iθ  to calculate 

 / exp( ) / , 1,..., 1ce ce
i K i i Kx x x x i Kθ= = − , (5.1) 

and then uses these ratios plus the fact that ( ) 1ceD =y, x  to calculate 
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One can then use equation (5.1) to solve for the other K-1 ce
ix .   

Then one calculates cost efficiency (CE) as 

 /ceCE ′ ′= w x w x , 

technical efficiency (TE) as 

 /teTE ′ ′= w x w x , 

where exp( )te u= −x x , and allocative efficiency (AE) as 

 /te ceAE ′ ′= w x w x , 

where CE=AE×AE.   

This process is very simple.  There is no need for one to solve a set of non-linear 

equations for each observation, as is needed when a shadow input prices model is 

used. 
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Shadow input prices model 

Given that the input distance function can be correctly estimated, the calculation of 

observation-specific efficiency scores is a complicated process when a shadow input 

prices model has been estimated.  The difficulty is associated with the identification 

of the cost minimising input ratios.  To identify these one must solve a set of non-

linear equations for each observation in the sample.  The process is as follows.  First, 

one observes that the cost efficient data point must satisfy the first order condition set 

out in equation (3.4a).  That is 
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If we divide each of the first K-1 equations by the K-th equation we obtain 
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or equivalently 
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This provides K-1 non-linear equations in K-1 unknowns (i.e., the optimal /ce ce
i Kx x  

ratios).35  This system of equations can be solved using Newton-type methods – once 

                                                 

35 This approach is related to that used by Kopp and Diewert (1982) and Zieschang (1983) in a cost 
function context. 
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for each observation in the sample.36  Once these optimal input ratios are obtained, 

one then follows the steps outlined earlier for the shadow input quantities model.37   

6. A feasible model 

In earlier sections of this paper we carefully describe a range of possible DGPs and 

review a number of past methods. Unfortunately, the conclusions are not encouraging.  

We began with a DGP where allocative mistakes were modelled using shadow input 

quantities.  The model derived from this DGP appears to be such that econometric 

estimation is not feasible because of the non-linear manner in which the error terms 

enter the share equations.  Atkinson and Primont (2002) estimate a model involving 

shadow input quantities using non-linear GMM methods in which efficiency is 

modelled parametrically, however their approach is open to criticism since one must 

assume that one input quantity is always used efficiently and one must also assume 

that all firms share the same allocative efficiency parameters in any one particular 

year.  If either of these (rather implausible) assumptions do not hold, the estimators 

will be inconsistent.  

As a consequence we also considered an alternative DGP involving shadow input 

prices (instead of quantities).  We reviewed past studies that involve models 

containing shadow price constructs – by Banos-Pino et al (2002) and Karagiannis et al 

(2006) – and found that these methods also face a number of econometric estimation 

problems as well.   

However, below we propose a model which is closely related to the error components 

model proposed by Karagiannis et al (2006).  The key difference is that we specify 

first order equations which are in ratio form, which allows us to avoid the invariance 

violation problem in that model.  The parameters of this model can be consistently 

estimated using MLE.   

                                                 

36 A similar procedure has been used in some past in studies.  For example, see Karagiannis et al (2004) 
and Alvarez et al. (2004). 
37 It is interesting to note that this procedure does not involve the explicit use of the iκ  parameter 

estimates.  Hence, the fact that Kκ  is not estimated is not a concern. 
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We begin with equations (4.3-4.3a) and divide the i-th equation (4.3a) by the K-th 

equation to obtain the system of equations 
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We then take logs of equation (6.1a) and rearrange to obtain 
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where /i K iφ κ κ= . 

The parameters of the model in equations (6.1-6.2) can be estimated using MLE and 

the estimates obtained will be consistent and invariant to the choice of normalising 

input used.  This is thus an improvement over the other methods we have considered.  

However, the model is far from perfect.  It has the disadvantage that one must 

attribute all errors in the share equations to allocative mistakes (i.e., one must assume 

no other sources of noise such as unanticipated events, specification error and 

measurement error).  Furthermore, calculation of allocative efficiency scores requires 

the solution of a set of non-linear equations for each observation in the sample.38   

This model is applied to US electricity industry data in the next section. 

                                                 

38 Schmidt and Lovell (1979) have also used this type of ratio approach in a Cobb-Douglas production 
context.  
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7. Empirical application 

The empirical analysis in this study involves panel data on the fossil fuel steam 

electric power generation activities of 61 US electric utilities during 1986−1998.  The 

primary sources of data are obtained from the Energy Information Administration 

(EIA), the Federal Energy Regulatory Commission (FERC), the Bureau of Labor 

Statistics (BLS), and the Federal Reserve Board (FRB).  The data set used to obtain 

the econometric estimates contains information on one output quantity variable: 

electricity, and quantity and price information on three input variables: fuel, labor and 

maintenance, and capital.  These variables are now briefly described.39  

The output variable, y , is represented by net steam electric power generation in 

megawatt-hours, which is defined as the amount of power produced using fossil-fuel 

fired boilers to produce steam for turbine generators during a given period of time. 

The price of fuel aggregate, 1w , is a multilateral Törnqvist price index of the three 

fuels used (coal, oil and gas), derived from firm-level price and quantity data.  The 

quantity of fuel, 1x , is calculated as the steam power production fuel costs divided by 

the multilateral Törnqvist price index for fuels. 

The price of labor and maintenance aggregate, 2w , is a multilateral Törnqvist price 

index for labor and maintenance.40  The price of labor is a firm-level average wage 

rate.  The price of maintenance and other supplies is an industry-level price index of 

electrical supplies.  The quantity of labor and maintenance, 2x , is measured as the 

aggregate costs of labor and maintenance divided by the multilateral Törnqvist price 

index for labor and maintenance.  

The price of capital, 3w , is the yield of the firm’s latest issue of long-term debt 

adjusted for appreciation and depreciation of the capital good using the Christensen 

and Jorgenson (1970) cost of capital formula 

                                                 

39 For more detail on the data set, see Rungsuriyawiboon and Coelli (2006).  We are grateful to 
Supawat Rungsuriyawiboon for allowing us to use his data in this study. 
40 These costs were not separated into labor and non labor costs because the widespread use of 
outsourcing has made such distinctions rather arbitrary. 
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 ( )[ ]3it kt dit it eit dit tp i s r i d fw = + − + −  (7.1) 

where pkt is a price index for electrical generating plant and equipment; idit is the 

adjusted corporate bond rate by firm based upon its bond ratings by Moody’s Investor 

Service; sit is the equity share of total capital defined as total proprietary capital (TPC) 

divided by the sum of total proprietary capital and total long-term debt (TOTB); reit is 

the equity rate of return defined as the ratio of net income to total proprietary capital; 

d is a depreciation rate assuming 30 years straight line depreciation; and ft the 

inflation rate. 

The values of capital stocks are calculated by the valuation of base and peak load 

capacity at replacement cost to estimate capital stocks in a base year and then 

updating it in the subsequent years based upon the value of additions and retirements 

to steam power plant as discussed in Considine (2000) 
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where υ  denotes the depreciation rate; x3it is equal to the nominal stock divided by 

the price index for electrical generating plant and equipment, pkit; Ait and Rit denote 

additions and retirements to steam power plant. 

Table 1 represents a summary of the data used in this study.  The average expenses of 

aggregate fuels, aggregate labor and maintenance, and capital are calculated to be 

258.79, 66.66, and 97.43 million dollars, respectively.  The mean cost shares of fuel, 

labor and maintenance, and capital are approximately 59, 18, and 23 per cent, 

respectively.  

The model that is estimated involves three equations 
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Note that the notation 1 2 3 4 1 3 2 3[ , , , ] [ln ,ln( / ), ln( / ), ]z z z z y x x x x t= =z  represents a 

netput vector (where t is a time trend variable), 2~ (0, )vv N σ , 2~| (0, ) |uu N σ  and 

1 2( , ) ~ ( , )Nφ φ=φ μ Σ , where 

 1 2( , )μ μ=μ  and 11 12

12 22

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ , 

and v, u and iφ  are independent.  The 2
vσ  and 2

uσ  parameters are replaced with 

2 2
u vσ σ σ= +  and /u vδ σ σ= .  The square root transforms are used to ensure that 

non-negative variances are not selected during the iterative estimation phase.41 

This model is estimated using MLE, where the likelihood function has be 

concentrated with respect to the μ  and Σ  parameters and involves a Jacobian term to 

reflect the fact that the endogenous variables are the ln ix .42 

Table 1:  Data summary for 61 US electric utilities, 1986−98 
 

Variable Units*    Mean St.Dev.    Min.  Max. 

Quantities: 

Output, y 

Fuel, x1 

Labor and Maint., x2 

Capital, x3  

Prices: 

Fuel, w1 

Labor and Maint., w2 

Capital, w3 

 

(× 106 MWh) 

(× 106 dollars) 

(× 106 dollars) 

(× 106 dollars) 

 

(index) 

(index) 

(index) 

13.709

300.568

61.776

955.225

0.861

1.079

0.102

 

12.561 

351.842 

53.366 

877.403 

 

0.208 

0.255 

0.019

 

0.499 

12.823 

1.810 

9.070 

 

0.306 

0.443 

0.009 

79.723

2,522.324

444.453

3,878.295

1.338

1.928

0.203

 *  These are 1993 dollar values. 

 

                                                 

41 The Davidon-Fletcher-Powell Quasi-Newton routine is used to maximise the likelihood function.   
42 See the appendix for details of the structure of the likelihood function. 
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Two sets of ML estimates along with asymptotic standard errors are listed in Table 2.  

The first set of estimates relate to the full model while the second set relate to a 

restricted model where we impose the restriction that =μ 0 .  A likelihood ratio (LR) 

test provides a calculated value of 8.28 which is greater than the 5% chi-square 

critical value of 5.99, suggesting that the iφ  have means which are significantly 

different to zero.   

The estimates of the input elasticities43 in Table 2 are 0.610, 0.162 and 0.228 for fuel, 

labor and maintenance, and capital, respectively.  These are similar to the average 

observed shares in this data set of 0.59, 0.18 and 0.23, respectively.  The estimated 

output elasticity of minus 1.008 indicates that the average firm is operating in a region 

of constant returns to scale.44  This result is not surprising given the results reported in 

past studies (for example see Christensen and Greene, 1976).  Finally, the first order 

coefficients of the time trend variable provides an estimate of the average annual rate 

of technical change of 1.2 % per year.  Again, this figure is within expectations, as 

most studies of technical change in utilities tend to report technical change estimates 

of between 1 and 2% per annum. 

Technical efficiency scores are calculated using the conditional expectation measures 

described in Battese and Coelli (1988).  Allocative efficiency scores are calculated 

using the methods described in Section 5.  This involves the solution of a set of non-

linear equations for each of the 793 observations in the sample.  This is achieved 

using the Davidon-Fletcher-Powell Quasi-Newton optimisation routine.   

 

 

 

 

                                                 

43 The data variables used in the model estimation were each transformed by division by their 
respective geometric means, as is common practice.  This transformation does not alter the 
performance measures obtained, but does allow one to interpret the estimated first-order parameters as 
elasticities, evaluated at the sample means. 
44 The scale economies measure is equal to ( ) 1

ln lnD y
−

− ∂ ∂  in this model. 
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Table 2:  MLE parameter estimates of input distance functions 

 Coefficient S-Error t-ratio Coefficient S-Error t-ratio 

Intercept 0.3088 0.0105 29.50  0.2987 0.0116 25.79 

Elec -1.0126 0.0109 -92.47  -1.0049 0.0108 -93.24 

Fuel 0.6843 0.0083 82.26  0.5990 0.0060 100.62 

L&M 0.1227 0.0044 28.14  0.1723 0.0040 42.99 

T 0.0085 0.0017 4.98  0.0111 0.0019 5.71 

Elec*Elec/2 -0.0636 0.0141 -4.52  -0.0531 0.0138 -3.85 

Elec*Fuel 0.0368 0.0038 9.79  0.0341 0.0058 5.86 

Elec*L&M -0.0355 0.0033 -10.67  -0.0392 0.0046 -8.55 

Elec*t 0.0022 0.0017 1.30  0.0024 0.0018 1.34 

Fuel*Fuel/2 -0.1431 0.0076 -18.82  -0.1805 0.0125 -14.45 

Fuel*L&M 0.0704 0.0013 52.92  0.0994 0.0068 14.60 

Fuel*t 0.0013 0.0009 1.32  0.0033 0.0014 2.38 

L&M*L&M/2 -0.0841 0.0035 -23.80  -0.1126 0.0081 -13.91 

L&M*t -0.0027 0.0006 -4.94  -0.0038 0.0009 -4.00 

t*t/2 0.0020 0.0010 1.96  0.0021 0.0011 1.92 

Sigma 0.3252 0.0110 29.58  0.3212 0.0097 32.96 

Delta 1.7071 0.0814 20.97  1.6694 0.0741 22.53 

LLF: 1482.57    1478.43   

Mu1 -0.1577    -   

Mu2 0.3203    -   

Sigma11 0.0605    0.0770  

Sigma22 0.3689    0.3615  

Sigma12 -0.1026    -0.1217  
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Summary statistics for these efficiency scores are reported in Table 3.  The average 

cost efficiency score is 0.763, indicating that the average firm could reduce costs by 

23.7% and still produce the same output.  Technical inefficiency is the main 

contributor, with a mean score of 0.803 versus a mean allocative efficiency score of 

0.950.  The small contribution of allocative inefficiency is not surprising given the 

observation above that shadow shares and market shares are similar (at the sample 

mean).45 

Table 3:  Summary of efficiency scores 

 TE AE CE 

Mean 0.803 0.950 0.763 

Median 0.836 0.971 0.792 

Standard Deviation 0.121 0.067 0.126 

Minimum 0.353 0.453 0.308 

Maximum 0.987 1.000 0.950 
 

In calculating the above efficiency scores, vectors of cost-minimising input quantities 

and technically efficient input quantities were obtained for each firm in the sample.  

The latter were divided by the former to produce ratio measures which provide 

information on the degree to which the different firms selected sub-optimal input 

mixes.  Table 4 contains summary statistics on these ratios.  We observe that the 

median ratio for Fuel reflects a degree of under use, while those for L&M and Capital 

reflect some overuse. 

 

 

 

                                                 

45 A LR test of the null hypothesis that 0δ =  was also conducted.  This produced a statistic of 97.58, 
which is substantially large than the 5% critical value of 1.96 (see Kodde and Palm, 1986).  Thus the 
technical inefficiency error term, u, is a significant addition to the model. 
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Table 4:  Summary of /te ce
i ix x  ratios 

 Fuel L&M Capital 

Mean 0.951 1.304 1.209 

Median 0.930 1.228 1.166 

Standard Deviation 0.130 0.552 0.449 

Minimum 0.549 0.391 0.154 

Maximum 2.420 4.980 5.638 
 

8. Concluding comments 

In this study our aim was to identify the best way to estimate a system of equations 

involving an input distance function along with the first order equations that relate to 

shadow cost minimising behaviour.  We began with a detailed analysis of the DGP, 

discussing various types of both management and non-management errors.  We then 

conducted a review of past studies which led us to the conclusion that there is no 

model available that can capture both types of errors in a reliable manner.  In fact, 

even if one is willing to assume that non-management errors do not exist, we were 

still unable to identify a model that was in our view appropriate.   

The least problematic model that we could identify was the error components model 

proposed by Karagiannis et al (2006).  The principal problem with this model is that it 

was not invariant to the choice of normalising input.  We hence propose an adjusted 

version of this model which involves re-expressing the first-order equations in ratio 

form so as to avoid the invariance problem. 

An empirical application of this model involving panel data on US electricity 

generation firms is presented, where we find that technical inefficiency is the largest 

contributor to cost inefficiency, and that the majority of allocative mistakes involve 

under use of fuel relative to the other inputs. 
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Appendix 1:  The Balk normalisation and fixed effects panel data models 

In this appendix we show that the Balk (1997) normalisation is inconsistent with the 

assumption that all firms possess the same vector of “allocative efficiency 

parameters”. 

Using the notation in Karagiannis et al (2006) the Balk normalisation is 

 
1 1

K K

j j j j i
j j

x w x w k
= =

=∑ ∑ . (A1.1) 

For each data point, the K-1 ratios /i Kk k  are determined by the gradient of the 

distance function at that point.  Hence we can write /i K ik k d=  or equivalently  

 , 1,..., 1i i Kk d k i K= = − , (A1.2) 

where the /i i Kd D D=  represent the gradient information.  Thus we have K equations 

in K unknowns and a solution is possible.  In fact, if we substitute equation (A1.2) 

into equation (A1.1) and rearrange we obtain46 

 
1 1

K K

K j j j j i
j j

k x w x w d
= =

= ∑ ∑ , (A1.3) 

and then equation (A1.2) can be used to obtain the remaining ik . 

This normalisation is acceptable if each data point is permitted to have a unique set of 

ik  (as is the case in the error components model).  However, if one specifies a model 

(such as a fixed effects model) where the same set of ik  must apply over 1T >  

observations we will have a set of KT equations in K unknowns, which has no 

solution. 

Note also that allowing the ik  to be a polynomial function of time will not solve this 

problem, except in the case where the polynomial function is of order T-1.  However, 

in this case the number of parameters in the econometric model will exceed the 

number of observations, and hence estimation is not feasible. 

                                                 

46 Note that 1Kd =  by definition. 
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Appendix 2:  Derivation of Likelihood function 

The system of equations is47 

 ln ( , , ) , 1,2,...,n n nD n Nε= =x y α , (A2.1) 

 'ln ln , 1, 1, 1,2,..., ,
'

in in in
in

Kn Kn Kn

w x D i K n N
w x D

φ
⎛ ⎞ ⎛ ⎞

= + = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (A2.1a) 

where ' ln / lnin n inD D x= ∂ ∂ , n n nu vε = +  2~ (0, )n vv N σ , 2~| (0, ) |n uu N σ , 

1 1,( ,..., ) ~ ( , )n n K n Nφ φ −=φ μ Σ , and nv , nu  and inφ  are independent.   

Since the vector of logged input quantities are the endogenous variables, the 

likelihood function involves a Jacobian term  

 ( , )( )
ln ln
n n n

n
n n

J εα ∂ ∂
= =

∂ ∂
φ φ
x x

 

where it is easy to show that 

 / /
ln

ni
ij ijn in iKn Kn

nj
D D D D

x
φ∂ ′′ ′ ′′ ′= Δ − +

∂
 

where / lnijn in jnD D x′′ ′= ∂ ∂  and ijΔ  is the Kronecker delta. 

Given the above distributional assumptions, it is easy to show that the concentrated 

log likelihood function (with μ  and Σ  concentrated out) is48 

 2 2 2
2

1 1 1

1 ˆˆ ˆln ln(2 / ) ln ( / ) ln ln ( )
2 22

N N N

n n n
n n n

N NL Jπ σ ε δ ε σ α
σ = = =

= + − Φ − +∑ ∑ ∑Σ  

where 
1

1 ˆ ˆˆ ˆ ˆ( )( )
N

n n
nN

φ μ φ μ
=

′= − −∑Σ ,  
1

1 ˆˆ
N

n
nN

μ φ
=

= ∑ ,  2 2
u vσ σ σ= +   and  /u vδ σ σ= . 

                                                 

47 The following derivation follows a similar structure to that in Karagiannis et al (2006). 
48 Note that in the empirical application in this paper we treat the panel data as if it is a “single cross-
section” and hence N=793. 
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