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Abstract:  The validity of many efficiency measurement methods rely upon the assumption that variables 

such as input quantities and output mixes are independent of (or uncorrelated with) technical efficiency, 

however few studies have attempted to test these assumptions.  In a recent paper, Wilson (2003) investi-

gates a number of independence tests and finds that they have poor size properties and low power in mod-

erate sample sizes.  In this study we discuss the implications of these assumptions in three situations: (i) 

bootstrapping non-parametric efficiency models; (ii) estimating stochastic frontier models and (iii) obtain-

ing aggregate measures of industry efficiency.  We propose a semi-parametric Hausman-type asymptotic 

test for linear independence (uncorrelation), and use a Monte Carlo experiment to show that it has good 

size and power properties in finite samples. We also describe how the test can be generalized in order to 

detect higher order dependencies, such as heteroscedasticity, so that the test can be used to test for (full) in-

dependence when the efficiency distribution has a finite number of moments. Finally, an empirical illustra-

tion is provided using data on US electric power generation. 
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1.  Introduction 

The measurement of technical efficiency has been the subject of many studies since the pioneering work 

of Farrell (1957).  Most of these studies have made the implicit assumption that the degree of technical 

inefficiency of a firm is independent of the inputs (and output mixes) of the firm.1  However, there are 

various reasons why this assumption may be incorrect. For example, Wilson (2003) notes that in some 

instances big firms may have access to better managers and hence are more likely to perform better. Fur-

thermore, Schmidt & Sickles (1984) argue that if a firm knows its level of technical inefficiency this 

should affect its input choices, creating a potential dependence between the input vector and the efficien-

cy term.  

Wilson (2003) surveys a number of the independence tests that could be used to test the indepen-

dence hypothesis in the context of efficiency measurement.  His motivation essentially relates to the fact 

that if independence can be assumed, one can implement a much simpler bootstrapping methodology to 

construct confidence intervals for efficiency estimates derived using data envelopment analysis (DEA).  

He conducts a Monte Carlo experiment to investigate the small sample properties of four independence 

testing procedures (two bootstrap-based tests and two rank-based tests) and finds that they all have incor-

rect size properties and poor power properties when the sample size is not large (n=70) and the degree of 

correlation (ρ) is moderate (ρ ≤ 0.4), with the rank-based tests not performing as well as the bootstrap 

tests.  

In this study we deviate from the Wilson (2003) study two important ways.  First, we discuss two 

additional situations in which independence information is valuable – namely stochastic frontier models 

and aggregation of efficiency scores.  Secondly, we focus our attention on the hypothesis of uncorrelation 

(no linear dependence) as opposed to independence.  The advantage of testing this weaker condition is 

that we can produce testing procedures which are easy to implement, and (as we show in our Monte Carlo 

                                                           
1 This statement assumes output oriented technical efficiency measures are being estimated.  In the event that one is alternatively estimat-

ing input oriented technical efficiency measures, the output levels and the input mixes are the relevant variables.  This is explained fur-
ther in the discussion below. 
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experiment) have correct size and much stronger power relative to the independence tests.  Of course the 

downside is that the uncorrelation test cannot identify non-linear relationships.  However, in the event that 

the null hypothesis of uncorrelation is rejected, one can also conclude that the null hypothesis of indepen-

dence is also rejected.  Thus providing a valuable pre-test procedure if independence is the hypothesis of 

interest. 

In this study we discuss three important contexts in which these properties play a fundamental 

role. First, in Stochastic Frontier Models (SFM) an uncorrelation assumption is needed for one to con-

clude that the corrected ordinary least squares (COLS) estimator provides consistent estimates of the 

slope parameters (Kumbhakar & Lovell 2000). If correlation between the efficiency term and the regres-

sors arise, we have an endogeneity problem. Furthermore, maximum likelihood estimation (MLE) cannot 

be used when correlation exists because the increased number of parameters in the model gives rise to 

identification problems. Second, in the aggregation of Farrell type efficiency measures (for example, see 

Färe and Grosskopf 2005, Fox 2004) the monotonicity property2 of the aggregate industry efficiency in-

dexes holds if and only if the uncorrelation assumption is satisfied. The failure of the monotonicity prop-

erty gives rise to the so called Fox Paradox, where one can find that individual efficiency scores can all 

increase but the measure of overall industry efficiency decreases. Therefore this paradox can be inter-

preted as an example of the failure of the uncorrelation assumption. Third, the uncorrelation assumption is 

a necessary condition for independence and this last one is used in non-parametric frameworks to justify 

the use of univariate kernel methods for the estimation of the efficiency distribution (Wilson 2003, Daraio 

& Simar 2005). If independence fails one has to estimate a multi-dimensional density function, leading to 

the well known curse of dimensionality problem (Efron & Tibshirani 1993).  

The remainder of this paper is organized into sections. In section 2 we define the production 

technology and introduce formal definitions of independence and uncorrelation. Some aggregation issues 

and the relations between the uncorrelation assumption and the monotonicity property are discussed in 

                                                           
2 Given a vector of individual values and an aggregate index based on this individual values, the monotonicity property states that if all the 

individual values increase also the aggregate index have to increase (Balk 1995). 
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section 3. In section 4 the impact of the failure of the uncorrelation assumption on stochastic frontier 

models is explicitly discussed. In section 5 we introduce some statistical procedures to test for uncorrela-

tion and homoscedasticity. Finally, in section 6 we conduct a Monte Carlo experiment and provide an 

empirical illustration of the problems discussed using data on the US electricity power generation indus-

try.  Some concluding remarks are then provided in the final section. 

2.  The Technology plus some Definitions 

2.1. Stochastic Representation of Technology 

Consider the density function 0),( ≥yxf , where kR∈x , mR∈y  are the input and the output vectors 

and 1),( =∫
+mkR

ddf yxyx , where x and y assume non-negative values. We define the support of the den-

sity function as 

{ }0),(:),( >∈= + yxyx fRT mk  

and its boundary as an intersection between sets  

[ ] [ ]{ }TTclTclTT ∩∪∩= )()(ϑ  

where T  is the compliment of T and )(⋅cl is the closure operator. In production economics we refer to the 

first set as the Production Set and to the boundary as the Production Frontier. The following regularity 

conditions (Kumbhakar & Lovell 2000, Fare & Grosskopf 1994) are commonly used in production eco-

nomics: 

A1. no free lunch: if 0),( >0xf  and 0),( >y0f  then 0y = ; 

A2. the Production Set is Closed: for a succession of points ),(),( yxyx →nn , if 

Nnf nn ∈∀> 0),( yx  then 0),( >yxf ; (in essence, this states that the frontier belong to the 

production set);3 

                                                           
3 The closure of the production set (A2) can be also stated (see Daraio & Simar 2005, Wilson 2003) in terms of Positiveness: the density 

function is strictly positive on the boundary and is continuous in any direction toward the interior (i.e., the density function is discon-
tinuous on the boundary). 
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A3. the Production Set is bounded: for each kR+∈x  exist 0),(: =yxy f ; 

A4. strong disposability: if 0),( 00 >yxf  then 0),( 11 >yxf  for each ),(),( 0011 yxyx −≤− ; 

A5. convexity: if 0),(0),( 2211 >> yxyx fandf  then [ ] 0)1(,)1( 2121 >−+−+ yyxx ααααf  

10 ≤≤∀ α ; 

These are pure statistical restrictions on a stochastic Data Generating Process (DGP) represented by 

the density function ),( yxf . In what follows we assume that assumptions A1 to A4 hold.  In addition, 

we assume the following regularity condition on the DGP (Daraio & Simar 2005): 

• Random Sample: the sample observations ),( ii yx , ni ,,1K=  are realizations of identically and 

independently distributed random variables ),( YX  which have probability density function 

),( yxf . 

2.2. Average Technical Efficiency, Independence, Uncorrelation and Homoscedasticity 

Let’s consider the output oriented radial measure of efficiency 
⎭
⎬
⎫

⎩
⎨
⎧

>⎟
⎠
⎞

⎜
⎝
⎛= 0,:min

θ
θθ yxf . Before we 

proceed, it is useful to explicitly show that it is possible to calculate the efficiency distribution from the 

original joint density function ),( yxf . An easy way to calculate the marginal distribution of efficiency is 

via the method of cylindrical coordinates (Simar & Wilson 2000). The cylindrical coordinates of a point 

),( yx  are ),,( xητ  where yy'=τ  and 
1

tan
y
y j

j =η  mj ,,1K=∀ . The distance between ),( yx  and 

its efficient radial projection on the frontier can be stated in cylindrical coordinates as 
⎟
⎠
⎞⎜

⎝
⎛

=

θτ

τθ
y
y)(

. 

Since a point ),( yx  is fully represented in cylindrical coordinates ),,( xητ  and we have a biunivocal cor-

respondence between τ and θ , we can write it as ),,( xηθ . Then the density function can be written as: 

)()|(),|(),,(),( xxηxηxηyx fffff θθ ==  (1) 
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The marginal efficiency distribution can be calculated by integrating the density function (1) with respect 

to x and η: 

∫ ∫= xηyη ddff ),,()( θθθ  (2) 

The knowledge of the density function (2) allows one to aggregate efficiency, or in fact to determine all 

the moments of its distribution. 

 We now provide three useful definitions. 

 

DEFINITION 1 (Independence). The efficiency distribution is fully independent if and only if 

)(),|( θθ ff =xη . Efficiency is independent from output composition (or output composition inde-

pendence) if and only if )|(),|( xxη θθ ff = . Furthermore, efficiency is independent from the input set 

(or input set independence) if and only if )|(),|( ηxη θθ ff = . 

 

DEFINITION 2 (Uncorrelation or Linear Independence). The efficiency distribution is fully uncorre-

lated if and only if )(),|( θθ EE =xη . Efficiency is uncorrelated with output composition (or output 

composition uncorrelation) if and only if )|(),|( xxη θθ EE = . Furthermore, efficiency is uncorrelated 

with the input set (or input set uncorrelation) if and only if )|(),|( ηxη θθ EE = . 

 

DEFINITION 3 (Homoscedasticity). The efficiency distribution is homoscedastic if and only if 

)()( θθ VarVar i =  or if its variance is constant across observations. 

 

Since )()()( 2
12 θθθ EEVar += , homoscedasticity can be rewritten as 

)()(),|(),|( 2
12

2
12 θθθθ EEEE +=+ xηxη  (3) 

From equation (3) it is easy to see that a violation of the uncorrelation assumption implies (excluding 

some minor cases) a violation of the homoscedasticity assumption. 
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It is evident that independence implies uncorrelation but the reversal need not be true. This is im-

portant in discussing testing procedures since if a test accepts the null hypothesis of independence, we 

know that the data are also statistically uncorrelated; but if the test rejects independence we cannot say 

anything on correlation. On the other hand if a test rejects the null hypothesis of zero correlation we know 

that the independence assumption fails too; but if it accepts the null hypothesis we cannot say anything on 

independence.  

Many of the proposed testing procedures to detect independence show a low power in rejecting 

the null hypothesis of linear independence. Wilson (2003) shows some Monte Carlo results where data 

are generated from a multivariate normal distribution with a non-diagonal covariance matrix. The powers 

of the tests there discussed are lower (in samples of moderate size) in comparison to the results that we 

will show for the testing procedure here proposed. Since these tests show low power in detecting linear 

dependencies we have a good reason to introduce a testing procedure which is better able to identify 

them. If the test accepts the uncorrelation hypothesis other types of dependencies could be present in the 

data and other types of tests can be used in order to detect them. Anyway, if a zero-correlation testing 

procedure is available we can use it to exclude linear dependence and this is a pre-condition for any inde-

pendence test. 

Moreover the testing procedure we are introducing can be used to also to detect the presence of 

heteroscedasticity in the distribution of the efficiency term. Even if heteroscedasticity is one of the more 

well known violations of the independence assumption it is less aggressive than correlation. Some statis-

tical properties of our models are based on the uncorrelation assumption and not on the homoscedasticity 

assumption.  

2.3. Weighted average estimators 

It is of some value to discuss the properties of a special class of estimators that can be labelled Weighted 

Average Estimators. Let’s consider the inference problem of estimating average efficiency from a random 

sample of n realizations. We know that the sample average is a consistent estimator of average efficiency 

and satisfies good asymptotic properties (see Greene 1997, page 118). In this section we will show that 
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there is a class of statistics that are consistent estimators of average efficiency only if the uncorrelation 

assumption holds. Consider the following statistic: 

∑
=

=
n

i
iiw

1

θφ  ,   1
1

=∑
=

n

i
iw  (4) 

where iθ  is the efficiency of observation i and the shares iw  are random weights defined as function of 

the observed vectors ( )ii yx , : 

∑
=

= n

i
ii

ii
iii

g

g
w

1
),(

),(
),(

yx

yx
yx  and RRg mk →+:  is a generic function.4 

Equation (4) becomes 

∑
∑=

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
n

i
in

i
ii

ii

g

g
1

1
),(

),(
θφ

yx

yx
 (5) 

It is worth noting that the statistic (5) can be written in terms of sample averages as 

g
g

n
g

n
g

i i

i ii ____
θ

θ
φ ==

∑

∑
 (6) 

where we omitted the dependence of g on ),( ii yx  to simplify the notation. Let’s define the population 

means as )( θμ θ gEg =  and )(gEg =μ  where θμθ g

p
g →
___

 and θμθ
p
→  for the consistency of the sam-

ple mean. The statistic (5) is a linear aggregator function of the efficiency scores with weights that sum up 

to one. In this sense we can interpret almost all aggregation procedures for efficiency scores as particular 

cases of expression (5). For example if we use shares of a particular input, say labour, we are aggregating 

using labour shares. Again, the use of cost shares in the aggregation procedure can be derived as a par-

ticular case of expression (5) where we use prices to weight the inputs.  

 

                                                           
4 The simple average is the particular case in which we set niniw ,,1,

1
K=∀= ,  which is a degenerate random variable. 
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PROPOSITION 1 (Consistency). The statistic (5) satisfies the consistency property )(θφ E
P
→  only 

if efficiency is statistically uncorrelated from the arguments of the function that defines the aggregation 

shares. 

Proof: The estimator can be rewritten as 

)(
)(
)( θθ

θ
θ

φ E
gE

gE

n
g

n
g

g
g P

i i

i ii

i i

i ii =→==
∑

∑

∑
∑

 

where the limit is a consequence of the consistency of the sample mean and Slutsky’s theorem (see, for 

example, Greene 1997, pp. 118-119) and the last equality derives from the uncorrelation assumption since 

)()()( θθ EgEgE = . 

□  

 PROPOSITION 2 (Asymptotic Normality):  The statistic (5) is asymptotically normally distributed 

with mean 
g

g

μ
μ θ  and variance 

g

gggggg

n
gCov

Var
μ

θμμσμσμ
φ θθθ ),(2

)(
2222 ++

= . 

Proof: The statistic (6) is the ratio between two dependent random variables. The following identity 

holds: 

g

gggg

g

g

g
gg

g
g

μ
μμμθμ

μ
μθ θθθ )()(

________
−−−

=−  (7) 

Let’s consider the following transformation of identity (7) numerator: igiigi ggW θμθμ −= . Wi has zero 

mean and variance ),(222222 gCovggggggW θμμσμσμσ θθθ ++= . If we define ∑=
i i

W
n W

n
Z

σ
1

 it is 

possible to apply the Lindeberg-Lévy central limit theorem to establish: 

)1,0(NZn →  

Thus we can write (making use of Slutsky’s theorem) 



10 
Author: Peyrache A & Coelli T. 
Article submitted to Management Science; manuscript no 
 
 

 10 

),0( 4

____

−→=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
− g

d

g

n

g

g

W

N
g
Z

g
gn μ

μμ
μθ

σ
θ  

and we can conclude 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈ 4

2
____

,
g

W

g

g
a

n
Ng

μ
σ

μ
μ

θ
θ θ  

□ 

These are interesting results for two reasons. First, we have an estimator of average efficiency that is con-

sistent only if uncorrelation holds and this fact allows us to construct tests for uncorrelation based on 

Wald statistics.  Second, we can consider efficiency indexes constructed using price information (e.g., 

total revenue) as particular cases of expression (5). This last point is particularly useful in illustrating 

some results relating to the aggregation of efficiency scores into measures of industry efficiency. 

3. Aggregation Issues 

Before we outline our the semi-parametric asymptotic testing procedure, it is important to first review the 

efficiency aggregation debate (see for example Fare & Grosskopf 2005, Zelenyuk 2004, Fox 2004, Sori-

ano, Rao & Coelli 2003). The debate can be summarized as the search for weighting vectors for effi-

ciency scores which give rise to aggregate indexes that respect some properties considered important in 

production economics. It is worth emphasizing that in this debate the asymptotic properties of aggregate 

indexes have not previously been discussed. The consideration of the asymptotic properties of the estima-

tors throws new light on various aspects of the aggregation debate, such as the Fox paradox and the re-

lated monotonicity property. The monotonicity property states that the aggregate index has to increase if 

all its arguments increase. We will show that the monotonicity property holds (in statistical terms) only if 

the uncorrelation assumption is satisfied. The indexes that have been discussed in the literature don’t sat-

isfy the uncorrelation assumption, therefore we have a structural problem of a lack of monotonicity due to 

the correlation between efficiency and the vector of weights. Fortunately, it is always possible to measure 

this bias as a deviation from average efficiency and give it an economic interpretation. 
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3.1. The Aggregation “Problem” 

In order to provide an illustration of the key issues in the aggregation debate we start with Koopmans 

theorem in its revenue version (Fare & Grosskopf 2005), and assume that information on the vector of 

output prices (p) is available. The theorem states that the total maximum revenue (i.e., the revenue func-

tion) of an industry composed of n firms is equal to the summation of the individual firm-level revenue 

functions (given the assumption that reallocation of inputs among firms is not permitted). Formally, if we 

define the revenue function as { }( , ) max : ( , ) 0R f= >
y

p x py x y , Koopmans theorem states:5 

∑= i iI RR  

where RI is the industry revenue function and Ri is the firm i revenue function. This is the starting point 

for aggregation. Koopmans theorem holds under very general assumptions on the technology (Mas-Colell 

1995) and this is the main reason why in aggregating efficiency scores it is recommended to choose ag-

gregator functions that satisfy this relation. We can rewrite the Koopmans relation as 

∑= i ii EsE  (8) 

where 
py
RE =  is the industry-level economic efficiency, 

i

i
i

R
E

py
=  are the individual firm-level eco-

nomic efficiencies and 
py
py i

is =  is the observed revenue share of the i-th firm. The weighted average of 

individual economic efficiency indexes is equal to the industry efficiency index. Thus, the industry-level 

economic efficiency index has to be equal to the weighted average of the individual indexes if we want 

the Koopmans relation to hold.  

We know from Farrell (1957) that the following decomposition holds at the individual firm level: 

iii TAE = ,   ni ,,1K=∀  (9) 

                                                           
5 The notation py relates to the dot product of the two vectors. 
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where 
i

iT
θ
1

=  is the technical efficiency index and 
i

i
i T

EA =  is the allocative efficiency index (defined in 

a residual way). We want that a similar relation holds at industry level: 

ATE =  

The aggregation problem reduces to finding aggregation procedures for the individual technical and allo-

cative components (9) such that their product is equal to the industry-level economic efficiency (8). Al-

though in theory we can consider very general aggregator functions, in the literature the attention has fo-

cused on linear aggregator functions with weights that sum up to one. One advantage of this choice is that 

these aggregator functions are consistent in aggregation (Blackorby & Russell 1999, Diewert 1978).  

In formal terms we are searching vectors of weights ),( βα  for the two linear aggregator func-

tions 

∑= i iiTT α ,   1=∑i iα  

∑= i ii AA β ,   1=∑i iβ , 

such that ATE = . With some algebra we can restate the aggregation problem as the search for a solution 

to the following problem: 

∑∑∑ ⋅=
i iii iii iii ATTAs βα , (10) 

where ),( βα  are the unknowns. It is interesting to note that the aggregator functions we are searching 

for have to be particular cases of equation (5), then they satisfy all the properties investigated in section 

(2.3.). Fare & Grosskopf (2005) note that if the allocative efficiency component across firms is constant, 

the previous formula becomes ∑∑ =
i iii ii TTs α  which implies that good weights for technical effi-

ciency are given by the observed revenue shares: 

∑= i iiTsT  (11) 

In this way the original problem (10) is constrained and we can find a solution for the vector β. Zelenyuk 

(2004) used potential revenue weights to close the system and aggregate the allocative component: 
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∑= i ii AsA ˆ ,   
∑

=
i ii

ii
is

py
py
θ

θˆ  

It can be shown that these aggregate indexes need not satisfy the monotonicity property.6 Since this has 

been an interesting problem in the literature, it is useful to explicitly discuss the so-called Fox paradox 

(Fox 2004) in relation to the uncorrelation assumption. 

3.2. Fox paradox and Uncorrelation 

The industry-level efficiency measure is defined as the ratio of actual revenue over potential revenue, as 

specified in equation (8). Thus, given that AE=1, we write 

py
py∑∑ === i iipot

i ii

T
R

R
TsIE  (12) 

Since industry-level efficiency can also be stated in terms of simple averages as 

___

_______

py

py iipot T
R

R
IE ==  

equation (12) can be rewritten as7 

R
n

RRTT
TIE

i ii∑ −−

+=

))((
 (13) 

The meaning of expression (13) is that industry efficiency is equal to average efficiency plus a term that 

depends on the covariance between actual revenue and efficiency. The Fox paradox arises when we have 

inconsistent changes between individual efficiencies and industry efficiency, that is: monotonicity doesn’t 

hold. Since average efficiency respects the monotonicity property, the violation of this property has to be 

ascribed to the covariance term. Consider the limit of equation (13) 

                                                           
6 It easily to produce numerical example that violate the monotonicity property. See, for example, Fox (2004) where a similar paradox is 

discussed. 

7 From the definition of covariance we have  

{ } )()()()]()][([),( yExExyEyEyxExEyxCov −=−−=  

The sample counterpart of this expression is: 

yxn
i iyix

i yiyxixn ⋅−
∑

=∑ −− ))((
1  
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)(
),()(

)(
)()(lim

RE
RCovE

RE
REIE

n

θθθ
+==

∞→
 (14) 

We know that if uncorrelation holds the second term in expression (14) vanishes and industry efficiency 

becomes equal to average efficiency. In other words, uncorrelation is a sufficient condition in order to 

assure monotonicity of the industry efficiency index: if the uncorrelation assumption holds the Fox para-

dox cannot arise. Obviously in finite samples the covariance term could be different from zero, but this 

difference is not statistically significant if uncorrelation holds. Therefore, the main result of this section is 

that if uncorrelation doesn’t hold the monotonicity property is violated and Fox-type phenomena can 

arise.  

4. Stochastic Frontier Models 

In stochastic frontier models we require the uncorrelation assumption to be confident that COLS provides 

consistent estimates of the slope parameters of the frontier function.  We also require the independence 

assumption to identify MLE. In this section we explicitly discuss these issues.  

Consider a stochastic frontier production model involving a Cobb-Douglas functional form 

iii uvy −++= xβ0β , (15) 

where the efficiency term is linked to the distance function θeu = , iy  is the log of the scalar output 

quantity, x  is a k×1 vector of logged input quantities, β0 is the intercept parameter, β is a k×1 vector of 

slope parameters, ui is the inefficiency error term and vi is a white noise error term. 

4.1. OLS estimation 

If cross sectional dataset are used one generally assumes independence both between the two er-

ror components (u and v) and between these components and the regressors (see Kumbhakar & Lovell 

2000, pp. 74). If the efficiency term is correlated with the input matrix, the OLS estimation of β is incon-

sistent. That is 

1( ) [( ' ) ' ]E E −= = +b x x x y β α  
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where 1[( ' ) ' ]E −=α x x x u  is the expectation of the vector of coefficients of the regression of u on x. It is 

clear that this vector is zero only if the regressors are uncorrelated with the efficiency term.  

4.1. Maximum Likelihood Estimation 

In model (15) we assume uncorrelation: )()|( uxu EE = . Suppose that the error term iii uv −=ε  has a 

distribution given by a density function with parameters δ: ),( δεf . In this way the dataset can be con-

sidered a random sample (given x) from this probability distribution. The Likelihood function is the prod-

uct of n identical density functions: 

0 0
1

( , , | , ) ( , , , )
n

i
i

L y fβ ε β
=

=∏δ β x δ β  

From the first order conditions we obtain the expression for the maximum likelihood estimator. In gen-

eral, since we have n observations, we can estimate only a number of parameters that is less than n. For 

example, if the error is normally distributed we have to estimate k coefficients plus the variance parame-

ters of the two error terms.8 If a correlation between the error term and the regressors arise, the regressors 

are informative on the mean of the error term: )()|( εε EE ≠x . In this case the likelihood is the product 

of n density functions that differ in their mean values. The parameters of the density function now depend 

on the observation: 0( , , , )i if ε βδ β . The likelihood function therefore is 

0
1

( , | , ) ( , , , )
n

i i i
i

L y f ε β
=

=∏δ β x δ β . 

In this case we have to estimate k+n+3 parameters (β, the n means, the intercept parameter and the two 

variance parameters), and thus an identification problem arises.  

In some cases this problem can be solved by explicitly introducing a functional relationship between the 

mean of the error term and a set of regressors in order to reduce the number of parameters. So, for exam-

ple, Battese & Coelli (1995) propose a model where the efficiency component is a linear function of r 

                                                           
8 Assuming a one-parameter distribution such as the half-normal is chosen for the inefficiency error term. 



16 
Author: Peyrache A & Coelli T. 
Article submitted to Management Science; manuscript no 
 
 

 16 

environmental variables (the environmental variables may or may not correlated with the regressors). In 

this way we have k+r+3 parameter and the model can be identified if n is large enough.  

5.   Testing Uncorrelation, Homoscedasticity and other forms of dependence 

Another interesting implication of our earlier discussion of weighted average estimators is that it can pro-

vide a method testing for uncorrelation. The sample mean is always (assuming a random sample) a con-

sistent estimator of average efficiency (whether uncorrelation holds or not).  However, the weighted sam-

ple mean (i.e., industry efficiency) is a consistent estimator only if uncorrelation holds. These results can 

be used to construct a test for uncorrelation that makes use of the logic of Hausman (1978). We propose a 

testing strategy in the vein of Wilson (2003), where non-parametric enveloping techniques are used in a 

first step to obtain consistent estimates of the efficiency scores.  

4.1. A general framework 

Consider two random vectors pR∈u , kR∈z  and n realizations of these random vectors 

( )ii zu , ni ,,1K=∀  that compose an observation matrix [ ]ii zuQ ,=  of dimension )( kpxn + . Sup-

pose that we are interested in testing the uncorrelation between u and z. The testing problem can be stated 

as: 

⎩
⎨
⎧

≠
=

)()|(:
)()|(:

1

0

uzu
uzu

EEH
EEH

 (16) 

From the central limit theorem the sample mean of the j-th component of u ( ∑=
i ijj u

n
u 1

) is a consistent 

estimator of )( juE  and is asymptotically normally distributed: 

)( j

p

j uEu →  

⎥
⎦

⎤
⎢
⎣

⎡
≈

n
uVar

uENu j
j

a

j

)(
),(  

The following statistics based on equation (4) (section 2.3.) are interesting in order to test uncorrelation:  
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h

jh

i ih

i ijih
hj z

uz
z
uz

______

==
∑
∑φ ,   khpjni ,...,1,,...,1,,...,1 ===  

These statistics are simply an averaging procedure where the h-th component of vector z is used as a 

weighting scheme for the j-th component of vector u. Therefore we have pk of these statistics. From 

proposition 2 (section 2.3.), we know that they are asymptotically normally distributed. Moreover under 

the null hypothesis of uncorrelation, )(
)(
)(

j
h

jh uE
zE
uzE

= , hence hjφ  is a consistent estimator of )( juE . 

Thus it follows that the difference )( jhj u−φ  converges in probability to zero if and only if the null hy-

pothesis holds.  

We can restate the test problem (16) by introducing the (pk×1) difference vector 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−=−== )(

)(
)(

][ j
h

jh
jhjhj uE

zE
uzE

ud φd . 

Since under the null hypothesis this difference vector is zero, the test problem reduces to a test for the 

following pk restrictions: 

0

1

: ( )
: ( )

H E
H E

=⎧
⎨ ≠⎩

d 0
d 0

 

It is possible to use the following Wald statistic to test uncorrelation: 

1
' Var( )W

−
⎡ ⎤= ⎣ ⎦d d d . (17) 

The Wald statistic (17) is asymptotically distributed as a Chi-Square with pk  degrees of freedom and is 

used in the standard manner to test the null hypothesis. 

4.2. A three step semi-parametric testing procedure for Uncorrelation 

The result of the last sub-section can be used to test uncorrelation between efficiency (θ) and the vector 

composed by the inputs x and the output compositions η. In this context u is a scalar random variable 

(output oriented efficiency measure θ) and z is the random vector ),( xη  of dimension 1−+ mk  (the 
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number of inputs and the number of output compositions), so the Wald statistic (17) is distributed as a 

Chi-Square with 1−+ mk  degrees of freedom.  

Two problems arise in applying the previous test: the first one is that we do not have data on effi-

ciency; the second one is the estimation of the covariance matrix of the Wald statistic, Var( )d , in expres-

sion (17). These problems are solved with a three step procedure. The first step involves estimating indi-

vidual efficiencies via non-parametric Data Enveloping techniques: both DEA and FDH are consistent 

estimators of the “true” efficiency (Wilson 2003), although they give rise to low rates of convergence 

(curse of dimensionality). In the second step, we estimate the covariance matrix Var( )d  using bootstrap 

methods (Efron & Tibshirani 1993) without deriving an analytical expression for it. Finally, in the third 

step, we compute the value of the Wald statistic in (17) and compare it with the 2
1−+mkχ  table value. 

Since we are using non-parametric estimation of efficiency in the first step, we have to expect 

that the testing procedure shows lower convergence rates than a full-parametric version, but a full-

parametric version cannot be used since the estimation of efficiency (in a parametric framework) is based 

on the hypothesis we are testing for. Moreover the estimation via non-parametric techniques in the first 

step is also used in other testing strategies (see Wilson 2003) proposed in the literature. 

Testing Homoscedasticity 

The previous testing procedure can be easily adapted to test for homoscedasticity. We have only to con-

sider the second moment of the efficiency distribution. Now, we have to test uncorrelation between the 

vector [ ]2,θθ  and the vector composed of output compositions and inputs. If the test accepts the null hy-

pothesis, then both the uncorrelation and the homoscedasticity assumptions holds. If the test rejects the 

null hypothesis one of the two assumptions is violated.  

It is noted that if we assume a truncated normal parametric family for the efficiency distribution, 

then testing for both uncorrelation and homoscedasticity is equivalent to testing for independence. In the 

same way, when assuming a half-normal or exponential distribution, it is sufficient to test for uncorrela-

tion in order to investigate independence. 
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Our test can be further generalized if we consider some function of the efficiency term )(θh . We 

can test for the dependence of the skewness on the input/output composition vector considering the matrix 

[ ]32 ,, θθθ  . Or we can test for the dependence of the kurtosis on the input vector considering [ ]4,θθ . 

Obviously the dependence between the efficiency term and the input/output composition vector can take 

many different forms, so in general terms we have to specify a function and then test for the uncorrelation 

of the vector )(θh  from the input set. Considering the moment functions, at each step we are excluding a 

particular form of dependence of the efficiency distribution from the input/output composition vector. For 

example, it is possible to test the uncorrelation between [ ]432 ,,, θθθθ  and ),( xη ; if the test accepts the 

null hypothesis, we are excluding linear dependence, heteroscedasticity, skewness dependence and kurto-

sis dependence from the input/output composition vector. 

The basic forms of dependence (linear dependence and heteroscedasticity) are arguably the most 

aggressive forms of dependence. They create a lot of problems and impact in stronger ways relative to 

other types of dependence (such as skewness dependence or other forms of non-linear dependence). As 

the test is generalised to include higher order moments the degrees of freedom of the test increase and 

hence more data may be required. For example, if we test for uncorrelation we have (m+k-1) degrees of 

freedom, but if we test both for uncorrelation and homoscedasticity we double this number, and so on if 

we introduce other types of dependence. 

6. Monte Carlo experiment and empirical illustration 

We are interested in illustrating two key results from the previous discussion. First, the statistical test we 

have introduced is asymptotic, so we investigate its finite sample behaviour with some Monte Carlo simu-

lations. Second, we explicitly measure the bias of the industry efficiency indexes showing the size of the 

covariance term and reaching a full decomposition of the industry efficiency indexes. This is illustrated 

using a dataset on the US electric power generation (Christensen & Greene 1976). 
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6.1. Monte Carlo experiment 

In order to investigate the finite sample properties of the test, we produce results that are comparable with 

the Monte Carlo experiment performed by Wilson (2003), emphasizing the power of the test in detecting 

linear dependencies in comparison to the nonparametric tests surveyed by Wilson. Moreover, drawing 

from a multivariate normal distribution, the rejection rate of the test is investigated under different as-

sumptions regarding the parameter values (correlation coefficient, sample size and the number of vari-

ables). Following Wilson (2003), we assume a seven-dimensional (i.e., m+k-1=7) multivariate normal 

distribution with a covariance matrix that presents ones on the diagonal and the same correlation coeffi-

cient outside the diagonal. Bootstrap methods have been used to estimate the covariance matrix of the 

Wald statistic (17). 

We expect rejection rates that are near the size of the test when the correlation coefficient is zero. 

Moreover, for larger values of the correlation coefficient, we expect a higher power of the test. Of course, 

testing uncorrelation give us less information than testing for independence and this is the main reason 

why the power of the test is increased: we are trading the strong-ness of the hypothesis with the power of 

the test. In Table 1 the results of the first Monte Carlo experiment (involving 1,00 replications) are sum-

marized. In the first row ( 0=ρ ) we can see that the test correctly shows a power close to the size of the 

test. The power of the test then increases sharply with the value of the correlation coefficient, which is as 

one would wish.  

The values in brackets reported in Table 1 are the results obtained in Wilson (2003) for his boot-

strap test ( 4̂nT ), which is the best performing test for independence in his experiment.  It is evident that 

under the null hypothesis this test has too high an acceptance rate, indicating incorrect size. Moreover, the 

test for independence show a rejection rate that increases quite slowly with increasing values of the corre-

lation coefficient (linear dependence), whereas our test shows a sharply increasing rejection rate in the 

presence of linear dependence in the data. This fact suggests that it is useful to use this test for uncorrela-
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tion as a pre-test procedure in order to exclude linear dependencies in the data in a more general strategy 

oriented in testing the independence assumption. 

In Table 2 we report the results of other Monte Carlo simulations where we varied sample size 

(N), correlation coefficient (ρ) and the number of variables. The rejection rate increases sharply both with 

the sample size and the correlation coefficient. As a rule of thumb we can expect that for an efficiency 

model with three inputs, one output and less than a hundred of observations, the test performs quite well 

in detecting linear dependencies in the data. 

6.2. Empirical illustration 

To illustrate the empirical use of these tools, we analyse data on the US electric power generation. Chris-

tensen & Greene (1976) used two cross-sectional datasets in order to assess the performance of the US 

electricity sector during the period 1955-1970. In this study wee concentrate on the 1970 dataset that con-

tains 158 observations. Data are available on total cost, total output, wage rate, cost share for labour, capi-

tal price index, cost share for capital, fuel price and cost share for fuel. Using these data, we calculated 

implicit labour, capital and fuel quantities. Thus the final dataset is a collection of data on three input 

quantities and one output quantity for each observation.  

We estimated an output oriented efficiency measure using both Constant Return to Scale (CRS) 

and Variable Return to Scale (VRS) technologies in a DEA framework. The differences between the vari-

able and constant return to scale results suggest the presence of regions of non-constant return to scale, as 

was found in Christensen & Greene (1976) when using parametric cost function methods. In order to 

summarize the results and to discuss the aggregation problems introduced in section 3, we constructed 

four different industry efficiency indexes, using output, labour, capital and total cost shares as the 

weights.  

In the CRS results reported in Table 3 we can see that there is a significant difference between 

these indexes and the simple average aggregation procedure. The p-value of our test statistic is reported 

with each aggregate index. We conducted a test of uncorrelation both between each input quantity and the 
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efficiency term and then between the full set of input quantities and the efficiency term. A p-value less 

than the size of the test (usually 0.05α = ) is interpreted as a rejection of the null hypothesis of uncorrela-

tion.  

The same exercise has been done with the VRS efficiency scores and the results are reported in 

Table 4. Moreover, in both tables we report the value of the covariance term which captures the differ-

ences between simple average efficiency and industry efficiency indexes (as shown in equation (13)). As 

can be seen the industry indexes constructed using the VRS technology are very different from simple 

averaging. Following the suggestion of Fare & Grosskopf (2005), we also constructed an industry effi-

ciency index using output share weights. The value of this index is 0.867 versus the (unweighted) average 

value of 0.771.  

The failure of the uncorrelation assumption indicates that a weighted aggregator should be used in 

estimating industry efficiency. On the contrary, if the uncorrelation assumption holds aggregation is not 

sensitive to the choice of the aggregator weights. In this case the aggregation problem is unlikely to be 

considerable, since all the industry efficiency indexes converge to the simple mean. The results obtained 

from this dataset, however, suggest that the efficiency term is strongly correlated with the inputs and 

hence the use of an unweighted average to estimate industry efficiency could be misleading due to the 

lack of monotonicity ascribed to correlation. 

7. Conclusions 

Independence and/or uncorrelation assumptions are important in many aspects of efficiency analysis.  We 

make note of three particular cases in this study: (i) bootstrapping non-parametric efficiency models; (ii) 

estimating stochastic frontier analysis (SFA) and (iii) obtaining aggregate measures of industry efficiency.  

The first case, involving bootstrapping DEA models, has been discussed in some detail in Wilson (2003).  

In the case of SFA, we note that an uncorrelation assumption is required for COLS estimators to be con-

sistent, while an independence assumption is needed for ML estimation to be feasible.  Finally, for the 
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case of aggregation we show that uncorrelation is needed for an (unweighted) average efficiency measure 

to be a consistent estimator of industry efficiency. 

Our discussion of alternative weighted average measures of industry efficiency lead us to propose 

a semi-parametric Hausman-type asymptotic test for linear independence (uncorrelation) between techni-

cal efficiency and variables such as input quantities and output mixes.  Wilson (2003) has previously in-

vestigated a number of (full) independence tests and found that they had poor size properties and low 

power in moderate sample sizes.  We provide a Monte Carlo experiment which indicates that our test for 

uncorrelation has superior size and power properties in finite samples, relative to these independence 

tests.  

Obviously, since independence implies uncorrelation but not the converse, our test is not as useful 

in situations where a test for independence is required (e.g., in bootstrapping DEA models).  However, it 

can still be useful to some extent.  For example, if one finds that uncorrelation is rejected then there is no 

need for one to conduct the independence test (which is more involved and has lower power).  Secondly, 

we have shown how the test can be generalized in order to detect higher order dependencies, such as het-

eroscedasticity.  Thus, the test could be used to test for (full) independence in situations where one is will-

ing to assume that the efficiency distribution has a finite number of moments.  For example, when one 

believes an exponential or truncated normal distribution provides a suitable approximation to the true ef-

ficiency distribution. 
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Appendix – Tables 

 

 

Table 1:  Rejection rates for the uncorrelation test* 

REJECTION RATE    
  

Size of Test (α) 

0.1 0.05 0.01 

Correlation 
(ρ) 

x 0.111 
(0.007) 

0.047 
(0.029) 

0.01 
(0.004) 

0.1 0.432 
(0.186) 

0.320 
(0.112) 

0.152 
(0.029) 

0.2 0.901 
(0.431) 

0.856 
(0.301) 

0.730 
(0.102) 

0.3 0.990 
(0.739) 

0.988 
(0.584) 

0.970 
(0.301) 

0.4 1.000 
(0.930) 

1.000 
(0.856) 

1.000 
(0.594) 

0.5 1.000 
(0.991) 

1.000 
(0.969) 

1.000 
(0.871) 

 

* Sample size is n=70, number of variables is (m+k-1)=7 and Wilson independence 
test results are in brackets. 
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Table 2 – Effect of sample size and number of variables on 
rejection rates  

 ρ 
 0.025 0.05 0.1 0.2 0.4 
      

N  3 Variables 

25 0.065 0.080 0.112 0.256 0.722 

50 0.053 0.073 0.150 0.423 0.939 

100 0.054 0.087 0.223 0.709 0.999 

200 0.074 0.126 0.436 0.951 1.000 

400 0.118 0.226 0.724 1.000 1.000 

800 0.116 0.420 0.953 1.000 1.000 
      
   5 Variables 

25 0.076 0.086 0.122 0.333 0.854 

50 0.076 0.078 0.191 0.539 0.983 

100 0.058 0.114 0.330 0.860 1.000 

200 0.084 0.192 0.584 0.985 1.000 

400 0.104 0.322 0.879 1.000 1.000 

800 0.177 0.634 0.995 1.000 1.000 
      
   7 Variables 

25 0.073 0.086 0.158 0.375 0.893 

50 0.055 0.082 0.216 0.668 0.998 

100 0.078 0.126 0.414 0.939 1.000 

200 0.093 0.225 0.695 0.999 1.000 

400 0.138 0.421 0.945 1.000 1.000 

800 0.225 0.739 0.999 1.000 1.000 
      
   10 Variables 

25 0.088 0.091 0.173 0.490 0.928 

50 0.061 0.105 0.297 0.767 0.999 

100 0.084 0.138 0.483 0.964 1.000 

200 0.097 0.256 0.792 1.000 1.000 

400 0.159 0.526 0.979 1.000 1.000 

800 0.273 0.817 1.000 1.000 1.000 
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TABLE 4   –    VRS-DEA, Aggregate Indexes (n=158) 
Mean Cost Product Labour Capital Fuel 
0.771 0.859 0.867 0.844 0.856 0.862 

 (0.0000) (0.0000) (0.0001) (0.0000) (0.0000) 
Covariance 

Term 0.088 0.096 0.073 0.085 0.091 

 
 
 

TABLE 3   –    CRS-DEA, Aggregate Indexes (n=158) 
Mean Cost Product Labour Capital Fuel 

0.723 0.768 0.785 0.749 0.769 0.780 

 (0.0012) (0.0003) (0.2003) (0.0167) (0.0025) 
Covariance 

Term 0.045 0.062 0.026 0.046 0.057 
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