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Abstract

In standard models of experimentation, the costs of project development consist of (i) the
direct cost of running trials as well as (ii) the implicit opportunity cost of leaving alternative
projects idle. Another natural type of experimentation cost, the cost of holding on to the
option of developing a currently inactive project, has not been studied. In a (multi-armed
bandit) model of experimentation in which inactive projects have explicit maintenance costs
and can be irreversibly discarded, I fully characterise the optimal experimentation policy
and show that the decision-maker’s incentive to actively manage its options has important
implications for the order of project development. In the model, an experimenter searches
for a success among a number of projects by choosing both those to develop now and those
to maintain for (potential) future development. In the absence of maintenance costs, the
optimal experimentation policy has a ‘stay-with-the-winner’ property: the projects that are
more likely to succeed are developed first. Maintenance costs provide incentives to bring the
option value of less promising projects forward, and under the optimal experimentation policy,
projects that are less likely to succeed are sometimes developed first. A project development
strategy of ‘going-with-the-loser’ strikes a balance between the cost of discarding possibly
valuable options and the cost of leaving them open.

1 Introduction

When experimentation is costly, decision-makers must choose which alternatives to actively inves-

tigate and which to leave ‘on the back burner’. Consider, for example, a firm engaged in research

and development facing many technologies that can lead to comparable innovations. Investing

in multiple technologies simultaneously is costly, so the firm prioritises its allocation of funds to

competing ideas. A massive number of books and business articles on project management help

managers decide which technologies to develop and, more importantly, whether/when to trans-

fer resources to other projects following disappointing results in priority projects. As another

∗A previous draft was circulated under the title ‘Experimentation with Costly Project Maintenance’. I would

like to thank Li Hao, Martin Osborne and Colin Stewart for their supervision, comments and suggestions. I would

also like to thank Ettore Damiano, John Duggan, Carolyn Pitchik, Wing Suen and seminar participants at the

University of Waterloo and the Fall 2010 METC.
†W. Allen Wallis Institute, 107 Harkness Hall, Box 027-0158, University of Rochester, NY 14627-0158. jg-
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example, professional sports teams’ in-game roster management decisions stem from exogenous

restrictions on their ability to learn about multiple players at once. A single player can play at

a given position at any given time during a game and coaches/managers can gather information

about their players’ abilities only by having them replace a teammate.

In standard models of experimentation, the choice of gathering information about one alter-

native as opposed to another entails only an implicit opportunity cost: the foregone opportunity

of learning about the inactive alternative. However, retaining the option to investigate a cur-

rently shelved alternative often involves explicit maintenance costs. Firms engaged in research

and development routinely devote resources solely to keep open the option of developing a tech-

nology that is currently ‘on the back burner’, which involves the costly upkeep of specialised

equipment and paying the salaries of skilled workers or scientists that can be lost to other firms.

In professional sports, the option to develop players of unknown quality is kept open by filling

roster spots with ‘bench’ players, who may seldom get the opportunity to play but command

millions of dollars’ worth of salaries.

In this paper, I present a simple (multi-armed bandit) model of experimentation in which

projects (arms) that are not being developed (pulled) have explicit maintenance costs. The

experimenter is thus led to actively manage its set of options, as it faces a choice between paying

to keep some options open or discarding them (irreversibly) altogether. Discarding an inactive

project liquidates its option value, which is realised in the event that currently active projects are

deemed unpromising. To avoid both destroying this option value and paying to maintain it, the

experimenter has an incentive to bring it forward by altering the order of project development.

In a tractable setup in which two risky projects can be either good or bad and only good

projects eventually succeed if developed, I fully characterise the optimal experimentation policy

with maintenance costs and show that it entails significant departures from standard results.

In the absence of maintenance costs, the optimal experimentation policy has the well-known

‘stay-with-the-winner’ property: the project that is more likely to succeed is investigated first.1

In the presence of maintenance costs, ‘going-with-the-loser’ can be optimal: projects less likely

to succeed may be investigated first. When ‘going-with-the-loser’, the experimenter brings the

option value of ‘losing’ projects forward through a simple culling rule. Such projects are granted

a ‘last chance’ to succeed through a short and intense period of experimentation, after which

they are permanently discarded in favour of more promising projects.

While the idea of maintenance costs is natural and widely applicable, one way to interpret

these results is as providing some rational foundations for the behaviour described as ‘throwing

good money after bad’ or escalation, in which decision-makers fail to ‘know when to pull the

plug’ and appear to cling to projects that have repeatedly failed to achieve results.2 Common

explanations have revolved around decision-makers falling prey to some form of sunk cost fal-

1The term ‘stay-with-the-winner’ is coined by Berry and Fristedt (1985).
2See Staw (1981), Staw and Ross (1987) and Garland (1990).
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lacy. However, it need not be the case that observing an intensified commitment to a given

project following a failure is the result only of non-rational behaviour.3 Indeed, in my model,

the experimenter throws good money after bad precisely in order to convince itself that the ini-

tial investments were indeed a bad idea, thus ensuring a quicker extrication of resources from a

hopeless project towards more promising ones.

The following example illustrates the main lessons of the paper by clarifying why experiment-

ing with the ‘losing’ project first can be optimal when maintaining inactive projects is costly.

An experimenter can devote a trial to one of two projects, A and B, in each of three periods.

Projects are risky in that the payoffs they deliver are unknown. A project of type Good delivers

a one-time payoff of 1 with probability G > 0 in any trial. Assume that experimentation ends

once a single trial is successful. Direct experimentation costs are k > 0 per trial, maintenance

costs for an unused project are k ≥ 0 per period and there is no discounting.

A project’s current state is characterised by the experimenter’s belief that it is of type Good

and repeated failures make the experimenter more pessimistic about the project. Let piJ be the

probability that project J is of type Good given that it has failed i trials, with i ∈ {0, 1, 2}.
By Bayes’ rule, piJ = pi−1(1−G)

1−pi−1G
for i = {1, 2}, and initial beliefs (p0A, p

0
B) are given. Assume

that p0B ∈ [p2A, p
1
A]. This ensures that project A is the better project ex ante and that in the

absence of maintenance costs, that is if k = 0, the optimal experimentation sequence must develop

project A twice and project B once. While all such experimentation sequences generate the same

probability of a success, the ‘go-with-the-winner’ sequence AAB yields the highest payoff as it

maximises the probability that a success arrives early and avoids further experimentation costs.

When k > 0, it is straightforward to show that the optimal experimentation sequence will

always be one of AA|AB, |BAAA or B|BAA, where |J represents the discarding of project J .

That is, either the experimenter sticks with the ‘go-with-the-winner’ rule, abandons the ‘losing’

project B immediately or it gives project B an early chance to succeed and discards it following

a failure. Let V (s; p0A, p
0
B) be the expected payoff to experimentation sequence s given initial

beliefs (p0A, p
0
B). Then

V (AA|AB; p0A, p
0
B) = p0A + (1− p0A)p1A + (1− p0A)(1− p1A)p0B

−
[
(k + k) + (1− p0A)(k + k) + (1− p0A)(1− p1A)k

]
,

V (B|BAA; p0A, p
0
B) = p0B + (1− p0B)p0A + (1− p0B)(1− p0A)p1A

−
[
(k + k) + (1− p0B)k + (1− p0B)(1− p0A)k

]
,

V (|BAAA; p0A, p
0
B) = p0A + (1− p0A)p1A + (1− p0A)(1− p1A)p2A

−
[
k + (1− p0A)k + (1− p0A)(1− p1A)k

]
.

3In the management literature, Bowen (1987) has related misgivings about such interpretations of escalation
behaviour. See also McAfee et al. (2010).
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The incentive to bring the option value of project B forward entails a trade-off. The benefits of

experimentation sequence B|BAA are that (i) (relative to sequence |BAAA) the value of project

B gets exploited and the decision to discard B is better informed while (ii) (relative to sequence

AA|AB) saving on maintenance costs. However, to the experimentation sequence B|BAA are

associated both (i) the maintenance cost (relative to |BAAA) and (ii) the opportunity cost

(relative to AA|AB) of leaving the ‘better’ project A idle while experimenting with project B.

Simple calculations show that V (AA|AB; p0A, p
0
B) − V (B|BAA; p0A, p

0
B) is decreasing in p0B.

Hence, if B|BAA is preferred to AA|AB for some p0B ∈ [p1A, p
2
A], then this is also the case for all

p′0B > p0B. Note also that V (|BAAA; p0A, p
0
B) is independent of p0B and that V (|BAAA; p0A, p

0
B)−

max{V (AA|AB; p0A, p
0
B), V (B|BAA; p0A, p

0
B)} is decreasing in p0B and is strictly positive at p0B =

p1A. That is, when p0B = p1A, all three experimentation sequences AA|AB, B|BAA and |BAAA
yield the same success probabilities, yet |BAAA has strictly lower costs. Hence, for fixed G, k,

k and p0A, the optimal experimentation policy can be represented by beliefs p, p with p2A ≤ p ≤
p ≤ p1A, such that |BAAA is optimal on [p2A, p], AA|AB is optimal on [p, p] and B|BAA is optimal

on [p, p1A]. In general, all three intervals can be non-empty. An example has G = 2
5 , k = 6

100 ,

k = 3
200 and p0A = 45

100 . Then it can be computed that p1A ≈ 0.33 and p2A ≈ .23, while p ≈ 0.32

and p ≈ 0.29. This is depicted in Figure 1.
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Figure 1: Example: Optimal Experimentation as a function of p0B.

I model experimentation as a multi-armed bandit problem.4 In the standard discounted

4See Berry and Fristedt (1985). Bergemann and Välimäki (2006) survey the bandits literature with an eye to
applications in economics.
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bandit problem with independent arms, the optimal experimentation policy is the well-known

(Gittins) index policy,5 which is not robust to perturbations of the model such as correlated

arms, non-geometric discounting and the simultaneous pulling of multiple arms. Much less is

known about optimal experimentation policies when these do not take the simple index form.

Closer to this paper, Banks and Sundaram (1994) have shown that index policies are not optimal

in the presence of switching costs between arms.6 Switching costs are attributed to an inactive

arm only when experimentation transitions to it and are always accompanied by an observation

from that arm. Maintenance costs, on the other hand, need to be paid whenever an inactive arm

is not pulled and never generate observations from that arm. Nevertheless, the bandit problem

with maintenance costs fails to admit a Gittins index representation for the reason found by

Banks and Sundaram (1994): the index of a given maintained arm would have to be a function

of the maintenance cost, and this relationship would depend nontrivially on the characteristics

of outside arms.7

I adopt the exponential bandit framework due to Keller et al. (2005), which yields a continuous

time infinite horizon version of the model in the example from above. Exponential bandits have

proved useful in applications due to their tractability. Keller et al. (2005), following Bolton and

Harris (1999), study strategic experimentation and the free-riding incentives of multiple agents

facing a single risky arm. Keller and Rady (2009) generalise the model to ‘poisson’ bandits

that allow for arms of the bad type to also generate successes. Klein and Rady (2008) allow

for each of two experimenters to have perfectly negatively correlated versions of the same risky

arm. Strulovici (2009) applies the model in a voting framework. Bergemann and Hege (1998)

introduce a discrete-time version of the model to study the moral hazard problem arising between

bankers (principal) and venture capitalists (experimenters). In this vein, recent papers by Bonatti

and Hörner (2009) and Hörner and Samuelson (2009) focus on the provision of incentives to

experimenting agents. Bonatti and Hörner (2009) derive another version of the ‘stay-with-the-

winner’ rule when agents can experiment with multiple disjunctive projects, i.e., when only a

single project success is required. They also uncover a ‘go-with-the-loser’ rule when projects are

conjunctive, i.e., when success on both projects is required. In that case, experimenting first with

the losing project is optimal since a success on the winning project is worthless on its own. My

results show that with maintenance costs to inactive projects, ‘going-with-the-loser’ is optimal

even with disjunctive projects.

In Section 2, I describe the model. In Section 2.1, I extend the standard expressions for

5To each arm is assigned a number (index) that depends only on the ex ante characteristics and accumulated
observations of that project. The optimal experimentation policy consists of always selecting a project among
those with maximal indices.

6General characterisations of optimal experimentation policies with switching costs have proven difficult to
obtain. For details, see Jun (2004). An exception is Bergemann and Välimäki (2001), who exploit results of Banks
and Sundaram (1992b) on bandits with a countable numbers of ex ante identical arms to show that an experimenter
never switches back to an arm it switched away from earlier.

7It is not clear how to define an index policy in the presence of maintenance costs since experimentation policies
need to specify both which arm is pulled and which arms are maintained.
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the experimenter’s optimal payoffs in the continuous-time exponential two-armed (optimal stop-

ping) bandit problem to the case with two risky projects. In Section 3, I characterise optimal

experimentation in a benchmark model in which inactive projects have maintenance costs but

the experimenter cannot discard risky projects individually. This is equivalent to a standard

three-armed bandit with two risky arms and no maintenance costs, and I show that the optimal

(Gittins index) experimentation policy involves the ‘stay-with-the-winner’ rule. That is, condi-

tional on continued experimentation, it is optimal to select the project most likely to succeed. In

Section 4, I present the main results of the paper for the model in which inactive projects have

maintenance costs and the experimenter can discard individual projects. First, I show that if the

optimal policy ever ‘goes-with-the-loser’, it will do so in a very specific way, notably through a

culling rule. The losing project will be chosen continuously for a short period, after which, in the

absence of a success, it will be discarded. In other words, losing projects are put to trial before

winning projects only if they are being granted a ‘last chance’ to succeed, else, as in the example,

they are either maintained but not put to trial or simply discarded. Second, I give a complete

characterisation of the optimal policy and show that ‘going-with-the-loser’ is a robust feature

of optimal experimentation with maintenance costs. More precisely, whenever it is not the case

that maintenance costs are high enough that the losing project is always discarded immediately,

it will be put to trial before the winning arm in non-negligible regions of the belief space.

In Section 5, I show that my results can be extended in two natural directions. First, in

the case in which the experimenter has more than two risky projects, the culling rule for losing

projects takes a more general form. When the experimenter has three risky projects ranked by

their likelihoods of success,8 I show that if it is ever optimal to experiment with the middle-ranked

project, then experimentation can proceed to the top-ranked project only when both the middle-

ranked and the lowest-ranked projects have been discarded. In other words, experimenting with

a middle-ranked project grants a ‘last chance’ to all projects of a lower or equal rank. Second,

I show that ‘going-with-the-loser’ is still optimal if successes on various projects are not perfect

substitutes but can be accumulated.9 Hence, my results are due to the incentive to economise

on maintenance costs by bringing the option values of inactive projects forward, and not to the

fact that a leftover project is rendered valueless by another project’s success.

2 Model

Consider a continuous time three-armed bandit problem with two risky arms, A and B, and a

safe arm S. Arms will henceforth be referred to as projects. A trial consists of experimenting

with a risky project for some time interval [t, t+dt]. Trials yield either successes or failures. The

type of a risky project is θ ∈ {Good,Bad}. A risky project of type θ that is pulled continuously

8The argument is easily extended to more than three projects.
9This corresponds to the distinction between disjunctive and additive projects in the language of Bonatti and

Hörner (2009).
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in time interval [t, t+dt] succeeds with probability Gdt for some G > 0 if θ = Good, while it fails

for sure if θ = Bad. The types of risky projects A and B are drawn independently. Let pJ(0) be

the ex ante probability that project J is of type Good. A safe project S yields a flow payoff of 0.

A success on either risky project yields a lump-sum payment of 1 and ends the experimentation

process.

Experimenting continuously with risky project J in time interval [t, t+dt] entails experimen-

tation cost kdt. I introduce explicit costs to maintaining inactive risky projects. That is, a risky

project that is maintained but not involved in a trial in time interval [t, t + dt] entails a cost of

kdt. The experimenter can irreversibly discard risky projects without cost. That is, it can avoid

paying for the maintenance of inactive projects but only at the cost of permanently abandoning

some of its options. There are no costs to the safe project, which can be interpreted as an option

to quit the experimentation process. The experimenter discounts future payoffs at rate r.

Since experimentation ends after the first success, the only histories after which the exper-

imenter selects a project to experiment with are intervals of time in which only failures have

been observed. Strategies should properly be defined on histories. However, any such strategy

can be redefined to depend solely on time in the absence of a success. A strategy is a collection

(α, φA, φB) for some function α : R+ → [0, 1] ∪ {S} and decreasing functions φJ : R+ → {0, 1}
for J ∈ {A,B}. The function α is an assignment rule and

∫ t+dt
t α(t) specifies the fraction of time

devoted to experimenting with projects A in time interval [t, t+ dt] if the experimenter conducts

trials in that interval, while α(t) = S if the experimenter pulls the safe project at time t. The

principal is allowed to share the responsibility for the project between the agents in any interval

of time. The assumption that the experimenter cannot share the assignment between all three

projects and must decide first whether to conduct trials and then how to share experimentation

between risky projects is made to simplify the exposition and is in fact without loss of generality

for optimal experimentation. Functions φA and φB specify maintenance rules, with φJ(t) = 1

if and only if J is maintained at time t. Strategy (α, φA, φB) is admissible if each component is

right-continuous and piecewise Lipschitz continuous. Let tJ ∈ [0,∞) = sup{t : φJ(t) = 1}. Given

any initial beliefs (pA(0), pB(0)) ∈ [0, 1]2, an admissible strategy (α, φA, φB) induces a uniquely

defined and continuously differentiable laws of motion for beliefs (pA(t), pB(t)). These laws of

motion, which are given by

ṗA(t) =

−α(t)GpA(t)(1− pA(t)) for t ∈ [0, tA),

0 for t ≥ tA,

ṗB(t) =

−(1− α(t))GpB(t)(1− pB(t)) for t ∈ [0, tB),

0 for t ≥ tB,

are derived in a straightforward way by requiring that the evolution of beliefs be consistent with

α and Bayes’ rule, and follows Keller et al. (2005).
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For much of the paper, it will be more convenient to work with Markov strategies, which are

conditioned on the state variable, which is the current beliefs along with the set of maintained

projects. Using dynamic programming methods allows for simple expressions for optimal payoffs.

However, many of the arguments regarding when and why maintained projects should be dis-

carded are naturally established by considering time paths of play. More formally, a state consists

of (pA, pB, IA, IB) ∈ [0, 1]2 × {0, 1}2. A Markov assignment is a function β : [0, 1]2 × {0, 1}2 →
[0, 1]∪{S}. Markov maintenance rules are functions ϕJ : [0, 1]2×{0, 1}2 → {0, 1} for J ∈ {A,B}
such that ϕJ(pA, pB, IA, IB) = 0 whenever IJ = 0.

Imposing admissibility requirements directly on Markov strategies is cumbersome.10 A further

difficulty in my framework is to determine how the monotonicity (irreversibility) requirements on

maintenance rules carry over to restrictions on Markov maintenance rules. To get around these

issues, I rely on the admissibility requirement already stated for strategies. Markov strategy

(β, ϕA, ϕB) will be said to be admissible if given any state (pA, pB, IA, IB) and initial beliefs

(pA(0), pB(0)) = (pA, pB), there exists a corresponding admissible strategy (α, φA, φB) such that

for all t

α(t) = β(pA(t), pB(t), φA(t), φB(t)),

φA(t) = ϕA(pA(t), pB(t), φA(t), φB(t)),

φB(t) = ϕB(pA(t), pB(t), φA(t), φB(t)).

Henceforth I will not explicitly restrict the experimenter to using admissible Markov strategies,

but I will verify that the optimal Markov strategies I derive, as well as the deviating strategies

that support various proofs, are admissible.

A Markov strategy (β, ϕ) is symmetric if

β(pB, pA, IB, IA) =

1− β(pA, pB, IA, IB) if β(pA, pB, IA, IB) 6= S,

S if β(pA, pB, IA, IB) = S,

ϕJ(pB, pA, IB, IA) = ϕ−J(pA, pB, IA, IB) for J ∈ {A,B}.

Given any optimal strategy (β∗, ϕ∗), there exists an optimal symmetric strategy that achieves

the same payoffs. Hence, restricting to symmetric strategies is without loss of generality for

the experimenter’s payoffs. Given the restriction to symmetric strategies, it is without loss of

generality to assume that pA ≥ pB. Henceforth, project A will always be the ‘winning’ project,

with project B the ‘losing’ project.

Let W (α, φ; t, τ) be the experimenter’s payoff at time t to strategy (α, φ) if a success arrives

at time τ < min{tA, tB}

W (α, φ; t, τ) = e−rτ −
∫ τ

t
e−rs(k + k)ds,

10See Fleming and Rishel (1975), Theorem 6.1.
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while if a success arrives at τ ∈ [min{tA, tB},max{tA, tB}]

W (α, φ; t, τ) = e−rτ −
∫ min{tA,tB}

t
e−rs(k + k)ds−

∫ τ

min{tA,tB}
e−rskds,

and finally if a success never arrives

W (α, φ; t, τ) = −
∫ min{tA,tB}

t
e−rs(k + k)ds−

∫ max{tA,tB}

min{tA,tB}
e−rskds.

The expected payoff to strategy (α, φ) given belief (pA(0), pB(0)) is

V (α, φ; t) ≡ EτW (α, φ; t, τ),

where the expectation is taken over the distribution of stopping times τ determined by (α, φ) and

(pA(s), pB(s))t. Consider an admissible Markov strategy (β, ϕ) and its corresponding strategy

(α, φ) for some state (p, I). The expected payoff to (β, ϕ) in state (p, I) is given by

v(β, ϕ; p, I) ≡ V (α, φ; 0)

The objective of the experimenter is to find a payoff-maximising strategy. To this end, let

U(t) = max(α,φ) V (α, φ; t). Similarly, let u(p, I) = max(β,ϕ) v(β, ϕ; p, I).

2.1 Preliminaries: Optimal Payoff Functions

Keller et al. (2005) provide simple expressions for optimal value functions for the two-armed

exponential bandit (optimal stopping) problem. In this section, I build on these results to derive

the expressions satisfied by the optimal payoff u that will support the characterisations of Sections

3 and 4. To simplify notation, let the number of beliefs listed in a state implicitly denote the set

of maintained projects. Hence (pA, pB) stands for state (pA, pB, 1, 1), (pA) for state (pA, pB, 1, 0)

given any pB, and so on.

The optimal payoff u must satisfy the following Bellman equation

u(pA, pB) = max

{
e−rdtu(pA, pB), uA(pA), uB(pB), max

β∈[0,1]

{
[βpAG+ (1− β)pBG

− (k + k)]dt+ e−rdtE[u(pA + dpA, pB + dpB)|pA, pB]
}}

. (1)

The first term in the brackets of (1) corresponds to the option of employing the safe project in

a time interval of length dt. The second and third terms correspond to the options of discarding

projects A and B respectively, where uJ corresponds to the optimal payoff to the two-armed

9



bandit problem with risky project J and the safe project. The final term corresponds to the

payoff from maintaining both projects and allocating the experimentation effort optimally.

When a risky project has been discarded, the payoff uJ solves

uJ(pJ) = max

{
e−rdtuJ(pJ), [pJG− k]dt+ e−rdtE[uJ(pJ + dpJ)|pJ ]

}
.

The probability of a success in an interval of length dt is pJGdt, and the payoff to a success is

1. The probability of failure is 1 − pJGdt. In case of failure, the payoff to the experimenter is

uJ(pJ) +u′J(pJ)dpJ , which is equal to u(pJ)−u′J(pJ)pJ(1− pJ)Gdt. By rewriting and cancelling

dominated terms

ruJ(pJ) = max

{
0, pJG− k − u′J(pJ)GpJ(1− pJ)− uJ(pJ)GpJ

}
.

Hence, in an open region of beliefs in which project J is used, uJ satisfies the differential equation

uJ(pJ)(r +GpJ) = pJG− k − u′J(pJ)GpJ(1− pJ), (2)

which can be solved to yield

uJ(pJ) = C̃J

(
1− pJ
pJ

) r
G

(1− pJ) + pJ
G− k
r +G

− (1− pJ)
k

r
, (3)

with the constant of integration C̃J =
(

k
G−k

) r
G Gk
r(r+G) and the stopping belief p∗J = k

G determined

by value-matching and smooth-pasting conditions

uJ(p∗J) = 0, and

u′J(p∗J) = 0.

The setup here is slightly different than in Keller et al. (2005), but the expression (3) admits

the same interpretation. The term pJ
G−k
r+G − (1 − pJ)kr is the payoff to risky project J in the

absence of the ability to quit experimentation, while the term C̃J

(
1−pJ
pJ

) r
G

(1− pJ) captures the

option value of the quitting option S.

Note that the part of value function (1) in which both projects are maintained is linear in β.

Hence, in an open region of the state space in which both projects are maintained, the optimal

value is attained for β ∈ {0, 1}, and (1) can be rewritten as

ru(pA, pB) = max

{
pAG− (k + k)− ∂u(pA, pB)

∂pA
GpA(1− pA)− u(pA, pB)GpA,

pBG− (k + k)− ∂u(pA, pB)

∂pB
GpB(1− pB)− u(pA, pB)GpB

}
. (4)
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Contrary to (2), partial differential equation (4) does not have a simple solution, since such a

solution must include an optimal rule for the allocation of trials among projects.

I approach the solution to (4) by abstracting from allocation rules in order to reduce the

two-dimensional problem (4) to suitably defined single-dimensional problems. First consider an

open region of the state space in which project A is put to trial but both projects are maintained.

Then since the optimal Markov strategy is admissible there exists t′ > 0 and a parametrised path

(pA(t), pB) such that U(t) = u(pA(t), pB) for t ∈ (0, t′). An argument similar to that establishing

(2) shows that U(t) satisfies

U(t)[r + pA(t)G]− U ′(t) = pA(t)G− (k + k). (5)

For path (pA(t), pB), define uA(pA(t); pB) ≡ U(t). Then U ′(t) = −u′A(pA(t); pB)GpA(t)(1 −
pA(t)), which uses the law of motion for pA. Condition (5) can be rewritten, eliminating the

dependence on time, as

uA(pA; pB)[r + pAG] + u′A(pA; pB)GpA(1− pA) = pAG− (k + k). (6)

As for (2), (6) can be solved to yield

uA(pA; pB) = CA(pB)

(
1− pA
pA

) r
G

(1− pA) + pA
G− (k + k)

r +G
− (1− pA)

k + k

r
. (7)

In (7), the constant of integration, and hence the option value of project B, will in general depend

on pB, since pB can affect the payoffs when exiting the A-assignment region. If the parametrised

path (pA(t), pB) exits the A-assignment region in state (p∗A, pB), then p∗A and CA(pB) satisfy the

value-matching and smooth-pasting properties

uA(p∗A;CA(pB)) = u(p∗A, pB), and

∂

∂pA
uA(p∗A;CA(pB)) =

∂

∂pA
u(p∗A, pB).

In general, u(p∗A, pB) is endogenous and depends on the experimentation policy once exit from

the A-region occurs. If, for example, experimentation exits the A-region into the quitting region

at p∗A, then u(p∗A, pB) = 0 and ∂
∂pA

u(p∗A, pB) = 0, which yields that p∗A = k+k
G .

Equation (7) establishes a useful necessary condition for optimal payoffs: when project A is

put to trial in the optimal solution, payoffs evolve as though the experimenter was facing an

optimal stopping problem with cost k + k for the risky project, with the value to the stopping

region adjusted to incorporate continuation payoffs. It will be useful in the sequel to distinguish

a payoff of the form (7) from the optimal payoff u(pA, pB) in an A-assignment region. Given

(pA, pB) and some function CA(pB), define the righthand side of (7) as vA(pA;CA(pB)).
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3 Benchmark: Staying-With-The-Winner

To highlight the impact of maintenance costs on optimal experimentation, a useful benchmark

is the case in which risky projects cannot be discarded individually. In this problem, the experi-

menter can only coarsely manage its options: it can either experiment at the cost of maintaining

both projects, or quit experimentation by moving to the safe project and discarding both risky

projects. To this end, suppose that the experimenter is restricted to Markov strategies with

ϕ(p, I) = (1, 1) for all states (p, I) such that β(p, I) 6= S. Note that this problem is equivalent to

the standard three-armed bandit problem with direct experimentation flow cost (k + k).

Conditional on continuing experimentation, how should the experimenter allocate trials be-

tween risky projects? The next lemma shows that the experimenter should always put the project

with the highest belief to trial, that is, it should follow a ‘stay-with-the-winner’ rule. When beliefs

are such that pA > pB, this means using project A. When beliefs are such that pA = pB, then

both projects are ‘winning’ and ‘staying-with-the-winner’ entails sharing experimentation inten-

sity equally between them. Let (β∗ND, ϕ
∗
ND) denote an optimal Markov strategy when projects

cannot be discarded individually.

Lemma 1. Consider (pA(0), pB(0)) and the belief path (pA(t), pB(t))t under optimal experimen-

tation. If pA(0) > pB(0), then β∗ND(pA(t), pB(t)) ∈ {1, S} for almost all t ∈ [0, t̂), where t̂ is such

that t̂ = inf{t : pA(t) = pB(t)}. If instead pA(0) = pB(0), then β∗ND(pA(t), pB(t)) ∈ {12 , S} for

almost all t.11

Lemma 1 mimics the Gittins index representation of the optimal experimentation policy, in

which a project’s belief is taken to be the index.12 In fact, the proof of Lemma 1 is essentially a

simplified version of the original ‘interchange argument’ in Gittins and Jones (1974) and Gittins

(1979) that establishes the optimality of the Gittins index for standard bandit problems.13 Start-

ing with an assignment in which a project with a non-maximal Gittins index is chosen before

the project with the maximal index, the argument shows that interchanging the order in which

both projects are pulled, keeping expected continuations following these (random) periods of

experimentation fixed, increases the experimenter’s payoffs.

To fully characterise an optimal experimentation strategy, Lemma 1 needs to be augmented

with optimal quitting beliefs, at which all trials cease. The next result addresses this.

Proposition 1. When projects cannot be discarded, the following admissible Markov strategy is

11All proofs are in the Appendix.
12A special feature of exponential bandits is that the project with the highest Gittins index is also the project

with the highest belief, and hence the myopically optimal allocation is also dynamically optimal. This was first
shown for discrete time Bernoulli bandits by Berry and Fristedt (1985). Their result was generalised in Banks and
Sundaram (1992a), who show that dynamically optimal play is myopic for a class of two-type symmetric bandits.

13For a concise presentation of the original proof, see Frostig and Weiss (1999).
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optimal

β∗ND(pA, pB) =


1 if pA > pB and pA >

k+k
G ,

1
2 if pA = pB > k+k

G ,

S if pA ≤ k+k
G .

φ∗ND(pA, pB) =

(1, 1) if pA >
k+k
G .

(0, 0) if pA ≤ k+k
G .

Continuing experimentation is optimal as long as one project’s belief is above cutoff k+k
G .

Figure 2 illustrates belief paths consistent with the optimal experimentation policy (β∗ND, φ
∗
ND).

From belief (p′A, p
′
B) with p′A > k+k

G > p′B, only project A will ever be put to trial, until belief

(k+kG , pB). For these beliefs, optimal payoffs have been derived in (3) (for the case of k =

0), and the optimal quitting belief follows from smooth-pasting and value-matching conditions.

From belief (pA, pB) with pA > pB > k+k
G , experimenting with project A followed by shared

experimentation until belief (k+kG , k+kG ) is optimal. For these beliefs, Lemma 1 implies that

experimentation will cease following shared experimentation. In the Appendix, I derive optimal

payoffs under shared experimentation, which take a form similar to (3). The key is to note that

under shared experimentation with common belief pA = pB = p, the partial differential equation

(4) can be represented as a differential equation depending only on p.

4 Optimal Experimentation with Maintenance Costs

This section allows the experimenter to discard individual projects and presents the main re-

sults of the paper. When facing maintenance costs, the experimenter must balance the funding

of more promising projects against the costly management of its future research options. By

discarding inactive projects, the experimenter can avoid accumulating maintenance costs. How-

ever, discarding an inactive project carries an opportunity cost, since it entails the irreversible

abandonment of an option value. This tension generates an incentive to bring the option value

of inactive projects forward.

4.1 When to ‘Go-with-the-Loser’: A Culling Rule

As a first step, I provide necessary conditions for the losing project B to be put to trial under

optimal experimentation. These show that the patterns of optimal experimentation when projects

can be discarded are simple, in that (i) if a project is ever discarded it is the losing project B,

and (ii) it is discarded as soon as the experimenter no longer intends to put it to trial, while (iii)

whenever project A is strictly better than project B but is not currently on trial, then it must be
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Figure 2: Optimal Experimentation Without Discarding of projects.

that project B is the only project on trial and that project A is eventually put to trial only after

project B has been discarded following repeated failures. In other words, (i) and (ii) state that

there is no value in ‘stringing’ B along without experimenting with it, only to discard is later.

Furthermore, to bring the option value of the losing project B forward, the experimenter must

put it to trial before it would have done so in the absence of maintenance costs, i.e., when it is

still the losing project. Property (iii) establishes that experimentation with a losing project must

take the form of a simple but powerful culling rule: a losing project can be given priority only

in the form of a ‘last chance’ to produce a success. Continued failure in this period of reprieve

leads to the abandonment of the project. Let (β∗, φ∗) denote an optimal Markov strategy.

Lemma 2. Consider (pA(0), pB(0)) and the belief path (pA(t), pB(t))t under optimal experimen-

tation.

i. Suppose there exist t̂ and ε > 0 such that ϕ∗(pA(t), pB(t)) 6= (1, 1) for all t ∈ [t̂, t̂ + ε)

and β∗(pA(t), pB(t)) 6= S for almost all t ∈ [t̂, t̂ + ε). Then, without loss of generality,

ϕ∗(pA(t), pB(t)) = (1, 0) for all t ∈ [t̂, t̂+ ε).

ii. Suppose there exists t̂ such that β∗(pA(t), pB(t)) = 1 for all t ∈ [0, t̂) and that there exists

t′ < t̂ such that ϕ∗(pA(t), pB(t)) = (1, 1) for almost all t ∈ [0, t′). Then ϕ∗(pA(t), pB(t)) =

(1, 1) for all t ∈ [t′, t̂).

iii. Suppose that pA(0) > pB(0) and that there exists t̂ > 0 such that β∗(pA(t), pB(t)) 6= 1 for

14



almost all t ∈ [0, t̂) and ϕ∗(pA(t), pB(t)) = (1, 1) for all t ∈ [0, t̂). Then there exists t∗ such

that t̂ ≤ t∗, β∗(pA(t), pB(t)) = 0 for almost all t ∈ [0, t∗), ϕ∗(pA(t), pB(t)) = (1, 1) for all

t ∈ [0, t∗) and ϕ∗(pA(t∗), pB(t∗)) = (1, 0).

Proving parts i and ii of Lemma 2 is simple. If the better project A were discarded before

B, and B was used after having discarded A, then inverting the roles of projects A and B would

increase the experimenter’s payoff. If, on the other hand, project B were maintained but never

used again, were project B to be discarded immediately, discoveries would occur with the same

probability and maintenance costs would be avoided for a random time of positive expected

length. The proof of part iii of Lemma 2 relies on Lemma 1, which shows that if both projects

are maintained, optimal experimentation requires that the better project be used. Hence, any

period of experimentation in which project B is used and project A is maintained must end by

project B being discarded.

4.2 When to End a Culling Period: the Discarding Boundary

In this section, I focus on the experimenter’s decision to discard project B following a culling

period of experimentation. To this end, suppose that pA > pB and that (pA, pB) lies in an open

region of beliefs in which project B is put to trial. Then, since by Lemma 2 project B is given

its ‘last chance’, it will be discarded in the event of failure at some belief p∗B. As was shown in

Section 2.1, the experimenter’s payoff at (pA, pB) satisfies

u(pA, pB) = vB(pB;CB(pA)),

for some constant of integration CB(pA). The experimenter’s payoff at belief (pA, p
∗
B) once project

B has been discarded is given by uA(pA) and is independent of pB. Hence value-matching and

smooth-pasting conditions at the discarding belief (pA, p
∗
B) yield

vB(p∗B;CB(pA)) = uA(pA), and (8)

∂

∂pB
vB(p∗B;CB(pA)) =

∂

∂pB
uA(pA)

= 0. (9)

Rearranging (9) yields

CB(pA)

(
1− p∗B
p∗B

) r
G

=
G(r + k + k)

r(r +G)

p∗BG

p∗BG+ r
,

which, along with (8), yields that p∗B solves

uA(pA) =
p∗BG− (k + k)

p∗BG+ r
. (10)
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Equation (10) defines the discarding boundary. It does not determine whether project B is

actually ever used when pA > pB, just when it should be discarded were it to be used. Note that

the right-hand side in (10) is the payoff to a project that is known to be of type Good but has a

success rate p∗BG and associated experimentation cost k + k. Hence (10) states that at a cutoff

belief (pA, p
∗
B) at which project B is discarded, the experimenter is indifferent between its payoff

to project A in the absence of project B and a riskless project with a payoff equal to project B’s

flow payoff at the belief p∗B at which it is discarded.

Note that (10) also implies that given project A with belief pA, there is a unique candidate

cutoff state (pA, p
∗
B) at which project B is discarded. Hence, define mapping p∗B : [0, 1] →

[0, 1] such that p∗B(pA) is the unique solution to (10) if it exists, and is equal to pA otherwise.

Clearly, a necessary condition for project B to be put to trial before project A is that there

exists belief pA such that p∗B(pA) < pA. This occurs whenever, for fixed pA, there exits pB

such that uA(pA) <
p∗BG−(k+k)
p∗BG+r . To this end, consider the mapping pB 7→ pBG−(k+k)

pBG+r . It is

straightforward to verify that this mapping is increasing and concave. Hence, for fixed pA, the

inequality uA(pA) ≤ pBG−(k+k)
pBG+r is easiest to satisfy for pB = pA. Note that

lim
pA↗1

[
uA(pA)− pAG− (k + k)

pAG+ r

]
=
G− k
G+ r

− G− (k + k)

G+ r

> 0. (11)

That is, as the probability that project A is of type Good approaches 1, the payoff to a single

risky project with cost k approaches the payoff to a project known to be of type Good with cost

k and success rate G. This dominates the payoff to a project known to be of type Good with

cost k+ k and success rate G. In other words, the experimenter has a strict incentive to discard

project B when project A is almost sure to be good. Furthermore,

lim
pA↘ k+k

G

[
uA(pA)− pAG− (k + k)

pAG+ r

]
= vA(

k + k

G
; C̃A)

< 0. (12)

That is, as pA approaches the quitting belief k+k
G (for a risky project with cost k+ k), the payoff

to a project known to be of type Good with cost k + k and success rate pAG approaches 0,

while the payoff to a risky project with cost k is strictly positive, since its own quitting belief

is k
G . That is, contrary to the results of Proposition 1, the experimenter will never reach the

quitting belief k+kG with both projects maintained since at belief (k+kG , k+kG ), the experimenter has

a strict incentive to discard only a single project. (11) shows that belief (1, 1) must lie outside

the discarding boundary, while (12) shows the same for belief (k+kG , k+kG ). Thus, if project B is

ever used, beliefs must lie ‘between’ (k+kG , k+kG ) and (1, 1).

The simple necessary condition from above for the optimality of a culling phase, that there

exits a belief pA such that p∗B(pA) < pA, is also sufficient to guarantee the existence of a set
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of beliefs with positive Lebesgue measure in which project B is put to trial before project A.

The following proposition contains the main result of the paper, that not only does the optimal

management of options take the form of a culling rule, but that such a rule is indeed optimal

whenever it is not the case that maintenance costs are so high that the losing project is always

immediately discarded.

Proposition 2. One of the two following cases must obtain. Either

i. uA(pA) > pAG−(k+k)
pAG+r > 0 for all pA, and for almost all (pA, pB), ϕ∗(pA, pB) = (1, 0), or

ii. there exist pA > p
A

such that uA(pA) ≤ pAG−(k+k)
pAG+r if and only if pA ∈ [p

A
, pA]. Then for

almost all (pA, pB) with ϕ∗(pA, pB) = (1, 1), β∗(pA, pB) = 0 only if pA ∈ [p
A
, pA] and pB ∈

[p∗B(pA), pA]. Furthermore, the set {(pA, pB) : ϕ∗(pA, pB) = (1, 1) and β∗(pA, pB) = 0} has
positive Lebesgue measure.

Figure 3 illustrates the discarding boundary when the condition of part ii of Proposition 2

obtains. Define

PM = {(pA, pB) : pA ≥ pB, pB ≥ p∗B(pA)},

which is the set of beliefs which is inside the discarding boundary. That is, PM is the maintenance

region, the set of beliefs inside which project B is never discarded. Further define

PD = {(pA, pB) : pA ≥ pB} \ PM ,

which is the set of beliefs outside the discarding boundary. This is the discarding region, in which

project B can be discarded immediately or maintained but never put to trial. It is easily verified

that the boundary separating PM from PD is concave. From state (pA, pB), if it is optimal to

experiment with project B, then B must be put to trial until (pA, p
∗
B(pA)), after which B is

discarded and A must be used until p∗A = k
G , the quitting belief with a single risky project.

Part ii of Proposition 2 states that there exist beliefs for which a culling rule for project B

is optimal whenever project B is not always immediately discarded. The set PB in Figure 3

illustrates the beliefs for which the argument in the proof applies, which are those beliefs close

to (p
A
, p
A

) and (pA, pA), the boundary beliefs of PM on the 45-degree line. For any beliefs

(pA, pB), the payoff to putting project A on trial (or to shared experimentation) and maintaining

B is at most the payoff to using a project known to be of type Good with success rate pAG

and experimentation cost k + k. However, near (pA, pA), discarding project B yields a payoff

close to the payoff to a project known to be of type Good with success rate pAG but reduced

experimentation cost k. Hence near (pA, pA), discarding project B yields strictly higher payoffs

than either using project A (or shared experimentation). Yet, for beliefs strictly inside PM , using

project B until the discarding boundary yields strictly higher payoffs than discarding it. The same
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Figure 3: Discarding Boundary.

argument applies around (p
A
, p
A

). Intuitively, around (pA, pA) and (p
A
, p
A

), the experimenter

has already decided that it no longer wishes to maintain both projects in the long term. If a

single project is to be maintained it should be project A. However, the option represented by

project B has enough value that the experimenter wants to exploit it before discarding it, which

means that project B must take precedence over project A.

4.3 Optimal Experimentation Policy

Lemmas 1 and 2 pin down the possible dynamics of trial allocations among projects. Given

pA(0) > pB(0), either i) project B is discarded immediately, ii) project B is put to trial until

it is discarded in favour of project A or iii) project A is put to trial until either a switch to

B occurs and B is put to trial until it is discarded, or belief pA(t) drops to pB(0), which leads

to shared experimentation. By Proposition 2, a period of shared experimentation is always

followed by a culling period for project B. In this final section, I complete the characterisation

of optimal experimentation by showing when it entails these various patterns. The arguments

involve backward induction from the possible endpoints of experimentation dynamics.

A useful starting point is to focus on beliefs on the 45-degree line. Lemma 2 shows that

if pA = pB, then either there is shared experimentation or project B enters a culling period.

The next lemma addresses the question of how many exit points from shared experimentation

to project B can co-exist and shows that only a single belief (p, p) can satisfy both the value-
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matching and smooth-pasting conditions associated to such an exit.

Lemma 3. Suppose there exists p′ < p′′ such that β∗(p, p) = 1
2 for almost all p ∈ [p′, p′′]. Then

there exists p and p such that p ≤ p′, p′′ ≤ p and β∗(p, p) = 1
2 for almost all p ∈ P if and only if

P ⊂ [p, p].

For some p > p
A

, let vAB(p;CAB(p
A

)) be the payoff to shared experimentation at (p, p), with

constant of integration CAB(p) capturing the effect on payoffs of moving to project B at belief

(p
A
, p
A

).14 Lemma 3 implies that if the belief p, which is derived explicitly in the Appendix, is

such that p ∈ (p
A
, pA) and if vAB(p;CAB(p)) > vB(p;CB(p)) for a set of beliefs (p, p) such that

p ∈ (p, p + ε] for some ε > 0, then there exists p ∈ (p, pA) such that β∗(p, p) = 1
2 for almost all

p ∈ (p, p) and β∗(p, p) = 0 for almost all p ∈ [p
A
, p] ∪ [p, pA]. That is, optimal experimentation

calls for shared experimentation only for those beliefs (p, p) with p ∈ (p, p). Of course, the set of

beliefs for which shared experimentation is optimal can be empty.

This simple characterisation of shared experimentation allows the definition of two sets of

beliefs, PB ⊂ PM and PA, which will correspond the the regions of the state space in which

projects A and B are used under optimal experimentation. The details, which follow from a

backwards induction argument, are left to the Appendix.

Proposition 3. When projects can be discarded, the following admissible Markov strategy is

optimal.

β∗(pA, pB) =


0 if (pA, pB) ∈ PB,

1 if (pA, pB) ∈ PA,
1
2 if pA = pB = p and p ∈ (p, p),

S otherwise.

β∗(pA) =

1 if pA ≥ k
G

S otherwise.
β∗(pB) =

0 if pB ≥ k
G

S otherwise.

ϕ∗(pA, pB) =

(1, 1) if (pA, pB) ∈ PA ∪ PB,

(1, 0) otherwise.

ϕ∗(pA)) =

1 if pA ≥ k
G ,

0 otherwise.
ϕ∗(pB) =

1 if pB ≥ k
G ,

0 otherwise.

Figure 4 provides an illustration of the sets PA and PB. The figure as drawn assumes that

PA is convex, which need not necessarily be the case. However, note that the boundary between

sets PA and PB must always be downward-sloping, else this would violate Lemma 2.

14The expression fo vAB is derived in the Appendix in the proof of Proposition 1.
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Figure 4: Optimal Experimentation Policy.

When shared experimentation occurs on the 45-degree line, which by continuity implies that

PA is nonempty, the reversal of the ‘stay-with-the-winner’ property exhibits a noteworthy non-

monotonicity: for fixed pB, ‘going-with-the-loser’ is optimal only if pA is neither too high nor

too low. To see this, fix p′B such that there exist p′A > p′′A such that putting project B to trial

is optimal in state (p′A, pB) and experimenting with project A until shared experimentation is

optimal at (p′′A, pB). If pA is much larger than p′A, that is, if project A is believed to be of type

Good and hence to succeed quickly with high probability, then it is best for the experimenter to

discard project B immediately and exploit project A. ‘Going-with-the-loser’ is optimal only for

intermediate beliefs pA that include p′A and are no lower than p′′A. In these cases project A still

has a clear advantage over project B. Optimal experimentation in the absence of maintenance

costs would put project A to trial until its belief dropped to pB, after which experimentation

would be shared. However, project A is both (i) not thought likely to succeed fast enough to

dwarf the option value of project B but (ii) of sufficient quality that paying to maintain the

option value of project B is too costly, since this value can be realised only after project A has

failed for a long time. If instead pA is between p′′A and pB, and hence beliefs pA and pB are close

to each other, it is still be optimal to order project development projects as though there were

no maintenance costs. In this case, both discarding project B immediately or giving it its ‘last

chance’ is too costly, since the realisation of its option value is not so far away and project A is

not the clear-cut superior project.
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5 Extensions

5.1 A Culling Rule with More than Two Risky Projects

While the characterisation of the optimal experimentation policy becomes more involved, no new

conceptual difficulties arise if the experimenter has more than two risky projects. The key is that

experimentation dynamics following the choice of a non-winning project are qualitatively similar

to those uncovered by Lemma 2 for the two-project case. Consider the case in which there are

three risky projects, A, B and C, with pA ≥ pB ≥ pC . Generalising the argument to the case

in which there are even more risky projects is straightforward. The following result extends the

culling rule to the three-project environment by showing that if it is ever optimal to experiment

with the ‘middle’ project B, then experimentation can proceed to the winning project A only

after both non-winning projects B and C have been discarded. That is, the ‘last chance’ extended

by the experimenter applies not only to project B but to all projects ranked lower than B. That

is, optimal experimentation will either put the winning project to trial or enter a targeted culling

phase in which it puts to trial and then discards all sufficiently poor projects.

Proposition 4. Consider (pA(0), pB(0), pC(0)) and the belief path (pA(t), pB(t), pC(t))t under

optimal experimentation. Suppose that there exists t̂ > 0 such that β∗(pA(t), pB(t), pC(t)) = (0, 1)

and ϕ∗(pA(t), pB(t), pC(t)) = (1, 1, 1) for almost all t ∈ [0, t̂). Then there exists t∗ > t̂ such that (i)

β∗(pA(t), pB(t), pC(t)) 6= (1, 0) and ϕ∗(pA(t), pB(t), pC(t)) ∈ {(1, 1, 1), (1, 1, 0)} for almost all t ∈
[t̂, t∗), while (ii) β∗(pA(t), pB(t), pC(t)) = (1, 0) and ϕ∗(pA(t), pB(t), pC(t)) ∈ {(1, 0, 0), (0, 0, 0)}
for almost all t > t∗.

Proposition 4 and with my characterisation of the two-project case could lead, through an

induction argument, to a full, although tedious, characterisation of optimal experimentation with

three (and then more) projects.

5.2 Complementary Projects

I have assumed that the outcomes of the projects are perfect substitutes in that the experimenter

cares only about success on a single project. An alternative assumption is that success on a given

project retires that project but the experimenter obtains a payoff of 1 from all projects that

succeed. This section shows that the result of Proposition 2, that the set of beliefs for which it is

optimal to ‘go-with-the-loser’ is non-negligible, continues to hold with complementary projects.

Clearly, Lemmas 1 and 2 can be derived in this version of the model. It is straighforward to show

that the optimal payoff in a region in which project A is put to trial and project B is maintained

must follow the following version of (6)

uA(pA; pB)[r + pAG] + u′A(pA; pB)GpA(1− pA) = pAG[1 + uB(pB)]− (k + k). (13)
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By replicating the arguments of Section 4.2, the relevant version of (10) , which determines the

discarding boundary, can be shown to be

uA(pA) =
p∗BG[1 + uA(pA)]− (k + k)

Gp∗B + r
. (14)

Since uA(pA) > 0 whenever project A is maintained, (14) show that the discarding region PD
is larger when projects are complimentary. Intuitively, holding on to project B longer is advan-

tageous when sucesses can be accumulated. One difference with the discarding boundary (10)

when projects are perfect substitutes is that, again intuitively, project B need not be discarded

when pA is close to 1. However, as

lim
pA↘ k

G

[
uA(pA)− pAG[1 + uA(pA)]− (k + k)

pAG+ r

]
< 0,

it must be that there exists a boundary belief (p
A
, p
A

) with p
A
> k

G in the maintenance region PM .

In other words, complementary projects can eliminate the incentive to ‘go-with-the-loser’ when

the experimenter is optimistic about both projects, but ‘going-with-the-loser’ always benefits an

experimenter that is sufficiently pessimistic about both projects. This allows the application of

the argument in the proof of Proposition 2. That is, when discarding project B in favour of

project A, the experimenter is guaranteed the payoff to a project known to be of type Good that

succeeds at rate p∗BG[1+uA(pA)]. Meanwhile, the experimenter’s payoff from experimenting with

project A and maintaining project B yields stricly less than the payoff to a project known to be

of type Good that succeeds at rate pAG[1 +uB(pB)]. The result of Proposition 2 then applies for

p∗B sufficiently close to pA, that is, for beliefs in the region of (p
A
, p
A

).

6 Conclusion

The standard approach to experimentation has been to assume that when currently occupied by

other projects, keeping the option of researching various alternatives at later dates is costless.

However, that keeping options open can involve maintenance costs is natural in many settings.

This paper shows that such costs generate new trade-offs for experimenters by giving them

incentives to manage the timing of the realisation of inactive alternatives’ option values and have

important implications for optimal experimentation policies.

While I have focused on the simple and tractable exponential bandit problem, it is not un-

reasonable to expect that my main arguments extend to more general bandit settings. Note

that more generally, the arguments used in the paper are based on finite backwards induction,

where the recursion is on the set of maintained projects. At each step of the recursion, the argu-

ments rely on maintained projects’ Gittins indices. This is made clear by the common structure

of Lemmas 1 and 2 and the original ‘interchange argument’ of Gittins (1979) that establishes
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the optimality of index policies in standard bandit problems. Investigating the relationship be-

tween the idea of maintenance costs and general bandits is an interesting avenue for future work.

This could in turn allow the model to address economic applications other than research and

development, which is particularly well captured by the exponential bandit framework.
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A Appendix

Proof of Lemma 1. Suppose that pA(0) > pB(0), and consider the belief path under optimal

experimentation (pA(t), pB(t))t. The first step is to show that if there exists t̂ > 0 and T̂ ⊂
[0, t̂) such that T̂ has positive Lebesgue measure and β∗(pA(t), pB(t)) 6= 1 for all t ∈ T̂ , then

β∗(pA(t), pB(t)) = 0 for almost all t ∈ T̂ . Suppose instead that β∗(pA(t), pB(t)) = α(t) ∈ (0, 1)

for all t ∈ T̂ . Let TA =
∫ t̂
0 α(t)dt. By assumption, TA ∈ (0, t̂).

Given allocation α(t) for t ∈ [0, t̂), and initial beliefs (pA(0), pB(0)), solving the differential

equation for the evolution of beliefs yields that

pA(t) =
1

1 + 1−pA(0)
pA(0)

eH
∫ t
0 α(s)ds

, and

pB(t) =
1

1 + 1−pB(0)
pB(0) eH

∫ t
0 (1−α(s))ds

.
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Belief pA(t) depends only on the cumulative experimentation on project A up to time t,
∫ t
0 α(s)ds,

and not on when this experimentation occurred within the interval [0, t].

Consider an alternative admissible Markov assignment β̂ such that

β̂(pA(t), pB(t)) =

1 for all t ∈ (0, t̂− TA],

0 for all t ∈ (t̂− TA, t̂),

with β̂ = β∗ otherwise. Then (p̂A(t̂), p̂B(t̂)) = (pA(t̂), pB(t̂)), where (p̂A(t), p̂B(t))t is the belief

path associated with β̂. Hence, the payoffs following t̂ are the same under both assignments.

That is, v(β̂, ϕ∗; pA(t̂), pB(t̂)) = u(pA(t̂), pB(t̂)). Furthermore, conditional on (pA(0), pB(0)), the

probability that no success occurs until t̂ is the same under β and β̂.

Let τβ∗ (respectively τβ̂) be the random arrival time of a success under assignment β∗ (re-

spectively β̂) in time interval [0, t̂]. Then Pr[τβ̂ ≤ t|pA(0), pB(0)] > Pr[τβ∗ ≤ t|pA(0), pB(0)] for

all t ∈ (0, t̂), that is, τβ̂ is higher than τβ∗ in the sense of first order stochastic dominance. By

discounting, the experimenter’s payoff is decreasing in the arrival time of a success, and hence β̂

yields a strictly higher expected payoff than β∗ in [0, t̂], or∫ t̂

0
[1− (k + k)]e−rτβ̂ µ̂(dτβ̂) >

∫ t̂

0
[1− (k + k)]e−rτβ∗µ∗(dτβ∗),

where µ̂ and µ∗ are the distributions of τβ̂ and τβ∗ , respectively. Hence,

v(β̂; pA(t̂), pB(t̂)) =

∫ t̂

0
[1− (k + k)]e−rτβ̂ µ̂(dτβ̂) + Pr[τβ̂ > t̂|pA(0), pB(0))u(pA(t̂), pB(t̂)]

>

∫ t̂

0
[1− (k + k)]e−rτβ∗µ∗(dτβ∗) + Pr[τβ∗ > t̂|pA(0), pB(0))u(pA(t̂), pB(t̂)]

= u(pA(0), pB(0)),

a contradiction. Hence it must be that α(t) = 0 for almost all t ∈ [0, t̂].

That is, the previous argument shows that if project A is not used, it must be that project

B is used exclusively. Since in that case pA(t) > pB(t) for all t > 0, the previous argument also

ensures that project B is used until experimentation ceases, which must occur at time t∗ such

that pB(t∗) = k+k
G . By mimicking this strategy with project A instead of B, that is, using project

A until belief p∗A = k+k
G and then moving permanently to S, the experimenter’s payoff at time 0

would be higher. That is, consider alternative strategy β̂ such that

β̂(pA, pB) =

1 if pA >
k+k
G

0 otherwise.
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Then

v(β; pA(0), pB(0)) = vA(pA(0);CA)

≥ vB(pB(0, CA))

= u(pA(0), pB(0)),

a contradiction. CA is the constant of integration for the optimal stopping problem with a

single risky project and direct cost k + k. Hence, it must be that α(t) = 1 for all t such that

pA(t) > pB(t).

The same argument can be applied if pA(0) = pB(0) to show that experimentation is shared

until it ceases, i.e., β∗(pA(t), pB(t)) = 1
2 for all t such that ϕ(pA(t), pB(t)).

Proof of Proposition 1. To obtain an expression for optimal payoffs under shared experimenta-

tion, note that under the assumption that pA = pB = p and that β(p, p) = 1
2 for all beliefs

p greater than some quiting belief p∗, the optimal payoff u must satisfy ∂
∂pA

u = ∂
∂pB

u. Define

uAB(p) ≡ u(p, p), then it follows that u′AB(p) = 2 ∂
∂pA

u(p, p) and uAB solves

uAB(r + pG) = pG− (k + k)− 1

2
Gp(1− p)u′AB.

The differential equation (15) has solution

uAB(p) = C̃AB

(
1− p
p

) 2r
G

(1−p)2+p2
G− (k + k)

r +G
+2p(1−p)

G
2 − (k + k)

r + G
2

−(1−p)2k + k

r
. (15)

If optimal experimentation leads from shared experimentation to the safe project at belief p∗, the

constant of integration C̃AB and cutoff belief p∗ = k+k
G are determined by value-matching and

smooth-pasting conditions.

uAB(p∗) = 0, and

u′AB(p∗) = 0.

What remains to be shown in the text is that the Markov strategy (β∗ND, φ
∗
ND) is admissible

and that the value function w(pA, pB) inferred from strategy (β∗ND, φ
∗
ND) solves the Bellman

equation

ru(pA, pB) = max

{
0, pAG− (k + k)− ∂u(pA, pB)

∂pA
GpA(1− pA)− u(pA, pB)GpA,

pBG− (k + k)− ∂u(pA, pB)

∂pB
GpB(1− pB)− u(pA, pB)GpB

}
. (16)
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Clearly, given any t∗, t∗∗ and t′ such that 0 ≤ t∗ ≤ t∗∗ and t′ ≥ 0, any strategy (α, φ) of the form

α(t) =


1 if t < t∗,

1
2 if t ∈ [t∗, t∗∗),

S if t ≥ t∗∗,

φ(t) =

(1, 1) if t < t′,

(0, 0) if t ≥ t′,
(17)

is admissible. Furthermore, given any (pA, pB), there exist t∗, t∗∗ and t′ such that 0 ≤ t∗ ≤ t∗∗

and t′ ≥ 0 such that a strategy (α, φ) defined as in (17) is such that

α(t) = β∗ND(pA(t), pB(t), φA(t), φB(t)),

φA(t) = ϕ∗A,ND(pA(t), pB(t), φA(t), φB(t)),

φB(t) = ϕ∗B,ND(pA(t), pB(t), φA(t), φB(t)),

and hence Markov strategy (β∗ND, ϕ
∗
ND) is admissible.

Let w(pA, pB) be the value function inferred from strategy (β∗ND, φ
∗
ND). Consider state

(pA, pB) such that pA > pB > k+k
G . Then

w(pA, pB) = CA(pB)

(
1− pA
pA

) r
G

(1− pA) + pA
G− (k + k)

r +G
− (1− pA)

k + k

r
,

with the constant of integration determined at the switch to shared experimentation when pA =

pB. It is easy to see that w(pA, pB) > w(pB, pB) > 0, and hence it is optimal to continue

experimentation for all pA > pB. The derivative of the third term of (16) with respect to pA is

− ∂
∂pA

w(pA, pB)GpB < 0. Since w(pA, pB) is increasing in pA, so is the second term of (16). If

pA → pB, the difference in the two terms is given by GpB(1−pB)
[
∂w(pA,pB)

∂pA
− ∂w(pA,pB)

∂pB

] ∣∣∣
pA=pB

=

0 (by smooth-pasting since at (pB, pB) a transition occurs to shared experimentation). Hence,

the second term of (16) is larger than the third term for all pA > pB, as required. For (pA, pB)

such that pA >
k+k
G > pB, then w(pA, pB) = uA(pA), while for (pA, pB) such that pA = pB > k+k

G ,

w(pA, pB) = uAB(pA). In both these cases, it is easy to see that value-matching and smooth-

pasting imply that w(pA, pB) > 0 whenever pA >
k+k
G , as desired.

Proof of Lemma 2. For part i, suppose there exists t̂ and ε > 0 such that ϕ∗(pA(t), pB(t)) 6= (1, 1)

and β∗(pA(t), pB(t)) 6= S for almost all t ∈ [t̂, t̂ + ε). Then one project is discarded on the

equilibrium path. Let t∗ = inf{t < t̂ : ϕ∗(pA(t), pB(t)) 6= (1, 1)}. If ϕ∗(pA(t∗), pB(t∗)) = (0, 1),

then since β∗(pA(t∗), pB(t∗)) 6= S for almost all t ∈ [t̂, t̂+ε), it must be that β∗(pA(t∗), pB(t∗)) = 0
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for almost all t ∈ [t̂, t̂+ ε). Consider a Markov strategy (β′, ϕ′) such that

ϕ′(pA, pB) = (1, 0) for all (pA, pB) such that ϕ∗(pA, pB) = (0, 1),

β′(pA(t), pB(t)) = 1 for all t > t∗ for which β∗(pA(t), pB(t)) = 0,

with (β′, ϕ′) = (β∗, ϕ∗) otherwise. Under (β′, ϕ′), p′A(t) ≥ pB(t) for all t > t∗ by the assumption

of symmetric strategies, and hence for all t > t∗ such that β∗(pA(t), pB(t)) = 0,

v(β′, ϕ′; pA(t), pB(t)) = vA(pA(t); C̃A)

≥ vB(pB(t); C̃A)

= vB(pB(t); C̃B)

= u(pA(t), pB(t)).

If the inequality is strict, this yields the required contradiction, while if it holds with equality, it

is without loss of generality to discard project B instead of project A.

For part ii, suppose that there exists t̂ such that β∗(pA(t), pB(t)) = 1 for almost all t ∈ [0, t̂)

and that there exists t′ < t̂ such that ϕ∗(pA(t), pB(t)) = (1, 1) for almost all t ∈ [0, t′), but that

ϕ∗(pA(t′′), pB(t′′)) 6= (1, 1) for some t′′ ∈ (t′, t̂). By part i, ϕ∗(pA(t′′), pB(t′′)) = (1, 0). Consider

Markov strategy (β′, ϕ′) such that ϕ′(pA(0), pB(0)) = (1, 0), with (β′, ϕ′) = (β∗, ϕ∗) otherwise.

Then we can write

v(β′, ϕ′; pA(0), pB(0)) = vA(pA(0);C ′A) + pA(0)
k

r +G
+ (1− pA(0))

k

r
,

and

u(pA(t), pB(t)) = vA(pA(0);CA),

where the constants of integration CA and C ′A are determined at beliefs (pA(t′′), pB(t′′)) at which

vA(pA(t′′);CA) = vA(pA(t′′);C ′A) = u(pA(t′′), pB(t′′)).

Hence

C ′A = CA −
pA(t′′) k

r+G + (1− pA(t′′))kr(
1−pA(t′′)
pA(t′′)

) r
G

(1− pA(t′′))

,

and

v(β′, ϕ′; pA(0), pB(0)) = vA(pA(0);CA)

−

(
1−pA(0)
pA(0)

) r
G

(1− pA(0))(
1−pA(t′′)
pA(t′′)

) r
G

(1− pA(t′′))

[
pA(t′′)

k

r +G
+ (1− pA(t′′))

k

r

]

+ pA(0)
k

r +G
+ (1− pA(0))

k

r

> vA(pA(0);CA).
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The inequality follows since pA(t′′) < pA(0).

Proof of Lemma 2. Lemma 1 and part i of Lemma 2 imply that if there exists t̂ > 0 such that

β∗(pA(t), pB(t)) 6= 1 for almost all t ∈ [0, t̂) and ϕ∗(pA(t), pB(t)) = (1, 1) for all t ∈ [0, t̂), then

it must be that β∗(pA(t), pB(t)) = 0 for almost all t ∈ [0, t̂) and that if there exists t∗ ≥ t̂

such that β∗(pA(t∗), pB(t∗)) > 0, then by part i of Lemma 2 it must be that ϕ∗(pA(t∗), pB(t∗)) ∈
{(1, 0), (0, 0)}. That is, if projectA is not pulled it must be that projectB is, and the experimenter

cannot go back to projectA without discarding projectB. Since the experimenter must eventually

discard B if pB gets close to 0, it only remains to be shown that ϕ∗(pA(t∗), pB(t∗)) = (1, 0), that

is, that the experimenter will discard B in favour of A at t∗. This follows by part ii of Lemma 2.

Proof of Proposition 2. First, uA(pA) is increasing and convex in pA. Also, since the mapping

pA 7→ pAG−(k+k)
pAG+r is increasing and concave, then by (11) and (12) either uA(pA) > pAG−(k+k)

pAG+r > 0

for all pA or there exist pA > p
A

such that uA(pA) ≤ pAG−(k+k)
pAG+r if and only if pA ∈ [p

A
, pA],

where p
A

and pA are the only two solutions to uA(pA) = pAG−(k+k)
pAG+r .

Now suppose that the conditions of part ii obtain. A first claim is that at (pA, pA), discarding

project B is strictly preferred to shared experimentation. By Lemma 2, if B is not discarded

then β∗(pA, pA) = 1
2 and the beliefs go down the 45-degree line until some belief (p∗, p∗), and

hence the experimenter’s payoffs satisfy u(pA, pB) = vAB(pA;CAB(p∗)). vAB itself satisfies

vAB(pA;CAB(p∗)) =
pAG− (k + k)

(r + pAG)
− GpA(1− pA)

2(r + pAG)
v′AB(pA;CAB(p∗))

<
pAG− (k + k)

(r + pAG)

= vA(pA; C̃A).

Hence, by continuity, for states (p, p) with p < pA sufficiently close to pA, discarding B is strictly

preferred to shared experimentation. A very similar argument shows that discarding B is strictly

preferred to using project A for an open set of states of positive Lebesgue measure (pA, pB) with

pA > pB sufficiently close to (pA, pA). However, within the discarding boundary using project B

(until the boundary) is preferred to discarding it and hence there exists an open region of positive

Lebesgue measure around (pA, pA) in which using project B is optimal. A very similar argument

demonstrates the same result for a region around (p
A
, p
A

).

Proof of Lemma 3. By Lemma 2, once the experimenter quits shared experimentation, project

B is used, then discarded and replaced with project A. Also, by Proposition 2, there exists a

belief p̂ > p
A

such that β∗(p, p) = 0 for almost all p ∈ [p
A
, p̂]. Suppose there exists p′ > p′′
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such that β∗(p, p) = 1
2 for almost all p ∈ [p′, p′′], and that the experimenter switches from shared

experimentation to project B at belief p∗ < p′′. Hence the smooth-pasting condition at belief p∗

is

∂

∂pB
u(p∗, p∗) =

1

2
· ∂
∂p
vAB(p∗;CAB(p∗))

=
∂

∂pB
vB(p∗, CB(p∗)),

which, with manipulations, yields that

CAB =
CB(p)(

1−p
p

) r
G

(1− p)

+

p

[
G−(k+k)
r+G −

G
2
−(k+k)
r+G

2

]
+ (1− p)

[
G
2
−(k+k)
r+G

2

− k+k
r

]
− G(r+k+k)

r(r+G)(
1−p
p

) 2r
G
+1

Gp+r
G

.

Meanwhile, the value matching condition is

vAB(p∗;CAB(p∗)) = vB(p∗;CB(p∗)),

which, with manipulations, yields that

CAB =
CB(p)(

1−p
p

) r
G

(1− p)
−

G2

2 (r + k + k)(
1−p
p

) 2r
G
+1
r(r +G)(r + G

2 )

.

Together, these yield that

p∗ =
2(k + k)(r +G)(r + G

2 )

2(k + k)(r +G)(r + G
2 ) + G2

2 (k + k + r)
(18)

Clearly, p∗ ∈ [0, 1] is unique. Define p to be the unique solution to (18).

Proof of Proposition 3. First, I construct the sets PB and PA. In the following, assume that

the conditions of Lemma 3 are met and that there exists a (unique) portion of the 45-degree

line (p, p) for which shared experimentation is optimal. The arguments that follow apply in a

straightforward way when this is not the case.

First, let

P1
B =

{
(pA, pB) ∈ PM : pA ∈ [p

A
, p] ∪ [p, pA]

}
.
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By Lemma 2, it must be that given p ∈ [p
A
, p]∪[p, pA], β∗(p, pB) = 0 for almost all pB ∈ (p, p∗B(p)).

That is, from the 45-degree line, if there is no shared experimentation then project B enters a

culling period.

Second, consider

PM \ P1
B =

{
(pA, pB) ∈ PM : pA ∈ [p, p], pB ∈ [p∗B(p), p]

}
,

the set of beliefs in the maintenance region that have not been attributed to P1
B. By Lemma

2, from such beliefs, an optimal policy will either put project B to trial immediately until it

is discarded, or put project A to trial either until beliefs reach the 45-degree or until a switch

to project B occurs. Define vA(pA;CA(pB; p′A)) to be the payoff to the experimenter in state

(pA, pB) ∈ PM \ P1
B were it to put project A to trial until belief p′A ∈ [max{pB, p}, pA), and

then switch to project B until discarding belief p∗B(p′A). Hence the constant of integration

CA(pB; p′A) depends on the belief pB and on the switching belief p′A, but not on pA. Simi-

larly, if pB > p, define vA(pA;C45
A (pB)) to be the payoff to the experimenter in state (pA, pB)

were it to put project A to trial until it reaches the 45-degree line, after which it shares ex-

perimentation until joint belief p. If pB ≤ p, then define vA(pA;C45
A (pB)) = vA(pA;CA(pB; p)).

Note that vA(pA;CA(pB; p′A)) ≥ vA(pA;CA(pB; p′′A)) if and only if CA(pB; p′A) ≥ CA(pB; p′′A)

and vA(pA;CA(pB; p′A)) ≥ vA(pA;C45
A (pB)) if and only if CA(pB; p′A) ≥ C45

A (pB). Hence if

CA(pB; pA) = max{p′A∈[max{pB ,p},pA]}CA(pB; p′A), then the experimenter has no incentive to put

project A to trial. If, on the other hand, there exists a p′A such that CA(pB; p′A) > CA(pB; pA),

then the experimenter gains by staying with project A until belief p′A. Let

P2
B =

{
(pA, pB) ∈ PM \ P1

B : max
{

max
p′∈[max{pB ,p},pA]

CA(pB; p′), C45
A (pB))

}
≤ CA(pB; pA)

}
,

and let PB = P1
B ∪ P2

B. Finally, let P1
A = PM \ PB. Hence, all the beliefs in PM have been

attributed either to PB or to P1
A.

Third, consider the beliefs in PD, those outside the discarding boundary. By Lemma 2,

it must be that ϕ∗(pA, pB) = (1, 0) for all (pA, pB) ∈ PD that are not in the set {(pA, pB) :

β∗(pA, pB(pA)) = 1}. That is, if project B is maintained, it must be that it will not be discarded

once beliefs reach the discarding boundary. Let

Q =
{

(pA, pB) ∈ PD : (pA, p
∗
B(pA)) ∈ P1

A

}
.

That is, Q is the set of beliefs in the discarding region such that were A to be used and B

maintained until the discarding bound, B would also be maintained when beliefs cross into PM .

For any (pA, pB) ∈ Q, define p∗∗A (pB) = sup{pA : (pA, pB) ∈ P1
A}. Furthermore, define

P2
A =

{
(pA, pB) ∈ Q : vA(pA;CA(pB; p∗∗A (pB)) > vA(pA; C̃A)

}
.

Finally, let PA = P1
A ∪ P2

A.
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What remains is to show that the strategy (β∗, ϕ∗) is admissible and that the value function

w(pA, pB) inferred from strategy (β∗, φ∗) solves the Bellman equation for the experimenter’s

problem. Both of these follow from an argument very similar to that for Proposition 1. In this

case, however, verification of the optimality of (β∗, ϕ∗) is more tedious, and is omitted.

Proof of Proposition 4. Consider (pA(0), pB(0), pC(0)) and the belief path (pA(t), pB(t), pC(t))t

under optimal experimentation. Suppose that there exists t̂ > 0 such that β∗(pA(t), pB(t), pC(t)) =

(0, 1) and ϕ∗(pA(t), pB(t), pC(t)) = (1, 1, 1) for almost all t ∈ [0, t̂). By Lemma 2, if project C

is ever put to trial, then it is on trial continuously until it is discarded. Hence the statement of

Proposition 4 fails if there exist t′1 < t′2 ≤ t′′1 < t′′2 ≤ t′′′1 < t′′′2 such that β∗(pA(t), pB(t), pC(t)) /∈
{(1, 0), (0, 0)} for almost all t ∈ (t′1, t

′
2) ∪ (t′′′1 , t

′′′
2 ), β∗(pA(t), pB(t), pC(t)) = (1, 0) for almost all

t ∈ (t′′1, t
′′
2) and ϕ∗(pA(t), pB(t), pC(t)) ∈ {(1, 1, 1), (1, 1, 0)} for all t ∈ (t′1, t

′
2) ∪ (t′′1, t

′′
2) ∪ (t′′′1 , t

′′′
2 ).

Then an argument along the lines of that of Lemma 1 yields that reordering the assignment by

experimenting with project A exclusively earlier increases the experimenter’s payoff, yielding the

required contradiction.
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