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Abstract—In this paper, we illustrate how a mobile data
network operator can plan an upgrading investment to anticipate
explosions of the demand, taking into account the expected
generated profit and the customers satisfaction. The former
parameter grows with the demand, whereas the latter sinks if
the demand is too high as throughput may collapse. As the
equipment price decreases with time, it may be interesting to
wait rather than to invest at once. We then propose a real option
strategy to hedge against the risk that the investment has to
take place earlier than expected. At last, we price this option
with a backward dynamic programming approach, using recent
improvements based on least-squares estimations.

Index Terms—data network, investment, real option, dynamic
programming, least-squares.

I. I NTRODUCTION

Today, it is expected that the data traffic will be significantly
growing in mobile networks. The total amount of transferred
data is supposed to grow exponentially, as it has been the
case since the middle 90’ for the Internet. To face these
soaring volumes of data to be transferred, mobile operators
must periodically upgrade their equipments to offer higher
throughputs and avoid blocking problems. However as the
demand does not increase steadily and must be considered as
partly random, the expected profit is difficult to be forecast.

In this article, we consider upgrade investments in a HSDPA
cellular network. Note that, when demand increases, the data
communication duration becomes longer and longer for each
user until the network is saturated. The individual throughput
experienced in the network may become very small. On
the other hand, as the demand rises, the operator increases
its profit. When the network starts experiencing saturation
problems, throughput and profit may fall. The operator must
then upgrade its network by adding new frequency carriers,
facing the following trade-off:

• The later the investment, the lower individual throughputs
and customer satisfaction. Permanent non-satisfaction
will result into churn and additional loss of profit.

• The sooner the investment, the more expensive the costs
of upgrade elements.

This article aims at modeling analytically the trade-off. We
first derive analytical values for capacity, individual throughput
and satisfaction as a function of the demand, and use them
to calculate operator’s profit, taking into account randomness
of the rising demand, and decrease of network element costs
according to time. We second introduce a real options method

to hedge against the risk that demand evolves in an unexpected
way leading to a premature investment decision or a too late
one. To perform that, we introduce an American call that
allows its owner (the mobile operator) to buy an equipment
at a fixed price, possibly less than the real one, until a ma-
turity date. Given the profit analytical model and the option’s
parameters, we propose a dynamic programming method to
price the option. At the same time, we obtain the expected
best investment date.
Note that in a previous work [2], we already used the profit
model to find the best investment date by an actualization
algorithm. However, we did not use risk-hedging nor dynamic
programming. Note that d’Halluin [1] presented a work on a
method to determine the best investment date in a wireless
network. His approach was based on dynamic programming,
but he did not introduce any risk hedging method nor an option
pricing. Conversely, Longstaff & Schwartz [11] introduceda
pricing method for american options, but his work was not
adapted to telecommunication networks investment.

The remainder of this paper is organized as follows: in a first
section, we build an analytical model of the operator’s profit
based on an HSDPA network. Then we introduce in section II
an american option to hedge against the risk aforementioned.
We define the underlying asset and the option’s payoff. To
price the option we use a risk-neutral approach, whose math-
ematical justification lies in the appendix. In section III,we
show how dynamic programming can help solving the pricing
problem, and the best investment date problem as well. In
section IV, we present the numerical results before concluding
the paper.

II. T HE BASIC MODEL: OPERATOR’ S PROFIT AND

INVESTMENT COST

The operator profit depends on the amount of data flowed
by the network. It thus depends on the mean traffic demand
per cell (in Mbits/sec/cell). We denote it byXt, where the time
t = 0, 1... variesdiscretely, for example day by day. Note that
profit does not necessarily increase when demand grows. It in
fact also depends on the customer satisfaction, that we shall
calculate hereafter.
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A. Traffic Demand

We assume that the network is formed by circular cells of
radiusR, with a uniformly distributed demand. We have:

Xt = λt × E[ξ],

whereλt is the arrival rate per cell at the datet and E[ξ]
is the mean size of a typical data flow. In the following we
assume thatE[ξ] remains stable during[0, T ], so thatXt is
proportional toλt. This model is strictly equivalent to the case
where the number of active users is constant, but they initiate
connections more often.

To model the evolution of(Xt)t∈N, let us consider it
as the daily sampling of a continuous stochastic process
(X̃(t,Wt))t∈R+ . Usually, one monitors the 24 demands over
one hour each, keeps the second or third highest, and multiply
it by a given factor. As many random phenomena related to
a social behavior (e.g. [3]), we assume thatX̃(t,Wt) is a
geometric brownian motion (see [6] page 88):

X̃(t,Wt) = x0e(α−σ
2/2)t+σWt , t ∈ R+ ,

whereWt is a standard brownian motion,α is the trend of the
demand andσ is its volatility.

B. Recapitulation of the HSDPA model

To evaluate the customer satisfaction, let us first recall the
flow throughputγt(r) a user can expect at distancer from
the center of the cell as carried out in [5]. The resource of
a single downlink data channel is time-shared between active
users. Denote byφu the fraction of time the BS transmits
to useru, with

∑

u φu = 1. The data rate of useru is then
Cu(r) = C(r)×φu, whereC(r) is the peak data rate, obtained
in the absence of any other user in the cell, i.e., forφu = 1.
When there arex users, the ”fair power” sharing is defined
by φu = 1

x . We have:

C(r) = min

(

C0,
Z

b
× Γ(r)

η + I(r)

)

,

where:
• C0 is the maximum peak rate (which depends on channel

bandwidth and coding efficiency)
• Z is the cell chip rate
• b is a lower bound for energy-per-bit to noise density

ratio (Eb/N0)
• Γ(r) is the path loss between the BS and useru
• η is the thermal noise to received power ratio
• I(r) is the interference to received power ratio.
Fig. 1 shows the peak data rate in a hexagonal cell. We only

take interference from immediate adjacent cells in account,
and we assume that the path lossΓ(r) decreases according to
1/r4.

We define the cell load as (see [5]):

ρt =
Xt

πR2

∫ R

0

2πrdr

C(r)
.

• if ρt > 1, the cell is overloaded and one can show ([5])
that the number of active users grows indefinitely; any
individual data rate tends to zero, and the cell is saturated

Fig. 1. Peak data rate against distance to the center of the cell. The
distance and the rate are normalized w.r.t. the cell’s radius and to C0.
Z/b = 3 Mbits/sec,η = 10%.

• if ρt < 1, the cell is underloaded and the number of
active users tends to a finite stationary regime.

We are naturally led to introduce:

Xmax = πR2

(

∫ R

0

2πrdr

C(r)

)−1

, (1)

such thatρt = Xt/Xmax. Henceρt < 1 ⇐⇒ Xt < Xmax.
Let us denote the flow throughput of users at distancer by
γt(r) (it is the ratio of the mean flow size to the mean flow
duration). Then, it can be shown (see [5]) that, ifρt < 1:

γt(r) = C(r)(1 − ρt). (2)

By assumption, the mean flow size (the numerator ofγt(r))
does not vary significantly, whereas the mean flow duration
(the denominator) does as the load increases. Thus, if we
want to compute the mean flow throughput, the significant
number to calculate is theharmonicmean ofγt(r) over the
cell (balanced by the proportion of active users betweenr and
r + dr). In other words, we have to calculate the arithmetic
mean of1/γt(r) over the cell. From (2) we deduce:

γt = R2

(

∫ R

0

2rdr

γt(r)

)−1

= Xmax −Xt,

and of course, in overload,γt = 0. Finally, we can summarize
the whole calculation by:

γt = (Xmax −Xt)
+, (3)

wherex+ = max(x, 0). Note thatγt = 0 if and only if the
cell is saturated.

C. Customers satisfaction

Now we can compute the customer satisfaction, which can
reasonably be supposed to depend onγt. Since subjective
satisfactions have been shown to be more sensitive to small
variations at low throughputs than at high throughputs, Enderlé
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and Lagrange propose in [8] to model the customer satisfaction
as a negative exponential function of the throughput:

St = e−β/(Xmax−Xt)
+

.

For example,β can be chosen as:β = log(2) · γ1/2, where
γ1/2 is the throughput value ensuring a satisfaction of50%.
Once again, note thatSt = 0 if and only ifXt ≥ Xmax, i.e.,
if and only if the cell is saturated.

D. Daily Profit

Let us recall thatXt is sampled day by day, for example
during the second or the third highest peak hour. Within
24 hours, the operator transmitsµ min(Xt, Xmax) to active
users, whereµ is a multiplicative factor between the peak hour
and the whole day. Typically, we can consider that the peak
hour represents 25 % of the total daily transfer. This leads to
µ ≈ 4 · 3600 ≈ 14000 sec. Since taxation is applied to the
volume of transfers and not to the duration, the gross daily
profit per cell is given by:

πgross = δ µ min(Xt, Xmax), (4)

where δ is the transfer price (say in $/Mbit). However the
gross profit should be weighed by the customer satisfaction to
account for the quality of the communications. Thenet profit
is thus calculated as the product ofπgross by St:

πnet = δ µ min(Xt, Xmax)e−β/(Xmax−Xt)
+

.

If St = 0, i.e. if the cell is saturated, the net profit is null. If
the satisfaction is maximal, i.e.,St = 1, the net profit is equal
to the gross profit (4). To sum up we have:

πt = δ µXte−β/(Xmax−Xt) if Xt < Xmax

πt = 0 otherwise.

Fig. 2. Daily Profit generated by demand.Xmax = 3 Mbits/sec/cell,
δ = 0.1 $/Mbit, µ = 14000 sec,β = 0.7 Mbit/sec (which corresponds to
γ1/2 ≈ 1 Mbit/sec).

Intuitively, as the demand rises,Xt will increase as will the
profit (Fig. 2). Then, the profit will decrease because the
unsatisfaction effect becomes dominant.

E. Upgrading Investment

As can be seen from Figure 2, if no upgrading action
is taken, the profit will progressively tend to zero. Once
the operator decides to upgrade, he can install additional
transmitters operating on different frequency bands. In such
a case we obtain a higher value ofXmax, so that:

π′
t = δ µ min(Xt, X

′
max)e−β/(X′

max
−Xt)

+

.

The upgrading cost is a decreasing function of time. The
decrease of the cost is due to many factors, for example the
R&D progress, and also the serialization in the manufacturing
chain. Moore’s law states that electronic devices’ capacity
doubles every 18 months. So in this paper we assume it
decreases exponentially:

K(t) = K0e−ǫt,

whereǫ is the depreciation rate.

F. Total Profit

Let us introduce dateT , at which the investment becomes
obsolete (in other words, the proposed investment cannot be
undertaken afterT ).If we denote the investment date byt0
(0 < t0 < T ), the total profitΠT (t0) actualized at the date
t = T is:

ΠT (t0) =

t0−1
∑

t=0

eζ(T−t)πt +
T
∑

t=t0

eζ(T−t)π′
t, (5)

whereζ is the actualization rate. For simplicity, we assume
that ζ is constant during the period[0, T ].

III. R ISK-HEDGING USING AN AMERICAN OPTION

A. Externalizing the financial risk

As shown above, there is a tradeoff between the growth
of the demand (encouraging to invest) and the depreciation
of the equipment cost (encouraging to wait). Then the risk is
to be led to invest while the equipment is still expensive. In
this section we show how to hedge against this risk using an
American option. This option, acquired from a third party like
a bank, gives us the right to buy the equipment at priceK⋆

instead ofK(t), until date t⋆ = t(K⋆) (see Fig. 3). Let us
recall that the operator has the right but not the obligationto
exercise this option, but has to pay in return apremium to
the bank, denoted byP . If he has to invest before datet⋆, he
will exercise the option, giveK⋆ to the equipment provider
and the bank will pay the difference. Otherwise, he will not
exercise the option and he will lose the premium, but he still
can invest.
In this section we will try to answer the two following
questions:

• when is this option going to be exercised ?
• how much does it cost (i.e. calculateP ) ?
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Fig. 3. exponential decrease of the cost

B. Introducing the American option

When is the option going to be exercised ? It depends on
the additional profit expected from investing to upgrade the
network: at least, this additional profit has to be greater than
K⋆. At datet, it can be expressed as follows:

St = E

[

∫ T

t

e−ζ(s−t)(π′(s,Ws) − π(s,Ws)) ds

∣

∣

∣

∣

∣

Ft

]

. (6)

Facing the decision to invest or not, the operator’s strategy
is to compare the profit realized if investing with the value
of waiting, typically to check that the traffic is not going
to decrease unexpectedly which would make the upgrading
expenditure a sunk cost. This appears to be the classical
problem of finding the exercise strategy for an American
option, with the following features:

• t⋆ as the option’s maturity
• K⋆ as the exercise price or strike
• St as the underlying asset
• (St −K⋆)+ as the option’s payoff, denoted byZ(t):

Z(t) = max{St −K⋆, 0} (7)

C. Pricing of the American option

The resolution of this problem appeals to classical
stochastics theory and the risk-neutralization approach:see
[10][6].

1) Preliminaries: to detail this approach, let us introduce
two progressively measurable processesµt and κt, respec-
tively the expected total return on the asset and its volatility,
so that:

dSt/St = µt dt+ κt dWt (8)

along with the market price of risk:

θt = κ−1
t (µt − ζ).

We obtain expressions ofµt, κt and θt in the appendices A
to C, where we show that:

θt = −π
′(t,Wt) − π(t,Wt)

∂v
∂x (t,Wt)

,

with:

v(t, x) =

∫ T

t

E

[

e−ζ(s−t)(π′(s,Ws) − π(s,Ws))|Wt = x
]

ds.

(9)
Note that applying the risk-neutralization approach will also
require Novikov’s condition (see [7], page 65), which states
that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

< +∞. (10)

In the appendix D, we show that Novikov’s condition is
verified in our specific case.

2) The risk-neutralization approach:under this condition,
let S([t, t⋆]) be the set of stopping times with values in[t, t⋆]
and define the following process known as the Snell envelope:

Yt = sup
τ∈S([t,t⋆])

EQ⋆

[

e−ζτZ(τ)
∣

∣Ft

]

. (11)

Here, Q⋆ is the risk-neutral probability, whose density w.r.t.
P, the historical probability, is:

dQ⋆

dP
= exp

(

−1

2

∫ t⋆

0

θ2s ds−
∫ t⋆

0

θs dWs

)

.

In fact, since we will have to simulate trajectories of the
asset beyond datet⋆ (until date T ), we will rather choose
the probabilityQ, whose density w.r.t.P is:

dQ

dP
= LT = exp

(

−1

2

∫ T

0

θ2s ds−
∫ T

0

θs dWs

)

. (12)

Note thatQ is indeed a probability measure, sinceEP[LT ] = 1,
as θt verifies Novikov’s condition (see previous paragraph).
Note also thatQ⋆ is the restriction ofQ to Ft⋆ (see [6],
Theorem 9.1.2.), so that (11) still holds withQ if t ≤ t⋆.
Then the premium of the option at any timet ∈ [0, t⋆] is
given by [10]:

Πt = EQ

[

e−ζ(τ(t)−t)Z(τ(t))
∣

∣

∣Ft

]

, (13)

whereτ(t) is the solution of the maximization in (11).τ(t)
is interpreted as the optimal exercise strategy of the option
calculated at datet (1).

IV. T HE DYNAMIC PROGRAMMING SOLUTION

As stated above, the problem is to find the stopping time
maximizing the option’s payoff under risk neutrality (Eqn.
(11)). However, it is impossible to computeZ(t) analytically,
so we make use of a dynamic programming approach, as in
[11]. We recall that it consists in dividing the problem into
two binary decisions at the final datet⋆: the ”immediate”
one and its generated value, and the ”delaying” one and its

1Note that if the option were a european option, the price at date t would
be:

Πt = EQ

[

e−ζ(t⋆−t)Z(t⋆)
∣

∣

∣
Ft

]

(see [6] page 65). But here, our option is an American option,so we have to
generalize this result and to use the Snell envelope.
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continuation value. Then moving backward, and repeating the
same binary decision, we obtain the expected optimal time
which lies in an expected interval in which the investment
should be undertaken [4]. We must then, at each moment, find
two different values: the option’s payoff in case of investment
and the continuation value in case of waiting.

A. Monte-Carlo simulations to generate the underlying asset

CalculatingSt involves a complex integration (Eqn. (6)) that
cannot be performed analytically. We then use Monte-Carlo
simulations as follows:

• first we computev(t, x) with Eqn. (9) fort ∈ [0, t⋆] and
x ∈ [wmin, wmax]

(2).
• then we discretize time:t = t0 . . . tN with t0 = 0 and
tN = t⋆ = N δt. After that we simulateJ trajectories
of St underQ: the j-th trajectory is denoted by(Sj) and
has the valueSj

n at time tn = n δt. More precisely, we
simulate (underQ) J trajectories of the historical brow-
nian (W j) (3 ), and then we computeSj

n = v(tn,W
j
n)

by interpolatingv(t, x). This is far more efficient than
computing directly the integral, especially if we want to
simulate a large number of trajectories, since we do not
have to computev each time again. To know how we
interpolate a surface, see appendix F.

B. Continuation value and decision tree algorithm

At time t⋆, the operator invests ifZN > 0. More generally,
at a timetn < t⋆, the operator has two alternative choices:
either invest now and getZn, or wait and get the expected
continuation value, denoted byCn. The generated cash-flow
is then given by:

Fn = max{Zn, Cn}.

We already knowZn by (7). As for Cn, we use the Least
Squares Monte-Carlo (LSM) approach defined by Longstaff
and Schwartz [11]. This approach consists in writing the
expected continuation valueCn as a general function ofSn

(in our case we took a 2-degree polynom), taking information
from theJ cash-flows attn+1 and using the fact that:

Cn(S) = e−ζδtE[Fn+1|Sn = S],

whereFn+1 is the (random) cash-flow of the option attn+1. To
obtain recursivelyCn, we can write the following algorithm:

• at tN , for each trajectoryj = 1 . . . J , calculate the cash-
flow F j

N = Zj
N .

• move one period back totN−1. For each(Sj), check if
the option is ”in the money”, i.e. ifZj

N−1 > 0. If it is
the case, calculate the continuation valueCj

N−1 using the
cash-flow if investment is delayed:Cj

N−1 = e−ζδtF j
N .

Estimate then the general expression ofCN−1(S) by the
LSM algorithm. This consists in regressing the found

2to bind efficiently the brownian motion, see Appendix D.
3to perform that, assuming that the probability of our randomgenerator is

Q, we simulate a standard brownian motion(W Q
t ), and then using Girsanov’s

theorem (see [6], Theorem 9.4.5.), we build by recursion a new brownian
motion (Wt) underP, such thatWt = W Q

t −
∫

0≤s<t θ(s, Ws) ds.

valuesCj
N−1 on a constant,S and S2, as in [11] (see

appendix E). Let us denote the estimated expression by
ĈN−1(S). The estimated cash-flow atN−1 is then given
by:

F j
N−1 = max{Zj

N−1, ĈN−1(S
j
N−1)}. (14)

If it is optimal to exerce attN−1, then by convention
F j

N becomes0 (because the option can only be exercised
once).

• for each timetn, repeat the same process untiln = 0.

Let us denote byOn the set of thej such thatZj
n = 0, and

by In the set of thej such thatZj
n > 0. Here is a summary

of the whole algorithm:

1. simulate J trajectories(Sj) underQ

2. for j = 1 . . . J , put F j
N = Zj

N

3. for n = (N − 1) . . . 1, 0 :

3.1. for j = 1 . . . J , calculateZj
n:

- if Zj
n = 0, j ∈ On

- if Zj
n > 0, j ∈ In

3.2. processOn andIn separately:

∀j ∈ On: ∀j ∈ In:

put F j
n = e−ζδtF j

n+1 - regressCj
n = e−ζδtF j

n+1 on 1,
S andS2 to obtain a 2-degree
polynomĈn(S)

- put F j
n = max{Zj

n, Ĉn(S)}
- if Zj

n > Ĉn(S), thenn is the
new investment date, so put
F j

m = 0 ∀m > n

C. Option premium

Averaging theF j
0 , and using (13) and the law of large

numbers, we obtain the premiumΠ0 of the option:

Π0 ≈ 1

N

J
∑

j=1

F j
0 .

D. Expected investing time

Investigating our decision tree, it can happen that for some
j we do not decide to invest beforet⋆. Then we will be lead
to invest betweent⋆ andT (4). For such trajectories, we do not
know when the investment takes place. Furthermore, even for
the other trajectories, additional information betweent⋆ and
T can be useful to adjust the value of the investment date.
For these two reasons, we decide to simulateSt further until

4Note that in theory, it could happen that we never decide to invest, even
after T . However, given the deterministic trend of the demand, thiswould
mean thatWt remains extremely low. Considerations on the brownian motion
(see appendix D) ensure that in practice it will not happen.
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T (5). Thus we perform one more time a backward dynamic
algorithm, that time between0 andT , using:

{

Z(t) = (St −K(t))+ if t > t⋆

Z(t) = (St −K⋆)+ otherwise
. (15)

Finally, we obtain for each of theJ trajectories a best
investment dateT j

inv. If T j
inv > t⋆, it means that we have

invested without exercising the original option, whereas if
T j

inv ≤ t⋆, it means that we have exercised the option.
Averaging theT j

inv, we obtain the expected investing time
under the risk-neutral probabilityEQ[Tinv]. But for us, it is
more relevant to calculateEP[Tinv]. Using (12), we obtain:

EP[Tinv] = EQ

[

Tinv

LT

]

≈ 1

N

J
∑

j=1

T j
inv

Lj
T

. (16)

V. NUMERICAL RESULTS

In order to illustrate our algorithm, we applied it using the
free simulator Scilab (see [9]). We considered a HSDPA pure
data network with a random growing demand, as described
in section II-A. We used the following parameters for our
computation:

• the investment can take place untilT = 150 days.
• the equipment can be purchased at the initial price
K0 = 300000 $, and its price decreases with a rateǫ
of 50% per year.

• the actualization rateζ is fixed to 5% per year.
• the traffic demand starts atx0 = 1.2 Mbit/sec/cell, and

increases with a drift fixed toα = 0.54% per day. Its
volatility is fixed to 0.01 day−1/2. Its maximal value is
fixed to Xmax = 3 Mbit/sec/cell before the investment,
and toX ′

max = 8 Mbit/sec/cell after the investment.
• the data transfer price is fixed toδ = 0.1 $/Mbit.
• we take a satisfaction parameter ofβ = 0.7 Mbit/sec/cell.
• we simulate 10000 different trajectories of the asset.

A. Option’s price

Fig. 4. Price of the option

On Figure (4), we represent the price of the option versust⋆.
Recall that the price is obtained with equation (13), wheret⋆

implicitly appears in functionZ (see equation (7)). It appears

5That is the reason why we choseQ instead ofQ⋆.

that the price increases witht⋆. This was expected, since the
longer the option’s maturity is, the higher the risk for the bank
is, and then the more expensive the option is.

B. Investment date

Fig. 5. Investment date

On Figure (5), we represent the investment date versust⋆.
Recall that the date is obtained with equation (16), wheret⋆

appears in generalized functionZ (see equation (15)), and may
be prior to the investment’s date. It appears that the investment
date is very low for higher values oft⋆. This happens because
K⋆ is very low, thus it is all the more interesting to invest
early. Theoretically, asK⋆ decreases slowly toward 0, the
investment date decreases accordingly until reaching 0 for
t⋆ = ∞. However, as investment can only occur on a daily
basis, this cannot be obviously observed on Figure (5), unless
we make computations for huge values ofT , the final date.
Unfortunately, this is not reasonable, since these computations
will be extremely heavy.

However, the lower the option’s maturity is, the later the
investment takes place. The investment date may even be later
than t⋆. In that case, the option is not exercised. This can be
explained as follows: whent⋆ is low, K⋆, the equipment’s
exercise price, is quite high. Thus, the option is not really
interesting. Rapidly the equipment’s real price will sink under
K⋆, and within that short period it is better to take the risk of
waiting.

VI. CONCLUSION

In this work, we proposed a model for risk hedging when
dealing with investment under uncertainty in telecommunica-
tion networks. In such a case, the risk comes from the random
evolution of the demand, possibly resulting in unexpected
explosions of the trafic leading to network saturation. To hedge
again this risk, the operator would buy an option from some
financial parts that gives him the right but not the obligation
of buying equipments at a given price, until a maturity date.
We calculate, using backward dynamic programming and a
least square approach, the premium of the option and the
expected investment date. Our results show that the option
price increases with the exercise date, whereas the mean
investment date sinks. As a future work, we aim at considering
the case where multiple investments are possible: adding more
than one band, or implementing a more efficient technology
(e.g. 3G LTE).
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APPENDIX

The purpose of this technical annexe is to prove that the
mathematical conditions for applying a risk neutralization
approach to price the American option are fulfilled. Precisely,
there will be three main steps: 1- study the regularity of the
function v(t, x) from which the underlying asset is derived,
and give a differential equation checked by its derivatives, 2-
deduce from It̄o’s lemma applied tov the expression of the
market price of riskθt, and 3- verify Novikov condition onθt

thanks to numerical simulations.

A. An explicit expression forv(t, x)

Expression (6) of the underlying asset can be re-stated as
follows:

St = v(t,Wt),

where we have introduced the function:

v(t, x) = E

[

∫ T

t

φ(t, s,Ws) ds

∣

∣

∣

∣

∣

Wt = x

]

with:

φ(t, s, w) = e−ζ(s−t)(π′(s, w) − π(s, w)).

In this section, we aim at giving a fully explicit expression
for the functionv(t, x), in order to study its properties in the
following of the annexe. For this purpose, let us first swap
sum and expectation in the expression ofv (6). We obtain:

v(t, x) =

∫ T

t

E [φ(t, s, x +Ws −Wt)|Wt = x] ds,

and, since the increments ofWs are independent:

v(t, x) =

∫ T

t

E [φ(t, s, x+Ws −Wt)] ds

=

∫ T−t

0

E [φ(t, t+ s, x+Wt+s −Wt)] ds.

Let us introduce another two functions:

f(t, s, w) = φ(t, t+ s, w)

and:

u(t, s, x) =

∫

R

f(t, s, w)g(x, s, w) dw, (17)

where g(x, s, .) is the gaussian density with meanx and
variances. We finally get:

v(t, x) =

∫ T−t

0

u(t, s, x) ds. (18)

B. Regularity and differential equation forv

Let us first recall that:






f(t, s, w) = e−ζs(π′(t+ s, w) − π(t+ s, w))

g(x, s, w) = 1√
2πs

e−
(w−x)2

2s

Lemma 1: π(s, w) and π′(s, w) are C∞(]0,+∞[×R),
bounded, with bounded derivatives

Fig. 6. Partition of the plane into two subsetsΩ1 andΩ2.

Proof: let us prove the property withπ1 for example.
• First we prove thatπ is C∞(]0,+∞[×R). For all
s0 ∈]0,+∞[, let us introducew0 = h(s0), the number
such thatX(s0, w0) = Xmax:

σw0 = log(Xmax/x0) − (α− σ2/2)s0

The points(s0, w0) define a line∆ (see Fig. 6). Let us
also introduce the two subsets of]0,+∞[×R:

{

Ω1 = {(s, w)/w < h(s)}
Ω2 = {(s, w)/w ≥ h(s)}

These two subsets are situated respectively under and
above∆. On Ω1, X(s, w) < Xmax and we have:

π(s, w) = δx0e(α−σ
2

2 )s+σwe−β/(Xmax−x0e(α−
σ
2

2
)s+σw),

and onΩ2, X(s, w) ≥ Xmax andπ = 0.
On Ω1, since:

{

∂
∂sX = (α− σ2

/2)X
∂

∂wX = σX
,

one can show by recursion overn = p + q that the
derivatives ofπ can be written:

∂n

∂sp∂wq
π =

Pp,q(X)

(Xmax −X)2n
e−β/(Xmax−X) (19)

where Pp,q is a polynom. Hence the denominator is
counterbalanced by the second exponential term in the
expression of the derivative ofπ, so that the derivatives
all tend to 0 in the neighborhood of∆ and the transition
betweenΩ1 andΩ2 is C∞.

• Secondly we prove that each derivative ofπ is bounded.
Expression (19) is a continuous function ofX on
[0, Xmax[, and is also continuous atXmax. Hence, it is
bounded forX ∈ [0, Xmax]. Since:

X(Ω1) =]0, Xmax] ⊂ [0, Xmax],

this achieves the proof.

6This is possible becauseφ is positive, since0 ≤ π ≤ π′
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Lemma 2: for any two compact setsC ⊂]0,+∞[, C′ ⊂ R,
we have the following majorations:

∀s ∈ C,
∣

∣

∣

∂ig
∂si

∣

∣

∣ ≤ ϕi
x,C(w)

∀x ∈ C′,
∣

∣

∣

∂ig
∂xi

∣

∣

∣ ≤ ψi
s,C′(w)

whereϕi
x,C andψi

s,C′ are summable overR.

Proof: we only prove the first majoration, the second
one is exactly similar. One can show by recursion that∂ig

∂si

can be written:

∂ig

∂si
= g(x, s, w)

di
∑

k=0

ai,k(s)wk, (20)

where eachai,k varies continuously withs. We want to bound
(20) whens varies within a compact setC = [a, b] ⊂]0,+∞[.
Since:

∣

∣

∣

∣

∂ig

∂si

∣

∣

∣

∣

≤ g(x, s, w)

di
∑

k=0

|ai,k(s)||w|k,

we deduce:
∣

∣

∣

∣

∂ig

∂si

∣

∣

∣

∣

≤ 1√
2πa

e−
(w−x)2

2b

di
∑

k=0

(

max
s∈[a,b]

|ai,k(s)|
)

|w|k,

from which the first majoration is immediate.

Lemma 3: f is C∞ w.r.t. each of its variablest ∈ [0, T [,
s ∈]0, T − t[, w ∈ R, and its derivatives are bounded.

Proof: this comes directly from Lemma 1. In particular, there
exist constantsKi andK ′

i so that:
∣

∣

∣

∣

∂if

∂ti

∣

∣

∣

∣

≤ Ki ,

∣

∣

∣

∣

∂if

∂si

∣

∣

∣

∣

≤ K ′
i

Lemma 4: u is C∞ w.r.t. each of its variablest ∈ [0, T [,
s ∈]0, T − t[, x ∈ R. For any compact setC′ ⊂ R:

∣

∣

∣

∂iu
∂ti

∣

∣

∣ ≤ Ki
∣

∣

∣

∂iu
∂xi

∣

∣

∣ ≤ Ki,C′ , ∀x ∈ C′

and the following differential equation is verified byu:

u′′xx = 2(u′s −
∫

R

f ′
sg)

Proof:
• Using Lemma 3, we obtain:

∣

∣

∣

∣

∂i

∂ti
(fg)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂if

∂ti
g

∣

∣

∣

∣

≤ Kig

Then, the derivability of u w.r.t. t and the first
majoration immediately come from expression (17) and
the differentiation under the integral sign theorem.

• Using Lemmae 2 and 3, we obtain (for anyx ∈ C′):
∣

∣

∣

∣

∂i

∂xi
(fg)

∣

∣

∣

∣

=

∣

∣

∣

∣

f
∂ig

∂xi

∣

∣

∣

∣

≤ K0ψ
i
s,C′(w)

Sinceψi
s,C′ is summable overR, we deduce the deriv-

ability of u w.r.t. x, along with the second majoration,
taking:

Ki,C′ = K0

∫

R

ψi
s,C′(w) dw.

• Each derivative∂i

∂si (fg) is a sum of terms which can be
written:

∂pf

∂sp
· ∂

qg

∂sq
(p+ q = i)

From Lemma 2 (takingC = [0, T ]) and Lemma 3, we
get:

∣

∣

∣

∣

∂pf

∂sp
· ∂

qg

∂sq

∣

∣

∣

∣

≤ K ′
pϕ

q
x,[0,T ](w),

which is integrable overR. Hence,u is C∞ w.r.t. s.

• By deriving under the integral sign, we have:

u′′xx(t, s, x) =
∫

R
f(t, s, w)g′′xx(x, s, w) dw

u′s(t, s, x) =
∫

R
f(t, s, w)g′s(x, s, w) dw

+
∫

R
f ′

s(t, s, w)g(x, s, w) dw,

(splitting into two sums is allowed sincef ′
s g is

summable). Thanks to the heat equation verified by the
gaussian kernel:

g′s =
1

2
g′′xx

we finally get third assertion of Lemma 4:

u′′xx = 2

∫

R

f(t, s, w)g′s(x, s, w) dw

= 2

(

u′s −
∫

R

f ′
s(t, s, w)g(x, s, w) dw

)

.

Lemma 5: v is C∞ w.r.t. each of its variablest ∈ [0,+∞[
andx ∈ R and,v′t + 1

2v
′′
xx = −φ(t, t, x) + ζv.

Proof: the regularity ofv is a direct consequence of equation
(18) and Lemma 4. The differential equation checked byv is
obtained as follows:

v′t =

∫ T−t

0

u′

t ds− u(t, T − t, x)

=

∫ T−t

0

∫

R

f ′
t g dw ds− u(t, T − t, x)

=

∫ T−t

0

∫

R

(f ′
s g + ζf g) dw ds− u(t, T − t, x)

=

∫ T−t

0

(

u′s −
1

2
u′′xx

)

ds+ ζv − u(t, T − t, x)

= u(t, T − t, x) − lim
s→0

u− 1

2
v′′xx + ζv − u(t, T − t, x).

f(t, ., w) being continuous at points = 0, we have
lims→0 u(t, s, x) =

∫

R
φ(t, t, w)g(x, 0, w) dw where the term

g(x, 0, w) has to be understood as the Dirac distribution atx.
Therefore:

v′t = −φ(t, t, x) − 1

2
v′′xx + ζv.
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Lemma 6: ∂v
∂x (t,x) is null only on a curvex = x(t).

Proof: this lemma will not be rigorously proved, but in-
stead inferred from numerical simulation of the surface
∂v
∂x (t, x), t ∈ [0, T [, x ∈ R. Fig. 7 shows this surface. Clearly,
one can observe that on the left side of the red line,∂v

∂x goes
to zero only on a curvex(t). What can be proved analytically
is that ∂v

∂x (t, x) < 0 on the right side of the line, where
paradoxically the surface is very close to zero. Let us write
∂v
∂x in a new way:

∂v

∂x
(t, x) =

∫ T−t

0

∫

R

f(t, s, w)
∂g

∂x
(x, s, w) dw ds

=

∫ T−t

0

∫

R

f(t, s, w)
w − x

s
g(x, s, w) dw ds

=

∫ T−t

0

E

[

φ(t, t+ s, x+W s)
W s

s

]

ds,

Fig. 7. The surface∂v/∂x (we kept the previous parameters). On the right
of the red line, we show in Lemma 6 that it is nonnull. On the left, we see
that it is null only on the green line.

whereW s is a standard brownian motion.φ(t, t+s, x+W s)
is always positive, and nulliff t+ s ≥ a(x+W s) + b, where
we have introduced two coefficients:

a = − σ

α− σ2
/2

, b =
log(X′

max/x0)

α− σ2
/2

.

Hence:

∂v
∂x

(t, x)=
∫ T−t

0
E
[

φ(t, t + s, x + W s)
W s

s
1{t+s<a(x+Ws)+b}

]

ds

=
∫ T−t

0
E

[

φ(t, t + s, x + W s)
W s

s

∣

∣

∣
W s < t+s−b

a
− x

]

×P
(

t + s < a(x + W s) + b
)

ds

If t−b
a − x ≤ 0, it is immediate to obtain∂v

∂x(t, x) < 0. The
line t−b

a − x = 0 being precisely the red line of Fig. 7, we
have the result.

C. Expression of the risk premiumθt

In this section, we justify the existence of the market price
of risk θt and deduce its expression from Itō’s lemma and the

differential equation checked byv. Itō’s lemma holds sincev
is regular. It gives:

dSt =

[

∂v

∂t
(t,Wt) +

1

2

∂2v

∂x2
(t,Wt)

]

dt+
∂v

∂x
(t,Wt) dWt

ProvidedX ′
max > Xmax, we havev(t, x) > 0 for any (t, x).

HenceSt > 0 and we can write:

dSt

St
=

1

v

(

∂v

∂t
+

1

2

∂2v

∂x2

)

dt+
1

v

∂v

∂x
dWt.

By identifying this equation with the dynamics of the under-
lying asset (8), we get the expression of the expected total
return on the assetµt and the volatilityκt:

{

µt = 1
v

(

∂v
∂t + 1

2
∂2v
∂x2

)

κt = 1
v

∂v
∂x

.

Lemma 6 ensures thatκt 6= 0 a.s., therefore the market price
of risk θt is well defined, and:

θt =

(

∂v

∂x

)−1(
∂v

∂t
+

1

2

∂2v

∂x2
− ζv

)

.

The final expression forθt is a consequence of Lemma 5:

θt = −φ(t, t,Wt)
∂v
∂x (t,Wt)

= −π
2(t,Wt) − π1(t,Wt)

∂v
∂x (t,Wt)

.

D. Novikov’s condition

Now we have to prove that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

< +∞.

Actually, is
∫ T

0
θ2t dt even finite ? The question is relevant,

because Lemma 6 shows that on a certain line,∂v
∂x is null, and

so θ(t, w) is infinite (see Fig. 8).

Fig. 8. Repartition of the peaks ofθ(t, w). They all lie on the green line
represented on Fig. 7. Normally, they should form a continuous crest, but due
to discretization they show an uneven behavior.

Now, could a trajectory(Wt) come close to this line during a
time long enough so that:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

= +∞ ?
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Here we use a result of El Karoui and Gobet (see [6],
Proposition 1.3.8.):

P

(

sup
t≤T

|Wt| ≥ c

)

≤ 2 P(|WT | ≥ c),

which tends to 0 extremely rapidly whenc → ∞. Hence,
if we choose correctly our parameters so that the critic line
lies far enough from the linew = 0, the probability to reach it
during the experiment will be extremely low. Then, in practice,
we will consider thatθt remains almost surely bounded by a
constant̂θ; anda fortiori, Novikov’s condition will be verified,
since we will have:

E

[

exp

(

1

2

∫ T

0

θ2t dt

)]

≤ eT θ̂2/2.

E. Regressing a set of points on a 2-degree polynom

Given a set of points(xi, yi)1≤i≤n in R2, the aim of the
section is to find three real numbersa, b, c, such that

n
∑

i=1

|yi − Pa,b,c(xi)|2

is minimal, where:

Pa,b,c(x) = ax2 + bx+ c.

After deriving w.r.t.a, b andc, we obtain respectively:










a
∑

x4
i + b

∑

x3
i + c

∑

x2
i =

∑

x2
i yi

a
∑

x3
i + b

∑

x2
i + c

∑

xi =
∑

xiyi

a
∑

x2
i + b

∑

xi + c =
∑

yi

(21)

Has (21) a solution ? Let us consider the four vectors ofRn:

x2 =







x2
1
...
x2

n






x =







x1

...
xn






1 =







1
...
1






y =







y1
...
yn






,

then we can re-write the system as:




(x2|x2) (x2|x) (x2|1)
(x|x2) (x|x) (x|1)
(1|x2) (1|x) (1|1)









a
b
c



 =





(x2|y)
(x|y)
(1|y)



 .

It is equivalent to say that the vectory − ax2 − bx − c is
orthogonal to1, x andx2. In other words,ax2 + bx+ c is the
orthogonal projection ofy on Vect(1,x,x2), and thus we are
sure that (21) has a solution.
Is this solution unique ? If1, x andx2 were not independent,
there would be three real numbersu, v andw such that:

∀i, u+ vxi + wx2
i = 0.

• as soon as there are more than two different values ofxi,
this is impossible, and so there is a unique solution.

• if xi takes only two different values, then the solution
is not unique any more, but (1,x,x2) has rank 2. So
we choose to regressy on 1 and x for example (and
we find a line which intersects the centroids of the two
corresponding subsets).

• if xi takes only one value, then (1,x,x2) has rank 1. So
we choose to regressy on 1 (and we find the mean of
the yis).

F. Interpolating a surface

Given a surface of equation:z = v(t, x), suppose we only
know a discrete set of values ofz: zi,j = v(ti, xj). We want
to computev(t, x) for any value oft andx. The technique is
very similar to a linear interpolation in 1 dimension:

• first find the intervals[ti, ti+1[ and [xj , xj+1[ in which t
andx lie

• then interpolate first w.r.t.t. Denoting t−ti

ti+1−ti
by αt, we

obtain:

{

z1 = αtzi,j +(1 − αt)zi+1,j

z2 = αtzi,j+1 +(1 − αt)zi+1,j+1

• at least interpolate w.r.t.x. Denoting x−xi

xi+1−xi

by αx, we
obtain:

z = αxz
1 + (1 − αx)z2.

Remark
We have:

z = αtαxzi,j + (1 − αt)αxzi+1,j

+αt(1 − αx)zi,j+1 + (1 − αt)(1 − αx)zi+1,j+1,

which is symmetrical in(t, i) and (x, j). Hence, we would
have found the same result by interpolating first w.r.t.x, and
then w.r.t.t (see Fig. 9).

Fig. 9. Interpolation of the surface.
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