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Abstract In this paper we discuss the calibration of models built on mean-
reverting processes combined with Markov regime-switching (MRS). We pro-
pose a method that greatly reduces the computational burden induced by the
introduction of independent regimes and perform a simulation study to test
its efficiency. Our method allows for a 100 to over 1000 times faster calibra-
tion than in case of a competing approach utilizing probabilities of the last
10 observations. It is also more general and admits any value of γ in the base
regime dynamics. Since the motivation for this research comes from a recent
stream of literature in energy economics, we apply the new method to sample
series of electricity spot prices from the German EEX and Australian NSW
markets. The proposed MRS models fit these datasets well and replicate the
major stylized facts of electricity spot price dynamics.

Keywords Markov regime-switching · energy economics · electricity spot
price · EM algorithm · independent regimes

1 Introduction

The underlying idea behind Markov regime-switching (MRS; or hidden Markov
models – HMM) is to represent the observed stochastic behavior of a specific
time series by two (or more) separate states or regimes with different un-
derlying stochastic processes. The switching mechanism between the states is
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Fig. 1 Deseasonalized mean daily electricity spot prices from the European Energy Ex-
change (EEX, Germany; left) and the New South Wales Electricity Market (NSW, Aus-
tralia; right). Note, that the right panel uses a logarithmic scale to dampen the extreme
spikiness of the Australian NSW prices, which can reach up to 10000 AUD/MWh during
peak hours. The changes of dynamics (regime switches) are clearly visible in both cases.
The prices classified as spikes or drops are denoted by dots or ‘x’ (see Section 5 for model
details).

assumed to be an unobserved (latent) Markov chain. Such models have at-
tracted a lot of attention in the recent years, not only in econometrics but
also in other as diverse fields of science as population dynamics, speech recog-
nition, river flow analysis or traffic modeling (Fink, 2008; Hahn et al., 2009;
Hamilton, 2008; Luo and Mao, 2007). This paper is motivated by yet another
stream of literature – electricity spot price models in energy economics (Bier-
brauer et al., 2007; De Jong, 2006; Erlwein et al., 2010; Huisman and Mahieu,
2003; Janczura and Weron, 2010; Kanamura and Ōhashi, 2008; Karakatsani
and Bunn, 2008; Kholodnyi, 2005; Mari, 2008; Mount et al., 2006; Weron,
2009). MRS models have seen extensive use in this area due to their relative
parsimony and the ability to capture the unique characteristics of electricity
spot prices.

Recall, that electricity cannot be stored economically and requires imme-
diate delivery. At the same time end-user demand shows high variability and
strong weather and business cycle dependence. Effects like power plant out-
ages, transmission grid (un)reliability and strategic bidding add complexity
and randomness. The resulting spot prices exhibit strong seasonality on the
annual, weekly and daily level, as well as, mean reversion, very high volatility
and abrupt, short-lived and generally unanticipated extreme price spikes or
drops (Benth et al., 2008; Eydeland and Wolyniec, 2003; Weron, 2006). What
is more, these spikes tend to cluster. Like in Figure 1 where two sample spot
price trajectories are plotted (for more evidence and discussions see Chris-
tensen et al., 2009; Janczura and Weron, 2010). The latter feature renders
the very popular class of jump-diffusion models impractical, as they cannot
exhibit consecutive spikes with the frequency observed in market data.

In contrast, MRS models allow for consecutive spikes in a very natural way.
Also the return of prices after a spike to the ‘normal’ regime is straightforward,
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as the regime-switching mechanism admits temporal changes of model dy-
namics. MRS models are also more versatile than the popular hidden Markov
models (HMM; in the strict sense, see Cappe et al., 2005), since they allow for
temporary dependence within the regimes, in particular, for mean reversion.
As the latter is a characteristic feature of electricity prices it is important
to have a model that captures this phenomenon. Indeed, the base regime is
typically modeled by a mean-reverting diffusion (Huisman, 2009), sometimes
heteroskedastic (Janczura and Weron, 2010). For the spike regime(s), on the
other hand, a number of specifications have been suggested in the literature,
ranging from mean-reverting diffusions to heavy tailed random variables.

Having selected the model class (i.e. MRS), the type of dependence between
the regimes has to be defined. Dependent regimes with the same random noise
process in all regimes (but different parameters; an approach dating back to
the seminal work of Hamilton, 1989) lead to computationally simpler models.
On the other hand, independent regimes allow for a greater flexibility and
admit qualitatively different dynamics in each regime. They seem to be a
more natural choice for electricity spot price processes, which can exhibit a
moderately volatile behavior in the base regime and a very volatile one in the
spike regime, see Figure 1 (note, that the right panel uses a logarithmic scale
to dampen the extreme spikiness of the Australian NSW prices).

Once the electricity spot price model is fully specified we are left with the
problem of calibrating it to market data. This challenging process is the focus
of this paper. Due to the unobservable switching mechanism, estimation of
MRS models requires inferring model parameters and state process values at
the same time. The situation becomes more complicated when the individual
regimes are independent from each other and at least one of them is mean-
reverting. Then the temporal latency of the dynamics in the regimes has to
be taken into account.

In this paper we propose a method that greatly reduces the computational
burden induced by the introduction of independent regimes in MRS models.
Instead of storing conditional probabilities for each of the possible state process
paths, our method requires conditional probabilities for only one time-step.
Since MRS models can be considered as generalizations of HMMs (Cappe et
al., 2005), this result can have far-reaching implications for many problems
where HMMs have been applied (see e.g. Mamon and Elliott, 2007).

The paper is structured as follows. In Section 2 we define the MRS models
used in this paper. Next, in Section 3 we describe the estimation procedure
for parameter-switching models and introduce an approximation to avoid the
computational burden in case of independent regimes. In Section 4 a simulation
study to test the performance of the proposed method is summarized. Then,
in Section 5 an application of the proposed approach to models of wholesale
electricity prices is discussed. Finally, in Section 6 we conclude.
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2 The models

Recall, that the switching mechanism between the states (or regimes) of a
Markov regime-switching (MRS) model is assumed to be an unobserved (la-
tent) Markov chain Rt. It is described by the transition matrix P containing
the probabilities pij = P (Rt+1 = j | Rt = i) of switching from regime i at
time t to regime j at time t+ 1. For instance, for i, j = {1, 2} we have:

P = (pij) =

(

p11 p12
p21 p22

)

=

(

1− p12 p12
p21 1− p21

)

. (1)

Because of the Markov property the current state Rt at time t depends on the
past only through the most recent value Rt−1.

In this paper we focus on two specifications of MRS models popular in
the energy economics literature (see e.g. De Jong, 2006; Janczura and Weron,
2010; Mount et al., 2006). Both are based on a discretized version of the mean-
reverting, heteroskedastic process given by the following SDE:

dXt = (α− βXt)dt+ σ|Xt|γdWt. (2)

Note, that the absolute value is needed if negative data is analyzed.
In the first specification only the model parameters change depending on

the state process values, while in the second the individual regimes are driven
by independent processes. More precisely, in the first case the observed process
Xt is described by a parameter-switching times series of the form:

Xt = αRt
+ (1− βRt

)Xt−1 + σRt
|Xt−1|γRt ǫt, (3)

sharing the same set of random innovations in both regimes (ǫt’s are assumed
to be N(0, 1)-distributed). In the second one, Xt is defined as:

Xt =

{

Xt,1 if Rt = 1,
Xt,2 if Rt = 2,

(4)

where at least one regime is given by:

Xt,i = αi + (1− βi)Xt−1,i + σi|Xt−1,i|γiǫt,i, i = 1 ∨ i = 2. (5)

Note, that here we focus on a 2-regime model, but it is straightforward to
generalize all the results of this paper to a model with 3 or more regimes.

3 Model calibration

Calibration of MRS models is not straightforward since the regimes are only
latent and hence not directly observable. Hamilton (1990) introduced an ap-
plication of the Expectation-Maximization (EM) algorithm of Dempster et al.
(1977), where the whole set of parameters θ is estimated by an iterative two-
step procedure. The algorithm was later refined by Kim (1994). In Section
3.1 we briefly describe the general estimation procedure and provide explicit
formulas for the model defined by eqn. (3). Next, in Section 3.2 we discuss the
computational problems induced by the introduction of independent regimes,
see eqns. (4) and (5), and propose an efficient remedy.
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3.1 Parameter-switching variant

The algorithm starts with an arbitrarily chosen vector of initial parameters

θ(0) = (α
(0)
i , β

(0)
i , σ

(0)
i , γ

(0)
i ,P(0), ρ

(0)
i ), for i = 1, 2, where ρ

(0)
i ≡ P (R1 = i) and

the other parameters are defined by equations (1), (3) and (5). In the first step
of the iterative procedure (the E-step) inferences about the state process are
derived. Since Rt is latent and not directly observable, only the expected values
of the state process, given the observation vector E(IRt=i|x1, x2..., xT ; θ), can
be calculated. These expectations result in the so called ‘smoothed inferences’,
i.e. the conditional probabilities P (Rt = j|x1, ..., xT ; θ) for the process being
in regime j at time t. Next, in the second step (the M-step) new maximum
likelihood (ML) estimates of the parameter vector θ, based on the smoothed
inferences obtained in the E-step, are calculated. Both steps are repeated until
the (local) maximum of the likelihood function is reached. A detailed descrip-
tion of the algorithm is given bellow.

3.1.1 The E-step

Assume that θ(n) is the parameter vector calculated in the M-step during the
previous iteration. Let xt = (x1, x2, ...xt). The E-part consists of the following
steps (Kim, 1994):

i) Filtering: based on the Bayes rule for t = 1, 2, ..., T iterate on equations:

P (Rt = i|xt; θ
(n)) =

P (Rt = i|xt−1; θ
(n))f(xt|Rt = i;xt−1; θ

(n))
2
∑

i=1

P (Rt = i|xt−1; θ(n))f(xt|Rt = i;xt−1; θ(n))

,

where f(xt|Rt = i;xt−1; θ
(n)) is the density of the underlying process at

time t conditional that the process was in regime i (i ∈ 1, 2),

and

P (Rt+1 = i|xt; θ
(n)) =

2
∑

j=1

p
(n)
ji P (Rt = j|xt; θ

(n)),

until P (RT = i|xT ; θ
(n)) is calculated.

The starting point for the iteration is chosen as P (R1 = i|x0; θ
(n)) = ρ

(n)
i .

ii) Smoothing: for t = T − 1, T − 2, ..., 1 iterate on

P (Rt = i|xT ; θ
(n)) =

2
∑

j=1

P (Rt = i|xt; θ
(n))P (Rt+1 = j|xT ; θ

(n))p
(n)
ij

P (Rt+1 = j|xt; θ(n))
.

The above procedure requires derivation of f(xt|Rt = i;xt−1; θ
(n)) used

in the filtering part i). Observe, that the model definition (3) implies that
Xt given Xt−1 has a conditional Gaussian distribution with mean αi + (1 −
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βi)Xt−1 and standard deviation σi|Xt−1|γi given by the following probability
distribution function (pdf):

f
(

xt|Rt = i;xt−1; θ
(n)

)

=
1

√
2πσ

(n)
i |xt−1|γ

(n)
i

·

· exp











−

(

xt −
(

1− β
(n)
i

)

xt−1 − α
(n)
i

)2

2
(

σ
(n)
i

)2

|xt−1|2γi
(n)











. (6)

3.1.2 The M-step

In the second step of the EM algorithm, new and more exact maximum likeli-
hood (ML) estimates θ(n+1) for all model parameters are calculated. Compared
to standard ML estimation, where for a given pdf f the log-likelihood function
∑T

t=1 log f(xt, θ
(n)) is maximized, here each component of this sum has to be

weighted with the corresponding smoothed inference, since each observation
xt belongs to the ith regime with probability P (Rt = i|xT ; θ

(n)). In particular,
for the model defined by eqn. (3) explicit formulas for the estimates can be
derived by setting the partial derivatives of the (log-)likelihood function to
zero. This leads to the following system of equations:

α̂i =

T
∑

t=2

[

P (Rt = i|xT ; θ
(n))|xt−1|−2γi(xt − (1− β̂i)xt−1)

]

T
∑

t=2

[

P (Rt = i|xT ; θ(n))|xt−1|−2γi

]

, (7)

β̂i =

T
∑

t=2

{

P (Rt = i|xT ; θ
(n))xt−1|xt−1|−2γiB1

}

T
∑

t=2

[

P (Rt = i|xT ; θ(n))xt−1|xt−1|−2γiB2

]

, (8)

B1 = xt − xt−1 −
∑T

t=2 P (Rt = i|xT ; θ
(n))|xt−1|−2γi (xt − xt−1)

∑T
t=2 P (Rt = i|xT ; θ(n))|xt−1|−2γi

,

B2 =

∑T
t=2 P (Rt = i|xT ; θ

(n))xt−1|xt−1|−2γi

∑T
t=2 P (Rt = i|xT ; θ(n))|xt−1|−2γi

− xt−1,

σ̂2
i =

T
∑

t=2

{

P (Rt = i|xT ; θ
(n))|xt−1|−2γi(xt − α̂i − (1− β̂i)xt−1)

2
}

T
∑

t=2
P (Rt = i|xT ; θ(n))

. (9)

The fourth parameter, γi, requires numerical maximization of the (log-)likelihood
function.

Finally, as in Hamilton (1990), we have ρ
(n+1)
i = P (R1 = i|xT; θ

(n)) and
the transition probabilities are estimated according to the following formula
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Fig. 2 A sample trajectory of a MRS model with independent regimes (black solid line)
superimposed on the observable and latent values of the processes in both regimes. The
simulation was performed for a model with the following parameters: p11 = 0.9, p22 = 0.8,
α1 = 1, β1 = 0.7, σ2

1
= 1, γ1 = 0, α2 = 2, β2 = 0.3, σ2

2
= 0.01, γ2 = 1.

(Kim, 1994):

p
(n+1)
ij =

T
∑

t=2
P (Rt = j, Rt−1 = i|xT ; θ

(n))

T
∑

t=2
P (Rt−1 = i|xT ; θ(n))

= (10)

=

T
∑

t=2
P (Rt = j|xT ; θ

(n))
p
(n)
ij P (Rt−1=i|xt−1;θ

(n))

P (Rt=j|xt−1;θ(n))

T
∑

t=2
P (Rt−1 = i|xT ; θ(n))

,

where p
(n)
ij is the transition probability from the previous iteration. All values

obtained in the M-step are then used as a new parameter vector θ(n+1) =

(α̂i, β̂i, σ̂i, γ̂i,P
(n+1), ρ

(n+1)
i ), i = 1, 2, in the next iteration of the E-step.

3.2 Independent regimes variant

In the parameter-switching model (3) the current value of the process depends
on the last observation only, no matter which regime it originated from. This
implies that for the calculation of the conditional pdf (6), used in the i) part
of the E-step recursions, the information from only one preceding time step is
needed. Consequently, the EM algorithm requires storing conditional proba-
bilities P (Rt = i|xT ) of one time step only, i.e. 2T values in total.

However, the estimation procedure complicates significantly, if the regimes
are independent from each other. Observe, that the values of the mean-re-
verting regime become latent when the process is in the other state (see
Figure 2 for an illustration). This makes the distribution of Xt dependent
on the whole history (x1, x2, ..., xt−1) of the process. As a consequence all
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possible paths of the state process (R1, R2, ..., Rt) should be considered in
the estimation procedure, implying that f(xt|Rt = i, Rt−1 6= i, ..., Rt−j 6=
i, Rt−j−1 = i;xt−1; θ

(n)) and the whole set of probabilities P (Rt = it, Rt−1 =
it−1, ..., Rt−j = it−j |xt−1; θ

(n)) should be used in the E-step. Obviously, this
leads to a high computational complexity, as the number of possible state pro-
cess realizations is equal to 2T and increases rapidly with sample size. To be
more precise, the total number of probabilities required by the EM algorithm
to be stored in computer memory is equal to 2(2T+1− 1). Assuming that each
probability is stored as a double precision floating-point number (8 bytes),
estimating parameters from a sample of T = 30 observations would require
32 gigabytes of memory! For samples of typical size (a few hundred to a few
thousand observations) this is clearly impossible with today’s computers.

As a feasible solution to this problem Huisman and de Jong (2002) sug-
gested to use probabilities of the last 10 observations. Apart from the fact
that such an approximation still is computationally intensive (requires storing
2{210(T −9)−1} probabilities in computer memory), it can be used only if the
probability of more than 10 consecutive observations from the second (spike)
regime is negligible. In Section 4 we will perform a simulation study to see
how limiting is this theoretical assumption in practice.

Instead, in this article we suggest to replace the latent variables xt−1 in
formula (6) with their expectations x̃t−1 = E(Xt−1|xt−1; θ

(n)) based on the
whole information available at time t − 1. A similar approach was used by
Gray (1996) in the context of regime-switching GARCH models to avoid the
problem of the conditional standard deviation path dependence. Now, the
estimation procedure described in Section 3.1 can be applied with the following
approximation of the pdf:

f
(

xt|Rt = i;xt−1; θ
(n)

)

=
1

√
2πσ

(n)
i |x̃t−1,i|γ

(n)
i

·

· exp











−

(

xt −
(

1− β
(n)
i

)

x̃t−1,i − α
(n)
i

)2

2
(

σ
(n)
i

)2

|x̃t−1,i|2γi
(n)











, (11)

where x̃t,i denotes the expected value of the ith regime at time t, that is
E
(

Xt,i|xt; θ
(n)

)

. Note, that compared to formula (6) for the parameter-switch-
ing variant, the observed value of the process xt−1 is now replaced by the
expected value x̃t−1,i of the ith regime at time t − 1. The expected values
x̃t,i = E

(

Xt,i|xt; θ
(n)

)

can be computed using the following recursive formula
(for the derivation see the Appendix):

E
(

Xt,i|xt; θ
(n)

)

= P
(

Rt = i|xt; θ
(n)

)

xt + P
(

Rt 6= i|xt; θ
(n)

)

· (12)

·
{

α
(n)
i +

(

1− β
(n)
i

)

E
(

Xt−1,i|xt−1; θ
(n)

)}

.
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It is interesting to note, that

E
(

Xt,i|xt; θ
(n)

)

=

t−1
∑

k=0

xt−k

(

1− β
(n)
i

)k

P
(

Rt−k = i|xt−k; θ
(n)

)

·

·
k
∏

j=1

P
(

Rt−j+1 6= i|xt−j+1; θ
(n)

)

+

+ α
(n)
i

t−1
∑

k=0

(

1− β
(n)
i

)k
k
∏

j=0

P
(

Rt−j+1 6= i|xt−j+1; θ
(n)

)

.

Hence, the expected value E(Xt,i|xt; θ
(n)) is a linear combination of the ob-

served vector xt and the probabilities P (Rj = i|xj ; θ
(n)) calculated during

the estimation procedure (see the filtering part of the E-step). This observa-
tion shows that using x̃t−1,i = E(Xt−1,i|xt−1; θ

(n)) in formula (11) instead of
xt−1, as in formula (6) for the parameter-switching variant, the computational
complexity of the E-step is greatly reduced. In particular, in the proposed
modification of the EM algorithm the total number of probabilities stored in
computer memory is only 4T . This means that for a sample of T = 30 observa-
tions only 1 kilobyte of memory is required, compared to 335 kilobytes in the
approach utilizing probabilities of the last 10 observations and 32 gigabytes in
the standard EM algorithm.

The estimation procedure described in this section can be applied to models
in which at least one regime is described by the mean-reverting process given
by (5). The independent regimes specification is commonly used in the elec-
tricity price modeling literature (for a recent review see Janczura and Weron,
2010). It is often assumed that one regime follows a mean-reverting process,
while the values in the other regime(s) are independent random variables from
a specified distribution. The estimation steps are then as described above, with
the exception that the M-step is now dependent on the choice of the distribu-
tion in the other regime(s). Finally, note that in MRS models the likelihood
function should be weighted with the corresponding probability, analogously
as in the derivation of estimates (7)-(9) in the parameter-switching variant.

4 Simulation study

In order to test the performance of the estimation method proposed in Section
3.2, we provide a simulation study. For each of the following three MRS model
types we generate 1000 sample trajectories:

– MR: with parameter-switching mean-reverting regimes, see (3),
– IMR: with independent mean-reverting processes in both regimes, see (5),
– IMR-G: with a mean-reverting process in the first regime and independent

N(α2, σ
2
2)-distributed random variables in the second regime.
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Table 1 Means, 95% confidence intervals (CIl,CIu) and standard deviations (Std) of pa-
rameter estimates obtained from 1000 simulated trajectories of 10000 observations each, for
the three studied MRS model types: MR, IMR, and IMR-G.

α1 β1 σ2
1 γ1 α2 β2 σ2

2 γ2 p11 p22
MR

True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.5000 0.5000

Mean 1.0006 0.7001 1.0004 -0.0002 2.0000 0.3000 0.0100 1.0010 0.4998 0.4993
CIl 0.9493 0.6842 0.9504 -0.0223 1.9997 0.2974 0.0094 0.9752 0.4854 0.4856
CIu 1.0587 0.7157 1.0543 0.0223 2.0003 0.3026 0.0106 1.0251 0.5134 0.5128
Std 0.0332 0.0095 0.0316 0.0137 0.0002 0.0016 0.0004 0.0152 0.0083 0.0081

IMR

True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.9000 0.8000

Mean 0.9974 0.6973 1.0135 0.0029 1.9702 0.2957 0.0128 1.0010 0.9004 0.8003
CIl 0.9633 0.6778 0.9836 -0.0126 1.8347 0.2753 0.0026 0.8219 0.8941 0.7892
CIu 1.0339 0.7189 1.0435 0.0176 2.1145 0.3181 0.0496 1.1716 0.9066 0.8113
Std 0.0216 0.0126 0.0184 0.0094 0.0857 0.0131 0.0055 0.1051 0.0038 0.0068

IMR-G

True 1.0000 0.7000 0.5000 0.5000 7.0000 0.5000 0.8000 0.000

Mean 0.9999 0.7009 0.5074 0.5036 6.9959 0.5063 0.7999 0.2018
CIl 0.9893 0.6888 0.4924 0.4865 6.9689 0.4801 0.7928 0.1876
CIu 1.0113 0.7136 0.5220 0.5209 7.0218 0.5348 0.8071 0.2163
Std 0.0067 0.0075 0.0087 0.0105 0.0160 0.0165 0.0044 0.0089

Table 2 Means and standard deviations (Std), over 1000 simulated trajectories, of param-
eter estimates in the MR model calculated for different sample sizes.

α1 β1 σ2
1 γ1 α2 β2 σ2

2 γ2 p11 p22
True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.5000 0.5000

Size Mean

100 0.9904 0.7040 0.8863 0.0455 1.9990 0.3011 0.0088 1.1214 0.4895 0.4962
500 1.0027 0.7000 0.9818 0.0069 2.0000 0.2999 0.0096 1.0201 0.4986 0.4986

1000 1.0034 0.7014 0.9915 0.0021 2.0002 0.3002 0.0097 1.0151 0.4990 0.4989
2000 1.0021 0.7009 0.9966 0.0026 2.0000 0.3000 0.0099 1.0045 0.5002 0.4990
5000 1.0003 0.7003 0.9958 0.0005 2.0000 0.3000 0.0099 1.0035 0.4998 0.5000

10000 1.0006 0.7001 1.0004 -0.0002 2.0000 0.3000 0.0100 1.0010 0.4998 0.4993

Size Std

100 0.3746 0.1111 0.3903 0.2280 0.0279 0.0219 0.0056 0.2797 0.0864 0.0865
500 0.1563 0.0461 0.1535 0.0703 0.0042 0.0077 0.0018 0.0766 0.0350 0.0362

1000 0.1094 0.0311 0.1035 0.0453 0.0020 0.0051 0.0013 0.0518 0.0263 0.0256
2000 0.0719 0.0214 0.0719 0.0298 0.0010 0.0035 0.0008 0.0335 0.0179 0.0180
5000 0.0474 0.0139 0.0455 0.0196 0.0004 0.0023 0.0005 0.0213 0.0115 0.0115

10000 0.0332 0.0095 0.0316 0.0137 0.0002 0.0016 0.0004 0.0152 0.0083 0.0081

The IMR model is simulated with probabilities of staying in the same regime
equal to p11 = 0.9 and p22 = 0.8 for the first and the second regime, re-
spectively. With such a choice of the transition matrix we can expect to see
many consecutive observations in each regime. Indeed, the probability of 10
consecutive observations from the first regime is equal to 0.35 and even for 40
consecutive observations that probability is still higher than 0.01. Obviously,
such a model cannot be estimated based on the information about only a few
prevailing observations.

For each sample trajectory we apply one of the estimation procedures de-
scribed in Section 3. Then, we calculate the means, standard deviations and
95% confidence intervals of the parameter estimates. The values obtained for
trajectories consisting of 10000 observations are given in Table 1. All sample
means are close to the true parameters with a deviation of no more than 0.03
(in absolute terms). In fact, in most cases the deviation is significantly lower.
Moreover, all parameter values are within the obtained 95% confidence inter-
vals. Also the standard deviation of the estimates is quite low and, except for
γ2 and α2 in the IMR model, does not exceed 0.04.

Next, we check how the proposed method works for different sample sizes.
We generate MRS model trajectories with 100, 500, 1000, 2000, 5000, and
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Fig. 3 95% confidence intervals of parameter estimates in the MRS model with parameter-
switching mean-reverting regimes (MR; see Table 1 for parameter details). The true param-
eter values are given by the solid red lines.

Table 3 Means and standard deviations (Std), over 1000 simulated trajectories, of param-
eter estimates in the IMR model calculated for different sample sizes.

α1 β1 σ2
1 γ1 α2 β2 σ2

2 γ2 p11 p22
True 1.0000 0.7000 1.0000 0.0000 2.0000 0.3000 0.0100 1.0000 0.9000 0.8000

Size Mean

100 1.0221 0.7280 0.9765 0.0298 2.6473 0.3982 22647 1.0580 0.8951 0.7798
500 1.0002 0.7026 1.0109 0.0061 2.0368 0.3057 0.5569 0.9822 0.8997 0.7956

1000 1.0037 0.7025 1.0070 0.0075 2.0319 0.3052 0.0391 0.9995 0.9004 0.7981
2000 0.9992 0.6987 1.0130 0.0024 1.9781 0.2969 0.0200 1.0046 0.9006 0.7993
5000 1.0001 0.6988 1.0128 0.0044 1.9615 0.2944 0.0139 1.0059 0.9004 0.8001

10000 0.9974 0.6973 1.0135 0.0029 1.9702 0.2957 0.0128 1.0010 0.9004 0.8003

Size Std

100 0.2254 0.1358 0.1975 0.1341 1.3062 0.1986 71587 2.1783 0.0385 0.0779
500 0.0954 0.0558 0.0869 0.0487 0.4207 0.0641 9.0870 0.5930 0.0166 0.0318

1000 0.0668 0.0403 0.0601 0.0312 0.2917 0.0444 0.1958 0.3687 0.0116 0.0218
2000 0.0473 0.0275 0.0408 0.0211 0.2006 0.0306 0.0620 0.2397 0.0083 0.0156
5000 0.0296 0.0176 0.0263 0.0135 0.1213 0.0184 0.0093 0.1606 0.0052 0.0098

10000 0.0216 0.0126 0.0184 0.0094 0.0857 0.0131 0.0055 0.1051 0.0038 0.0068
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Fig. 4 95% confidence intervals of parameter estimates in the MRS model with independent
mean-reverting regimes (IMR; see Table 1 for parameter details). The true parameter values
are given by the solid red lines.

Table 4 Means and standard deviations (Std), over 1000 simulated trajectories, of param-
eter estimates in the IMR-G model calculated for different sample sizes.

α1 β1 σ2
1 γ1 α2 σ2

2 p11 p22
True 1.0000 0.7000 0.5000 0.5000 7.0000 0.5000 0.8000 0.2000

Size Mean

100 1.0017 0.7002 0.5064 0.5876 7.0084 0.4732 0.7977 0.1889
500 1.0045 0.7048 0.5058 0.5221 7.0007 0.5068 0.8011 0.2008

1000 0.9997 0.7004 0.5066 0.5137 6.9941 0.5066 0.7995 0.2012
2000 1.0007 0.7012 0.5086 0.5071 6.9971 0.5038 0.8001 0.2020
5000 1.0000 0.7000 0.5072 0.5055 6.9955 0.5068 0.8001 0.2019

10000 0.9999 0.7009 0.5074 0.5036 6.9959 0.5063 0.7999 0.2018

Size Std

100 0.1021 0.0927 0.1062 0.1622 0.1617 0.1730 0.0442 0.0910
500 0.0380 0.0370 0.0403 0.0563 0.0755 0.0786 0.0194 0.0395

1000 0.0252 0.0257 0.0273 0.0374 0.0510 0.0545 0.0147 0.0277
2000 0.0165 0.0174 0.0189 0.0251 0.0362 0.0377 0.0100 0.0192
5000 0.0098 0.0113 0.0121 0.0153 0.0232 0.0235 0.0065 0.0127

10000 0.0067 0.0075 0.0087 0.0105 0.0160 0.0165 0.0044 0.0089
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Fig. 5 95% confidence intervals of parameter estimates in the MRS model with a mean-
reverting regime combined with independent Gaussian random variables (IMR-G; see Table
1 for parameter details). The true parameter values are given by the solid red lines.

10000 observations. The obtained means and standard deviations are given in
Tables 2 (MR model), 3 (IMR model) and 4 (IMR-G model). The respective
confidence intervals are plotted in Figures 3, 4 and 5. As expected, the stan-
dard deviations, as well as, the width of the confidence intervals decrease with
increasing sample size. Looking at the means, in most cases a sample of 1000
(or even 500 for the MR and IMR-G models) observations yields satisfactory
results, as the deviation does not exceed 0.03 (in absolute terms). Especially
for the IMR-G model the results are very satisfactory. This is important in
view of the fact that a variant of this model is used in Section 5 for modeling
electricity spot prices.

Finally, we compare the convergence of the proposed algorithm (in what
follows called method I) with the approach utilizing probabilities of the last 10
observations (method II; as proposed by Huisman and de Jong, 2002). Observe,
that since the conditional distribution f(xt|xt−k) of the process defined by (5)
is not known for a general value of γ if k > 1, the latter method cannot be used
in this case. Therefore, we limit the comparison of the two estimation methods
to specifications with γ = 0. For 100 simulated trajectories of the IMR-G
model we calculate the mean absolute errors (MAE) of the parameter estimates
obtained from both approaches. We consider five sample sizes (100, 500, 1000,
2000 and 5000) and two sets of parameters: one with a low probability of
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Table 5 Mean absolute errors (MAE) of the parameter estimates in the IMR-G model
obtained from two estimation methods: the algorithm proposed in this paper (method I)
and the approach utilizing probabilities of the last 10 observations (method II). The errors
were computed over 100 simulations for each sample size and each set of parameters. The
true (simulated) parameter values are given in italics. Additionally, the mean estimation
times (in seconds) are provided in the last column.

Sample Method α1 β1 σ2
1 α2 σ2

2 p11 p22 Time [s]

size 1.00 0.70 0.50 7.00 0.50 0.80 0.20

100 I 0.1469 0.0954 0.0716 0.1291 0.1187 0.0331 0.0674 0.02
II 0.1443 0.0929 0.0720 0.1287 0.1190 0.0332 0.0674 1.53

500 I 0.0573 0.0362 0.0293 0.0594 0.0606 0.0166 0.0375 0.07
II 0.0592 0.0371 0.0274 0.0594 0.0606 0.0166 0.0375 8.68

1000 I 0.0398 0.0257 0.0199 0.0463 0.0455 0.0119 0.0247 0.14
II 0.0378 0.0249 0.0192 0.0463 0.0455 0.0119 0.0247 19.67

2000 I 0.0318 0.0202 0.0151 0.0286 0.0259 0.0078 0.0149 0.28
II 0.0309 0.0195 0.0139 0.0307 0.0266 0.0078 0.0152 35.71

5000 I 0.0219 0.0133 0.0122 0.0168 0.0192 0.0051 0.0098 0.67
II 0.0342 0.0154 0.0565 0.0199 0.0238 0.0069 0.0111 109.25

1.00 0.60 1.00 8.00 1.00 0.90 0.70

100 I 0.1627 0.0803 0.1314 0.1708 0.3024 0.0275 0.0900 0.03
II 0.1662 0.0832 0.1342 0.1802 0.2867 0.0319 0.0961 2.81

500 I 0.0788 0.0409 0.0738 0.0736 0.1152 0.0144 0.0298 0.12
II 0.0777 0.0392 0.0719 0.1005 0.1503 0.0193 0.0424 32.70

1000 I 0.0575 0.0296 0.0409 0.0591 0.0731 0.0090 0.0215 0.22
II 0.0586 0.0297 0.0394 0.1045 0.1516 0.0298 0.0417 135.42

2000 I 0.0385 0.0205 0.0365 0.0377 0.0552 0.0063 0.0162 0.45
II 0.0435 0.0229 0.0802 0.0876 0.1332 0.0170 0.0405 403.95

5000 I 0.0262 0.0149 0.0249 0.0218 0.0332 0.0041 0.0097 1.13
II 0.0309 0.0163 0.0758 0.1036 0.1404 0.0189 0.0445 1340.04

staying in the Gaussian regime (i.e. with p22 = 0.2, so that the probability of
more than 10 consecutive observations from the Gaussian regime is less than
10−7 and, hence, can be neglected) and a second one with p22 = 0.7. The
results are summarized in Table 5.

The mean absolute errors obtained for the first parameter set (with p22 =
0.2) are comparable for both methods. However, if the probability of staying
in the Gaussian regime for more than 10 consecutive observations is not negli-
gible, method I apparently outperforms method II. The difference is especially
noticeable for the Gaussian regime parameters (α2 and σ2

2) and the transi-
tion probabilities. Observe, that for samples of 5000 observations the MAE
obtained using method II are almost five times larger than the ones result-
ing from using method I. Moreover, while the errors decrease with increasing
sample size when using method I, this is not observed for method II, e.g. for
the estimates of α2 the MAE values are 0.1005, 0.1045, 0.0876 and 0.1036 for
samples of 500, 1000, 2000 and 5000 observations, respectively.

This simple simulation study shows the appealing efficiency of the esti-
mation algorithm proposed in this article (method I), when compared to its
competitor (method II). It also makes clear that method II can be used only if
the probability of more than 10 consecutive observations from the spike (here
Gaussian) regime can be ignored. Furthermore, compared to method I, method
II is much more computationally demanding. In the last column of Table 5
we provide the mean (over 100 simulations) estimation times obtained using
both approaches. Observe the striking difference between the two methods.
Method I was found to be 100 to over 1000 times faster than method II (1.13s
vs. 1340.04s)!
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5 Application to electricity spot prices

In this study we present how the techniques introduced in Section 3 can be
used to efficiently calibrate MRS models to electricity spot prices. We use
mean daily (baseload) spot prices from two major power markets: the Euro-
pean Energy Exchange (EEX; Germany) and the New South Wales Electricity
Market (NSW; being part of the National Electricity Market in Australia). Us-
ing baseload data is quite common in the energy economics literature, partly
due to the fact that baseload is the most common underlying instrument for
energy derivatives. The EEX sample totals 1820 daily observations (or 260 full
weeks) and covers the roughly 5-year period January 2, 2006 – December 26,
2010. The NSW sample totals 1722 daily observations (246 full weeks) and
covers the period January 2, 2006 – September 19, 2010. Recall that NSW is
an ‘energy only market’, where the wholesale electricity price provides com-
pensation for both variable and fixed costs (Weron, 2006). As a result, the
observed prices are extremely spiky – they can reach up to 10000 AUD/MWh
during peak hours and well over 1000 AUD/MWh in mean daily prices. On
the other hand, a different generation stack with much less wind generation
than in the EEX market yields no negative (or close to zero) prices. Conse-
quently, in what follows we analyze NSW log-prices, i.e. natural logarithms of
spot prices, which are more prone to modeling with the models studied in this
article than the prices themselves.

When modeling electricity spot prices we have to bear in mind that electric-
ity is a very specific commodity. Both electricity demand and (to some extent)
supply exhibit seasonal fluctuations. They mostly arise due to changing cli-
mate conditions, like temperature and the number of daylight hours. These
seasonal fluctuations translate into seasonal behavior of electricity prices, and
spot prices in particular. In the mid- and long-term also the fuel price levels
(of natural gas, oil, coal) influence electricity prices. However, not wanting
to focus the paper on modeling the fuel stack/bid stack/electricity spot price
relationships, we use a single non-parametric long-term seasonal component
(LTSC) to represent the long-term non-periodic fuel price levels, the changing
climate/consumption conditions throughout the years and strategic bidding
practices. An empirical justification for such an approach can be found, for in-
stance, in Janczura and Weron (2010); see also Eydeland and Wolyniec (2003)
and Karakatsani and Bunn (2010) for discussions on fundamental and behav-
ioral drivers of electricity prices.

We assume that the electricity spot price (or log-price for the NSW power
market), Pt, can be represented by a sum of two independent parts: a pre-
dictable (seasonal) component ft and a stochastic component Xt , i.e. Pt =
ft + Xt. Further, we let ft be composed of a weekly periodic part, st, and
a LTSC, Tt. The deseasonalization is then conducted in three steps. First,
the long term trend Tt is estimated from daily spot prices Pt using a wavelet
filtering-smoothing technique (for details see Trück et al., 2007; Weron, 2006).
This procedure, also known as low pass filtering, yields a traditional linear
smoother. Here we use the S6 approximation, which roughly corresponds to
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Fig. 6 Mean daily spot EEX prices (left panel) and NSW log-prices (right panel) and the
estimated long-term seasonal components (LTSC; thick blue lines).

bi-monthly (26 = 64 days) smoothing. The estimated long term seasonal com-
ponents are plotted in Figure 6.

Although forecasting is not the focus of this article, let us briefly comment
on forecasting the trend-seasonal patterns. Predicting the LTSC beyond the
next few days or weeks is a very difficult task. And wavelets are not very help-
ful in this context. Unlike sines and cosines, individual wavelet functions are
quite localized in time or (more generally) in space. For the lower detail levels
of the wavelet decomposition, which are of high frequency and oscillatory in
nature, a trigonometric (Yousefi et al., 2005) or an ARIMA (Conejo et al.,
2005) fit can be used. However, for the much smoother approximation level
(e.g. the S6 approximation in our case) and the higher detail levels rather a
spline fit (Yousefi et al., 2005) or a polynomial extrapolation (Wong et al.,
2003) is applied to extend the signal. Naturally, the choice of the extrapola-
tion method and the range of values used for calibration is subjective and,
hence, the LTSC forecasts will most likely diverge for different methods. As
mentioned by Janczura and Weron (2010), a potentially promising, alterna-
tive approach would be to use forward looking information, like smoothed
forward curves (Benth et al., 2007; Borak and Weron, 2008). The information
carried by forward prices provides insights as to the future evolution of spot
prices. However, forward prices also include the risk premium (Benth et al.,
2008; Weron, 2008), which should somehow be separated from the spot price
forecast for it to be useful.

The price series without the LTSC is obtained by subtracting the S6 ap-
proximation from Pt. Next, the weekly periodicity st is removed by subtracting
the ‘average week’ calculated as the median of prices corresponding to each
day of the week (the median is used instead of the mean due to its robustness
against outliers – the extremely spiky prices, especially in NSW data). Finally,
the deseasonalized prices, i.e. Pt − Tt − st, are shifted so that the mean of the
new process is the same as the mean of Pt. The resulting deseasonalized time
series Xt = Pt − Tt − st can be seen in Figures 7 and 8.
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The second well known feature of electricity prices are the sudden, unex-
pected price changes, known as spikes or jumps. The ‘spiky’ nature of spot
prices is the effect of non-storability of electricity. Electricity to be delivered at
a specific hour cannot be substituted for electricity available shortly after or
before. Extreme load fluctuations – caused by severe weather conditions often
in combination with generation outages or transmission failures – can lead to
price spikes. On the other hand, an oversupply – due to a sudden drop in
demand and technical limitations of an instant shut-down of a generator – can
cause price drops. Further, electricity spot prices are in general regarded to be
mean-reverting and exhibit the so called ‘inverse leverage effect’, meaning that
the positive shocks increase volatility more than the negative shocks. Knittel
and Roberts (2005) attributed this phenomenon to the fact that a positive
shock to electricity prices can be treated as an unexpected positive demand
shock. Therefore, as a result of convex marginal costs, positive demand shocks
have a larger impact on price changes relative to negative shocks.

Motivated by these features of electricity spot prices we let the stochas-
tic component Xt be driven by a Markov regime-switching model with three
independent states:

Xt =







Xt,1 if Rt = 1,
Xt,2 if Rt = 2,
Xt,3 if Rt = 3.

(13)

The first (base) regime describes the ‘normal’ price behavior and is given by
the mean-reverting, heteroskedastic process of the form:

Xt,1 = α1 + (1− β1)Xt−1,1 + σ1|Xt−1,1|γ1ǫt, (14)

where ǫt is the standard Gaussian noise. The second regime represents the
sudden price jumps (spikes) caused by unexpected supply shortages and is
given by i.i.d. random variables from the shifted log-normal distribution:

log(Xt,2 −X(q2)) ∼ N(α2, σ
2
2), Xt,2 > X(q2). (15)

Finally, the third regime (responsible for the sudden price drops) is governed
by the shifted ‘inverse log-normal’ law:

log(−Xt,3 +X(q3)) ∼ N(α3, σ
2
3), Xt,3 < X(q3). (16)

It turns out that, unlike EEX prices, NSW prices do not exhibit significant
price drops, even on the log-scale. A third regime is not needed to adequately
model the dynamics. Hence, in what follows we fit a 2-regime model (without
a price drop regime) to the deseasonalized NSW log-prices.

In the above formulas X(qi) denotes the qi-quantile, qi ∈ (0, 1), of the
dataset. Generally the choice of qi is arbitrary, however, in this paper we let
q2 = 0.75 and q3 = 0.25, i.e. the third and the first quartile, respectively. This is
motivated by the statistical properties of the model in which small fluctuations
are driven by the base regime dynamics. Only the large deviations should be
driven by the spike or drop regime dynamics.
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Fig. 7 Calibration results of a MRS model with three independent regimes fitted to the
deseasonalized EEX prices. The lower panels display the conditional probabilities P (S) =
P (Rt = 2|x1, x2, ..., xT ) and P (D) = P (Rt = 3|x1, x2, ..., xT ) of being in the spike or
drop regime, respectively. The prices classified as spikes or drops, i.e. with P (S) > 0.5 or
P (D) > 0.5, are denoted by dots or ‘x’ in the upper panel.
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Fig. 8 Calibration results of a MRS model with two independent regimes fitted to the
deseasonalized NSW log-prices. The lower panel displays the conditional probability P (S)
of being in the spike regime. The prices classified as spikes, i.e. with P (S) > 0.5, are denoted
by dots in the upper panel.

The deseasonalized prices Xt and the conditional probabilities of being
in the spike P (Rt = 2|x1, x2, ..., xT ) or drop P (Rt = 3|x1, x2, ..., xT ) regime
for the analyzed datasets are displayed in Figures 7 and 8. The prices clas-
sified as spikes or drops, i.e. with P (Rt = 2|x1, x2, ..., xT ) > 0.5 or P (Rt =
3|x1, x2, ..., xT ) > 0.5, are additionally denoted by dots or ‘x’. The estimated
model parameters are given in Table 6.

The obtained base regime parameters are consistent with the well known
properties of electricity prices. In particular, β1 ∈ [0.20, 0.44] indicates a rela-
tively high speed of mean-reversion, while positive values of γ are responsible
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Table 6 Calibration results for MRS models with (two or three) independent regimes fitted
to the deseasonalized EEX prices and NSW log-prices.

Parameters Probabilities

α1 β1 σ2
1 γ1 α2 σ2

2 α3 σ2
3 p11 p22 p33

EEX 14.08 0.44 7.23 0.18 2.34 0.87 2.49 0.33 0.9270 0.6420 0.6603
NSW 0.67 0.20 4e-4 1.60 -0.99 1.40 - - 0.9539 0.6390 -

Table 7 Goodness-of-fit statistics for MRS models fitted to the deseasonalized EEX prices
and NSW log-prices. For quantiles the relative differences between the sample and the model
implied statistics are given (the latter were obtained from 100 simulations).

Quantiles K-S test p-values

0.1 0.25 0.5 0.75 0.9 Base Spike Drop Model

EEX -0.8% -0.6% -0.3% 0.2% 0.5% 0.50 0.26 0.69 0.31
NSW -0.2% -0.8% -0.3% 0.8% 0.7% 0.09 0.33 - 0.18

for the ‘inverse leverage effect’. Finally, considering probabilities pii of staying
in the same regime we obtain quite high values for each of the regimes, rang-
ing from 0.6390 for the spike regime in the NSW market up to 0.9539 for the
base regime in the same market. As a consequence, on average there are many
consecutive observations from the same regime.

In order to check the statistical adequacy of the fitted MRS models we cal-
culate percentage differences between the data and the model implied quan-
tiles, see Table 7. The model implied values are obtained as the mean value of
the statistics calculated over 100 simulated trajectories. A negative sign indi-
cates that the value obtained from the dataset is lower than the model-implied.
Observe that all differences between the data and the model-implied statistics
are less than 0.8%, which indicates a relatively good fit of the models.

Moreover, we report the p-values of a Kolmogorov-Smirnov (K-S) goodness-
of-fit type test for each of the individual regimes, as well as, for the whole model
(for test details see Janczura and Weron, 2011). The goodness-of-fit results are
summarized in Table 7. All K-S test p-values are higher than the commonly
used 5% significance level, hence we cannot reject the hypotheses that the
datasets follow the fitted MRS models.

6 Conclusions

In this paper we have proposed a method that greatly reduces the compu-
tational burden induced by the introduction of independent regimes in MRS
models. Instead of storing conditional probabilities for each of the possible
state process paths, our method requires conditional probabilities for only one
time-step. This allows for a 100 to over 1000 times faster calibration than in
case of a competing approach utilizing probabilities of the last 10 observations
(see Table 5). Our method is also more general and admits any value of γ in
the base regime dynamics.

We have further performed a limited simulation study to test the accuracy
of the new method and applied it to sample series of electricity spot prices.
The simulation study has shown that all sample means are close to the true
parameter values (and all true parameter values are within the obtained 95%
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confidence intervals). Looking at the means, in most cases a sample of 1000 (or
even 500 for the MR and IMR-G models; for model acronyms and definitions
see Section 4) observations yields satisfactory results, as the deviation does not
exceed 0.03 (in absolute terms). Especially for the IMR-G model the results
are very satisfactory. This is important in view of the fact that variants of this
model are popular in the energy economics literature. In particular, a model of
this type is calibrated in Section 5 to sample series of deseasonalized wholesale
prices from the German EEX and Australian NSW markets. The model fits
market data well and also replicates the major stylized facts of electricity spot
price dynamics. In particular, the parameter γ can be treated as a parameter
representing the ‘degree of inverse leverage’. A positive value (e.g. 0.18 or 1.60
as in Table 6) indicates ‘inverse leverage’, which reflects the observation that
positive electricity price shocks increase volatility more than negative shocks.

Finally, since MRS models can be considered as generalizations of HMMs,
the results of this paper can have far-reaching implications for many problems
where HMMs have been applied (see e.g. Mamon and Elliott, 2007). In some
cases, perhaps, a MRS model with independent regimes would constitute a
more realistic model of the observed phenomenon than a HMM.
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Appendix

The recursive formula (12) can be derived in the following way. Let Xt =
(X1, X2, ..., Xt). Observe that

Xt,i = IRt=iXt + IRt 6=i [αi + (1− βi)Xt−1,i + σi|Xt−1,i|γiǫt] , (17)

where Ix is the indicator function. Taking the expected value conditional on
Xt yields:

E
(

Xt,i|Xt; θ
(n)

)

= P
(

Rt = i|Xt; θ
(n)

)

Xt + P
(

Rt 6= i|Xt; θ
(n)
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α
(n)
i +

+
(

1− β
(n)
i

)

E
(

Xt−1,i|Xt, Rt 6= i; θ(n)
)

+

+σ
(n)
i E

(

|Xt−1,i|γ
(n)
i ǫt|Xt, Rt 6= i; θ(n)

)]

.
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Since Xt−1,i and ǫt are independent of the σ-algebra generated by {Xt, Rt 6= i}
we have

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt, Rt 6= i; θ(n)

)

= E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1; θ

(n)
)

,

and
E
(

Xt−1,i|Xt, Rt 6= i; θ(n)
)

= E
(

Xt−1,i|Xt−1; θ
(n)

)

.

Moreover, from the law of iterated expectation and basic properties of condi-
tional expected values:

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1; θ

(n)
)

=

= E
[

E
(

|Xt−1,i|γ
(n)
i ǫt|Xt−1, Xt−1,i; θ

(n)
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|Xt−1; θ
(n)
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=

= E
[

|Xt−1,i|γ
(n)
i E
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|Xt−1; θ
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=

= E
[

|Xt−1,i|γ
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i E(ǫt)|Xt−1; θ

(n)
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= 0,

which implies

E
(

Xt,i|Xt; θ
(n)
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= P (Rt = i|Xt; θ
(n))Xt + P (Rt 6= i|Xt; θ

(n)) ·

·
[

α
(n)
i + (1− β
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i )E

(

Xt−1,j |Xt−1; θ
(n)

)]

.

Finally, substituting the variables Xt with their observations xt leads to for-
mula (12).
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