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Abstract

This paper proposes a nonparametric simultaneous test for parametric specifi-

cation of the conditional mean and variance functions in a time series regression

model. The test is based on an empirical likelihood (EL) statistic that measures

the goodness–of–fit between the parametric estimates and the nonparametric ker-

nel estimates of the mean and variance functions. A unique feature of the test is

its ability to distribute natural weights automatically between the mean and the

variance components of the goodness–of–fit. To reduce the dependence of the test

on a single pair of smoothing bandwidths, we construct an adaptive test by maxi-

mizing a standardized version of the empirical likelihood test statistic over a set of

smoothing bandwidths. The test procedure is based on a bootstrap calibration to

the distribution of the empirical likelihood test statistic. We demonstrate that the

empirical likelihood test is able to distinguish local alternatives which are different

from the null hypothesis at an optimal rate.

1Key words and phrases. Bootstrap, empirical likelihood, goodness–of–fit test, kernel estimation, least

squares empirical likelihood, rate-optimal test.
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1. Introduction

Let {(Xt, Yt) : 1 ≤ t ≤ n} be a sequence of weakly dependent stationary observations

satisfying a nonparametric regression model of the form

Yt = m1(Xt) + σ(Xt) et, t = 1, 2, . . . , n(1.1)

where {et} is an error process with mean zero and variance one, andm1(x) = E(Yt|Xt = x)

and m2(x) = var(Yt|Xt = x) = σ2(x) are the unknown conditional mean and variance

functions, respectively. Let

m(·) = (m1(x),m2(x))τ and {mθ(x) = (m1,θ(x),m2,θ(x))τ |θ ∈ Θ}

be a family of parametric models for the conditional mean and variance of Yt given Xt = x,

where Θ is a parameter space and a subset of Rq.

The interest of this paper is to simultaneously test the hypotheses of the form

H0 : m(x) = mθ(x) versus H1 : m(x) = mθ(x) + Cn∆n(x) for all x ∈ S,(1.2)

where S is a compact set in Rd, Cn = (C1n, C2n)τ is a vector of non-random sequences

tending to zero as n→∞ and ∆n(x) = (∆1n(x),∆2n(x))τ is a vector of bounded functions

in R2d.

The motivation for conducting simultaneous hypothesis testing for the conditional

mean and variance functions is as follows. The time-series regression model (1.1) is

specified by both the conditional mean and variance while leaving the distribution of

{et} to be nonparametric. This is a multiple testing situation where the overall model

hypothesis H0 consists of two individual hypotheses: one on the conditional mean H01 :

m1(x) = m1,θ(x) and the other on the conditional variance H02 : m2(x) = m2,θ(x) for all

x ∈ S. It is known that (Simes 1986; Benjimini and Hochberg 1995) for testing multiple

hypotheses, due to purely a random chance, a true hypothesis can be rejected which leads

to an increase of false rejection of the overall hypothesis H0, which is rejected if either

H01 or H02 is rejected. This phenomenon of increased false rejection due to a multiple

number of hypotheses is the so-called multiplicity effect.

There are two ways to correct this multiplicity effect in testing multiple hypotheses.

One way is to adjust the level of significance for each hypothesis via the Bonferroni pro-

cedure, which tends to be more conservative. The other way is to conduct simultaneous

testing as we are proposing to do in this paper by jointly testing the conditional mean

and variance functions. Simulatenous testing can take into account the multiplicity effect

while attaining the exact (at least asymptotically) level of signficiance. In addition, a
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simultaneous test is particularly useful for situations where there is no prior knowledge

about whether or not the conditional mean or/and the conditional variance functions are

correctly specified. For the purpose of estimating parameters involved in the conditional

mean, correctly specifying the conditional mean is crucial to ensure consistency. If we

would ask for efficiecy of the parameter estimation, however, correctly specifying the con-

ditional variance becomes important. In the context of the diffusion process, simultaneous

specification testing for both the drift and diffusion is particularly necessary when dealing

with pricing options for various derivatives satisfying such a diffusion process.

A specific example that motivates our investigation is the specification testing of a

continuous–time diffusion process of the form

drt = µ(rt)dt+ σ(rt)dBt,(1.3)

where µ(·) and σ(·) > 0 are respectively the drift and volatility functions of the process,

and Bt is the standard Brownian motion. Despite the diffusion process is a continuous–

time model, the empirical observations of the process are made at discrete time points,

say {rt∆}nt=1, where ∆ is the sampling interval between successive observations. And

hence {rt∆}nt=1 are discrete time series. Based on the first order Euler approximation, the

discrete time seires observations satisfy

Yt = µ(Xt) + σ(Xt) et(1.4)

when ∆ is small, where Yt =
rt∆−r(t−1)∆

∆
, Xt = r(t−1)∆, and et = Bt∆ −B(t−1)∆. Then, the

specification testing considered in this paper can be used to test a version of (1.2) that

consists of the drift and diffusion specifications, as long as ∆ is small and fixed. We note

that approximation is commonly used when dealing with the diffusion process, largely due

to the fact that the transitional density of the process does not always have a close–form

expression as it is only implicitly defined by the Kolmogorov equations. Aı̈t-Sahalia (1999)

proposes an Edgeworth series approximation method to the transitional density function,

which has since been widely used in financial econometrics. It also requires ∆ being small

to ensure the accuracy of the approximation. Whileas specification testing on the diffusion

process can be carried out by testing the transitional density function (Chen, Gao and

Tang 2008; Aı̈t-Sahalia, Fan and Peng 2009), a rejection via testing the transitional density

specification may not provide information on which part of the process, the drift or the

diffusion, is mis-specified. In addition, correct parametric specification of the transition

density function does not necessarily imply an explicit parametric form for each of the

drift and diffusion functions. It is therefore more direct and informative to specify the

drift and diffusion functions simultaneously.

4



Nonparametric kernel estimation for the conditional mean and variance functions are

well studied for both independent and dependent observations as documented in Fan and

Gijbels (1996), Fan and Yao (2003), Gao (2007), Li and Racine (2007) among many others.

There is also a substantial list in the goodness-of-fit tests for a parametric conditional mean

or variance model by formulating certain distance measure between the parametric model

and its corresponding kernel estimator. For instance the works of Eubank and Spiegelman

(1990), Härdle and Mammen (1993), Hjellvik and Tjøstheim (1995), Fan and Li (1996),

Hart (1997), Hjellvik, Yao and Tjøstheim (1998), Li and Wang (1998), Chen and Fan

(1999), Li (1999), and many others. Zhang and Dette (2003) compare the power of three

kernel based tests for the conditional mean. McKeague and Zhang (1994) consider testing

separately of the conditional mean and variance specifications of a non-linear time series

regrssion based on some cumulative measures. Fan and Zhang (2003) propose separate

tests for the conditional mean and the variance of a diffusion model. Recent studies in

the field of specification testing may be found from Gao (2007), Li and Racine (2007),

and Gao and Gijbels (2008). In the meantime, Escanciano (2008) proposes using a joint

test for the specification of conditional mean and conditional variance function based

on a generalized spectral approach. In a related paper, Escanciano and Velasco (2008)

consider testing for parametric dynamic conditional quantiles. For discrete time series

regression models, Chen and Fan (1999), and Li (1999) both propose testing conditional

mean–variance efficiency. However, these are different from testing conditional mean and

conditional variance simultaneously.

Among existing studies closely related to the topic of this paper, Tripathi and Ki-

tamura (2003) propose an EL test for conditional moment restrictions. Fan and Zhang

(2004) propose a sieve EL test for testing a general varying-coefficient regression model

that extends the generalized likelihood ratio test of Fan, Zhang and Zhang (2001). They

demonstrate that the ‘Wilks phenomenon’ continues to hold under general assumptions

on the error distribution. Both of these papers are established for independent data. For

testing the conditional mean function with dependent data, Chen, Härdle and Li (2003)

develop an EL test by simulating a known Gaussian random field. The above three tests

have displayed an interesting diversity in test statistic formulations via the EL. The basic

idea of the EL is to maximize an objective function which is a product of probability

weights allocated to observations under certain constraints which characterize the func-

tional curve to be tested. Fan and Zhang (2004) apply kernel smoothing in both the

objective function and the constraints, whereas Tripathi and Kitamura (2003) smooth

only the objective function, and Chen, Härdle and Li (2003) smooth only the constraints.
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The formulation in Tripathi and Kitamura (2003) is a one–step approach associated with

a global objective function over a range of the entire sample. Fan and Zhang (2004), and

Chen, Härdle and Li (2003) share a formulation of the test statistics by first constructing

a local statistic at a fixed point and then integrating them over to form the final test

statistics; hence both are sieve EL statistics.

A common feature among the three formulations is that the test statistics are all

asymptotically pivotal. This is due to the EL’s ability of internally studentizing a statis-

tic via its optimization procedure when a single smoothing bandwidth is used. This is

the case for all the three EL tests. Recently, Chen and Gao (2007) establish an EL–based

improved test over the corresponding test proposed in Chen, Härdle and Li (2003). Mean-

while, Chen, Gao and Tang (2008) develop a new EL test to parametrically specify the

transitional distribution in a diffusion model. Such a specification testing method is an

alternative to existing methods proposed in Aı̈t–Sahalia (1996), Gao and King (2004),

and Hong and Li (2005).

To the best of our knowledge, the problem of testing both the conditional mean and the

conditional variance simultaneously has not been extensively discussed in the literature.

This is probably because weights for any goodness-of-fit measure have to be allocated

between the conditional mean and the conditional variance components, and a natural

and easily computable weighting scheme which is free of secondary estimation is not

readily available. In a closely related study based on a generalized spectral approach,

Escanciano (2008) proposes using a specification test and then some weak convergence

results for the proposed test under certain high–level technical assumptions (such as,

Assumptions A3–A5).

This paper proposes an empirical likelihood (EL) based test for the hypotheses in

(1.2). The EL (Owen, 1988, 1990) is a technique that allows construction of nonparamet-

ric likelihood for a parameter of interest. Despite that it is intrinsically nonparametric,

it posesses two important properties of a parametric likelihood: the Wilks’ theorem and

the Bartlett correction. Qin and Lawless (1994) establish EL for parameters defined by

a set of generalized estimating equations. This is perhaps the widest framework for EL

formulation. It is extended by Kitamura (1997) to weakly dependent observations. Chen

and Cui (2006, 2007) show that the EL still admits Bartlett correction under this gen-

eral framework. For survival data, Li, Hollander, McKeague and Yang (1996) construct

nonparametric likelihood ratio confidence bands for quantile functions, which can be used

for testing purposes. Li (2003) considers a goodness-of-fit test for a parametric specifi-

cation of the distribution function which is more efficient in Bahadure sense than any
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weighted Kolmogorov–Smirnov test at any alternative. Einmahl and McKeague (2003)

propose an EL goodness-of-fit tests for a distribution function and distributional char-

acteristics. Other closely related studies include Donald, Imbens and Newey (2003) on

empirical likelihood estimation and consistent tests of conditional moment restrictions,

Kitamura, Tripathi and Ahn (2004) on empirical likelihood–based inference in conditional

moment restriction models, and Xu and Phillips (2006) on empirical likelihood estimation

in diffusion models.

The EL test proposed in this paper for the joint hypothesis on the mean and variance

has an attractive feature in naturally allocating weights between the conditional mean and

conditional variance via the covariance matrix of the nonparametric conditional mean and

variance estimators. A nicety of employing the EL is that the estimation of the weighting

matrix is avoided. As a result, it avoids the task of estimating the third and fourth

conditional moments. We also employ two different smoothing bandwidths h1 and h2 to

smooth the conditional mean and variance functions respectively, which reflects a practical

need for applying different amount of smoothing for two different functions.

Another feature of our proposal is that the final test statistic is formulated by maximiz-

ing the EL statistics over a set of bandwidths. This is aimed at achieving the optimal rate

of convergence for Cn, which defines the gap between the null and alternative hypotheses in

(1.2). The existing goodness-of-fit tests for a parametric model based on a kernel estima-

tor with a fixed bandwidth h, for instance the tests given in Härdle and Mammen (1993),

require that the smallest order for Cn is n−1/2h−d/4 in order for the test to be consistent.

This is much larger than n−1/2, which is the rate achieved by tests for a finite dimensional

parameter in a standard setting and by tests based on the empirical distribution function

of the estimated residuals, although the latter tests assume ∆n(x) ≡ ∆(x) for all n. For

testing parametric conditional mean models, Horowitz and Spokoiny (2001) propose an

adaptive test that combines a version of the Härdle–Mammen test statistics over a set of

bandwidths. The test is adaptive against the unknown smoothness of the local alterna-

tive hypothesis and reduces the order of the magnitude of C1n to n−1/2
√

log log(n) which

is optimal in the minimax sense of Ingster (1993a,b,c) and Spokoiny (1996). A similar

idea is also well presented in Fan and Gijbels (1996). Meanwhile, a closely related paper

by Kitamura (2001) discusses asymptotic optimality of empirical likelihood for testing

moment restrictions.

In this paper, we also extend the proposal of Horowitz and Spokoiny (2001) in the

context of testing simultaneously for the conditional mean and variance via the EL with

weakly dependent observations. Comparing with tests based on fixed bandwidths, a
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test based on a set of bandwidths will be less dependent on a particular choice of band-

width/bandwidths and hence will make the test more robust. In addition, we also compare

our adaptive test with an adaptive version of the bivariate extension of the test proposed

in Härdle and Mammen (1993) and then Horowitz and Spokoiny (2001). To accurately

approximate the distribution of the adaptive test statistic, a bootstrap procedure is used

to find the critical value in each case. This combination of the EL and bootstrap is able

to utilize the good features of the EL for the construction of test statistics and the effec-

tiveness of the bootstrap in distribution approximation. There is a connection between

the proposed adaptive test based on a discrete set of bandwidth values and the study of

Dette and Hetzler (2007) who consider the Härdle-Mammen test as a stochastic process

indexed by the coefficient c in the bandwidth h = cn−1/(d+4) which is at the optimal order

for the curve estimation.

The paper is organized as follows. Section 2 introduces the EL test statistic based on

a fixed pair of bandwidths and studies its asymptotic properties. The adaptive test that

combines the EL test statistic over a set of bandwidths is proposed and analyzed in Section

3. Section 4 contains a case study that tests for the goodness-of-fit of five diffusion models

on a Federal fund rate dataset. Simulation results are reported in Section 5. Mathematical

assumptions and technical details are given in Appendices A and B below.

2. Empirical likelihood test statistics

The basic building blocks used to form the proposed test statistic are the kernel es-

timators of m1(x) and m2(x). Let K be a d-dimensional kernel function. We assume

without loss of generality that K(t1, · · · , td) =
∏d

i=1 k(ti), where k(·) is a univariate sym-

metric univariate probability density function. The Nadaraya–Watson (NW) estimators

of m1(x) and m2(x) are respectively

m̂1(x) =

∑n
t=1 Kh1(x−Xt)Yt∑n
t=1 Kh1(x−Xt)

and m̂2(x) =

∑n
t=1Kh2(x−Xt)(Yt − m̂1(Xt))

2∑n
t=1Kh2(x−Xt)

,

where h1 and h2 are the bandwidths for smoothing m1(x) and m2(x) respectively, and

Khi(u) = h−di K(u/hi). We assume that h1 = βh2 for a positive constant β possibly

depending on n, and h1 → 0 and nh2d
1 / log6(n) → ∞ as n → ∞. The local polynomial

estimators for mi(x) as discussed in Fan and Gijbels (1996) and Fan and Yao (1998) can

be used as well without affecting the results of the paper. We choose the NW estimator

for its ease of presentation.

Let θ̃ be a consistent estimator of θ under H0. Similarly to Härdle and Mammen
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(1993), ml,θ̃ are smoothed with the same kernel and bandwidths, that is for i = 1, 2

m̃i,θ̃(x) =

∑n
t=1Khi(x−Xt)mi,θ̃(Xt)∑n

t=1Khi(x−Xt)
.

Define m̂(x) = (m̂1(x), m̂2(x))τ and m̃θ(x) = (m̃1,θ(x), m̃2,θ(x))τ . The proposed test

statistic associated with a fixed bandwidth pair (h1, h2) is based on a weighted distance

between m̂ and m̃θ̃ rather than between mθ̃ and m̂, in order to cancel out the bias as-

sociated with the kernel estimators so as to prevent the bias getting into the asymptotic

distribution of the test statistic. Otherwise, either undersmoothing or explicit bias cor-

rection has to be carried out.

Let

Qt(x) =

[
K

(
x−Xt

h1

)
(Yt − m̃1θ̃(x)) , K

(
x−Xt

h2

)(
{Yt −m1θ̃(Xt)}2 − m̃2θ̃(x)

)]τ
.

There are two steps in the formulation of the EL test statistic. Let pt(x) be nonnegative

values representing weights allocated to each (Xt, Yt). In the first step, at an arbitrary x ∈
S, a compact set of Rd, the log EL ratio for (m1(x),m2(x)) evaluated at (m̃1θ̃(x), m̃2θ̃(x))

is constructed as

`{m̃θ̃(x)} = −2 min
n∑
t=1

log{npt(x)}(2.1)

subject to
∑n

t=1 pt(x) = 1 and
∑n

t=1 pt(x)Qt(x) = 0. A standard derivation, for instance

that given in Owen (1990), shows that the optimal weights are

pt(x) =
1

n
{1 + λτ (x)Qt(x)}−1,(2.2)

where λ(x) = (λ1(x), λ2(x))τ is a pair of Lagrange multipliers defined by

n∑
t=1

Qt(x)

1 + λτ (x)Qt(x)
= 0.(2.3)

In the second step, we form the test statistic

Nn(h) =

∫
`{m̃θ̃(x)}π(x)dx,

where h = (h1, h2) and π(·) is a non-negative weight function supported on S satisfying∫
x∈S π(x)dx = 1 and

∫
x∈S π

2(x)dx <∞.

To appreciate the rationale of the proposed test statistic, let Ū(x) = (Ū1(x), Ū2(x))τ

with

Ū1(x) = (nhd1)−1

n∑
t=1

K

(
x−Xt

h1

)
{Yt − m̃1θ̃(x)} and

Ū2(x) = (nhd1)−1

n∑
t=1

K

(
x−Xt

h2

)[
{Yt − m̃1θ̃(Xt)}2 − m̃2θ̃(x)

]
.
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Note that using h−d1 , rather than h−d2 , in Ū2 facilitates easy expressions. Furthermore,

let εt = Yt −m1(Xt), ηt = ε2t −m2(Xt), σij(x) = E
[
εitη

j
t |Xt = x

]
for i, j = 0, 1, 2,

Σ0(x) = f−1(x)R(K)

 σ20(x) R(β−1, K)σ11(x)

R(β−1, K)σ11(x) βdσ02(x)

(2.4)

and

Σ1(x) = f(x)R(K)

 σ20(x) R(β,K)σ11(x)

R(β,K)σ11(x) β−dσ02(x)

 ,(2.5)

where R(K) =
∫
K2(x)dx and R(β,K) = R−1(K)

∫
K(x)K(βx)dx.

Expansions established in (A.8) of Appendix A below show that

`{m̃θ̃(x)} = (nhd1)Ū τ (x)Σ−1
1 (x)Ū(x) +Op{h2

1 log2(n) + (nhd1)−1/2 log3(n)}

= (nhd1){m̂(x)− m̃θ̃(x)}τΣ−1
0 (x){m̂(x)− m̃θ̃(x)}(2.6)

+ Op{h2
1 log2(n) + (nhd1)−1/2 log3(n)}.

Then, the test statistic admits the following expansions

Nn(h) = (nhd1)

∫
Ū τ (x)Σ−1

1 (x)Ū(x)π(x)dx+Op{h2
1 log2(n) + (nhd1)−1/2 log3(n)}

= (nhd1)

∫
{m̂(x)− m̃θ̃(x)}τΣ−1

0 (x){m̂(x)− m̃θ̃(x)}π(x)dx(2.7)

+ Op{h2
1 log2(n) + (nhd1)−1/2 log3(n)}.

Since (nhd1)−1Σ0(x) is the asymptotic covariance of m̂(x) − m̃θ̃(x), Nn(h) is asymp-

totically an integrated Mahalanobis distance between m̃θ̃ and m̂. The covariance Σ0(x)

naturally allocates weights between m̂1(x)− m̃1θ̃(x) and m̂2(x)− m̃2θ̃(x), the two compo-

nents of the goodness-of-fit.

Before we establish the asymptotic normality of Nn(h), we define L(z) =
∫
K(u)K(z+

u)du as the convolution of K, L (z, c) =
∫
K(u)K(z + cu)du,

Σ(x, y) =

 L
(
y−x
h1

)
σ20(x)f(x) β−dL

(
x−y
h1
, β−1

)
σ11(y)f(y)

β−dL
(
y−x
h1
, β−1

)
σ11(x)f(x) β−dL

(
x−y
h2

)
σ02(y)f(y)

 ,

Ω(x, y) = Σ−1/2(x, x)Σ(x, y)Σ−1/2(y, y) = (ωij(x, y))2×2 ,(2.8)

and σ2
n(h) = 2

∫ ∫ ∑2
i,j=1 ω

2
ij(x, y)π(x)π(y)dxdy.

10



Theorem 2.1. Under Assumptions A.1–A.4 listed in Appendix A, for h = (h1, h2)

Ln(h,∆n) =
Nn(h)− 2− nhd1C2

1n

∫
∆τ
n(x)Σ−1

1 (x)∆n(x)π(x)dx

σn(h)

d→ N(0, 1)

as n→∞.

Remark 2.1. It may be shown that σ2
n(h) = 2C0h

d
1{1 + o(1)} as n → ∞, where C0

is a constant not depending on n. This means that under H0 Nn(h) − 2 = Op(h
d/2
1 ),

which leads to the standardization of Nn(h) when constructing our adaptive test in the

next section. By constructing a consistent estimator of σ2
n(h) and letting ∆n(x) = 0, the

theorem can lead to an asymptotically normal distribution based test for a given pair

of h = (h1, h2). However, we would not recommend it due to the facts that (i) σ2
h(h)

has to be estimated, and (ii) the convergence to the normal distribution would be slow.

A common approach is to use a bootstrap method to calibrate the distribution of the

test statistic as proposed in Härdle and Mammen (1993), Hjellvik and Tjøstheim (1995),

Kreiss, Neumann and Yao (1999), Franke, Kreiss and Mammen (2002), Gao (2007), Li

and Racine (2007), and others.

Remark 2.2. As implied by the form of Ω(x, y) in (2.8), the EL statistic Nn(h) is no

longer an asymptotically pivotal quantity when the bandwidths h1 and h2 are different.

When h1 = h2, however, we have C0 = K(4)(0) and therefore

σ2
n(h) = 4hd1K

(4)(0)R−2(K)

∫
π2(x)dx (1 + o(1)),

where K(j)(0) denotes the j–times convolution of K(·). Thus, Nn(h) is asymptotically

pivotal when h1 = h2.

Remark 2.3. (i) We note that the choice of the weight function π(·) has little impact on

the size, but can have some impact on the power of the test based on Nn(h) as well as the

adaptive test that we will propose in the next section. This is shown by the involvement of

π(·) in the asymptotic bias and variance of the test statistics Nn(h). In theory, the choice

of the weight function should be made to maximize the power. A theoretical recipe for an

optimal weighting function would depend on an expansion for the power function of the

adaptive test, which would be quite challenging. In practice, one may first plot the kernel

estimates for both the mean and variance functions respectively against their parametric

hypothesed counterparts. One may then find the regions S1 and S2 that contain the

regions where the two sets of curves differs, and choose π(·) be the uniform weight over

S = S1 ∪ S2.

(ii) Boundary bias is an issue for the kernel estimators when the underlying curve

has discontinuous boundaries. It is more of an issue when the purpose is to estimate
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the underlying function than model specification testing. The way we formulate the test

statistic, which compares the kernel estimates with a kernel smoothed version of the

parametric specifications, will cancel out the boundary bias. We also note that with

a compactly supported kernel K, the boundary region is O(h). These mean that the

contribution to the test statistic from the boundary region is negligible as compared with

the contribution from the interior region.

3. An adaptive EL test

Like all tests constructed via kernel smoothing with fixed bandwidths (for instance

the test of Härdle and Mammen (1993)), the test based on a pair of fixed bandwidths

briefly outlined in Remark 2.1 requires both C1n and C2n converging to zero more slowly

than n−1/2. Indeed, it can be derived from Theorem 2.1 that the asymptotic power of the

EL test based on a pair of fixed bandwidths is

1− Φ{Zα − nhd1C2
1nγ(∆n,Σ1)/σn(h)}

when C1n = C2n, where γ(∆n,Σ1) =
∫

∆τ
n(s)Σ−1

1 (s)∆n(s)π(s)ds and Zα is the upper-

α quantile of N(0, 1). Hence, if C1n = o(n−1/2h
−d/4
1 ), the power degenerates to α, the

size of the test. This means that the test is incapable of distinguishing H0 and H1 if

C1n = o(n−1/2h
−d/4
1 ). Recently, Horowitz and Spokoiny (2001) propose an adaptive test

for testing the mean of a regression model with independent observations. The test is able

to distinguish the null hypothesis from a sequence of local alternatives of varying degrees

of smoothness with C1n at the optimal rate in the minimax sense of Ingster (1993a, b, c)

and Spokoiny (1996).

Similarly to Horowitz and Spokoiny (2001), we construct in this section an adaptive

EL test statistic that combines a standardized version of Nn(h) over a set of bandwidths.

For i = 1 and 2, the set of bandwidths to smooth mi(·) is

Hin =
{
hi = himaxa

k
i : hi ≥ himin, k = 0, 1, 2, . . . Jin

}
(3.1)

where 0 < ai < 1, Jin = log1/ai
(himax/himin) is the number of bandwidths in Hin, himax =

cimax (log log(n))−
1
d and himin = ciminn

−γi for 0 < γi <
1
d

and some positive constants

cimax and cimin. The choice of himax is vital in reducing Cin to almost n−1/2 rate. The

range of γi allows hi = O{n−
1

(4+d)}, the optimal order in the kernel estimation of mi(x).

Let Hn = H1n×H2n be the set of bandwidths for smoothing the bivariate function m(x).

Since the omission of the known constant C0 from σ2
n(h) does not affect the size and

power property of Ln(h,∆n), we propose using an adaptive EL test statistic of the form

Ln = max
h∈Hn

Nn(h)− 2√
hd1

,(3.2)
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where 2 and h
d/2
1 are respectively the asymptotic mean and standarad deviation of Nn(h)

under H0.

Let lnα be the 1 − α quantile of the finite sample distribution of Ln where α ∈ (0, 1)

is the significance level. We are to use a regression bootstrap method to approximate

the quantiles of Ln by generating resamples of the innovations {et}nt=1 which mimics the

conditional distribution of {et}nt=1 given all the past information.

We propose the following bootstrap procedure to approximate lnα:

1. For t = 1, 2, . . . , n, let êt =
Yt−m1θ̃(Xt)√

m2θ̃(Xt)
be the estimated innovations and Y ∗t =

m1θ̃(Xt) +
√
m2θ̃(Xt)e

∗
t , where {e∗t}nt=1 is a sample randomly generated according to

the empirical distribution of {êt}nt=1. Let l∗nα be the 1−α quantile of the distribution

of Ln that is induced by {Y ∗t }.

2. Let θ̃∗ be the estimate of θ based on the resample {(Xt, Y
∗
t )}nt=1. Compute the

statistic L∗n by replacing Yt and θ̃ with Y ∗t and θ̃∗ according to (3.2).

3. Estimate l∗nα by the 1−α quantile of the empirical distribution of L∗n, which can be

obtained by repeating steps 1–2 many times.

The following theorem justifies the above bootstrap estimate of lnα.

Theorem 3.1. Suppose that Assumptions B.1–B.3 listed in Appendix B hold. Then

under H0, limn→∞ P (Ln > l∗nα) = α.

We now propose the adaptive test with a nominal significance level α which rejectsH0 if

Ln ≥ l∗nα. Theorem 3.1 guarantees that the test attains the nominal level α asymptotically.

In the following we discuss the consistency of the adaptive EL test under three forms of

alternative hypothesis.

We start with evaluating the consistency of the test against a family of fixed alterna-

tives. Let Θ be an open subset of Rq and MiΘ = {miθ(·) : θ ∈ Θ} specify a family of

parametric models for the conditional mean and variance under H0, where i = 1, 2. Let

ES [mi(X1)−miθ(X1)]2 =

∫
x∈S

[mi(x)−miθ(x)]2 f(x)dx,

where f(x) is the density function of Xi and

ρi(mi,MiΘ) =

[
inf
θ∈Θ

(
ES [mi(X1)−miθ(X1)]2

)]1/2

(3.3)

is a weighted L2 distance between mi(·) and the parametric family MiΘ. If H0 is false,

then min1≤i≤2 ρi(mi,MiΘ) ≥ cρ for all sufficiently large n and some cρ > 0. The following
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theorem establishes that the adaptive EL test is consistent against a family of fixed

alternatives.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. In addition, if there is

some cρ > 0 such that min1≤i≤2 ρi(mi,MiΘ) ≥ cρ, then limn→∞ P (Ln > l∗nα) = 1.

We now consider the consistency under a sequence of local alternatives of the form

m(x) = mθ1(x) + Cn∆(x) for all x ∈ Rd,(3.4)

where Cn = (C1n, C2n)τ → 0 as n → ∞, θ1 ∈ Θ and ∆(x) = (∆1(x),∆2(x))τ is a vector

of continuous functions satisfying

0 < D1 ≤ min
1≤i≤2

∫
x∈S

∆2
i (x)f(x)dx ≤ max

1≤i≤2

∫
x∈S

∆2
i (x)f(x)dx ≤ D2 <∞(3.5)

for some 0 < D1 < D2 < ∞. In addition, suppose that m(·) of (3.4) satisfies, for a

positive constant D3i,

ρi(mi,MiΘ) ≥ D3i |Cin| for i = 1, 2.(3.6)

Under this situation, the alternative models given in (3.4) differ from the null in a fixed

direction determined by ∆(x), and the difference shrinks to zero as n→∞. The following

theorem shows that the proposed test is consistent for Cin ≥ Cin
−1/2

√
log log(n), which

is a substantial improvement over the fixed bandwidth based tests and achieves almost

the conventional rate n−1/2.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold. In addition, let (3.4)–

(3.6) hold with Cin ≥ Cin
−1/2

√
log log(n) for some constants 0 < Ci <∞ for i = 1, 2 and

Assumption B.3(ii) hold with h1 max = cmax (log log(n))−
1
d for some 0 < cmax <∞. Then

limn→∞ P (Ln > l∗nα) = 1.

At last, we establish the consistency of the test under alternatives in a Hölder class

of smooth functions with unknown degree of smoothness. Such a class is much bigger

than that of alternatives considered in the previous two theorems as it allows difference

between m(·) and mθ(·) in any directions. In particular, we consider a general class of

alternatives of the form

m(x) = mθ2(x) + Cn∆n(x) for all x ∈ Rd,(3.7)

where θ2 ∈ Θ and ∆n(x) = (∆1n(x),∆2n(x))τ is a vector of smooth functions.

For non-negative integers j1, . . . , jd ≥ 0, let j = (j1, . . . , jd) and

|j| =
d∑

k=1

jd and Djmi(x) =
∂|j|mi(x)

∂xj11 · · · ∂x
jd
d

for i = 1, 2
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whenever the derivative exists. For i = 1, 2, define the Hölder norm:

||mi||H;si = sup
x∈S

∑
|j|≤si

|Djmi(x)|


and a smooth class of the form Si(H; si) ≡ {mi : ||mi||H;si ≤ ciH} which has an unknown

degree of smoothness si ≥ max
(
2, d

4

)
and ciH < ∞ for i = 1, 2. The class of alternative

models considered is

BH,n(i) =

{
mi ∈ Si(H, si) : ρi(mi,MiΘ) ≥ Cim

(
n−1
√

log log(n)
) 2si

(4si+d)

}
(3.8)

for some 0 < Cim <∞, where ρi(mi,MiΘ) is as defined in (3.3).

Theorem 3.4. Suppose that the conditions of Theorem 3.1 hold. If, in addition, equa-

tions (3.7) and (3.8) hold, then limn→∞ inf{mi∈BH,n(i):i=1,2} P (Ln > l∗nα) = 1.

The conclusion of Theorem 3.4 shows that Ln is uniformly consistent over alterna-

tives within the Hölder class of smooth functions whose distance from the parametric

counterparts approaches zero at the rate of
(
n−1
√

log log(n)
) 2si

(4si+d) for i = 1, 2, which

is the fastest possible in the minmax sense of Ingster (1993a, b, c) and Spokoiny (1996).

The most striking property of Theorem 3.4 is that it achieves the best rate of conver-

gence for Cin without knowing the degree of smoothness si. This is the reason behind

the term “adaptive and rate-optimal” by Horowitz and Spokoiny (2001) when describing

their test. We show that the same property holds for the proposed simultaneous test for

the conditional mean and variance with weakly dependent observations.

To show that the conclusions of Theorems 3.1–3.4 hold unconditionally, by the dom-

inated convergence theorem it suffices to show that the conclusions of Theorems 3.1–3.4

all hold in probability with respect to the joint distribution of X = (X1, · · · , Xn). For

instance, it suffices to show that

lim
n→∞

P∗ (Ln > l∗nα) = lim
n→∞

P (Ln > l∗nα|X ) = α in probability

in Theorem 3.1, where P∗ (Ln > l∗nα) ≡ P (Ln > l∗nα|X ).

4. Testing for diffusion models for a Fed Fund rate data

We apply the proposed empirical likelihood test to a class of diffusion models which

have been proposed to model the dynamics of interest rate movements in the literature.

The data are the monthly Fed fund rates between January 1963 and December 1998
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contained in H-15 Federal Reserve Statistical Release with n = 432 observed rates. Aı̈t-

Sahalia (1999) used this data set to carry out the maximum likelihood estimation of

parameters based on either the exact or the approximate transitional density functions

for the following diffusion models:

drt = κ(α− rt)dt+ σdWt,(4.1)

drt = κ(α− rt)dt+ σr
1/2
t dWt,(4.2)

drt = rt{κ− (σ2 − κα)rt}dt+ σr
3/2
t dWt,(4.3)

drt = κ(α− rt)dt+ σrρt dWt,(4.4)

drt = (α−1r
−1
t + α0 + α1rt + α2r

2
t )dt+ σr

3/2
t dWt.(4.5)

These models are respectively the Ornstein-Uhlenbeck process (4.1) proposed by Va-

sicek (1977), the CIR model (4.2) proposed by Cox, Ingersoll and Ross (1985), the inverse

of the CIR process (4.3), the constant elasticity of volatility model (4.4) of Chan, Karolyi,

Longstaff and Sanders (1992) and the nonlinear mean reversion model (4.5) of Aı̈t-Sahalia

(1996). Note that model (4.3) is similar to but not exactly the model proposed by Ahn and

Gao (1999). Although both model (4.3) and the model proposed by Ahn and Gao (1999)

specify a quadratic drift and a cubic function for the square of the diffusion, model (4.3)

is more restrictive on the parameters as σ2 appears in both the drift and the diffusion. As

discussed in Assumption A2’ of Aı̈t-Sahalia (1996), equations (4.1)–(4.5) are all strictly

stationary and β–mixing. A similar discussion is given in Genon-Caralot, Jeantheau and

Laredo (2000). Thus, the proposed estimation method and theory under the α–mixing

assumption is directly applicable.

We consider the Euler discretisation of the continuous-time diffusion models to create

discrete time series models of (1.1) with Yt = rt∆ − r(t−1)∆ and Xt = r(t−1)∆, where ∆ =

20/250 since the data were collected monthly. This will no doubtly create discretisation

errors. The raw interest rate series and a scatter plot of {(Xt, Yt)}ni=1 are displayed in

Figure 1. The biweight kernel has been used in all the numerical works reported in this

paper. The cross-validation (CV) is employed to guide the bandwidth selection, which

give h1cv = 0.019 for the drift and h2cv = 0.0275 for the diffusion.

In Figure 2, we plot the nonparametric kernel estimates of the drift m̂1(x) and the

diffusion m̂2(x) using the bandwidths prescribed by the CV and the corresponding kernel

smoothed versions of the parametric drift and diffusion functions, i.e. m̃1θ̂(x) and m̃2θ̂(x),

for models (4.1) to (4.5), where θ̂’s are those maximum likelihood estimates given in

Table VI of Aı̈t-Sahalia (1999). The reason for not using the bandwidths prescribed by

the CV is because some initial curve plotting indicates the bandwidths given by the CV
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undersmooth the curves. It is clear from Figure 2(a) that the drift specified by model

(4.3) is not appropriate for the data. As reported shortly, this is strongly supported by

our testing results which show very small p–values for both the simultaneous and the

univariate test for the drift. The problem with model (4.3) is probably due to the rigid

relationship between its parameters as mentioned earlier.

We observe from Figure 2 that the nonparametric kernel estimates of the drift and

diffusion agree reasonably well with the parametric drift and diffusion specifications when

the interest rate level is in the range of [0, 10%]. When the interest rate is at a higher

level, discrepancies between the nonparametric fits and parametric fits start to appear

in both the drift and diffusion estimation. We were alarmed when first seeing that the

kernel drift estimates for the rate over 10% are positive, which is against the mechanism

of mean-reverting. However, the data were extremely volatile over that range as shown

by the kernel estimate of the diffusion function in panel (c) and (d) of Figure 2. It is

so volatile that a point-wise confidence band of the kernel drift estimates would cover all

the parametric drifts over that range and hence the seemingly large discrepency between

the kernel and the parametric drfit estimates may not be so significant at all after con-

sidering the large variation. It is worth pointing out that the appeared roughness in the

kernel estimates of the drift and diffuison was largely due to the high volatility and data

sparseness at the higher rate levels. This is not the result of using the Nadaraya-Watson

kernel estimator as the the fitted curves by the local linear kernel smoother had the same

arte-facts too.

We carry out first the simultaneous empirical likelihood test for both the drift and

diffusion for each of the models from (4.1) to (4.5) on 25 bandwidth pairs (h1, h2) which

is the results of having five levels of h1 ranging from h1 min = 0.01 to h1 max = 0.025

and five h2s ranging from h2 min = 0.015 and h2 max = 0.03 according to (3.1). This

range of bandwidths includes the bandwidths given by the CV and offers a wide range

of smoothness. We choose the weight function π(x) = 1
0.14

I(0.02 < x < 0.16). The

p-values of the adaptive EL tests are reported in the second column of Table 1. The p–

values for the Vasicek model (4.1) and CIR model (4.2) were almost zero, which indicates

overwhelming rejections of the these two models. Meanwhile, the p-values for the models

(4.3), (4.4) and (4.5) were 0.476%, 0.628% and 0.454 respectively indicating no enough

statistical evidence to reject these three models.

We then conducted separate adaptive EL tests for the drift and the diffusion specifica-

tions for these five models respectively, and reported the p-values in the last two columns

of Table 1 which indicates that the main lack-of-fit came from the diffusion specification.
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The lack-of-fit of these models comes primarily from the diffusion specifications as shown

by much smaller p-values reported in Table 1 than those for the drift. The Vasicek and

CIR models are the worst two. The other three models, which allow larger volatility for

higher rate values, have larger p-values around than 5% . The fact that the nonpara-

metric estimates of the diffusion are larger than the parametric estimates under models

(4.4) and (4.5) indicates there is probably some extra amount of volatility that can not be

explained by these two models. This is consistent with an existing believe among financial

econometricians that one-factor diffusion models can not accommodate the full amount

of volatility exhibited by real data.

At the same time, the tests for the drift specifications indicates all the models except

the Vasicek model all had reasonable compatiablity with the data. This may be partly

due to the large volatility of exhibited in the data as revealed by the kernel estimate of

the diffusion function at the higher rate levels. The same can be said for the p-values of

the simultaneous tests for two two nonlinear drift models (4.3) and (4.5), and the CEV

model (4.4).

5. Simulation studies

Before we report the simulation results, we discuss the issue of computation. For

the current testing of an infinite dimensional “parameter”, the computation for Nn(h)

involves evaluating the EL ratio `{m̃θ̂(x)} over a grid of x–points within the set S. And

it is further increased by the adaptive test procedure and the bootstrap calibration. In

spite of this, implementing the adaptive EL test based on a single time series would not

be a problem given the fact that a reliable algorithm for the EL computation is available

from the authors. When carrying out the simulations, however, we need to speed up the

computation as a large number of replications are required. In the simulation studies,

we use the least squares EL (LSEL) to replace the full EL when formulating Nn(h). The

LSEL is easier to compute as there are closed–form solutions for the weights pt(x). Hence,

some expensive nonlinear optimization can be avoided.

5.1 Least Squares Empirical Likelihood.

The LSEL replaces − log{npt(x)} in the objective function of the EL formulation (2.1)

by (npt(x) − 1)2, the quadratic Taylor expansion of − log(npt(x)) near pt(x) = n−1. In

particular, the log LSEL ratio is

lsl{m̃θ̃(x)} = min
n∑
t=1

{npt(x)− 1}2(5.1)
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subject to
∑n

t=1 pt(x) = 1 and
∑n

t=1 pt(x)Qt(x) = 0. According to Brown and Chen

(1998), the optimal LSEL weights are given by

pt(x) = n−1 + {n−1Q(x)−Qt(x)}τS−1(x)Q(x),

where Q(x) =
∑n

t=1Qt(x) and S(x) = n−1
∑n

t=1 Qt(x)Qt(x). Thus,

lsl{m̃θ̃(x)} = Qτ (x)S−1(x)Q(x),

which is readily computable. The price paid for such a simple computational procedure

is that the weights may be negative and the delicate second order property of Bartlett

correction is lost. However, these are entirely harmless in the current testing problem.

The LSEL counterpart to Nn(h) is

N ls
n (h) =

∫
lsl{m̃θ̃(x)}π(x)dx.(5.2)

It may be shown from Brown and Chen (1998) that N ls
n (h) and Nn(h) are equivalent in

the first order. Therefore, those first-order theoretical results established based on Nn(h)

in Theorems 2.1 and 3.1–3.4 are valid to the corresponding LSEL modification.

5.2 An Alternative Test

As expressed in equation (2.7) above, the leading term of the proposed test is as

follows:

Nld,n(h) = (nhd1)

∫
{m̂(x)− m̃θ̃(x)}τΣ−1

0 (x){m̂(x)− m̃θ̃(x)}π(x)dx,(5.3)

which is equivalent to the bivariate version of the corresponding test proposed in Härdle

and Mammen (1993) and then Horowitz and Spokoiny (2001) of the form

Ne,n(h) = (nhd1)

∫
{m̂(x)− m̃θ̃(x)}τ Σ̂−1

0 (x){m̂(x)− m̃θ̃(x)}π(x)dx(5.4)

provided that Σ̂−1
0 (x) exists, where

Σ̂−1
0 (x) = f̂(x)Σ̃−1

0 (x), Σ̃0(x) =

 σ̃20(x) σ̃11(x)

σ̃11(x) σ̃02(x)

 ,(5.5)

f̂(x) = 1
nhd1

∑n
t=1K

(
x−Xt
h1

)
and for i, j = 0, 1, 2,

σ̃20(x) =

∑n
t=1K

(
x−Xt
h1

)
ε̃2t∑T

t=1K
(
x−Xt
h1

) , σ̃02(x) =

∑n
t=1K

(
x−Xt
h2

)
η̃2
t∑T

t=1K
(
x−Xt
h2

) , σ̃11(x) =

∑n
t=1K

(
x−Xt
h1

)
ε̃tη̃t∑T

t=1K
(
x−Xt
h1

) ,
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in which ε̃t = Yt − m̃1θ̃(Xt) and η̃t = ε̃2t − m̃2θ̃(Xt).

We then compare Ln of (3.2) with its national competitor of the form:

Le,n = max
h∈Hn

Ne,n(h)− 2√
hd1

(5.6)

in the finite–sample analysis in Section 5.3 below. Note that the conclusions of Theorems

3.1–3.4 hold for Le,n, since Ne,n(h) is the leading term of Nh(h).

5.3 Simulation Results

We report in this section results of some simulation studies designed to evaluate the

empirical performance of the proposed adaptive EL test. The model considered was an

ARCH(1) model of the form:

Yt = α + βYt−1 + C1n cos(8Yt−1) +

{
σ
√
Y 2
t−1 + 1 + C2n cos(8Yt−1)

}
et,(5.7)

where {et}nt=1 were independent and identically distributed innovations independent of

Yt−1. The assigned parameter values were α = 0.25, β = 0.5 and σ = 0.25. We considered

two distributions for et: et ∼ N(0, 1) and ei ∼ χ2
15−15√

30
. The choice of the chi-square dis-

tributed innovation was to assess the performance of the test in the presence of skewness,

which is 8
15

, whereas the kurtosis is 3 + 4
5
. We also chose the cosine function as the local

shift functions ∆i(x) to make the models under H1 fairly close to those under H0 and

hence make it more difficult to distinguish between H0 and H1. In evaluating the power

of the test we chose C1n = C2n = 0.04 and 0.06 respectively. The sample sizes considered

in the simulation were n = 300 and n = 500, whereas the number of simulations was 500

with the number of bootstrap resamples being 300.

The vector of parameters θ = (α, β, σ2) was estimated using the pseudo-maximum

likelihood, which is commonly used in the estimation of ARCH models. From information

collected from the simulations, the parameters were estimated with good precision even

under H1 for both types of innovations. The maximum averaged mean square errors in

estimating α, β and σ were respectively 0.00092, 0.00359 and 0.0129 for n = 300, and

were 0.00054, 0.00203 and 0.0102 for n = 500. As the ARCH model is only asymptotically

stationary, in each simulation the model was pre-run 200 times.

The biweight kernel k(u) = 15
16

(1−u2)2I(|u| ≤ 1) was used throughout this section for

kernel estimation. The weight function π(x) was chosen to be the uniform density ranging

from the 5% to 95% quantiles of the asymptotic stationary distribution of Yt obtained by

a pilot simulation. In each simulation, the likelihood ratio was evaluated over 50 equally

spaced grid points within the support of π(·).
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We need to chooseH1n andH2n in order to form the adaptive test. The cross validation

(CV) was employed to select h1 by pre-running the simulations reported above. In the

case of the normal innovation, the averaged bandwidth (standard error) prescribed by

the CV was 0.25(0.1) for n = 300 and 0.23(0.08) for n = 500 respectively. The figures

for the chi-square innovations were similar. Note that (log log n)−1 = 0.5743397 and

0.547374 for n = 300 and n = 500, respectively. In view of these and Assumption

B.3(iii), we chose H1n = {0.3, 0.332, 0.367, 0.407, 0.45} with a1 = 0.903 for n = 300 and

H1n = {0.25, 0.281, 0.316, 0.356, 0.4} with a1 = 0.889 for n = 500. Here we chose h1 min to be

slightly smaller than the averaged CV and a scaled down value of (log log(n))−1 as h1 max.

The selection of h2 depends on the choice of h1 used to smooth m1(·) in order to obtain

the estimated residuals. After substituting in the h1 values prescribed by the CV, the

averaged CV based h2 values were found to be smaller than the corresponding h1 values.

Considering the variation in the CV h1-values and the observations that h2 was in general

smaller than h1, we simply chose H2n = {0.25, 0.281, 0.316, 0.356, 0.4} with a2 = 0.889 for

n = 300 and H2n = {0.2, 0.2300, 0.2646, 0.3043, 0.35} with a2 = 0.869 for n = 500 for

both types of innovations. These gave 25 combinations of (h1, h2) when formulating the

adaptive test statistic Ln in (3.1).

We first carried out the simultaneous test at the nominal 5% significance level for H0

against H1 where the mean and variance were shifted by the same amount, i.e. C1n =

C2n = 0.0, 0.04 and 0.06, respectively. The results are reported in Table 2. We observe

that the empirical sizes of the test were quite close to 5% and improved as the sample

size increased from 300 to 500. This indicated that the bootstrap approximation to the

distribution of the test statistic was of good quality. The power of the test was quite

respectable considering that H0 and H1 were made deliberately close. As expected when

each Cin was increased, the power of the test increased; and for a fixed level of Cin, the

power increased when n increased. The latter was because the distance between H0 and

H1 became smaller when n became larger despite the fact that Cin was kept the same.

We then compared the power of the simultaneous test with two univariate adap-

tive tests on the univariate hypotheses H01 : m1(x) = m1θ(x) versus H11 : m1(x) =

m1θ(x) + C1n∆1n(x) on the conditional mean and H02 : m2(x) = m2θ(x) versus H12 :

m2(x) = m2θ(x) + C2n∆2n(x) on the conditional variance. Univariate test statistics can

be formulated as follows. Let

Q1t(x) = K

(
x−Xt

h

)
{Yt − m̃1θ̃(x)} and

Q2t(x) = K

(
x−Xt

h

)[
{Yt − m̃1θ̃(Xt)}2 − m̃2θ̃(x)

]
.
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The LSEL ratio for mj(x) evaluated at m̃jθ̃(x) is `{m̃jθ̃(x)} = min
∑n

t=1{npjt(x) − 1}2

subject to
∑n

t=1 pjt(x) = 1 and
∑n

t=1 pjt(x)Qjt(x) = 0. At a given hj, j = 1 and 2,

Njn(hj) =
∫
`{m̃jθ̃(x)}π(x)dx, which then leads to the adaptive test statistic Ljn like the

formation of Ln. The same bootstrap procedure outlined in Section 3 can also be used to

profile the distribution of Ljn and to formulate the test procedures.

We were interested to see if there was a significant reduction of power for the simul-

taneous test while H1 was different from H0 only in one component. Both the sizes and

the power values of the simultaneous and the corresponding univariate tests are presented

in Table 3 for the normal innovation and in Table 4 for the chi-square innovation. The

univariate tests had reasonable sizes as well. As expected, there was reduction in the

power of the simultaneous test. The reduction was relatively small for C1n = 0.03 and

n = 300. It is encouraging to see there was only very small power reduction from the

univariate variance test at all the levels considered. We observe that the power values of

both the simultaneous and the univariate tests were higher for the case of C1n = 0 than

those for the case of C2n = 0. This was probably due to different amount of variability in

m̂1(x) and m̂2(x).

The adaptive simultaneous (univariate) test statistics are constructed over 25 (5) pairs

of bandwidths. To understand more on the adaptive tests, we also carried out both the

simultaneous and univariate tests based on certain sets of fixed bandwidths respectively.

In Tables 2–4 we report in parentheses beneath the size/power of the adaptive tests, the

smallest, the medium and the largest size/power of the 25 (5) fixed bandwidth tests. It

was found that (i) the sizes of the fixed bandwidth tests were generally clustered tight

range around the 5% significance level despite the range of the bandwidths being quite

wide, considering that all the design variable values were confined in [0, 1]; (ii) more

importantly, the power of the adaptive test was larger than the average and often was

close to the maximum power of the 25 fixed bandwidth tests. This indicates that the

adaptive tests do enhance the power as revealed theoretically in Section 3.

In addition, we compare both the size and power performance of Ln with its natural

competitor: Le,n in Table 5 below. As Le.n is constructed based on the leading term

of Ln under H0, there are just minor differences between the sizes. Similarly to the

corresponding results for the univariate case discussed in Chen and Gao (2007), however,

there is some substantial power reduction when just using Le,n, the bivariate version of the

test proposed in Horowitz and Spokoiny (2001). This further demonstrates the advantage

of using the EL–based adaptive test–Ln over its natural competitor–Le,n.

6. Conclusions
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This paper has proposed an EL–based simultaneous test for parametric specification

of both the conditional mean and conditional variance functions in a nonlinear time series

regression model. The proposed simultaneous test is particularly useful to deal with the

case there is no knowledge about whether the conditional mean and/or variance functions

are correctly specified. Both an asymptotic distribution of the proposed simultaneous test

and asymptotic consistency results of an adaptive version of the proposed test have been

established and proved.

The proposed simultaneous test has been implemented using both simulated and real

data examples. As shown in Section 5 above, the proposed test performs well numerically

even when one of the conditional mean and conditional variance functions is already

correctly specified. In this case, there is only a small power reduction in each individual

situation when using the simultaneous test while a univariate test should be used instead.

Future discussion includes the following two issues. The first issue is whether one could

extend the proposed test to accommodate the case where the dimensionality of {Xt} is

sufficiently large. This could involve using a nonparametric additive form to approximate

each of the conditional mean and variance functions. The second issue is whether one

could allow for the inclusion of discrete components in {Xt}. To be able to deal with

this, one would need to extend recent work on univariate specification testing (see, for

example, Chapter 12 of Li and Racine 2007) to a simultaneous setting.
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Appendices

Appendix A. Proof of Theorem 2.1.

A.1. Assumptions. The proof of Theorem 2.1 requires the following assumptions.

Assumption A.1. (i) Let the process (Xt, Yt) be strictly stationary and α-mixing with the

mixing coefficient α(t) ≤ Cααt defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞s+t}

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and Ωj
i denotes the σ–field

generated by {(Xk, Yk) : i ≤ k ≤ j}.
(ii) Let {ei} defined in (1.1) satisfy for all i ≥ 1

P (E[ei|Ωi−1] = 0) = P
(
E[e2

i |Ωi−1] = 1
)

= 1,

where Ωi = σ{(Xj+1, Yj) : 1 ≤ j ≤ i} is a sequence of σ–fields generated by {(Xj+1, Yj) : 1 ≤
j ≤ i}.

(iii) Let ζi be either εi = Yi −m1(Xi) =
√
m2(Xi)ei or ηi = ε2i −m2(Xi) = m2(Xi)[e

2
i − 1].

Assume that there is some positive constant r > 4 such that E [|ζi|r] <∞.

Assumption A.2. (i) infx∈Sm2(x) ≥ Cm > 0 for some constant Cm. For k, l = 0, 1, 2, let

σkl(x) = E[εki η
l
i|Xi = x]. Assume that m1(x) and σkl(x) for (k, l) = (2, 0), (0, 2) and (1, 1)

all have continuous derivatives of up to the second order and satisfy the following Lipschitz

condition:

|m1(u)−m1(v)| ≤ C0||u− v|| and |σjk(u)− σjk(v)| ≤ Ckl||u− v||

with u, v ∈ S and some constants 0 < C0, Ckl < ∞ for (k, l) = (2, 0), (1, 1) and (0, 2).

In addition, suppose that there are two constants 0 < cσ < Cσ < ∞ such that 0 < cσ ≤
σ20(x)σ02(x)− σ2

11(x) ≤ Cσ <∞ uniformly in x ∈ S.

(ii) The weight function π is supported on the compact set S and 0 < π ≤ C for some

constant C; the marginal density function, f(x), of Xt has continuous first two derivatives on

Rd and 0 < cf ≤ f(x) ≤ Cf <∞ for all x ∈ S for two positive constants cf and Cf .
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(iii) Let fτ1,τ2,···,τl(·) be the joint probability density of (X1+τ1 , . . . , X1+τl) (1 ≤ l ≤ 4). Assume

that fτ1,τ2,···,τl(·) exists and satisfies the following Lipschitz condition:

|fτ1,τ2,···,τl(u1, · · · , ul)− fτ1,τ2,···,τl(v1, · · · , vl)| ≤ Df ||u− v||

for u = (u1, · · · , ul) and v = (v1, · · · , vl) ∈ S, 1 ≤ l ≤ 4 and 0 < Df <∞ is a constant.

Assumption A.3. (i) The kernel K is a product kernel defined by K(x1, · · · , xd) =
∏d
i=1 k(xi),

where k(·) is a univariate symmetric probability density function and Lipschitz continuous in its

support, that is |k(t1)− k(t2)| ≤ C|t1 − t2| for some positive constant C.

(ii) The smoothing bandwidths h1 and h2 satisfy limn→∞ h1 = 0 and limn→∞
nh2d

1

log6(n)
= ∞.

There is a constant 0 < β0 <∞ such that limn→∞
h1
h2

= β0. Furthermore, we restrict 1 ≤ d ≤ 3.

Assumption A.4. (i) Suppose that for any parametric estimator, θ, of θ

max
1≤i≤2

sup
x∈S
|miθ(x)−miθ(x)| = Op

(
n−1/2

)
.

(ii) Assume that both ∆1n(x) and ∆2n(x) defined in (1.2) are continuous and uniformly

bounded with respect to x ∈ Rd, and Cin = n−1/2h
−d/4
i for i = 1, 2.

Remark A.1. The geometric strong mixing (GSM) assumed in Assumption A.1(i) can be

weakened to α(t) ∼ t−η(d) for some sufficiently large η(d) which depends on d. The GSM has

been established for ARCH models by Masry and Tjøstheim (1995). Assumption A.1(ii) holds

naturally. For example, when {Xi} and {ei} are independent, Assumption A.1(ii) requires only

that {ei} is a sequence of martingales satisfying E[ei|ei−1, · · · , e1] = 0 and E[e2
i |ei−1, · · · , e1] = 1.

For this case, model (1.1) becomes a nonparametric ARCH model when Xi = (Yi−1, · · · , Yi−d)
and {ei} is a sequence of martingale differences. Assumption A.2 is a set of standard regularity

conditions imposed on mi, f , the joint conditional moment fuctions σjk and the joint probability

density functions. We have also not assumed that the marginal density of Xt has compact

support. Instead, we impose some restrictions on the support of the weight function π(·).
Assumption A.3(ii) on bandwidths hl (l = 1, 2) includes hl = O

(
n−

1
d+4

)
, which is the optimal

bandwidth that minimizes the mean integrated square errors of the curve estimates m̂1(x) and

m̂2(x) and is also the optimal order selected by either the cross–validation or the plug–in method.

The requirement on d ≤ 3 is to ensure that E{S(x)} − Σ1(x), which is O(h2
1), is of an order

smaller than h
d
2
1 . It is known that the kernel method will encounter the curse of dimensionality

when d ≥ 4. To allow for d ≥ 4, a κ–th (κ > 2) order kernel may need to be employed

such that E{S(x)} − Σ1(x) is reduced to hκ1 . This then permits d to be extended to d < 2κ.

Assumption A.4(i), which requires the
√
n–rate of convergence for the parametric case, is a

standard condition. It holds when θ is a
√
n–consistent estimator of θ. Assumption A.4(ii)

imposes a reasonable restriction on Cin for this kind of kernel test.
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To evaluate the asymptotic properties of log-EL ratio `{m̃θ̂(x)}, the uniform order of the

Lagrange multiplier λ(x) defined in (2.3) is studied in the following lemma.

Lemma A.1. Under Assumptions A.1–A.3, we have

sup
x∈S
||λ(x)|| = op{(nhd1)−1/2 log(n)}.

Proof: Let Sn(x) = n−1
∑n

i=1Qi(x)Qτi (x) and recall that

Ū1(x) = (nhd1)−1
n∑
i=1

K

(
x−Xi

h1

)
{Yi − m̃1θ̃(x)} and(A.1)

Ū2(x) = (nhd1)−1
n∑
i=1

K

(
x−Xi

h2

)[
{Yi − m̃1θ̃(Xi)}2 − m̃2θ̃(x)

]
.(A.2)

Following Owen (1990), to prove the lemma we need to show that, for any η ∈ R2 and ||η|| = 1,

sup
x∈S
|Ūj(x)| = op{(nhd1)−1/2 log(n)}, for j = 1, 2(A.3)

P{ inf
x∈S

ητSn(x)ηh−d1 ≥ d0} = 1 for a positive d0 > 0, and(A.4)

max
1≤i≤n

sup
x∈S
||Qi(x)|| = op{(nhd1)1/2 log−1(n)},(A.5)

where Qi(x) =

[
K
(
x−Xi
h1

)
{Yi − m̃1θ̃(x)},K

(
x−Xi
h2

)
[{Yi − m̃1θ̃(x)}2 − m̃2θ̃(x)]

]τ
.

The proof of (A.3) for j = 1 has been given in Chen, Härdle and Li (2003), and that for j = 2

is almost the same. To prove (A.4), we note that, following standard techniques to establish

uniform convergence for α-mixing sequences for instance those given in Bosq (1998),

h−d1 Sn(x) = Σ1(x) + Õp{(nhd)−1/2 log n+ h2
1},(A.6)

where Σ1(x) is defined in (2.5) and Õp(δn) denotes the term which is Op(δn) after taking suprema

over x ∈ S for a non–random sequence δn. Similar understanding should be given for õp(δn).

It can be shown by applying the Cauchy-Schwarz inequality that R(β−1)R(β) ≤ 1. This,

along with Assumption A.2(ii), implies that Σ1(x) is positive definite at each x and that the

smallest eigenvalue of Σ1(x) is uniformly bounded away from zero. This then implies (A.4).

Let wi = supx∈S ||Qi(x)||. AsK, m and ∆n are all bounded in S, then wi ≤ C1(|εi|+|ηi|)+C2.

From the Chebyshev inequality and Assumption A.1(iii),

P
(
wi > (nhd1)1/2{log(n)}−1

)
≤ P

(
|εi| ≥ C3(nhd1)1/2{log(n)}−1

)
+ P

(
|ηi| ≥ C3(nhd1)1/2{log(n)}−1

)
≤ C4(nhd1)−r/2 logr(n)}

for r > 4. This yields

∞∑
n=1

P
(
wi > (nhd1)1/2{log(n)}−1

)
≤ C5

∞∑
n=1

(nhd1)−r/2 logr(n) ≤ C5

∞∑
n=1

n−r/4 logr(n) <∞
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using limn→∞ nh
2d
1 =∞.

The Borel–Cantelli lemma implies that wi > (nhd1)1/2{log(n)}−1 finitely often with proba-

bility one. This means that Zn = max1≤i≤nwi > (nhd1)1/2{log(n)}−1 finitely often. Equation

(A.5) is therefore proved.

Derivation of (2.6): From Lemma A.1, a Taylor expansion from (2.3) yields

n∑
i=1

Qi(x)[1−Qτi (x)λ(x)] + Õp{(nhd1)−1/2 log(n)} = 0.

Inverting the above expansion,

λ(x) = S−1(x)Ū(x) + õp{(nhd1)−1 log2(n)}

= Σ−1
1 (x)Ū(x) + Õp{(nhd1)−1 log2(n) + h2

1(nhd1)−1/2 log(n)}.(A.7)

An expansion to the log-empirical likelihood ratio is

`{m̃θ̃(x)} = 2
n∑
i=1

log{1 + λτ (x)Qi(x)}

= 2λτ (x)
∑

Qi(x)− λτ (x)
∑

Qi(x)Qi(x)λ(x) + õp{(nhd1)−1/2 log3(n)}

= (nhd1)Ū τ (x)Σ−1
1 (x)Ū(x) + õp{(nhd1)−1/2 log3(n) + h2

1 log2(n)}(A.8)

= nhd1{m̂(x)− m̃θ̃(x)}τΣ−1
0 (x){m̂(x)− m̃θ̃(x)}

+ õp{(nhd1)−1/2 log3(n) + h2
1 log2(n)},

which establishes (2.6).

Proof of Theorem 2.1. Recall that εi = Yi−m1(Xi) =
√
m2(Xi)ei and ηi = m2(Xi)(e

2
i −1).

Hence

Ū1(x) = n−1
∑

Kh1(x−Xi){εi + C1n∆n1(Xi)}+Op(n
−1/2),(A.9)

Ū2(x) = n−1βd
∑

Kh2(x−Xi)

[
{εi + C1n∆n1(Xi)}2 − m̃2θ̃(x)

]
= n−1βd

∑
Kh2(x−Xi){ηi + C2n∆n2(Xi)}+Op{n−1/2 + n−1h

−3d/4
1 log n}(A.10)

as θ̂ is an
√
n–consistent estimator of θ and supx |mθ(x)−mθ̃(x)| = Op(n

−1/2).

From (2.5)

Σ−1
1 (x) =

f−1(x)R−1(K)

βdσ02(x)σ20(x)−R2(β,K)σ2
11(x)

 βdσ02(x) −R(β,K)σ11(x)

−R(β,K)σ11(x) σ20(x)


=

 ν11(x) ν12(x)

ν21(x) ν22(x)

 .
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For i = 1, 2, let Wti(x) = n−1Khi(x−Xt), and for s, t = 1, 2, . . . , n,

ast = nhd1

∫
Ws1(x)Wt1(x)ν11(x)π(x)dx,

bst = nhd1

∫
Ws1(x)Wt2(x)ν12(x)π(x)dx and

cst = nhd1

∫
Ws2(x)Wt2(x)ν22(x)π(x)dx.

Then, (2.7), (A.9) and (A.10) lead to Nn(h) = Sn1(h) + Sn2(h) + Sn3(h) + op(h
d/2
1 ), where

S1n(h) =
∑

1≤s 6=t≤n
{astεsεt − 2bstεsηt + cstηsηt},

S2n(h) =
n∑
s=1

{assε2s − 2bssεsηs + cssη
2
s},

S3n(h) = nhd1

C2
1n

∫ ( n∑
s=1

Ws1(x)∆n1(Xs)

)2

ν11(x)π(x)dx


+ nhd1

C2
2nβ

2d

∫ ( n∑
s=1

Ws2(x)∆n2(Xs)

)2

ν22(x)π(x)dx


− 2nhd1

[
C1nC2nβ

d

∫ ( n∑
s=1

Ws1(x)∆n1(Xs)

)(
n∑
t=1

Wt2(x)∆n2(Xt)

)
ν12(x)π(x)dx

]
.

Standard derivations show that E{Sn2(h)} = 2 +O(h2
1) and Var{Sn2(h)} = o(hd1). Hence

Sn2(h) = 2 + op(h
d/2
1 ).(A.11)

Since
∑n

i=1Wsl(x)∆nl(Xs) = ∆nl(x)f(x) + õp{(nhd1)−1/2 log n + h2
1} for l = 1 and 2, and the

fact that Cni = n−1/2h
−d/4
i ,

Sn3(h) = h
d/2
1

∫
f2(x)∆τ

n(x)Σ−1
1 (x)∆n(x)π(x)dx+ op(h

d/2
1 ).(A.12)

Therefore, both S1n(h) and S2n(h) contribute only to the mean of Nn(h). It remains to

establish the variance and then the asymptotic normality of Sn1(h). Let φst = φst(h) = astεsεt−
2bstεsηt + cstηsηt. Then, S1n(h) =

∑
1≤s 6=t≤n φst is a degenerate U -statistic. Let σ2

st = Var(φst)

and σ2
n(h) =

∑
1≤i 6=j≤n σ

2
ij .

Let us derive σ2
n(h) and then prove the asymptotic normality of Sn1(h). Observe that

σ2
n(h) =

∑
1≤s6=t≤n

E
[
φ2
st

]
=

∑
1≤s 6=t≤n

E
[
a2
stε

2
sε

2
t + 4b2stε

2
sη

2
t + c2

stη
2
sη

2
t

]
+ 2

∑
1≤s 6=t≤n

E
[
astcstεsεtηsηt − 2astbstε

2
sεtηt − 2bstcstεsηsη

2
t

]
(A.13)

≡
6∑
l=1

σ2
ln(h).
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It can be shown according to the definition of ast that

a2
st =

∫ ∫
1

(nhd1)2
K

(
x−Xs

h1

)
K

(
y −Xs

h1

)
K

(
x−Xt

h1

)
K

(
y −Xt

h1

)
× ν11(x)π(x)ν11(y)π(y)dxdy.

Thus,

E
[
a2
stε

2
sε

2
t

]
= E

{
a2
stE

[
ε2sε

2
t |(Xs, Xt)

]}
= E

[
a2
stσ20(Xs)σ20(Xt)

]
=

1

(nhd1)2

∫ ∫
ν11(x)π(x)ν11(y)π(y)

× E

[
K

(
x−Xs

h1

)
K

(
y −Xs

h1

)
K

(
x−Xt

h1

)
K

(
y −Xt

h1

)
σ20(Xs)σ20(Xt)

]
× dxdy.

Using Assumptions A.2 and A.3, we have as n→∞

E

[
K

(
x−Xs

h1

)
K

(
y −Xs

h1

)
K

(
x−Xt

h1

)
K

(
y −Xt

h1

)
σ20(Xs)σ20(Xt)

]
= h2d

1

∫ ∫
K

(
s+

x− y
h

)
K(s)K(t)K

(
t− x− y

h1

)
σ20(x− th1)σ20(y − sh1)

× f(x− th1, y − sh1)dsdt

= h2d
1 L

2

(
x− y
h1

)
σ20(x)σ20(y)f(x, y)(1 + o(1)),

where L(x) =
∫
K(x + y)K(y)dy and f(x, y) is the joint density of (Xs, Xt). Therefore, as

n→∞

σ2
1n ≡

∑
1≤s 6=t≤n

E
[
a2
stε

2
sε

2
t

]
=

∫ ∫
ν11(x)π(x)ν11(y)π(y)σ20(x)σ20(y)L2

(
x− y
h1

)
f(x, y)dxdy(1 + o(1)).(A.14)

The other terms can be derived in a similar fashion. It may be shown by matching the terms

with the definition of Σ that

σ2
n(h) = 2

∫ ∫
tr{Σ(x, y)Σ−1(y, y)Στ (x, y)Σ−1(x, x)}π(x)π(y)dxdy

= 2

∫ ∫ 2∑
i,j=1

ω2
ij(x, y)π(x)π(y)dxdy,(A.15)

where {ωij(x, y)} is the (i, j) element of Ω(x, y) and tr(M) denotes the trace of M , in which

Ω(x, y) is the same as in (2.8).

We now need to establish the asymptotic normality of Sn1(h). Let γi = (Xi, εi, ηi), P (γi),

P (γi, γj), P (γi, γj , γk) and P (γi, γj , γk, γl) be the probability measures of γi, (γi, γj), (γi, γj , γk)
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and (γi, γj , γk, γl) for different i, j, k, l ∈ {1, · · · , n} respectively. Define for some constant δ > 0,

Mn1 = max
1<i<j≤n

max

{
E
[
|φ1jφij |1+δ

]
,

∫
|φ1jφij |1+δdP (γ1)dP (γi, γj)

}
,

Mn21 = max
1<i<j≤n

max

{
E
[
|φ1jφij |2(1+δ)

]
,

∫
|φ1jφij |2(1+δ)dP (γ1)dP (γi, γj)

}
,

Mn22 = max
1<i<j≤n

max

{∫
|φ1jφij |2(1+δ)dP (γ1, γi)dP (γj),

∫
|φ1jφij |2(1+δ)dP (γ1)dP (γi)dP (γj)

}
,

Mn2 = max {Mn21,Mn22} ,

Mn3 = max
1<i<j≤n

E|φ1jφij |2, Mn4 = max
1<i,j,k≤n

{
max
P

∫
|φ1jφjk|2(1+δ)dP

}
,

Mn5 = max
1<i<j

max

{
E

∣∣∣∣∫ φ1iφ1jdP (γ1)

∣∣∣∣2(1+δ),∫ ∣∣∣∣∫ φ1iφ1jdP (γ1)

∣∣∣∣2(1+δ)dP (γi)dP (γj)

}
,

Mn6 = max
1<i<j

E

∣∣∣∣∫ φ1iφ1jdP (γ1)

∣∣∣∣2,
where the maximization over P is taken over P (γ1, γi, γj , γk), P (γ1)P (γi, γj , γk), P (γ1)P (γi)P (γj , γk)

and P (γ1)P (γi)P (γj)P (γk) for mutually different i, j, k.

According to Theorem A.1 of Gao (2007), {σn(h)}−1Sn1(h) is asymptotically normal if for

some δ > 0, as n→∞,

maxσ−2
n

{
n2

(
M

1
1+δ

n1 +M
1

2(1+δ)

n5 +M
1
2
n6

)
, n

3
2

(
M

1
2(1+δ)

n2 +M
1
2
n3 +M

1
2(1+δ)

n2

)}
→ 0.(A.16)

To verify (A.16), we evaluate only the order of magnitude of Mn2 as the other terms can be

investigated in a similar fashion. We first work on Mn2. Notice that for l = 1 and 2∣∣∣∣∫ Khl(x−Xi)Khl(x−Xj)vll(x)π(x)dx

∣∣∣∣ ≤ CLhl(Xi −Xj) and(A.17) ∣∣∣∣∫ Kh1(x−Xi)Kh2(x−Xj)vll(x)π(x)dx

∣∣∣∣ ≤ CLh2(Xi −Xj , β),(A.18)

where Lhl(t) = h−dl L(t/hl) = h−dl K(2)(t/hl) and Lhl(t, β) = h−dl L(t/hl, β). Assumption A.1(iii)

implies that E
[
|ζ1ζiζ

2
j |2(1+δ)p

]
are all bounded where ζl is either εl or ηl for l = 1, i and j, and

p > 1. Applying Hölder’s inequality, for 1 < i < j ≤ n and some r > 1 such that p−1 + r−1 = 1,

E
[
|φ1jφij |2(1+δ)

]
≤ C

{ 2∑
l=1

[
E{Lh1(X1 −Xj)Lhl(Xi −Xj)}2(1+δ)r

] 1
r

(A.19)

+

[
E{Lh1(X1 −Xj)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r

+

2∑
l=1

[
E{Lh2(X1 −Xj)Lhl(Xi −Xj)}2(1+δ)r

] 1
r

+

[
E{Lh2(X1 −Xj)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r

+

2∑
l=1

[
E{Lh2(X1 −Xj , β)Lhl(Xi −Xj)}2(1+δ)r

] 1
r
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+

[
E{Lh2(X1 −Xj , β)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r
}
.

Note that Lh(t, β1) = Lh(t) if β1 = 1. Let f1ij be the joint density of (X1, Xi, Xj). Then for

β1 = 1 or β and l,m = 1 or 2,[
E{Lhl(X1 −Xj , β1)Lhm(Xi −Xj , β)}2(1+δ)r

] 1
r

(A.20)

= (hlhm)−2d(1+δ)+2d/r

×
[∫ ∫ ∫

{L(u, β1)L(v, β2)}2(1+δ)rf1ij(z − hlu, z − hmv, z)dudvdz
] 1
r

≤ Ch
−4d(1+δ)+2d/r
1 .

Therefore, if we choose r such that 1 < r < 2
1+δ then,{

E
[
|φ1jφij |2(1+δ)

]} 1
2(1+δ) ≤ Ch−2d+ d

r(1+δ) = o(n1/2h−d1 ).(A.21)

Now let us consider the second term in Mn2. Let Ei and Eij be expectations with respect

to γi and (γi, γj) respectively. From (A.17) and (A.18), and applying the same argument as in

(A.19), we have

E1Eij

[
|φ1jφij |2(1+δ)

]
≤ CE1

{
|ε1|2(1+δ)

2∑
l=1

[
Eij{Lh1(X1 −Xj)Lhl(Xi −Xj)}2(1+δ)r

] 1
r

+ |ε1|2(1+δ)

[
Eij{Lh1(X1 −Xj)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r

+ |η1|2(1+δ)
2∑
l=1

[
Eij{Lh2(X1 −Xj)Lhl(Xi −Xj)}2(1+δ)r

] 1
r

+ |η1|2(1+δ)

[
Eij{Lh2(X1 −Xj)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r

+ (|ε1|+ |η1|)2(1+δ)
2∑
l=1

[
Eij{Lh2(X1 −Xj , β)Lhl(Xi −Xj)}2(1+δ)r

] 1
r

+ (|ε1|+ |η1|)2(1+δ)

[
Eij{Lh2(X1 −Xj , β)Lh2(Xi −Xj , β)}2(1+δ)r

] 1
r
}
.

Note that (A.20) is still true if we replace E there by E1Eij . Therefore, if we choose q such

that 1 < r < 2
1+δ ,{

E1Eij

[
|φ1jφij |2(1+δ)

]} 1
2(1+δ) ≤ Ch

−2d+ d
r(1+δ)

1 = o(n1/2h−d1 ).(A.22)

The third term in Mn2 is almost the same as the second term we have just evaluated, and

hence {
EjE1i

[
|φ1jφij |2(1+δ)

]} 1
2(1+δ) ≤ Ch

−2d+ d
r(1+δ)

1 = o(n1/2h−d1 ).(A.23)
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The last term in Mn2 is in fact
{
E1EiEj

[
|φ1jφij |2(1+δ)

]} 1
2(1+δ) , and it may be shown by

applying the same method as above that{
E1EiEj

[
|φ1jφij |2(1+δ)

]} 1
2(1+δ) ≤ Ch

−2d+ d
r(1+δ)

1 = o(n1/2h−d1 ).(A.24)

Combining (A.21), (A.22), (A.23) and (A.24), we have n3/2M
1

2(1+δ)

n2 = o(σ2
n(h)). Thus, the

verification of (A.16) is completed.

Therefore, in the light of (A.11), (A.12), (A.15) and the asymptotic normality of Sn1, we

have as n→∞

σn(h)−1

(
Nn(h)− 2− hd/21

∫
f2(x)∆τ

n(x)Σ−1
1 (x)∆n(x)π(x)dx

)
d→ N(0, 1).(A.25)

This completes the proof of Theorem 2.1.

Appendix B. Proofs of Theorems 3.1–3.4.

To avoid repeating the conditioning argument (given X = (X1, · · · , Xn)) for each case in the

following proofs of Lemmas B.1–B.10, we use P∗ and E∗ to represent the respective conditional

probability and conditional expectation given X . Unless otherwise stated, the corresponding

conditioning arguments are all understood to be held in probability with respect to the joint

distribution of X = (X1, · · · , Xn).

B.1. Assumptions. Let M = {mθ(·) : θ ∈ Θ}. For i = 1, 2, define 5θmiθ(x) = ∂miθ(x)
∂θ and

52
θmiθ(x) = ∂2miθ(x)

∂θ∂θ′ , whenever these derivatives exist. For any q × q matrix D, define

||D||∞ = sup
v∈Rq

||Dv||
||v||

,

where ||v||2 =
∑q

i=1 v
2
i for v = (v1, . . . , vq)

τ .

Assumption B.1. The parameter set Θ is an open subset of Rq for some q ≥ 1. The parametric

family M = {mθ(·) : θ ∈ Θ} satisfies:

(i) For each x ∈ S and i = 1, 2, miθ(x) is twice differentiable almost surely with respect to

θ ∈ Θ. In addition, suppose that there exist constants 0 < Gji <∞ for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3

such that

sup
θ∈Θ

∫
x∈S
|miθ(x)|2 f(x)dx ≤ G1i <∞, sup

θ∈Θ

∫
x∈S
||5θmiθ(x)||2 f(x)dx ≤ G2i <∞,

sup
θ∈Θ

∫
x∈S

∣∣∣∣52
θmiθ(x)

∣∣∣∣2
m
f(x)dx ≤ G3i,

where ||B||2m =
∑q

i=1

∑q
j=1 b

2
ij for B = (bij)1≤i,j≤q and f(x) denotes the marginal density of Xi.

(ii) For each i = 1, 2 and θ ∈ Θ, miθ(x) is twice differentiable almost surely with respect to

x ∈ Rd.
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(iii) Assume that there is a finite CI > 0 such that for every ε > 0 and i = 1, 2

inf
θ,θ′∈Θ:||θ−θ′||≥ε

∫
x∈S

[miθ(x)−miθ′(x)]2 f(x)dx ≥ CI .

Assumption B.2. (i) Let H0 be true. Then θ0 ∈ Θ and limn→∞ P∗

(√
n||θ̃ − θ0|| > CL

)
< ε

for any ε > 0 and all sufficiently large CL.

(ii) Under H1 there is a θ̃1 ∈ Θ such that limn→∞ P∗

(√
n||θ̃ − θ̃1|| > CL

)
< ε for any ε > 0

and all sufficiently large CL.

(iii) Assume that given Ωn
1 , there is a sequence of independent random errors {e∗t } such that

for 1 ≤ j ≤ 4,

P
(
E
[
e∗jt |Ωn

1

]
= E[ejt |Ωt−1]

)
= 1,(B.1)

where Ωn
1 and Ωi−1 are as defined in Assumption A.1. In addition, there is some constant

δζ > 0 such that E∗

(∣∣∣ζi1t1 ζi2t2 · · · ζiltl ∣∣∣1+δζ
)
< ∞ holds in probability, where ζt =

√
m2(Xi)et∗ or

m2(Xi)
[
e2
t∗ − 1

]
with et∗ = et or e∗t , 1 ≤ l ≤ 4 and

∑l
j=1 ij ≤ 8.

(iv) Let {θn,0 : n = 1, 2, . . .} be a sequence in Θ whose limit points, if any, are all in Θ.

Define Y ∗t = m1θn,0(Xt) +
√
m2θn,0(Xt)e

∗
t , where {e∗t } is sampled randomly from a distribution

with zero mean and unit variance. Let θ̂∗n be the estimator of θn,0 that is obtained from {Y ∗t , Xt :

t = 1, 2, . . . , n}. Then

lim
n→∞

P∗

(√
n||θ̂∗n − θn,0|| > CL

)
< ε

for any ε > 0 and all sufficiently large CL.

Assumption B.3. (i) Assume that Assumptions A.1–A.3 hold.

(ii) Assume that himax = cimax (loglogn)−1/d > himin = ciminn
−γi for i = 1, 2, where γi,

cimin and cimax are some constants satisfying 0 < γi <
1
2d and 0 < cimin, cimax <∞.

Assumptions B.1, B.2 and B.3(i) are quite standard in this kind of problem, and mirror

Assumptions 1, 2 and 4 of Horowitz and Spokoiny (2001) for the fixed–design case. Assumption

B.3(ii) allows the estimation based optimal rate of n−
1

4+d to be included in the range of himin

and hence the bandwidth prescribed by either the cross–validation or the plug–in bandwidth

selector can be used to guide the bandwidth set selection. Conditions similar to (B.1) are

assumed in Franke, Kreiss and Mammen (2002). In addition, condition (B.1) is made deliberately

general such that the theorems of Section 3 are valid for a wider range of situations. For

example, equation (B.1) follows if there is a sequence of independent random errors {δ̃tj} with

E[δ̃tj |Ωn
1 ] = 0 such that for j = 1, · · · , 4

e∗jt = E[ejt |Ωt−1] + δ̃tj .(B.2)

For practical implementations, more details on the innovation process are needed to facilitate

the bootstrap generation of {e∗t }nt=1. Under the assumption that

P
(
E[ejt |Ωt−1] = E[eji ]

)
= 1 for 1 ≤ j ≤ 4,(B.3)
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we use the standard bootstrap for random design regression as outlined in Section 3. The

justification is the following. Let êt =
Yt−m1θ̃(Xt)√

m2θ̃(Xt)
, m̂j = 1

n

∑n
t=1 ê

j
t for j = 1, 2, 3, 4 and Fn be

the empirical distribution of {êi : 1 ≤ i ≤ n}. Given {(Xt, Yt) : 1 ≤ t ≤ n}, we draw a sequence

of independent and identically distributed bootstrap resamples {e∗t : t ≥ 1} from Fn.

B.2. Technical Lemmas. Before stating the necessary lemmas for the proofs of Theorems

3.1–3.4 given in Section 3, we introduce the following notation.

For i = 1, 2, let Wti(x) = n−1Khi(x−Xt),

λit(θ) = λi(Xt, θ) = mi(Xt)−miθ(Xt) = miθ0(Xt)−miθ(Xt),(B.4)

λi(θ) = (λi1(θ), · · · , λin(θ))τ , λ(θ) = (λ1(θ)τ , λ2(θ)τ )τ ,

Σ−1
1 (x) =

 ν11(x) ν12(x)

ν21(x) ν22(x)

 ,

Wi(x) = (W1i(x), . . . ,Wni(x))τ , W (x) = (W1(x),W2(x))τ ,

Aij(x) = W (x)νij(x)W (x)τ , Aij =

∫
Aij(x)π(x)dx,

A =

 A11 A12

A21 A22

 .(B.5)

Recall from Appendix A that

ast = nhd1

∫
Ws1(x)Wt1(x)ν11(x)π(x)dx,

bst = nhd1

∫
Ws1(x)Wt2(x)ν12(x)π(x)dx,

cst = nhd1

∫
Ws2(x)Wt2(x)ν22(x)π(x)dx,

φst = astεsεt − 2bstεsηt + cstηsηt.

Let

N0n(h) =

n∑
s=1

n∑
t=1

φst, N1n(h, θ̃) = (nhd1)

∫
Ū(x)τΣ−11 (x)Ū(x)π(x)dx and

Qn(θ) = λ(θ)τAλ(θ) =

n∑
s=1

n∑
t=1

[astλ1s(θ)λ1t(θ)− 2bstλ1s(θ)λ2t(θ) + cstλ2s(θ)λ2s(θ)] .

From (2.7),

Nn(h) = N1n(h, θ̃) + op(h
d/2
1 ) and N1n(h, θ̃) = N0n(h) +Qn(θ̃) + Πn(θ̃),(B.6)

where Πn(θ) = N1n(h, θ̃)−N0n(h)−Qn(θ̃).

Lemma B.1. Let Assumptions B.1–B.3 hold.
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(i) For every δ > 0 and sufficiently large n, sup||θ−θ0||≤δ Qn(θ) ≤ Cnhd1δ
2, in probability

uniformly in h ∈ Hn, where C > 0 is a constant.

(ii) For each θ ∈ Θ and sufficiently large n, C1h
d
1 · λ(θ)τλ(θ) ≤ Qn(θ) ≤ C2h

d
1 · λ(θ)τλ(θ),

in probability for some 0 < C1 ≤ C2 <∞.

Proof: (i) It follows from the definition of Qn(θ) that

Qn(θ) ≤ ||A||∞||λ(θ)||2.

In order to prove Lemma B.1(i), one needs to show that

||A||∞ ≤ Chd1(B.7)

in probability for some constant C > 0.

Note that ||A||∞ ≤ max1≤i,j≤2{||Aij ||∞}. Thus, we just evaluate ||A11||∞ as the other three

terms can be done similarly. Let q(x) = ν11(x)π(x) and f̃(x) = 1
nhd1

∑n
i=1K

(
x−Xt
h1

)
be the

kernel density estimator of f . Since A11 = {ast}n×n, we have

||A11||∞ ≤ max
1≤t≤n

n∑
s=1

|ast| ≤ max
1≤t≤n

∫
f̃(x)K

(
x−Xt

h1

)
|q(x)|dx

= C(1 + op(1))hd1 max
1≤t≤n

(∫
K(u)f(Xt + uh1)|q(Xt + uh1)|du

)
≤ Chd1.

Similarly, one can show that (B.7) is true for the other parts of Qn(θ). In view of (B.7), in

order to prove Lemma B.1(i), it suffices to show that in probability

sup
||θ−θ0||≤δ

||λ(θ)||2 ≤ Cnδ2.(B.8)

A Taylor series expansion to miθ(Xt) −miθ0(Xt) and an application of Assumption B.1(i)

imply (B.3). This finishes the proof of Lemma B.1(i).

(ii) Let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of A, respectively.

In view of

λmin(A) · ||λ(θ)||2 ≤ Qn(θ) ≤ λmax(A) · ||λ(θ)||2,

in order to prove Lemma B.1(ii), it suffices to show that for n large enough

λmin(A) ≥ Chd1(1 + op(1)) in probability(B.9)

for some C > 0. Analogously to the proof of Lemma A.2 of Gao, Tong and Wolff (2002), one

can finish the proof of (B.9).

For simplicity, in the following lemmas and their proofs, we let q = 1. For 1 ≤ i, j ≤ 2,

define

ψij(Xt, θ) = m
(j)
iθ (Xt) =

djmiθ(Xt)

dθj
.
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Lemma B.2. Under Assumptions B.1–B.3, we have for any given θ ∈ Θ and i = 1, 2

J
−1/2
1n max

h1∈H1n

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsψi1(Xt, θ)

∣∣∣∣∣ = Op(1),(B.10)

J
−1/2
12n max

h∈H1n

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

bstεsψi1(Xt, θ)

∣∣∣∣∣ = Op(1),(B.11)

J
−1/2
2n max

h2∈H2n

h
−d/2
2

∣∣∣∣∣
T∑
s=1

T∑
t=1

cstηsψi1(Xt, θ)

∣∣∣∣∣ = Op(1),(B.12)

where J12n = J1n × J2n.

Proof: We prove (B.10) only; the others follow similarly. It suffices to show that for any

large constant C0 > 0

P∗

[
J
−1/2
1n max

h1∈H1n

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsψi1(Xt, θ)

∣∣∣∣∣ > C0

]
(B.13)

≤
∑

h1∈H1n

P∗

[∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsψi1(Xt, θ)

∣∣∣∣∣ > C0J
1/2
1n h

d/2
1

]

≤
∑
h∈H1n

1

C2
0J1nhd1

E∗

[
n∑
s=1

n∑
t=1

astεsψi1(Xt, θ)

]2

≤
∑

h1∈H1n

1

C2
0J1nhd1

{
n∑
s=1

n∑
t=1

E∗ [astεsψi1(Xt, θ)]
2 + Π1n(θ)

}
,

where Π1n(θ) = E∗

[∑
(s,t)6=(s′,t′) astεsψi1(Xt, θ)as′t′εs′ψi1(Xt′ , θ)

]
.

Similarly to (A.13) and (A.14), one can show that as n→∞

n∑
s=1

n∑
t=1

E∗ [astεsψi1(Xt, θ)]
2 = C(θ)hd1(1 + o(1))(B.14)

for some function C(θ).

Analogously to Theorem A.1 of Gao (2007), we can show that as n→∞

Π1n(θ) = o(hd1).(B.15)

Thus, equations (B.13)–(B.15) complete the proof.

Lemma B.3. Under Assumptions B.1–B.3, we have as n→∞

J−1/2
n max

h∈Hn
h
−d/2
1 max

1≤s≤n

∣∣∣∣∣
n∑
t=1

dstζt

∣∣∣∣∣ = Op(1),(B.16)

where ζt = εt or ηt, dst = ast, bst or cst, and Jn = J1n, J12n or J2n.

Proof: The proof is similar to that of Lemma B.2 and therefore omitted.
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Lemma B.4. Under Assumptions B.1–B.3, we have for each u > 0 and i = 1, 2,

max
h∈Hn

sup
|θ−θ0|≤n−1/2u

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

dstζsλit(θ)

∣∣∣∣∣ = Op

(
J

1/2
12nn

−1/2
)

= op(1)(B.17)

under H0, and for each u > 0 and some h ∈ Hn

sup
|θ−θ0|≤n−1/2u

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

dstζsλit(θ)

∣∣∣∣∣ = op(1)(B.18)

under H1, where dst = ast, bst or cst is as defined before.

Proof: We prove (B.17) for dst = ast, ζt = εt and i = 1 only. Using a Taylor series expansion

for m1θ(Xt)−m1θ0(Xt) and Assumption B.1, we have for θ′ between θ and θ0∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsλ1t(θ)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
s=1

n∑
t=1

astεs [m1θ(Xt)−m1θ0(Xt)]

∣∣∣∣∣(B.19)

≤

∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsψ11(Xt, θ0)

∣∣∣∣∣ |θ − θ0|

+
1

2

∣∣∣∣∣
n∑
s=1

n∑
t=1

astεsψ21(Xt, θ
′)

∣∣∣∣∣ |θ − θ0|2.

Hence, (B.10) and Assumption B.1(i) imply

max
h1∈H1n

sup
|θ−θ0|≤n−1/2u

h
−d/2
1

∣∣∣∣∣
n∑
s=1

n∑
t=1

astζsλ1t(θ)

∣∣∣∣∣ ≤ Op (J1/2
1n n

−1/2
)

as required. The proof of (B.18) follows similarly.

Lemma B.5. Let Assumptions B.1–B.3 hold. Then for every u > 0, some h ∈ Hn, i = 1, 2,

and any sequence {Dn} → ∞ as n→∞

sup
|θ−θ0|≤n−1/2u

∣∣∣∣∣
n∑
s=1

n∑
t=1

dstζsλi(Xt, θ)

∣∣∣∣∣ = op(h
d/2
1 Dn).(B.20)

Proof: The proof is similar to that of Lemma B.4 and therefore omitted.

In view of the definition of Ln(h) = Nn(h)−2

h
d/2
1

and (B.6), let us define

L0n(h) =
N0n(h)− 2

h
d/2
1

,

L1n(h) =
N1n(h, θ̃)− 2

h
d/2
1

and

L2n(h) =
N1n(h, θ̃1)− 2

h
d/2
1

,(B.21)

where θ̃1 = θ0 when H0 is true and θ̃1 is as defined in Assumption B.2(ii) when H0 is false.
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Let ε̃∗t =
√
m2θ̃(Xt)e

∗
t , η̃

∗
t = m2θ̃(Xt)[e

∗2
t − 1], and L∗0n(h) be the version of L0n(h) with εt

and ηt replaced by ε̃∗t and η̃∗t respectively. For each t = 1, 2, . . . , n, generate Y ∗t = m1θ̃(Xt) +√
m2θ̃(Xt)e

∗
t . Use the data set {Y ∗t , Xt : 1 ≤ t ≤ n} to re–estimate θ and denote the resulting

estimate by θ̂∗. Let L∗1n(h) be the version of L1n(h) with θ̃, Xt, Yt replaced with θ̂∗, Xt and Y ∗t

respectively. In addition, let φ̃∗st = astε̃
∗
s ε̃
∗
t − 2bstε̃

∗
s η̃
∗
t + cstη̃

∗
s η̃
∗
t .

Lemma B.6. (i) Let Assumptions B.1–B.3 hold. Then as n→∞

Ln(h) = L1n(h) + op(1) = L2n(h) + op(1) and L∗1n(h) = L∗0n(h) + op(1)(B.22)

uniformly over h ∈ Hn. Under H0, uniformly over h ∈ Hn,

L1n(h) = L0n(h) + op(1).(B.23)

(ii) Let Assumptions B.1–B.3 hold. Then as n→∞

max
h∈Hn

h
−d/2
1

(
n∑
s=1

φss − 2

)
= op(1) and max

h∈Hn
h
−d/2
1

(
n∑
s=1

φ̃∗ss − 2

)
= op(1).(B.24)

Proof: In view of the definitions given in (B.6) and (B.21), in order to prove the first part

of (B.22), it suffices to show that

Qn(θ̃)−Qn(θ̃1) = op(h
d/2
1 ) and Πn(θ̃)−Πn(θ̃1) = op(h

d/2
1 ).(B.25)

uniformly over h ∈ Hn.

The first part of (B.25) follows from Lemma B.1(i) using Assumption B.2. To prove the

second part of (B.22), in view of (B.6), we have

Πn(θ) = 2
n∑
s=1

n∑
t=1

[astλ1t(θ)εs + bstλ2t(θ)εs + bstλ1t(θ)ηs + cstλ2t(θ)ηs] .

Thus, the proof of the second part of (B.25) follows from Lemma B.4. Analogously, the proof

of (B.23) follows using Assumptions B.1–B.3. The proof of the second part of (B.22) follows

similarly using Assumptions B.1–B.3.

In view of the definitions of both φst and φ̃∗st, to prove (B.24) it suffices to show that as

n→∞

max
h∈Hn

h
−d/2
1

n∑
s=1

(φss − E∗ [φss]) = op(1) and

max
h∈Hn

h
−d/2
1

n∑
s=1

(
φ̃∗ss − E∗

[
φ̃∗ss

])
= op(1).(B.26)

As the proof of the second part of (B.24) is the same as that of the first part, we prove only

the first part. For any given small constant δ > 0, similar to the proof of Lemma B.2 we have

as n→∞

P∗

(
max
h∈Hn

h
−d/2
1

∣∣∣∣∣
n∑
s=1

(φss − E∗ [φss])

∣∣∣∣∣ > δ

)
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≤
∑
h∈Hn

h−d1 δ−2E∗

[
n∑
s=1

(φss − E∗ [φss])

]2

=
∑
h∈Hn

h−d1 δ−2


n∑
s=1

E∗ (φss − E∗ [φss])
2 +

n∑
s=1

n∑
t=1,6=s

E∗ [(φss − E∗ [φss]) (φtt − E∗ [φtt])]


≤ C

∑
h∈Hn

1

nh2d
1

≤ C J12n

nh2d
1 min

→ 0

using J12n

nh2d
1 min

= c−1
min

J12n

n1−2dγ → 0 implied from Assumption B.3(ii), and

n∑
s=1

E∗ (φss − E∗ [φss])
2 =

C

n
,(B.27)

n∑
s=1

n∑
t=1, 6=s

E∗ [(φss − E∗ [φss]) (φtt − E∗ [φtt])] = o

(
C

n

)
,

which may be proved similarly as in (B.14) and (B.15). Therefore, we have finished the proof

of Lemma B.6.

Lemma B.7. Let Assumptions B.1–B.3 hold. Then, maxh∈Hn L1n(h) and maxh∈Hn L
∗
1n(h)

have the same asymptotic distribution under H0.

Proof: In view of Lemma B.6, to prove Lemma B.7, it suffices to show that the distributions

of maxh∈Hn
∑n

s 6=t=1 φst and maxh∈Hn
∑n

s 6=t=1 φ
∗
st are asymptotically the same.

In order to prove that the result holds under H0, in view of Assumption B.2(i), it suffices to

show that the result holds under the following notation:

εi =
√
m2θ0(Xi)ei, ηi = m2θ0(Xi)(e

2
i − 1),

ε∗i =
√
m2θ0(Xi)e

∗
i , η∗i = m2θ0(Xi)(e

∗2
i − 1).

For 1 ≤ s 6= t ≤ n let ξs = (εs, ηs)
τ and φ∗st = ξ∗τs Ãstη

∗
t with

ξ∗s = (ε∗s, η
∗
s)
τ and Ãst = (2h

d/2
1 )−1

 ast −bst

−bst cst

 .

We now need to show that the distributions of maxh∈Hn
∑n

s 6=t=1 φst and maxh∈Hn
∑n

s 6=t=1 φ
∗
st.

We are going to take the approach of Horowitz and Spokoiny (2001) with modifications as the

stochastic quantities being considered are different. For h ∈ Hn, let ut = ξt or ξ∗t , define

Bhn(u1, . . . , un) =
∑
s 6=t

uτs Ãstut.(B.28)

Let Bn(u1, . . . , un) be the sequence that is obtained by stacking the Bhn(u1, . . . , un) over

h ∈ Hn. Let G(·) = Gn(·) be a 3–times continuously differentiable function over RJ12n . Define

Cn(G) = sup
x∈RJ12n

max
i,j,k=1,2,...,J12n

∣∣∣∣ ∂3G(v)

∂vi∂vj∂vk

∣∣∣∣ .
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Like Horowitz and Spokoiny (2001), there are two steps in the proof of Lemma B.7. First,

we want to show that

|E∗ [G(Bn(ξ1, . . . , ξn))]− E∗ [G(Bn(ξ∗1 , . . . , ξ
∗
n))]| ≤ C0Cn

(
J12n

nhd1 min

)3/2

(B.29)

for any 3–times differentiable G(·), some finite constant C0, and all sufficiently large n. Then

in the second step, (B.29) is used to show that Bn(ξ1, . . . , ξn) and Bn(ξ∗1 , . . . , ξ
∗
n) have the same

asymptotic distribution.

Note that

|E∗ [G(Bn(ξ1, . . . , ξn))]− E∗ [G(Bn(ξ∗1 , . . . , ξ
∗
n))]|(B.30)

≤
n∑
t=1

∣∣E∗ [G(Bn(ξ1, . . . , ξt, ξ
∗
t+1, · · · , ξ∗n))

]
− E∗ [G(Bn(ξ1, . . . , ξt−1, ξ

∗
t , . . . , ξ

∗
n))]
∣∣ ,

where Bn(ξ1, . . . , ξn, ξ
∗
n+1) = Bn(ξ1, . . . , ξn) and Bn(ξ0, ξ

∗
1 , . . . , ξ

∗
n) = Bn(ξ∗1 , . . . , ξ

∗
n).

We now derive an upper bound on the last term of the sum on the right–hand side of (B.30).

Similar bounds can be derived for the other terms. Let Un−1, Λn and Λ∗n denote the respective

vectors that are obtained by stacking Uh,n, Λh,n and Λ∗h,n over h ∈ Hn, where

Uh,n =
n−1∑
s=1

n−1∑
t=1, 6=s

ξτs Ãstξt, Λh,n = 2
n−1∑
s=1

ξτs Ãsnξn, Λ∗h,n = 2
n−1∑
s=1

ξτs Ãsnξ
∗
n.

Using a Taylor expansion to the last term of the sum on the right–hand side of (B.30) about

ξn = ξ∗n = 0 gives

|E∗ [G(Bn(ξ1, . . . , ξn))]− E∗ [G(Bn(ξ1, . . . , ξn−1, ξ
∗
n))]| ≤

∣∣E∗ [G′(Un−1) (Λn − Λ∗n)
]∣∣

+
1

2

∣∣E∗ [ΛτnG′′(Un−1)Λn − Λ∗τn G
′′(Un−1)Λ∗n

]∣∣+
Cn(G)

6

{
E∗
[
||Λn||3

]
+ E∗

[
||Λ∗n||3

]}
,

where G′ and G′′ denote the gradient and matrix of second derivatives of G, and Cn(G) is a

positive and finite constant.

Using (B.1), we have

E∗
[
G′(Un−1) (Λn − Λ∗n)

]
= 0,(B.31)

E∗
[
ΛτnG

′′(Un−1)Λn − Λ∗τn G
′′(Un−1)Λ∗n

]
= 0.

This therefore implies that

|E∗ [G(Bn(ξ1, . . . , ξn))]− E∗ [G(Bn(ξ1, . . . , ξn−1, ξ
∗
n))]|(B.32)

≤ C0
Cn(G)

6

(
E∗
[
||Λn||3

]
+ E∗

[
||Λ∗n||3

])
for some constant 0 < C0 <∞.
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To complete the proof, we need to introduce the following notation:

V1n(h) = 2

n−1∑
s=1

ãsnεsεn, V2n(h) = −2

n−1∑
s=1

b̃snηsεn,(B.33)

V3n(h) = −2
n−1∑
s=1

b̃snεsηn, V4n(h) = 2
n−1∑
s=1

c̃snηsηn,

where ãst = (2h
d/2
1 )−1ast, b̃st = (2h

d/2
1 )−1bst and c̃st = (2h

d/2
1 )−1cst. Let {Vin} be the respective

sequence that is obtained by stacking {Vin(h)} over h ∈ Hn for 1 ≤ i ≤ 4. It is obvious that for

i = 1, 2

||Λn||3 ≤ C3

4∑
j=1

||Vjn||3,

where C3 is a constant.

To estimate the upper bound of (B.32), we now calculate only the bound for V4n. The others

follow similarly. Observe that

cst = nhd1

∫
Ws2(x)Wt2(x)ν22(x)π(x)dx(B.34)

=
hd1
nh2d

2

∫
K

(
x−Xs

h2

)
K

(
x−Xt

h2

)
p(x)dx

=
hd1
nhd2

∫
K(u)K

(
u+

Xs −Xt

h2

)
p(Xs + uh2)du

=
hd1
nhd2

L2

(
Xs −Xt

h2
, Xs

)
=
βdn
n
L2

(
Xs −Xt

h2
, Xs

)
,

where p(x) = ν22(x)π(x) and L2(x, y) =
∫
K(u)K(u+ x)p(y + uh2)du.

Using (B.34) we have as n→∞

∑
h∈Hn

∑
k∈Hn

E∗

n−1∑
s=1

n−1∑
t=1,6=s

c̃2
sn(h)c̃2

tn(k)η2
sη

2
t η

4
n

(B.35)

≤
∑
h∈Hn

∑
k∈Hn

β2d
n γ

2d
n

n2hd1k
d
1

E∗

[
L2

2

(
Xs −Xn

h2
, Xs

)
L2

2

(
Xt −Xn

k2
, Xt

)
η2
sη

2
t η

4
n

]

≤ C
∑
h∈Hn

∑
k∈Hn

β2d
n γ

2d
n

n2hd1k
d
1

(
E∗

[∣∣η2
sη

2
t η

4
n

∣∣1+δζ
]) 1

1+δζ

≤ C ·
(

J12n

nh1 min

)2

βdnγ
d
n ≤ C ·

(
J12n

nhd1 min

)2

β2d
0 (1 + o(1))

using Assumptions B.1 and B.2, where k = (k1, k2) with ki ∈ Hin, γn = k1
k2

, f(x, y, z, u, v, w) is

the joint density function of (Xs, Xt, Xn, ηs, ηt, ηn) and 0 < C <∞ is a constant.
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Similarly to (B.15), we can show that as n→∞

∑
h,k∈Hn

DhkE∗

 ∑
1≤s6=t≤n−1

c2sn(h)csn(k)ctn(k)η3sηtη
4
n

 = o

(
J12n
nhd1min

)2

,(B.36)

∑
h,k∈Hn

DhkE∗

 ∑
1≤s 6=t,s6=u,t6=u≤n−1

c2sn(h)ctn(k)cun(k)η2sηtηuη
4
n

 = o

(
J12n
nhd1min

)2

,

∑
h,k∈Hn

DhkE∗


∑

1 ≤ s 6= t, s 6= u, s 6= v,

t 6= u, t 6= v, u 6= v ≤ n− 1

csn(h)ctn(h)cun(k)cvn(k)ηsηtηuηvη
4
n


= o

(
J12n
nhd1min

)2

using the fact that for every given x,

E

[
σ2(Xt)L2

(
Xt − x
h2

, Xt

)
(e2
t − 1)

]
= E

[
σ2(Xt)L2

(
Xt − x
h2

, Xt

)
E
[
(e2
t − 1)|Ωt−1

]]
= 0

implied from Assumption B.1, where Dhk = 1
hd1k

d
1
. The detailed verification of (B.36) is similar

to that of Theorem A.1 of Gao (2007) using their Lemmas A.1 and A.2.

Equations (B.35) and (B.36) imply that as n→∞

∑
h∈Hn

∑
k∈Hn

E∗

 n−1∑
s,t,u,v=1

c̃sn(h)ηsc̃tn(h)ηtc̃un(k)ηuc̃vn(k)ηvη
4
n

(B.37)

=
∑

h,k∈Hn

(h1k1)−dE∗

(
n−1∑
s=1

[
c2
sn(h)c2

sn(k)η4
sη

4
n

])

+
∑

h,k∈Hn

(h1k1)−dE∗

 ∑
1≤s6=t≤n−1

[
c2
sn(h)c2

tn(k) + 2csn(h)csn(k)ctn(h)ctn(k)
]
η2
sη

2
t η

4
n


+ 4

∑
h,k∈Hn

(h1k1)−dE∗

 ∑
1≤s 6=t≤n−1

c2
sn(h)csn(k)ctn(k)η3

sηtη
4
n


+ 4

∑
h,k∈Hn

(h1k1)−dE∗

 ∑
1≤s 6=t,s 6=u,t 6=u≤n−1

c2
sn(h)ctn(k)cun(k)η2

sηtηuη
4
n


+

∑
h,k∈Hn

(h1k1)−dE∗

 ∑
1≤s6=t,s 6=u,s 6=v,t6=u,t6=v,u6=v≤n−1

csn(h)ctn(h)cun(k)cvn(k)ηsηtηuηvη
4
n


≤ C ·

(
J12n

nhd1 min

)2

,

where C > 0 is a constant independent of n.
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Let C̃sn be the vector that is obtained by stacking c̃sn(h) over h ∈ Hn. Then, equation

(B.37) implies that as n→∞

E∗
[
||V4n||3

]
= 8E∗

∣∣∣∣∣
∣∣∣∣∣
n−1∑
s=1

C̃snηsηn

∣∣∣∣∣
∣∣∣∣∣
3
 ≤ 8

E∗
∣∣∣∣∣
∣∣∣∣∣
n−1∑
s=1

C̃snηsηn

∣∣∣∣∣
∣∣∣∣∣
4


3/4

= 8

∑
h∈Hn

∑
k∈Hn

E∗

 n−1∑
s,t,u,v=1

c̃sn(h)ηsc̃tn(h)ηtc̃un(k)ηuc̃vn(k)ηvη
4
n


3/4

(B.38)

≤ C

(
J12n

nhd1 min

)3/2

.

Thus, we can show that

E∗
[
||Λn||3

]
≤ C

4∑
j=1

E∗
[
||Vjn||3

]
≤ C

(
J12n

nhd1 min

)3/2

.(B.39)

A similar result holds for E∗
[
||Λ∗n||3

]
. Thus

E∗
[
||Λn||3

]
+ E∗

[
||Λ∗n||3

]
≤ 2C

(
J12n

nhd1 min

)3/2

.(B.40)

Equations (B.30), (B.32) and (B.40) therefore imply (B.29).

Step 2: As demonstrated in Horowitz and Spokoiny (2001),

lim
n→∞

{
P∗

[
max
h∈Hn

Bhn(ξ1, . . . , ξn) ≤ x
]
− P∗

[
max
h∈Hn

Bhn(ξ∗1 , . . . , ξ
∗
n) ≤ x

]}
= 0

for any real x is equivalent to

lim
n→∞

∣∣∣∣∣∣E∗
 ∏
h∈Hn

I [Bhn(ξ1, . . . , ξn) ≤ x]

− E∗
 ∏
h∈Hn

I [Bhn(ξ∗1 , . . . , ξ
∗
n) ≤ x]

∣∣∣∣∣∣ = 0.

Following the lines of Horowitz and Spokoiny (2001) and utilizing the above established

bound in (B.40), it can then be shown that as n→∞∣∣∣∣P∗ [max
h∈Hn

Bhn(ξ1, . . . , ξn) ≤ x
]
− P∗

[
max
h∈Hn

Bhn(ξ∗1 , . . . , ξ
∗
n) ≤ x

]∣∣∣∣→ 0.(B.41)

This finally completes the proof of Lemma B.7.

It follows from Lemma B.7 that maxh∈Hn L
∗
0n(h) and maxh∈Hn L0n(h) have identical asymp-

totic distributions. This result is used in the proof of Lemma B.10 below.

Lemma B.8. Let Assumptions B.1–B.3 hold. Then for any x ≥ 0, h ∈ Hn and sufficiently

large n

P∗ (L∗0n(h) > x) ≤ exp

(
−x

2

4

)
.
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Proof: Since the distribution of e∗t is not necessarily normal, the argument used in the proof

of Lemma 11 of Horowitz and Spokoiny (2001) may not be true. We therefore adopt a different

proof. It follows from the beginning of the proof of Theorem 2.1 that for any small δ > 0 there

exists a large integer n0 ≥ 1 such that for n ≥ n0 and any x ≥ 0,

|P∗(L∗0n(h) ≤ x)− Φ(x)| < δ,

where Φ(x) = 1√
2π

∫ x
−∞ e

−u
2

2 du.

This implies that, for any n ≥ n0 and x ≥ 0

P∗(L
∗
0n(h) > x) ≤ 1− Φ(x) + δ

=
1√
2π

∫ ∞
x

e−
u2

2 du+ δ =
1√
2π

∫ ∞
x

e−
u2

4 e−
u2

4 du+ δ

≤ e−
x2

4
1√
2π

∫ ∞
x

e−
u2

4 du+ δ ≤ e−
x2

4
1√
2π

∫ ∞
0

e−
u2

4 du+ δ

= e−
x2

4

√
2√

2π

∫ ∞
0

e−
v2

2 dv + δ =

√
2

2
e−

x2

4 + δ

using 1√
2π

∫∞
0 e−

v2

2 dv = 1
2 . The proof follows by letting 0 < δ ≤

(
1−

√
2

2

)
e−

x2

4 for any x ≥ 0.

Before we present the next lemma, let us define, for 0 < α < 1, l0∗nα to be the 1− α quantile

of maxh∈Hn L
∗
0n(h).

Lemma B.9. Let Assumptions B.1–B.3 hold. Then for large enough n

l0∗nα ≤ 2
√

log(J12n)− log(α).

Proof: The proof is similar to that of Lemma 12 of Horowitz and Spokoiny (2001).

Lemma B.10. Let Assumptions B.1–B.3 hold. In addition,

lim
n→∞

P∗

(
Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)
= 1(B.42)

for some h ∈ Hn, where l̃∗nα = max

(
l0∗nα,

√
2 log(J12n) +

√
2 log(J12n)

)
. Then the adaptive test

statistic Ln defined in (3.2) satisfies

lim
n→∞

P (Ln > lnα) = 1.

Proof: By Lemma B.6, Ln can be replaced with maxh∈Hn L2n(h). By Lemma B.7, lnα

therefore can be replaced by l0∗nα. Thus, we need only to show that

lim
n→∞

P∗(max
h∈Hn

L2n(h) > l0∗nα) = 1,
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which holds if limn→∞ P∗(L2n(h) > l0∗nα) = 1 for some h ∈ Hn. For any h ∈ Hn, using the con-

clusion from Lemma B.7 that maxh∈Hn L
∗
0n(h) and maxh∈Hn L0n(h) have identical asymptotic

distributions, we have

L2n(h) = L0n(h) +
Qn(θ̃1) + Πn(θ̃1)

h
d/2
1

= L∗0n(h) +
Qn(θ̃1) + Πn(θ̃1)

h
d/2
1

+ op(1).(B.43)

Applying Lemma B.5 with Dn = l̃∗nα,

Πn(θ̃1)

h
d/2
1

= op(l̃
∗
nα).(B.44)

On the other hand, condition (B.42) implies that as n→∞

P∗

(
Qn(θ̃1)

2h
d/2
1

< 2l̃∗nα

)
→ 0.(B.45)

Observe that

P∗(L2n(h) > l0∗nα) = P∗

(
L2n(h) > l0∗nα,

Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)
+ P∗

(
L2n(h) > l0∗nα,

Qn(θ̃1)

2h
d/2
1

< 2l̃∗nα

)
≡ I1n + I2n.

It follows from (B.42)–(B.45) that as n→∞

I1n = P∗

(
L∗0n(h) +

Qn(θ̃1) + Πn(θ̃1)

h
d/2
1

> l0∗nα |
Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)
P∗

(
Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)

≥ P∗

(
L∗0n(h) > l0∗nα − 4l̃∗nα |

Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)
P∗

(
Qn(θ̃1)

2h
d/2
1

≥ 2l̃∗nα

)
→ 1

because L∗0n(h) is asymptotically normal and l0∗nα − 4l̃∗nα → −∞ as n→∞.

Because of (B.45), as n→∞

I2n ≤ P∗

(
Qn(θ̃1)

2h
d/2
1

< 2l̃∗nα

)
→ 0.

This finishes the proof.

B.3. Proofs of Theorems 3.1–3.4

Proof of Theorem 3.1: It is directly implied by Lemma B.7, as Ln = maxh∈Hn L1n(h) + op(1)

and L∗n = maxh∈Hn L
∗
1n(h) + op(1).

In order to prove Theorems 3.2–3.3, in view of Lemma B.10, it suffices to verify (B.42).

Using Lemma B.1(ii), it suffices to verify

lim
n→∞

P∗

(
hd1λ(θ)τλ(θ) ≥ 4l̃∗nαh

d/2
1

)
= 1.(B.46)
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Proof of Theorem 3.2: In view of the definition of l̃∗nα, equation (B.46) follows from the fact

that as n→∞,
1

2n
λ(θ)τλ(θ)− ρ2

1(m1,M1Θ)− ρ2
2(m2,M2Θ)→ 0(B.47)

holds in probability and nhd1 ≥ C0 l̃
∗
nαh

d/2
1 for some constant 0 < C0 <∞ and n large enough.

Proof of Theorem 3.3: Using the definition of l̃∗nα, (B.47),

1

2n

n∑
t=1

∆2
1(Xt) +

1

2n

n∑
t=1

∆2
2(Xt)→

1

2

(
E
[
∆2

1(X1)
]

+ E
[
∆2

2(X1)
])

(B.48)

as n→∞, and

1

2n
λ(θ)τλ(θ) =

C2
1n

2n

n∑
t=1

∆2
1(Xt) +

C2
2n

2n

n∑
t=1

∆2
2(Xt)

≥ C1C
2
1n + C2C

2
2n(B.49)

holds in probability, one can see that (B.46) holds when h1 = h1 max = (log log(n))−
1
d . This

finishes the proof of Theorem 3.3.

Proof of Theorem 3.4: In order to verify (B.42), we need to introduce the following notation:

h∗1 =
(
n−1 l̃∗nα

) 2
4s1+d

.

This implies n (h∗1)
4s1+d

2 = l̃∗nα. Choose h1 ∈ H1n such that h∗1 ≤ h1 < 2h∗1. We then have

4h
d
2
1 l̃
∗
nα = 4nh

d
2
1 (h∗1)

4s1+d
2 ≤ 4nh

4s1+d
2

+ d
2

1 = 4nh2s1+d
1 .(B.50)

Thus, in order to verify (B.42), it suffices to show that

Qn(θ̃1) ≥ 4nh2s1+d
1(B.51)

holds in probability for the selected h1 ∈ H1n and θ1 ∈ Θ.

The verification of (B.51) can be done using similar techniques as in the proof of Lemma

B.1(ii). Alternatively, one may follow the proof of (A13) of Horowitz and Spokoiny (2001)

by noting that all their derivations below (A13) hold with probability one and therefore in

probability when all Xi are random variables. For this case, one needs to notice that the reason

the additional factor hd1 is involved in (B.51) is because the form of Qn(θ̃1) involves an integral

of Kh(·). This can be seen from the proof of (B.7). We finally finish the outline of the proof of

Theorem 3.4.
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Figure 1: The Federal fund rate series from January 1963 to December 1998 and the

scattered plot of Xt (the Fund rates) and Yt (the change of the Fund rates)
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(a) Estimates of Drift
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(b) Estimates of Drift
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(c) Estimates of Diffusion
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(d) Estimates of Diffusion
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Figure 2: Panels (a) and (c) give the nonparametric kernel estimate (bold lines) and the

parametric kernel estimates of models (4.1)–(4.3) of the drift function and the diffusion

function, respectively. Panels (b) and (d) give the nonparametric kernel estimate (bold

lines) and the parametric kernel estimates of models (4.4) and (4.5) of the drift function

and the diffusion function, respectively.
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Table 1. The P-values of the adaptive empirical likelihood tests for the five diffusion models. The three

numbers in parentheses are respectively the minimum, the medium and the maximum p-values among

the non-adaptive tests based on the 25 pairs of fixed bandwidths.

Simultaneous Test Univariate Test

Model drift and diffusion drift only diffusion only

Vacicek Model (4.1) < 0.001 0.494 < 0.001

( 0 , 0 , 0 ) ( 0.144 , 0.234 , 0.546 ) ( 0 , 0 , 0 )

CIR Model (4.2) < 0.001 0.916 < 0.001

( 0 , 0 , 0 ) ( 0.612 , 0.782 , 0.916 ) ( 0 , 0 , 0 )

Model (4.3) 0.476 0.998 0.05

( 0.258 , 0.41 , 0.546 ) (0.902 , 0.976 , 0.998 ) ( 0.042 , 0.104 , 0.144 )

Model (4.4) 0.628 1 0.05

( 0.462 , 0.596 , 0.73 ) ( 0.992 , 1 , 1 ) ( 0.042 , 0.094 , 0.146 )

Model (4.5) 0.454 1 0.048

( 0.298 , 0.368 , 0.454 ) ( 0.986 , 1 , 1 ) ( 0.044 , 0.084 , 0.114 )
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Table 2. Size and power of the adaptive least square empirical likelihood test at 5% nominal significant

level for the normally distributed and the Chi-square distributed innovations. The three numbers in

parentheses are respectively the minimum, the medium and the maximum size/power among the

nonadaptive tests based on the fixed bandwidths.

n = 300 n = 500

Cn1 = Cn2 Normal Chi-square Normal Chi-square

0 (Size) 0.064 0.07 0.054 0.062

(0.06, 0.066, 0.074) (0.068,0.072,0.08) (0.034, 0.046,0.056) (0.052, 0.062, 0.08)

0.03 (Power) 0.218 0.132 0.418 0.286

(0.13, 0.166, 0.22) (0.104, 0.138,0.17) (0.3, 0.376, 0.426) (0.166, 0.244, 0.304)

0.04 (Power) 0.410 0.194 0.718 0.486

(0.226, 0.316, 0.418) (0.14, 0.184,0.246) (0.462, 0.638, 0.722) (0.288, 0.432, 0.516)
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Table 3. Size and power of the adaptive simultaneous test versus the univariate tests for the conditional

mean and the conditional variance for normal innovation. The three numbers in parentheses are

respectively the minimum, the medium and the maximum size/power among the nonadaptive tests

based on the fixed bandwidths.

(a) Comparing with the univariate test for conditional mean, i.e. Cn2 = 0

n = 300 n = 500

Cn1 Simultaneous Univariate Simultaneous Univariate

0 (Size) 0.064 0.04 0.054 0.056

(0.06, 0.066, 0.074) (0.038, 0.04, 0.044) (0.034, 0.046,0.056) (0.056, 0.058, 0.062)

0.03 (Power) 0.094 0.14 0.168 0.23

(0.066,0.072, 0.09) (0.126,0.132,0.14) (0.1,0.14,0.172) ( 0.18,0.204, 0.236)

0.04 (Power) 0.124 0.22 0.23 0.38

(0.066, 0.106, 0.144) (0.18, 0.199,0.22) (0.136, 0.2,0.248) (0.322.0.352,0.388)

(b) Comparing with the univariate test is for conditional variance, i.e. Cn1 = 0

n = 300 n = 500

Cn2 Simultaneous Univariate Simultaneous Univariate

0 (Size) 0.064 0.072 0.054 0.052

(0.06, 0.066, 0.074) (0.058,0.064,0.076) (0.034, 0.046,0.056) (0.044, 0.046, 0.054)

0.03 (Power) 0.15 0.174 0.31 0.33

(0.1120.134,0.176) (0.114,0.14,0.176) (0.192,0.29,0.342) (0.188,0.258,0.336)

0.04 (Power) 0.294 0.328 0.516 0.588

(0.174,0.248,0.326) (0.156,0.232,0.33) (0.338, 0.494,0.578) (0.326, 0.502, 0.592)
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Table 4. Size and power of the adaptive simultaneous test versus the univariate tests for the conditional

mean and the conditional variance for the Chi-square innovation. The three numbers in parentheses

are respectively the minimum, the medium and the maximum size/power among the nonadaptive

tests based on the fixed bandwidths.

(a) Comparing with the univariate test for conditional mean, i.e. Cn2 = 0

n = 300 n = 500

Cn1 Simultaneous Univariate Simultaneous Univariate

0 (Size) 0.07 0.04 0.062 0.056

(0.068,0.072,0.08) (0.06, 0.064,0.07) (0.052,0.062,0.08) (0.038, 0.042, 0.05)

0.03 (Power) 0.108 0.128 0.158 0.196

(0.086, 0.1,0.11) (0.12,0.122,0.132) (0.102,0.134,0.162) (0.0.198,0.208,0.218)

0.04 (Power) 0.142 0.224 0.206 0.352

(0.098, 0.132,0.148) (0.218, 0.22,0.226) (0.106,0.172,0.226) (0.3,0.344,0.39)

(b) Comparing with the univariate test is for conditional variance, i.e. Cn1 = 0

n = 300 n = 500

Cn2 Simultaneous Univariate Simultaneous Univariate

0 (Size) 0.07 0.082 0.062 0.068

(0.068,0.072,0.08) (0.064,0.071,0.082) (0.052,0.062,0.08) (0.056,0.066,0.076)

0.03 (Power) 0.134 0.156 0.274 0.276

(0.092, 0.108, 0.148) (0.088,0.13,0.156) (0.16,0.238,0.296) (0.118,0.223,0.278)

0.04 (Power) 0.206 0.258 0.454 0.476

(0.13,0.192,0.224) (0.14,0.191,0.256) (0.26,0.43,0.508) (0.226,0.362,0.478)
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Table 5. Size and power for Ln and Le,n at the 5% level with Cn1 = Cn2

Normal Error Distribution

Observation Null Hypothesis Is True

n Ln Le,n

300 0.064 0.060

500 0.054 0.056

Observation Departure Null Hypothesis Is False

n Cn1 Ln Le,n

300 0.03 0.218 0.187

500 0.03 0.418 0.344

300 0.04 0.410 0.372

500 0.04 0.718 0.653

Chi–square Error Distribution

Observation Null Hypothesis Is True

n Ln Le,n

300 0.070 0.056

500 0.062 0.047

Observation Departure Null Hypothesis Is False

n Cn1 Ln Le,n

300 0.03 0.132 0.094

500 0.03 0.286 0.229

300 0.04 0.194 0.137

500 0.04 0.486 0.429

56


