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Abstract

A number of existing studies have concluded that risk sharing allocations supported by competi-

tive, incomplete markets equilibria are quantitatively close to �rst-best. Equilibrium asset prices

in these models have been di�cult to distinguish from those associated with a complete markets

model, the counterfactual features of which have been widely documented. This paper asks if life

cycle considerations, in conjunction with persistent idiosyncratic shocks which become more volatile

during aggregate downturns, can reconcile the quantitative properties of the competitive asset pric-

ing framework with those of observed asset returns. We begin by arguing that data from the Panel

Study on Income Dynamics support the plausibility of such a shock process. Our estimates suggest a

high degree of persistence as well as a substantial increase in idiosyncratic conditional volatility coin-

cident with periods of low growth in U.S. GNP. When these factors are incorporated in a stationary

overlapping generations framework, the implications for the returns on risky assets are substantial.

Plausible parameterizations of our economy are able to generate Sharpe ratios which match those

observed in U.S. data. Our economy cannot, however, account for the level of variability of stock

returns, owing in large part to the speci�cation of its production technology.
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1 Introduction

A number of recent papers have focused on the extent to which departures from the classi-
cal Arrow-Debreu model of securities markets can help reconcile intertemporal asset pricing
theory with historical observations on the joint behavior of U.S. consumption and asset re-
turns. One popular approach has been to posit a model in which incomplete markets inhibit
the complete pooling of agent-speci�c income risks. For example, papers by Aiyagari (1994),
Aiyagari and Gertler (1991), Alvarez and Jermann (1997), den Haan (1994), Heaton and
Lucas (1996), Huggett (1993), Lucas (1994), Mankiw (1986), Marcet and Singleton (1991),
R��os-Rull (1994), Krusell and Smith (1997), Telmer (1993), Weil (1992), and Zhang (1997)
examine the extent to which agents can hedge transitory income shocks by trading in com-
petitive markets for a very limited number of �nancial assets. By and large, these studies
have concluded that the incomplete markets allocations, and therefore the supporting price
processes, are fairly close to those which would obtain under complete markets. Quantita-
tively, therefore, these models inherit many of the well known drawbacks associated with
the Mehra and Prescott (1985) representative agent economy. The imposition of frictions
above and beyond market incompleteness, borrowing constraints and transactions costs for
instance, can obviously overturn these results for some speci�cations of the frictions. How-
ever, in many cases the degree of restrictiveness required to achieve a substantial deviation
from �rst-best risk sharing has seemed unrealistic.

The underlying theme of most of the above papers is the notion that idiosyncratic
variation has aggregate consequences, both in terms of quantities and prices. Our paper
continues along this line of inquiry, motivated by a large body of evidence suggesting that
actual households bear substantial amounts of idiosyncratic risk. Our working hypothesis
is that this risk is relevant for individual savings and portfolio decisions, and that these
decisions are important determinants of asset prices, at least when measured at a suitably
low frequency. The question, then, is what is missing in existing models, which �nd the
aggregate implications of idiosyncratic variation to be quantitatively small?

Our interpretation of what is missing is based on two simple observations, each of which
is formalized in the framework of Constantinides and Du�e (1996). First, a successful
model must feature allocations which represent a substantial departure from full risk shar-
ing. Because many existing studies have not had this property, we are led to question
the speci�cation of the processes for idiosyncratic risk and/or the set of frictions which in-
hibit societal risk sharing. Second, for models in this class to have interesting asset pricing
properties, there must exist some sort of dependence between idiosyncratic and aggregate
sources of uncertainty. The reason is simple. The `equity premium puzzle' of Mehra and
Prescott (1985) is essentially a quantitative statement about the relationship between asset
prices and the consumption allocations of a complete markets model. If the only di�erence
between incomplete and complete market allocations is i.i.d., idiosyncratic variation, then
the impact on asset prices | which are driven by covariation | is likely to be minimal. We
are therefore led to carefully examine the aggregate-idiosyncratic relationship underlying
previous work.
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The central theme of our paper is that life cycle e�ects are important for addressing
each of these issues. In regard to the �rst | risk sharing | we interpret previous work as
suggesting that the in�nite horizon abstraction endows theoretical agents with far greater
risk sharing possibilities than those seemingly faced by actual agents. In other words,
because they have a long horizon over which to implement it, a simple strategy of contingent
borrowing and lending allows an in�nitely lived agent to eliminate most of the variation
attributable to idiosyncratic shocks, even those which are quite persistent. Constantinides
and Du�e (1996) demonstrate that this can be overcome by modeling idiosyncratic shocks as
being permanent (i.e., unit root processes), but at the cost of a nonstationary cross sectional
distribution or the assumption of dynasties with probabilistic death. The attractiveness of
the life cycle model, in this context, is that it replaces in�nitely lived shocks with �nitely
lived agents and can, conceivably, achieve the same end in a stationary, recursive framework.
Moreover, much of the baggage which accompanies a life cycle model plays a welcome role
in constraining risk sharing further, and in a manner which seems quite natural. There
is a tension, for instance, between life cycle and precautionary savings motives, one which
can limit the extent to which a given shock can be o�set by borrowing or, equivalently,
dissaving. There is also an important role played by the life cycle distribution of wealth |
the extent to which the young are born with relatively few assets | in that a strategy of
contingent savings and dissavings is di�cult to implement if one does not possess a bu�er
stock of assets to begin with. Portfolio constraints turn out to play an important role along
this dimension.

Life cycle e�ects can also play an important role in what is critical for asset pricing:
the interaction between aggregate and idiosyncratic shocks. A hallmark of our approach
is that idiosyncratic risk arises in the labor market. An important implication is that,
necessarily, there exists a life cycle pattern in the distribution of idiosyncratic risk across
age cohorts: young agents face more than older agents. The lynchpin for asset pricing,
in our model, is that this life cycle pattern in idiosyncratic risk manifests itself as a life
cycle pattern in portfolio choice | younger agents hold far less of the risky asset than
older agents | which in turn results in a subset of agents being marginal in the sense of
price determination. If idiosyncratic risk causes these agents to dislike risky assets, then a
relatively high equity premium will result, higher than if equity ownership were more evenly
distributed. The issue, then, is the manner in which idiosyncratic risk is related to asset
returns. We follow Constantinides and Du�e (1996) and Mankiw (1986) in formulating this
relation as an increase in idiosyncratic risk during aggregate downturns, something which
we label `countercyclical cross sectional variation' (CCV). What is novel in our setting is
a life cycle e�ect: an interaction between asset prices and the (endogenous) distribution
of this CCV risk over the generations of agents who populate our model. We �nd the
quantitative implications of this e�ect to be important.

A more speci�c description of the distinguishing characteristics of our model is as fol-
lows. We study a recursive life cycle model populated by 78 generations of agents, where
each generation consists of many heterogeneous individuals. Roughly two thirds of a given
agent's life is spent working, with the remainder spent in retirement. Each agent faces both
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idiosyncratic and aggregate shocks, the latter being attributable to an aggregate production
technology. Idiosyncratic shocks are i.i.d. across agents and generations with a variance
which depends on the aggregate state of the world. There are two assets traded: capital
and bonds.

Our model is, admittedly, complex. However, a good case can be made that each ingre-
dient plays a necessary role in addressing our question. The large number of generations,
for instance, is important for quantitative questions which, ultimately, are the essence of the
`equity premium puzzle.' The combination of life cycle e�ects and persistent, countercycli-
cally heteroskedastic shocks are, as we've argued above, critical for generating two necessary
characteristics for models of our class: incomplete risk sharing and idiosyncratic-aggregate
dependence. We �nd either element of this combination, in isolation, to be ine�ective.
Complexity, therefore, seems necessary to some extent. In spite of this, our framework
yields a relatively straightforward, intuitive punch-line; a life cycle pattern in countercycli-
cal, idiosyncratic risk gives rise to a life cycle pattern in portfolio choice, which concentrates
aggregate risk on a subset of agents, who demand to be compensated for bearing it. This
last feature | the asset pricing implications of an intergenerational concentration of aggre-
gate risk | is also an important feature of related work by Constantinides, Donaldson, and
Mehra (1997). Our results, however, are driven by starkly di�erent economic forces than
theirs, forces which generate strong, testable restrictions. We �nd it constructive to defer
elaboration and further discussion to the concluding section.

By now it is apparent that our story, both in a qualitative and a quantitative sense,
hinges on the statistical properties of idiosyncratic shocks. What we require is that idiosyn-
cratic shocks be highly volatile relative to aggregate shocks, that they be quite persistent,
and that they display countercyclical increases in variance. We follow Heaton and Lucas
(1996) in using data from the Panel Study on Income Dynamics (PSID) in order to assess
the plausibility of such processes, as well as to be precise about various quantitative mag-
nitudes. Our methodology is distinct in a number of ways, each of which is motivated by
our use of the OLG model as a window through which to view the data. We construct our
panel, for instance, so as to maintain a stable demographic structure over its time dimen-
sion. Doing so seems important for questions of how idiosyncratic and aggregate shocks are
related to one another. We also interpret the data as being generated by a class of �nite
processes, thereby avoiding (at a cost) well known issues associated with highly autocorre-
lated, possibly nonstationary, time series. This in turn allows us to address an important
problem associated with using panel data to examine aggregate-idiosyncratic interactions,
the relatively short amount of cyclical information spanned by most available panel data
sets. Our methodology, in spite of using panel data spanning only the years 1968-1991,
incorporates information on aggregate shocks dating back to 1910. What we �nd, which
stands somewhat in contrast to Heaton and Lucas (1996), is supportive of the importance of
idiosyncratic risk for asset pricing. Our estimates suggest substantial persistence in idiosyn-
cratic shocks | something not inconsistent with the literature on labor market dynamics |
with a unit root not entirely outside the realm of possibilities. We also �nd strong evidence
of countercyclical heteroskedasticity. Our estimates suggest that idiosyncratic, conditional
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volatility more than doubles during aggregate downturns.

Our �ndings are as follows. Our baseline economy generates a Sharpe ratio of just over
8 percent, thereby accounting for roughly 20 percent of the Sharpe ratio associated with the
U.S. stock market. This represents a substantial improvement over existing, production-
based models, in most cases by several orders of magnitude. With a modest increase in risk
aversion | a coe�cient of 4.5 as opposed to 2 | our economy generates a Sharpe ratio
which matches that of the U.S. stock market. When compared with a calibrated version
of the Constantinides and Du�e (1996) model, our model generates slightly higher Sharpe
ratios, but in an environment with non-degenerate trade and a plausible degree of risk
sharing. We attribute this primarily to life cycle e�ects. Where our framework falls short
is a common stumbling block for production-based models: asset return volatility. In our
baseline case the standard deviation of the excess return portfolio is slightly more than an
order of magnitude smaller than its U.S. counterpart.

In addition to the papers mentioned above, our work is related to previous e�orts as
follows. Krusell and Smith (1997) study an in�nite horizon environment which has much in
common with our study. Their results serve as an important benchmark with which the life
cycle e�ects we emphasize can be compared and contrasted, something which we emphasize
throughout the text. Our computational methodology is indebted to developments in both
Krusell and Smith (1997), its predecessor, Krusell and Smith (1998), as well as den Haan
(1994). Heaton and Lucas (1996) serves as an important benchmark, both in terms of their
asset pricing explorations (they also examine the e�ects of persistence and countercyclical
heteroskedasticity) and their use of PSID data in an asset pricing context. A large literature,
including Abowd and Card (1989), Altonji, Hayashi, and Kotliko� (1991), Altug and Miller
(1990), Attanasio and Davis (1996), Deaton (1991), Deaton and Paxson (1994), Hubbard,
Skinner, and Zeldes (1994), MaCurdy (1982) and Mrkaic (1997), has used panel data to
examine the time series properties of idiosyncratic income risk and how they relate to various
risk sharing issues. Our study is distinguished in terms of the composition of our panel,
various aspects of our statistical methodology, and most importantly, our use of a formal,
quantitative general equilibrium model. Finally, the stationary OLG framework we use
owes much to R��os-Rull (1994) and subsequent work by Huggett (1996) and Storesletten
(1999).

The remainder of the paper is organized as follows. In section 2 we describe our model,
its equilibrium and our solution technology. In section 3 we describe the sampling and
statistical methodology with which we use PSID data to obtain estimates of the parameters
of our model. Section 4 uses these estimates to examine the quantitative properties of our
model, section 5 examines some alternative parameterizations and compares our results to
a calibrated version of Constantinides and Du�e (1996), and section 6 o�ers conclusions
and suggestions for future work.
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2 The Overlapping Generations Economy

Our formulation of a stationary OLG environment incorporates idiosyncratic risk into the
framework of R��os-Rull (1994). Agents are indexed by their age, h, where h 2 H =
f1; 2; : : : ;Hg. Each of the H age cohorts consists of a large number of atomistic agents
who face uncertain lifetimes with maximum length of H years. Each year a new cohort of
agents are born and some positive fraction of each existing cohort dies. We use �h to denote
the unconditional probability of surviving up to age h, with �1 = 1, and use �h = �h=�h�1,
h = 2; 3; : : : ;H, to denote the probability of surviving up to age h, conditional on being
alive at age h � 1. The fraction of the total population attributable to each age cohort is
�xed over time at 'h and the population grows at rate #.

Each individual agent is characterized by a preference ordering over consumption dis-
tributions, an endowment process and an asset market position. Preferences for a unborn
agent are represented by,

E

HX
h=1

�h�hu(ch) ; (1)

where u is the standard twice di�erentiable, strictly concave utility function and the expec-
tation is taken with respect to the economy's stationary probability distribution.

Agents begin working at age 22 and, conditional on surviving, retire at age 65. After
retirement they must �nance consumption entirely from an existing stock of assets. Prior to
retirement an agent of age h receives an annual endowment, nh, of an age-speci�c amount
of labor hours (or, equivalently, productive e�ciency units) which they supply inelastically
to an aggregate production technology. Individual labor income is then determined as the
product of hours worked and the market clearing wage rate.

We adopt the following process for the logarithm of hours worked,

lognh = �h + zh + "h ; (2)

where "h is i.i.n.d. with mean zero and variance �2" ,

zh = �zh�1 + �h ; �h � N(0; �2�(Z)) ;

Z is an aggregate productivity shock and �h is a parameter used to characterize the cross
sectional distribution of mean income across age cohorts. This parameterization is chosen
on both theoretical and empirical grounds. Empirically, the extensive literature on income
dynamics, from which we draw guidance in our own econometric work, �nds it a useful
decomposition between persistent and transitory sources of income variation. Its theoretical
relevance derives from previous work suggesting that persistent and transitory shocks are
likely to have very di�erent impacts on equilibrium outcomes. Consequently, the fraction
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of the variation in nh attributable to each source of variation will be an important question
in the measurement exercise in the next section.

An equally important measurement issue is the functional relationship between the
conditional variance of the persistent process, zh, and the aggregate shock process, Z. As
Constantinides and Du�e (1996) and Mankiw (1986) have suggested, an inverse relationship
is likely to lead to higher risk premia being attached to an asset with payo� related to
aggregate productivity. We choose the following simple speci�cation.

�2�(Z) = �2H if Z � E(Z)

�2�(Z) = �2L if Z < E(Z) :

The notion of `countercyclical cross sectional variation' is simply the condition �H < �L.
We impose no such a priori restriction at this point, choosing instead to estimate the
magnitudes of �H and �L in the next section. In the theoretical exercise which follows,
we will implement the joint process for conditional variance and the aggregate shock as a
(restricted) discrete state Markov chain.

Turning to the �nancial market structure, agents can trade in two assets: one-period,
riskless bonds which are in zero net supply and shares of ownership in the risky aggregate
technology. We refer to the latter as `capital holdings.' Each agent's choice problem,
therefore, amounts to a consumption savings decision and a portfolio allocation decision.
We use the notation bh and kh to denote beginning-of-period bond and capital holdings,
respectively, of an agent who is h years old. The assets (or liabilities) of the fraction of
agents who die each year are assumed to vanish, but are incorporated into the conditions
which de�ne market clearing. Altering this last assumption | allowing for lump sum
redistribution, for instance | is not di�cult but would have only minor qualitative e�ects
on our results.

Output is produced by an aggregate technology to which individuals rent their labor
services and capital. The production function takes the form,

Y = Zf(K;N) ; (3)

where K and N represent per capita capital and labor, respectively, Y represents per capita
output and Z is a technology shock restricted to lie in a �nite set, Z. Given aggregate
consumption, C, and the rate of depreciation on aggregate capital, �, the law of motion for
aggregate capital can be written,

K 0 = Y � C + (1� �)K :

This completes the description of the physical environment. We can now represent the
state of the economy as a pair, (Z; �), where � is a measure de�ned over an appropriate fam-
ily of subsets of S = (H� ~Z�A), ~Z is the product space containing all possible idiosyncratic
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shocks (permanent and transitory), and A denotes the set of possible beginning-of-period
wealth realizations. In words, � is simply a distribution of agents across ages, idiosyncratic
shocks and wealth. The aspect of � which is somewhat non-standard is that, because of
the aggregate uncertainty in our economy, it must evolve stochastically over time (i.e., �
belongs to some family of distributions over which there is de�ned yet another probabil-
ity measure). We therefore use G to denote the law of motion of �, the cross sectional
distribution of the economy, and write,

�0 = G(�;Z;Z 0) :

This characterization of the state of the economy allows us to express prices as P (�;Z),
R(�;Z) and W (�;Z), where P , R and W denote the bond price, the market clearing rate
of return on capital and the wage rate, respectively. Our timing convention is that portfolio
decisions are made at the end of the current period, and capital market returns are paid
the following period at the realized capital rental rate. The decisions of an agent of age h
are therefore constrained by,

ch + k0h+1 + b0h+1P (�;Z) � ah + nhW (�;Z) (4)

ah = khR(�;Z) + bh

k0h+1 � k

b0h+1 � b

where ah denotes beginning-of-period wealth, kh and bh are beginning-of-period capital and
bond holdings, and k0h+1 and b0h+1 are end-of-period holdings. Portfolio constraints are
denoted by k and b and, although we do not make the dependence explicit, can be both
state and agent-speci�c. For example, our computational framework allows for borrowing
constraints which are expressed as a �xed fraction of individual wealth, where this fraction
varies across age cohorts. In addition, we impose the terminal conditions, k0H+1 � 0 and
b0H+1 � 0.

Denoting the value function of an agent of age h as Vh, the choice problem can be
represented as,

Vh(�;Z; zh; ah) = max
k0
h+1

;b0
h+1

�
u(ch)+

�
�h+1

�h
E
�
V 0
h+1(G(�;Z;Z

0); Z 0; z0h+1; k
0
h+1R(G(�;Z;Z

0); Z 0) + b0h+1)
��

(5)

subject to equations (4).
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2.1 Equilibrium

An equilibrium consists of stationary price functions, P (�;Z), R(�;Z) andW (�;Z), a set of
cohort-speci�c value functions and decision rules, fVh; k

0
h+1; b

0
h+1g

H
h=1, and a law of motion

for �, �0 = G(�;Z;Z 0), such that the �rm's pro�t maximization problem is satis�ed,

R(�;Z) = Zf1(K;N) � � + 1

W (�;Z) = Zf2(K;N) ;

the bond market clears, Z
S
b0 d� = 0

aggregate quantities result from individual decisions,

K =

Z
S
k d�

N =

Z
S
n d� ;

agents' optimization problems are satis�ed given the law of motion for (Z; �) (so that
fVh; k

0
h+1; b

0
h+1g

H
h=1 satisfy problem (5)), and the law of motion, G, is consistent with indi-

vidual behavior.

2.2 Computation

The use of computational solution algorithms has by now become commonplace in the study
of dynamic equilibrium models. In the quantitative analysis which follows, we use a fairly
standard discretization-based approach to solve the dynamic programming problem (5).
One feature of our problem which is somewhat non-standard is that we must characterize
the law of motion for a distribution (�), in addition to the optimal policy and value func-
tions. We make use of techniques developed in the context of in�nite-horizon economies
by Casta~neda, D��az-Gim�enez, and R��os-Rull (1994), den Haan (1994), Krusell and Smith
(1998) and, in particular, Krusell and Smith (1997) which was, to the best of our knowledge,
the �rst paper featuring aggregate shocks, many agents and more than one asset.

The basic idea is to approximate � with a �nite number of moments (or other statistics),
and then characterize the law of motion for this set of moments. Having done so, we
are left with a �nite dynamic programming problem at the individual agent level which is
relatively manageable. Solving the latter leads to a distribution of agent-speci�c capital and
bonds, based on the individual policy functions, which can be compared to the conjectured
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functional form for that distribution. The process is iterated until the realized and perceived
processes for the distribution coincide. The actual implementation, which requires a number
of intermediate level decisions on the part of the researcher, is described in more detail in
appendix B.

3 Measuring Household Speci�c Risk

The driving force in our theory is the exogenous stochastic process for each individual
agent's endowment of labor hours, equation (2). The primary parameters of interest are
�", which will govern the relative magnitude of the persistent and transitory shocks, �H
and �L, which measure the extent to which variation in the cross sectional distribution is
countercyclical, and �, the persistence parameter. In this section we use panel data on U.S.
households from the Panel Study on Income Dynamics (PSID) to estimate these parameters.

The PSID quantity which we will interpret as a household's `endowment' is the labor
market earnings of all adult household members, plus any transfers received such as unem-
ployment insurance, workers compensation, transfers from non-household family members,
and so on. Several important considerations underly this de�nition. First, we include
transfers because our model abstracts from the implicit insurance mechanisms which these
payments often represent. That is, we wish to measure the amount of income variation
which impinges on household �nancial decisions net of risks which are insured against by
programs such as unemployment insurance. In a similar vein, we study the household as a
single unit in order to measure household risk net of things like substitution in labor supply
between household members in response to some shock. Finally, we focus on household
income in spite of the fact that our model's exogenous process is hours worked. Doing so
seems appropriate, primarily because our model abstracts from the indivisibility in labor
supply which is so evident in data on hours worked. In addition, by measuring idiosyncratic
risk via household income we allow for a more straightforward incorporation of the various
types of transfers discussed above. In section 4 we verify that the statistical properties of
the endogenous process for labor income in our model are very similar to those of hours
worked (since our theoretical wage process is relatively stable), thereby providing a sense
in which we actually do calibrate theoretical income to PSID income.

Turning to the speci�cs of our PSID extraction, we depart from the common approach
of constructing a longitudinal panel with an equal number of time series observations on a
�xed cross section of households. For our purposes, a longitudinal panel is problematic for
a variety of reasons. It is likely to exhibit a kind of survivorship bias | the bias introduced
by incorporating only households which report income in every survey year | as well as
contain a relatively small cross section, in particular if the time dimension is large. The
main problem, however, is that average age in a longitudinal panel necessarily increases
by one year for each annual cross section. For example, in the longitudinal PSID panel
which we analyze (for comparison's sake) in appendix A, mean age increases from 39 to
62 between the years 1968 and 1991. This is problematic for us because a primary issue
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is the relationship between aggregate shocks and the variability of idiosyncratic shocks. In
a longitudinal panel a large fraction of household heads will have been retired, or at least
been in their late earning years, during the last 2 of only 5 business cycles witnessed during
the period 1968-1991. It seems likely, therefore, that a longitudinal analysis will understate
any existent relationship between aggregate and idiosyncratic shocks. This, of course, will
compound upon the fact that one is trying to uncover a fundamental relationship based on,
in a sense, only 5 cyclical observations. The methodology we propose addresses each of these
issues. It achieves a very stable cross sectional distribution of age across the time dimension
of the panel and, as we explain below, exploits data on cyclical 
uctuations dating back as
far as 1910.

The speci�cs of our methodology are as follows. We use annual data from each of the
surveys dated 1969 through 1992. Since each survey pertains to household data from the
previous year, we refer to the time dimension of our panel as being 1968 through 1991.
For each of these years we construct a three year panel consisting of households which
reported strictly positive total household earnings (inclusive of transfers) for the given year
and the next 2 consecutive years in the survey. For example, our 1970 panel is essentially a
longitudinal panel on 1,663 households over the years 1970, 1971 and 1972. This results in
a sequence of 22 overlapping panels, where the last one contains data from 1989, 1990 and
1991. As is shown below, these overlapping panels of three time periods are su�cient to
identify the parameters of our time series process (essentially, the �rst two autocovariances),
while at the same time mitigating survivorship bias and generating a stable cross sectional
distribution of household age.

As is commonplace in PSID studies, we apply a number of additional �lters with the goal
of obtaining a more stable panel. Households are restricted to be those which report a male
head and which have not reported any change in structure during the 3 years corresponding
to the particular sub-panel, with the exception of an increase or decrease in the number of
children. Any household which reported an earnings growth rate of greater than twenty-
fold, followed by a decline greater than twenty-fold, is deleted from the sample on the
grounds of extreme measurement error. We also follow previous studies in attempting to
control for PSID oversampling of poorer U.S. households by excluding those which were
originally included as part of the Survey of Economic Opportunity. These restrictions are
helpful in that they negate, for instance, the need to incorporate new families and keep
track of families which split-up, both of which raise di�cult issues in estimating a time
series model. The drawback, obviously, is that our results will not directly incorporate
a number of idiosyncratic sources of variation | divorce for instance | which may be
important, uninsurable determinants of household savings and portfolio choice. Enhancing
the PSID sampling criteria to include such e�ects is, in our minds, an important avenue for
future work.

Two �nal transformations we apply are to de
ate nominal income using the CPI and, in
order to incorporate di�ering family size, to divide total household earnings by the number
of household members. The end result is 22 overlapping panels, each with a time dimension
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of 3 years. The cross sectional distribution of age is quite stable over each of the panels; the
mean and standard deviation of the average age in each panel is 44.2 and 1.1, respectively.
The number of households is substantially larger than would be possible in a longitudinal
sample, with a mean and standard deviation (across panels) of 2045 and 228 observations,
respectively.

Further details on the exact composition of our panel are available in appendix A, where
we also report results based on a longitudinal panel of PSID households.

3.1 Summary Statistics

Prior to estimating a formal time series model for individual income, we �nd it informative
to begin by highlighting several basic cross sectional properties of our panel. We focus on
two dimensions which will be important for our questions: age and time. The former will
have implications for the dynamic properties of our idiosyncratic income processes, whereas
the latter will be informative for what Constantinides and Du�e (1996) and Mankiw (1986)
have suggested is an important moment for asset pricing: the relationship between aggre-
gate shocks and cross sectional variation in the earnings distribution. For the sake of
transparency we choose not to pre-�lter our data whatsoever for this informal �rst-pass. In
subsequent sections we control for aggregate shocks and several demographic variables in
order to focus more speci�cally on unexpected, idiosyncratic variation in the cross section.

Figures 1 and 2 report the �rst four sample moments associated with the age-dependent,
cross section in our panel, where the time series' on a particular age cohort are pooled over
the 24 years of data in the panel. Figure 1 reports moments for the raw data, whereas
Figure 2 reports moments for logarithms of income, the idea being that the cross sectional
distribution is more closely associated with log-normality than normality (all subsequent
analysis will involve log-income). We see that the means demonstrate a fairly strong life
cycle pattern, as do the standard deviations which increase over most of a household's
earning years and then diminish sharply over the retirement years. The higher moments of
the logarithmic data (the raw data are clearly highly non-normal) are imprecisely estimated,
but seem to indicate that negative skewness and excess kurtosis are more strongly associated
with the peak earning years that either the early or retirement years.

These moments, the �rst two in particular, have important implications for our theory.
The age-dependent variation in the cross sectional mean will be helpful in calibrating our
model, which has a fairly rich demographic structure. Just as important is the way in which
cross sectional dispersion increases with age, suggesting some combination of persistence
and/or heteroskedasticity at the individual time series level. For instance, if idiosyncratic
shocks are homoskedastic and follow a unit root process, the cross sectional variance will
increase linearly: a feature which is not qualitatively at odds with Figure 2. The identi-
�cation of the relative magnitudes of persistence and age-dependent heteroskedasticity |
something which is critical for our economic questions | will be an important task required
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of the time series model to be estimated in the next section. The bulk of the existing liter-
ature suggests that heteroskedastic shocks with low persistence and homoskedastic shocks
with high persistence have very di�erent implications for risk sharing and asset pricing.

In Figure 3 we cut the data by time instead of age. Figure 3 reports annual observations
on the �rst four sample moments of the date-speci�c cross sectional distribution of log-
income, 1968-1991. The means trend upwards at an average rate of 1.02 percent with
cyclical properties which are quite similar to U.S. NIPA data; the correlation between the
deviations from trend in our cross sectional means and the deviations from a linear trend
in real U.S GNP is 0.72. The relatively low average growth rate of mean income | 1.02
percent as opposed to 2.13 percent in U.S. GNP | is consistent with the notion that the
PSID oversamples poorer U.S. households.

Our primary interest in Figure 3 involves the time series relationship between the cross
sectional mean and standard deviation. In the �rst two graphs we plot the raw mean
followed by deviations from a linear trend as well as the growth rate in the mean. The
third graph reports the coe�cient of variation, which is motivated by the fact that the
standard deviation grows slightly alongside the mean (the qualitative implications are not
changed if we use the unscaled standard deviation). Casual observation indicates an inverse
relationship between either measure of the �rst moment and the level of cross sectional
dispersion. The correlation coe�cient between the deviations from trend and the coe�cient
of variation is�0:85. The correlation between the growth rate and the coe�cient of variation
is �0:33 (the analogous values associated with the standard deviation | instead of the
coe�cient of variation | are �0:67 and �0:34, respectively). In either case, this �rst-pass
look at the data is supportive of the notion of `countercyclical cross sectional variation,'
something which will drive our theory's asset pricing properties and which has been a focal
point of previous work (e.g., Constantinides and Du�e (1996), Mankiw (1986)). We now
turn to an explicit time series model in order to give these casual observations more precision
and a well de�ned statistical foundation.

3.2 Time Series Model

We denote the natural logarithm of household i's endowment at time t as yit, and the per
capita aggregate endowment as yt. Our theory requires that household-speci�c endowment
processes are comprised of an aggregate and an idiosyncratic component. We perform the
following decomposition of yit with this in mind,

yit = git(yt) + uit : (6)

The component git(yt) is comprised of aggregate shocks as well as deterministic components
of household-speci�c earnings such as unobservable `�xed e�ects' and deterministic varia-
tion attributable to household age, education level and so on (for simplicity, our notation
omits dependence on a deterministic vector of time-varying household characteristics). The
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component uit is therefore the random component of a household's endowment which is
idiosyncratic. The condition which identi�es uit is,

~Et(uit) = 0 ; 8t

where the notation ~Et denotes expectation with respect to the date t, cross sectional prob-
ability measure. Allowing for time variation in the cross sectional distribution is important
for both our theory and our interpretation of the PSID, because we wish to allow for ag-
gregate shocks.

From a theoretical perspective, it is the statistical properties of uit which are critical in
determining how e�ectively individuals can pool risk using asset markets. This is perhaps
most clearly demonstrated in the autarkic economies of Constantinides and Du�e (1996),
where uit is chosen so as to generate a unit root in equilibrium marginal utility. In this
sense, the speci�cation of git(yt) is not critical. Loosely speaking, we expect to see similar
types of risk sharing behavior in economies with aggregate income dynamics which are quite
di�erent.

The sense in which git(yt) is critical is that it a�ects how one uses data to infer an
appropriate process for uit. We follow much of the literature on income and employment
dynamics (e.g., Abowd and Card (1989), MaCurdy (1982), Hubbard, Skinner, and Zeldes
(1994)) and specify git(yt) as a time-dependent intercept term (i.e., a set of annual dummy
variables) in addition to a quadratic function of age and a linear function of education:

git(yt) = a0 + dta1 + hita2 + h2ita3 + eita4 + residuals ; (7)

where dt is a vector of time-dependent dummy variables, hit is the age of the household head
at time t and eit is the number of years of education undertaken by this person as of date t.
This speci�cation is chosen to incorporate two sources of variation: aggregate variation and
deterministic cross sectional variation. It is, of course, arbitrary, but is motivated by several
considerations which are relevant for our questions. In regard to aggregate variation, the
cross sectional dimension of our data allows for a relatively non-parametric approach in the
use of time dummies. Note that, in the absence of age and education terms, time dummies
are (roughly) equivalent to specifying uit as the logarithm of household i0s share of date
t aggregate income, the approach taken by Heaton and Lucas (1996). The only di�erence
involves a term related to Jensen's inequality which turns out to be unimportant. Details
are provided in appendix C. We also experimented with linear and quadratic time-trends,
and found no major qualitative di�erences.

The extent to which equation (7) does an adequate job in incorporating deterministic,
household-speci�c variation, is, in our view, on less �rm ground. Education is but one (albeit
an important one) in a long list of variables, including unobserved `�xed-e�ects,' which the
labor and income dynamics literature has focused upon as being important determinants
of where a household lies in the cross sectional distribution. Our approach is to account for
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some fraction of this cross sectional dispersion in a manner which is parsimonious in terms
of the list of variables, economical in terms of parameters, and which does not stray too
far from the economic forces at play in our model. While we did not venture beyond the
inclusion of education, we did experiment with higher order terms, functions of education
intended to capture employment potential (c.f. Gottschalk and Mo�t (1992)) as well as
�rst-di�erencing and quasi-di�erencing. The alternative functions of education had very
little e�ect on our results. Di�erencing the data, the main target being unobserved `�xed-
e�ects,' a�ected our estimates in a quantitatively important manner but had only minor
qualitative implications, especially as they pertain to the economics of our model. This is
discussed further in appendix A. Overall, we feel that equation (7) does a suitable job for
our particular question, which is not to account for the rich complexity in the cross sectional
income distribution, but to obtain economically plausible estimates for the parameters of
the simple time series process which drives our model.

We estimate the coe�cients in equation (7) using least-squares and obtain an estimated
time series for uit as the residuals from this regression (all standard errors incorporate the
sampling uncertainty associated with this �rst-stage regression). A fundamental aspect of
our estimation methodology is that it conditions on household age. We therefore append
our notation accordingly, denoting uhit as the idiosyncratic shock observed for household i
of age h at time t. We then estimate the following time series model for uhit, which is almost
identical to the theoretical process in equation (2):

uhit = zhit + "it (8)

zhit = �zh�1i;t�1 + �it ;

where household age, h, is made explicit only when the conditional distribution of a variable
depends upon it. We assume that "it � Niid(0; �2" ), �it � Niid(0; �2�(Yt)) and,

�2�(Yt) = �2H if aggregate expansion at date t

= �2L if aggregate contraction at date t ;

where Yt denotes aggregate income. Our methodology will admit any de�nition of what
constitutes an aggregate expansion and contraction. For the results we present, we will use
National Income and Product Account (NIPA) data, and de�ne an expansion (contraction)
as a year in which growth in real U.S. GNP per capita is above (below) its average over our
sample.

The process (8) is attractive in that it follows a number of studies on labor and income
dynamics (e.g., Hubbard, Skinner, and Zeldes (1994)) in admitting both a transitory com-
ponent, "it, and a persistent component, zhit. Doing so incorporates, among other things,
i.i.d. measurement error, thereby mitigating the overstatement of variation attributable to
persistent shocks and reducing the downward bias which measurement error exerts on the
estimate of the parameter �. We also �nd (8) attractive from a theoretical perspective in

14



that, when incorporated into our theory, it allows us to examine the allocational e�ects of
the interaction between persistent and transitory idiosyncratic shocks in an environment
where `aggregation' in the sense of Constantinides and Du�e (1996) does not apply.

To estimate the parameters of the process (8) we exploit two important features of
our dataset: information on household age and information on the macroeconomic history
which a given household experienced while working. The interaction between these two
variables | or, alternatively, the interaction between cross sectional variation in age and in
macroeconomic history | is essentially what allows for the identi�cation of �H and �L. It
also allows us to exploit information on aggregate shocks dating back to 1910, not just the
four or �ve business cycles which occurred during our PSID sample period. The following
simple example demonstrates how this is accomplished.

Consider an individual (we omit the i subscript for now) who has been working for two
years, at dates t, and t+1. The moving average representation of their idiosyncratic shock
process is,

u2t+1 = �2z0t�1 + ��t + �t+1 + "t+1 (9)

Assuming that their initial condition, z0t�1, is zero, (we discuss alternative assumptions and
results below and in the appendix), our distributional assumptions imply that, conditional
on knowledge of the history of aggregate shocks, the variance of u2t+1 is,

Var (u2t+1) = �2[It�
2
H + (1� It)�

2
L] + [It+1�

2
H + (1� It+1)�

2
L] + �2" ; (10)

where It = 1 if the aggregate economy at date t is in an expansion and It = 0 otherwise.
Moments analogous to equation (10) form the basis of the GMM estimator we employ. This
estimator has several noteworthy advantages. First, by interpreting our data as a collection
of �nite processes, we avoid the well known plethora of issues related to non-stationary
time series'; moments such as (10) are well de�ned even for values of � greater than unity.
The costs, of course, are assumptions regarding initial conditions and/or the possibility of
di�erencing stationary time series (discussed below). Given that our model is distinguished
by �nite time series, however, we feel that bearing such costs is advantageous.

The second | and perhaps more important | aspect of expressions analogous to (10)
is that they capture an interaction between persistence, aggregate variation and age which
identi�es a crucial aspect of our analysis: countercyclical cross sectional variation. Simple
inspection of (10) reveals that for an agent who has been working for h years there will
be h terms in the distributed lag of indicator functions, each multiplied by a power of
�. It is this aspect of our GMM estimator, in addition to the use of NIPA data, which
incorporates aggregate shock information dating back to the year 1910 (corresponding to
the year in which the oldest individual in our 1968 panel attained the assumed initial
working age of 22). As an illustrative example, consider the 70 year old cohort in the
�rst year of our panel, 1968. Given that these individuals were of working age through a
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greater number of contraction years than the 70 year old individuals in the 1991 panel (the
former were of (adult) working age during the Great Depression for instance), and given
that idiosyncratic shocks are highly persistent and more volatile during downturns, one
would expect to see greater cross sectional variation amongst the 1968 group than the 1991
group. This interaction between age, macroeconomic history and properties of the cross
sectional distribution is implicit in the moment conditions underlying our estimator and is
important in distinguishing our approach from previous work.

The general version of equation (9), associated with a household of age h, is,

uhit =
h�1X
j=0

�j�i;t�j + �hz0t�h + "it : (11)

The following moment conditions are the means with which we estimate the three parame-
ters, �, �" and ��.

~Et

2
4(uhit)2 � �2" �

h�1X
j=0

�2j(It�j�
2
H + [1� It�j ]�

2
L)

3
5 = 0 (12)

~Et

2
4uhituh�1it�1 � �

h�1X
j=1

�2(j�1)(It�j�
2
H + [1� It�j ]�

2
L)

3
5 = 0

~Et

2
4uhituh�2it�2 � �2

h�1X
j=2

�2(j�2)(It�j�
2
H + [1� It�j ]�

2
L)

3
5 = 0

Again, an important assumption underlying the above conditions is that z0it�h = 0, or that
all households start with the population mean (recall, however, that cross sectional disper-
sion which is related to age and educational levels has been controlled for). In Appendix A
we discuss some robustness checks along these lines (e.g., di�erencing and quasi-di�erencing
the data) and �nd the qualitative nature of our results to be relatively stable.

Table 1 reports parameter estimates obtained using GMM in conjunction with the mo-
ments in equations (12). In Panel A we report estimates which constrain �H = �L and
in Panel B we relax this restriction. In either case we obtain a precise estimate of the
autocorrelation parameter, �, greater than 0.90. Our estimate is 0.94 for the case with
homoskedastic innovations and 0.92 for heteroskedastic innovations. The fraction of the
conditional variance attributable to persistent innovations is substantially larger than tran-
sitory innovations, with the standard deviation being roughly twice as large in either speci-
�cation (based on the average of �H and �L in Panel B). Finally, our estimate of the degree
to which idiosyncratic shocks are more volatile when the aggregate economy is contracting
is striking. Our estimate of �H is 0.43 and our estimate of �L is 0:19, which represents
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an increase of 126% from expansion to contraction. This �nding stands in stark contrast
to previous work. Heaton and Lucas (1996), for instance, found an analogous increase in
volatility of roughly 27%. We attribute the di�erences mainly to our use of information on
many more cyclical 
uctuations, our explicit conditioning on age, and our alternative panel
which maintains a stable age structure. These issues, as well as several others, are discussed
in appendix A where we replicate Heaton and Lucas's (1996) results using a longitudinal
panel in addition to providing some robustness checks on the results in Table 1.

The �ndings of several related papers provide a useful frame of reference for our results.
The estimates of the magnitude of idiosyncratic shocks (the conditional variances of �it
and "it) are somewhat larger than several previous authors. Where we �nd a conditional
standard deviation (assuming homoskedastic innovations) for the persistent shocks of 0.25,
Heaton and Lucas (1996) and Hubbard, Skinner, and Zeldes (1994) report 0.24 and 0.18,
respectively. This is not surprising given that our overlapping panel admits a wider variety of
households and, to a certain extent, mitigates survivorship bias. We also �nd the fraction
of the innovation variance attributable to transitory shocks to be smaller than previous
studies. Hubbard, Skinner, and Zeldes (1994), for example, estimate that the transitory
and persistent variances are roughly of the same magnitude, whereas we �nd the former to
be approximately half the size of the latter.

Our estimates of the autocorrelation parameter, �, are substantially larger than those of
Heaton and Lucas (1996) (who obtain an estimate of 0.53), but are quite similar to those of
a number of other papers, including Abowd and Card (1989), Hubbard, Skinner, and Zeldes
(1994) and MaCurdy (1982). Moreover, our summary statistics indicate (Figure 2), as does
the more exhaustive work of Deaton and Paxson (1994), that cross sectional dispersion
in income increases at close to a linear rate over the life cycle. This is what one would
expect, should idiosyncratic shocks follow a unit root process and be independent across
households. Our estimates incorporate this cross sectional evidence, but only implicitly
(via age-dependence in our moments). Our guess is that a more formal treatment of how
inequality increases with age would generate an even higher value for the parameter � than
we report in Table 1 (Storesletten, Telmer, and Yaron (1997) investigate this further).

Finally, providing a frame of reference for our results on heteroskedastic idiosyncratic
shocks over the business cycle is more problematic; aside from Heaton and Lucas (1996) we
are not aware of comparable studies. In the next subsection we attempt to provide some
corroborating evidence by examining the manner in which overall, cross sectional dispersion
| something we feel relatively con�dent in being able to measure accurately | is likely to
change, given the magnitude of the heteroskedasticity reported in Table 1.

3.3 Cross Sectional Dispersion

The upper right panel of Figure 3 provides the coe�cient of variation, taken across our
entire panel, for each of the years 1968-1991. The largest increase associated with an
economic downturn is roughly 12%, which is associated with the recession in the early
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1980's (the same answer is obtained using the cross sectional standard deviation). At �rst
blush, this might seem inconsistent with the values reported in Table 1, where we estimate
the increase in the conditional standard deviation of the persistent shock, coincident with a
downturn, to be on the order of 126%. What's going on, however, is that the larger number
is associated with the conditional distribution of a given agent's innovation, whereas the
smaller number is much more closely associated with the unconditional distribution. The
two are, of course, related. Understanding this relationship, something we achieve through
simulation, is critical for understanding that relatively large increases in the conditional
variance of idiosyncratic shocks can be consistent with relatively small movements in the
overall level of cross sectional dispersion.

To see this, consider two extreme cases. First, suppose that our theoretical economy had
been in an expansion (i.e., the good aggregate shock) for many years, so that all existing
age cohorts had only received persistent idiosyncratic shocks with variance �2H . A cross
sectional law of large numbers implies that the cross sectional variance amongst the oldest
generations will be, approximately,

�2" +
�2H

1� �2
;

where the approximation arises from ignoring �niteness in any age cohort's history of shocks.
Along similar lines, cross sectional variance amongst the youngest generation will simply be
�2" + �2H . The overall cross sectional variance, that which includes agents of all age cohorts,
will be a simple weighted average of these terms and terms associated with intermediate
cohorts.

In Figure 4 we represent this extreme case | the stationary, population cross sectional
standard deviation associated with the �2H distribution | as the lower dashed line. We also
represent the other extremity | an analogous economy in which shocks are drawn from the
distribution with variance �2L | as the upper dashed line. The solid line in the middle is
simply the cross sectional standard deviation associated with one particular realization of
our economy, where idiosyncratic shocks follow the heteroskedastic process, (8). The length
of the simulation, 24 periods, is chosen to match the time series dimension of our panel.

The point of Figure 4 is that the overall cross sectional variance will not immediately
move to the long run level associated with the conditional distribution, should a `regime
shift' occur. Rather, the cross sectional variance will be a moving average of the two extreme
points, where the average will depend on the degree of persistence in both aggregate and
idiosyncratic shocks, as well as the demographic structure of the population. The avenue
through which aggregate persistence works is simply the frequency with which switches
occur in the conditional distribution. Idiosyncratic persistence plays an important role, as
is obvious if one considers the case of � = 0; the cross sectional variance associated with each
cohort will be identical and will oscillate between high and low levels. Finally, demographics
clearly matter in that, conditional on � 6= 0, they determine both the weights applied to
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the cross sectional variance associated with each age cohort and the number of terms in the
moving average (which equals the number of working generations).

Figure 4 is intended for illustrative purposes and, consequently, reports data from just
a single realization of our economy. We also conducted a more comprehensive Monte Carlo
experiment, based on 1000 independent replications of a 24 year history of our economy. In
each realization we computed ratio of the maximum to the minimum of the overall, cross
sectional coe�cient of variation of the log of labor income. This ratio corresponds, roughly,
to the upper right panel of Figure 3, where the maximum occurs in 1981, the minimum
occurs in 1973, and the ratio is just under 14 percent. The fraction of the realizations of
our Monte Carlo experiment in which this ratio was 14 percent or less was 34 percent. This
suggests that our estimates of �H and �L may overstate the extent to which idiosyncratic
volatility increases in recessions, but that they are not outside the realm of possibilities.
In other words, the amount of variation in the cross sectional variance of labor income
| something we feel relatively con�dent in being able to measure accurately | is not
entirely inconsistent with the relatively large amount of variation which we attribute to the
agent-speci�c, conditional variance.

4 Quantitative Implications of the Theory

Our interpretation of the PSID evidence is as follows. First, a strong case can be made that
the idiosyncratic component of a typical household's `endowment' (de�ned above) contains
a highly persistent component which accounts for roughly 88% of the overall conditional
volatility. Second, an equally strong case can be made that, in the context of our model, the
conditional variance of these shocks is countercyclical with the standard deviation increasing
by as much as 120% during aggregate downturns. We now turn back to our theory and
investigate the implications of these �ndings for asset prices and individual choices.

4.1 Parameterization: Baseline Economy

In this section we describe what we view as an appropriate `baseline' economy: a set of
parameter values which we feel are plausible. In subsequent sections we conduct a sen-
sitivity analysis and more fully explore the properties of our economy under alternative
parameterizations.

We interpret one period in our model as corresponding to one year of calendar time.
The aggregate production technology is Cobb-Douglas:

Y = ZK�N1�� ;

Following much of the business cycle literature, we set � equal to 0.4 (which corresponds to
capital's share of national income being 40%) and allow for a 7.8% annual depreciation rate
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on the aggregate capital stock. The technology shocks, Z, follow a �rst-order Markov chain
with parameter values chosen so that theoretical aggregate consumption matches several
important features of observed, aggregate U.S. consumption. We focus on consumption |
as opposed to output | as the anchor for calibrating our aggregate economy because of
our focus on asset pricing. Were we to follow the business cycle tradition of matching the
variability in Solow residuals, our theoretical consumption process would be too smooth by
a factor of two, excessively smooth consumption being a common feature of business cycle
models. Given the central role of consumption dynamics in asset pricing, we �nd it natural
to turn this `puzzle' on its head and recast it as one of excessive output variability instead
of excessive consumption smoothness (see Table 2).

Operationally, the secular growth rate in GNP per capita, by which we normalize all
quantities in our model, is chosen to be 1.5% per year. The transition probabilities for
Z are chosen so that the expected duration of a `business cycle' is 6 years, whereas the
possible realizations of Z are chosen to match the variability in theoretical and observed
aggregate consumption. The end result is a two state Markov chain for the aggregate shock
with Z 2 f�0:057; 0:057g and probability of remaining in the current state of 2/3.

In Table 2 we demonstrate that this parameterization for technological shocks generates
realistic behavior for various (endogenous) aggregate quantities in our model. Doing so is
important for our quantitative questions as it makes for meaningful comparisons with full
insurance economies in which aggregate quantities are relevant for pricing. Table 2 shows
that the variability in theoretical aggregate consumption matches that of the data, but that
aggregate output is too volatile by a factor of 2.72. The same holds for investment, but by
a factor of 1.65. The contemporaneous correlation of aggregate output and investment with
consumption match those of the data, but their autocorrelations are somewhat smaller. Rel-
atively low autocorrelation, however, is a necessary implication of our two-state aggregate
shock process averaging one `cycle' every 6 years. In other words, given our simple process
for aggregate variation, we can match either autocorrelation or some notion of `cyclicality,'
but not both. We choose the latter, largely because of the methodology used in the last
section to measure countercyclical, cross sectional variation.

Turning to the characteristics of individual agents, preferences are identical (up to age-
dependent mortality risk) and are described by equation (1). We parameterize the period
utility function with the standard isoelastic speci�cation,

u(c) =
c1�� � 1

1� �
:

For the time being, we set the risk aversion parameter, �, to 2 and the utility discount
factor, �, to 0.95. The latter is chosen in order to generate an aggregate capital to output
ratio of 3.3, which is close to the estimate reported in Cooley and Prescott (1995). The
choice of � is arbitrary, but seems a sensible starting place in addition to representing
a rough consensus of what is typical in the literature. In section 5 we experiment with
alternative values for � and �nd that our model performs substantially better for relatively
minor perturbations.
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The demographic structure of our economy is calibrated to correspond to several simple
properties of the U.S. work force. Agents are `born' at age 22, retire at age 65 and are dead
by age 100. `Retirement' is de�ned as having one's labor income drop to zero and having to
�nance consumption from an existing stock of assets. Mortality rates are chosen to match
those of U.S. females in 1991 and population growth is set to 1.0%.

The process for idiosyncratic labor supply, equation (2), is implemented as a discrete
approximation to the autoregressive time series model and is parameterized using our point
estimates from Table 1. The age dependent intercept terms, �h, are chosen so that, on aver-
age, our theoretical age-earnings pro�le matches that of the PSID. The transitory shocks, "h,
follow a two-state binomial process with equally likely probabilities and a standard devia-
tion of 0.160. This results in "h 2 f�0:160; 0:160g. The persistent process, a regime-shifting
autoregression for zh with �H = 0:425, �L = 0:192 and � = 0:916, is approximated with an
11-state Markov chain where the conditional heteroskedasticity is generated by variation in
the transition probabilities, as opposed to the potential realizations of zh. Further details
are provided in appendix B.

This calibration of our theoretical income process, equation (2), su�ers from two poten-
tial sources of discrepancy relative to the PSID-based estimates from Table 1. The �rst is the
error induced by approximating an in�nite-state autoregression with a �nite-state Markov
chain. The second derives from the fact that labor income is an endogenous process in our
model: it is the product of the exogenous supply of hours worked and the endogenously
determined wage rate. Strictly speaking, we have calibrated the process for hours worked
to data on income received. We �nd, however, that the combined e�ects of these sources of
discrepancy are of negligible importance for the moments we focus on. Descriptive statis-
tics | the mean, standard deviation and autocorrelation for example | are very similar
when comparing population moments from our model with their sample analogs. More to
the point, we �nd that if we use our theoretical economy to generate an arbitrarily long
sequence of 3 year panel data sets (which corresponds to our PSID sampling method), the
application of our GMM estimator (section 3.2) to these data yields estimates which closely
match those from Table 1; our simulated point estimates are 0.902, 0.029, 0.172, and 0.028
for �, �2H , �

2
L and �2" , respectively. The overall implication is that the population moments

for our model's labor income process closely match the sample moments underlying the
estimates presented in Table 1.

The only remaining items are the portfolio constraints. For our baseline economy we
disallow short-selling of the risky technology | thereby setting k = 0 | and restrict
borrowing to be less than 50% of expected GNP per capita. That is, b = 0:5 E(Y ).

4.2 Results: Baseline Economy

Table 3 reports a variety of population moments for asset prices associated with the baseline
economy we have described. In addition, Figure 5 plots the Sharpe ratio | the ratio of the
average excess return on the risky technology to its standard deviation | from a sequence
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of economies which di�er according to both the degree of persistence in idiosyncratic shocks
as well as the degree to which the shock variance is countercyclical. We focus on the Sharpe
ratio because the level of variability in the risky asset return in our economies is roughly two
orders of magnitude smaller than that observed on the (levered) U.S. stock market. The low
level of volatility in our theory is a byproduct of using a production economy, as opposed
to the more common (but less restrictive) endowment economy used in most asset pricing
studies. In our production economy, variation in the return on the risky asset is almost
synonymous with variation in technology shocks, the only di�erence being variation in the
level of aggregate capital. Since the latter is small (due to its aggregate nature), and since
variation in our technology shocks is pinned down by variation in aggregate consumption |
another low variance process | it is un fait accompli that the theoretical return to holding
capital will be far less variable than that of the observed return to holding the U.S. stock
market portfolio. Our feeling, therefore, is that an informative manner in which to compare
theoretical and observed stock return data is to scale the two into equivalent volatility units
and focus on what is commonly referred to as the `price of risk.'1

The main message of Table 3 and Figure 5 is that our baseline economy represents a
substantial departure from complete markets | a feature which stands in contrast to a
number of existing studies | and that the combination of persistent and countercyclically
heteroskedastic shocks can have a substantial impact on risk premia. In our baseline case,
the Sharpe ratio is 8 percent, a factor of 8 larger than either the complete markets economy,
or the economies with homoskedastic, idiosyncratic shocks. This e�ect is ampli�ed substan-
tially by unit root shocks, something we demonstrate in Figure 5 but defer discussing until
we address alternative parameterizations in section 5. Relative to U.S. data, our baseline
model accounts for roughly 20 percent of the Sharpe ratio paid to U.S. equity holders over
the period 1956-1996 (the same holds over a longer horizon: see Mehra and Prescott (1985)).

It is informative to be somewhat more explicit about the contrast between our baseline
results and those of existing studies on production-based, general equilibrium asset pricing
models. Rouwenhorst (1995), for instance, considers a complete markets economy with
equity claims being levered by roughly 40 percent. In spite of explicitly incorporating
leverage (which we abstract from), he reports risk premia (and therefore Sharpe ratios)
which are identical to zero, given the level of rounding in his Table 10.3. R��os-Rull (1994)
also reports values (see his Table 3) which make it impossible to distinguish the risk premium
| either scaled or unscaled | from zero. Finally, and most informatively, Krusell and
Smith (1997), �nd substantially smaller Sharpe ratios in a class of incomplete markets
economies which are quite similar to ours along many dimensions (e.g., the quantitative
magnitude of idiosyncratic shocks, asset trading opportunities, etc.). In their Table 2 they
report an equity premium which, assuming a level of aggregate variability comparable to
ours, implies a Sharpe ratio two orders of magnitude smaller than that in our Table 3.

1An alternative would be to consider the return on a highly levered claim on our aggregate technology,

and leave the volatility scale alone. Note that, unlike several previous papers in the asset pricing literature,

the moment-matching exercise here would be that of matching equity return volatility using a leverage ratio,

not the equity premium level.
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The overall implication is that, although we are clearly talking about small numbers, our
baseline calibration generates a return to bearing risk far in excess of most similar models.
As we argue below, we attribute the di�erence to two inter-related forces: life cycle e�ects
and countercyclically heteroskedastic idiosyncratic shocks.

The remainder of this section provides details geared towards understanding the eco-
nomic structure of our baseline model and interpreting the quantitative results in Table
3. The discussion is organized in a hierarchical nature. We begin by describing consump-
tion allocations or, equivalently, the mapping between the risk which agents are endowed
with and that which they are (implicitly) unable to pool amongst themselves. Next we
consider the 
ip side of the consumption decision | the savings decision | and describe
the interaction between precautionary and life cycle savings motives. Finally we describe
how agents allocate their savings between stocks and bonds, how the portfolio constraints
a�ect their decisions and, as a result, market clearing asset prices. The role played by the
countercyclical cross sectional variation will be of particular importance for these last items.

4.2.1 Risk Sharing

Asset prices in our model will be explicit functions of consumption allocations. The extent
to which consumption allocations di�er from those which would obtain under complete
markets will govern the extent to which our model's driving force | idiosyncratic risk | can
account for asset return anomalies where other approaches have failed. We therefore begin
by exploring how well our model's asset markets facilitate the smoothing of consumption
relative to income. A natural starting point is the unconditional variance of consumption
relative to that of labor market income, reported in Figure 6 for di�erent age cohorts. We
choose to report the variance, as opposed to the standard deviation, because it is associated
with a useful benchmark; if idiosyncratic shocks follow a unit root process, then the cross
sectional variance of wage income will increase linearly with age.

Each point in Figure 6 represents the cross sectional variance, of income or consumption,
associated with a speci�c age cohort. Each point also represents the variance of the distri-
bution from which an unborn agent views their future labor income (or consumption) as
being drawn. These graphs illustrate several simple, yet important, aspects of our economy.
First, an unborn agent faces an increasing amount of labor market uncertainty the farther
ahead they look; the standard deviation of labor income increases by a factor of 2.4 over
their working life. Older agents, on the other hand, face less (conditional) uncertainty, a
simple manifestation of �nite lives (or, equivalently, retirement). For, example, the standard
deviation of labor income received at age 65, from the perspective of an unborn agent, is
roughly 0.90. The standard deviation of the same income realization, conditional on being
10 years away from retirement, is 0.81. This 'life cycle pattern' in labor market uncertainty
will turn out to play a critical role in the portfolio choices made by agents of di�ering ages
and, largely due to the CCV e�ect, in the determination of equilibrium asset prices.

Figure 6 also demonstrates that the allocations in our economy are characterized by
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partial risk sharing; agents are able to use decentralized asset markets to partially insure
consumption outcomes against idiosyncratic income shocks. Quantitatively, the variance
of consumption is, on average, roughly 2/3 that of labor income. To put this in context,
autarky | interpreted as an agent being forced to consume their labor income (and ab-
stracting from retirement) | would imply that consumption and income variances coincide.
Complete markets, at the other end of the spectrum, implies a consumption standard de-
viation roughly 30 times less (on average) than our baseline case.2 The upshot is that our
economies generate far less risk sharing than many previous studies, in which allocations
have been quantitatively close to �rst best, but far more than the autarkic abstraction
of Constantinides and Du�e (1996). In a related paper, Storesletten, Telmer, and Yaron
(1997), we argue that the magnitude of risk sharing inherent in our economy | as measured
by the relationship between cross sectional measures of income and consumption dispersion
| is consistent with U.S. panel data on income, consumption and wealth.

The information in Figure 6 relates to risk sharing outcomes de�ned in an unconditional
(or age zero) sense. More important for asset pricing is the age-dependent, conditional
distribution, which impacts directly on agent-speci�c Euler equations. The conditional
distribution also provides more explicit information about how e�ectively agents are able
`self-insure' | dynamically trade in �nancial markets in order to partially replicate missing
insurance markets | at di�erent stages of the life cycle. Figure 7 plots what we �nd
to be a good approximation of the conditional standard deviation of consumption: the
unconditional standard deviation of the age-speci�c consumption growth rate. The �gure
shows results from our baseline economy and, in order to provide some useful benchmarks,
results from an autarkic economy, a complete markets economy and economy with unit root
idiosyncratic shocks.

Any complete markets allocation in our environment will have the characteristic feature
that simple functions of consumption growth | marginal rates of substitution adjusted by
mortality factors | will be equated between all agents, both within and across generations.
Cross sectional dispersion in consumption growth will therefore be invariant across age.
This is evident in the lower, dashed locus in Figure 7. In contrast, the incomplete markets
economies, in which marginal rates of substitution are not equated, feature both higher
overall consumption growth variability as well as a great deal of variation across age cohorts.
This a�rms what was apparent in Figure 6; agents are able to self insure to a certain
extent | the age-averaged standard deviation of consumption growth is just less than half
its autarkic counterpart | but risk sharing in our economy is far from �rst best. This is
particularly true for the young, for whom consumption growth is more volatile than it would
be under complete markets by a factor of just over 11. Averaging across all age cohorts, this
di�erence is a factor of 8. Interestingly, after retirement | at which point an agent no longer

2By `complete markets' we refer to an situation in which (a) the allocation is isomorphic to one in

which all idiosyncratic shocks are zero and (b) each period there exists a full set of contingent claims for

all aggregate states of nature in the subsequent period. The former can be implemented by a competitive

�nancial intermediary who can observe agent-speci�c outcomes whereas the latter can be thought of in the

standard `dynamic spanning' sense (Arrow (1970), Kreps (1979)).
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faces idiosyncratic risk | changes in consumption are less variable than in the complete
markets economy. The main reason is the borrowing constraint. As we'll see shortly, a
complete market allocation features retired agents holding a levered position in equity, a
simple manifestation of intergenerational risk sharing (i.e., working aged agents face more
aggregate risk that retired agents because wages are more volatile than capital returns). In
the incomplete market world, retired agents are borrowing constrained and are, therefore,
unable to achieve the same degree of leverage as their complete market counterparts.

Just as important as the overall level of the graphs in Figure 7, is their shape. The
baseline graph, for which idiosyncratic shocks die out over time, is hump shaped, peaking
at age 28 and then monotonically diminishing. The reason is related to two o�setting forces:
�rst, how the persistence of a given shock changes over the life cycle, and, second, how the
composition of total wealth changes over the life cycle. The �rst e�ect is manifest in how
an agent uses �nancial markets to self-insure. As the agent ages, any given shock looks
increasingly persistent, as long as 0 < � < 1. Age, therefore, dampens the extent to which
agents will attempt to smooth out current period shocks through contingent savings and
dissavings, tending to make consumption growth more volatile. The second, countervailing,
e�ect is the composition of total wealth. For a young agent almost all their wealth is held
as `human capital:' the value of their future wage receipts. As an agent ages, �nancial
capital is accumulated, both in order to �nance retirement consumption and for use as a
precautionary bu�er. As an increasing fraction of total wealth is represented by �nancial
capital, the marginal e�ect of an idiosyncratic shock diminishes. The result, as Figure 7
shows, is a declining pattern of consumption growth volatility, once the wealth composition
e�ect dominates the self-insurance e�ect.

This interpretation of the hump-shaped pattern in Figure 7 is substantiated by the
monotonically decreasing shape of the locus which corresponds to the unit root economy.
In this case the �rst e�ect mentioned above | the e�ect of changing persistence on the
motive to self-insure | is entirely absent. One would expect, therefore, to see variability in
consumption growth decline over the life cycle as an increasing share of income comes from
the ownership and physical capital. This is precisely what Figure 7 shows.

The unit root economy turns out to be particularly informative for understanding sav-
ings behavior and self-insurance in our economy. It is unencumbered by dynamics in the
idiosyncratic shock process, which makes for a simpler environment as well as an infor-
mative contrast with a known, analytical solution: the Constantinides and Du�e (1996)
model. Our unit root economy has several key features which are critical in this regard.
First, agents are net savers throughout their working years, a simple re
ection of the fact
that they are born with zero �nancial wealth and must provide for retirement consumption.
This pattern of endowments is admittedly extreme, but it does capture the salient feature
of the world that young people are less wealthy than old people and that most people save
for retirement. Second, the marginal propensity to save out of income is large, relative to
economies with lower persistence in idiosyncratic shocks. In simple terms, the more uncer-
tain the future path of labor income is, the larger is the precautionary motive to accumulate
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�nancial wealth. Third, provided that �nancial wealth is positive, the marginal propensity
to save out of current income is increasing in the level of current income but decreasing in
the level of wealth. That is, holding wealth �xed, an agent will save proportionally more
out of current income, the larger is the income shock. In contrast, holding income �xed,
a poor agent will save proportionally less than a rich agent. The implication, therefore, is
that in spite of being characterized by permanent shocks, our unit root economy displays a
type of contingent, self-insurance behavior. What is critical is that this behavior be viewed
in the context of the life cycle evolution of wealth. In other words, although an agent who
receives a bad idiosyncratic shock will save | a decision which might seem to contradict
`self-insurance' behavior | they will save less, proportionally, than an agent who receives
a good shock. Net of what is governed by the life cycle savings motive, therefore, this
represents dissavings upon receiving a bad income shock, which is precisely what we mean
by `contingent, self-insurance behavior.'

Our model, then, provides an interesting contrast to the autarkic, unit root economy
of Constantinides and Du�e (1996). Agents in our model change their �nancial behavior
in response to a permanent shock, whereas a Constantinides-Du�e agent is content to do
nothing. The critical di�erence | a point which has been made in a di�erent context by
Krusell and Smith (1997) | concerns the distribution of wealth. A necessary feature of the
Constantinides and Du�e (1996) autarkic equilibria is that the distribution be degenerate
across agents and identical to a particular level which is dictated by their speci�cation for
endowments. Consider, for example, an extreme version of their setup (which we adapt from
an example in Krusell and Smith (1997)). The environment is an in�nite horizon endowment
economy with the only asset market being riskless borrowing and lending. Endowments are
yit = exp(zit) and zit = zi;t�1 + "it, where "it � N(��2=2; �2). If the initial distribution of
bonds is degenerate, with every agent holding zero bonds, then, with our class of preferences,
an equilibrium is cit = yit where the bond price is � exp(�(1 + �)�2=2). The critical
point is that this only works for this speci�c initial distribution of bonds. Should some
agents start with a short position, while others start with a long position, the economy
will converge to the autarkic steady state, but interim savings behavior will (we conjecture)
display something akin to the `risk sharing' behavior outlined above. The link to our
OLG framework is that, because lives are �nite and savings behavior has a strong life
cycle component, any autarkic steady state, which may be important in an in�nite horizon
framework, is essentially irrelevant.

4.2.2 Wealth Accumulation

The 
ip side of the consumption decision is, of course, the savings decision. Probably the
most immediate impact of idiosyncratic risk in our economy, an e�ect studied at length by
many previous authors (e.g., Aiyagari (1994), Huggett (1996)), is its e�ect on the motive to
save and accumulate capital. In Figure 8 we report average �nancial wealth | capital plus
bonds | for our baseline economy as well as the complete market and unit root economies
which have proven useful contrasts to this point. The complete market economy shows a
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fairly standard life cycle savings pattern. Because average labor market productivity, and
therefore the average wage rate, increases until just before retirement (recall that this is a
feature of our calibration), the desire to smooth consumption over the life cycle results in
an agent holding negative �nancial wealth during their early working years. This e�ect is
quickly o�set by the need to smooth consumption over the retirement years as well, and
the average agent is a net saver by age 39.

Imperfect sharing of idiosyncratic risk changes all this. For young agents, the desire to
accumulate a precautionary bu�er of assets works against the standard life cycle, consump-
tion smoothing motive. Young agents are far more unlikely to increase consumption by
borrowing against wage income to be earned during their high productivity years. This is
seen most strongly in the unit root economy, where the average agent holds positive wealth
even during their �rst working year of life. The e�ect is mitigated slightly for our baseline
case, where average wealth is still zero or negative for the �rst 6 years of life.

Idiosyncratic risk also has an appreciable e�ect on the overall level of savings and capital
accumulation. As is apparent in Figure 8, the bu�er stock savings motive drives up indi-
vidual, and therefore aggregate, savings. In terms of asset pricing, the net e�ect is by now
well known in the literature; the precautionary demand for assets drives down the level of
interest rates and the expected rates of return on risky assets. In our production economy
this takes the form of a higher level of aggregate capital leading to a lower marginal product
of capital and therefore a lower average return to holding capital.

4.2.3 Portfolio Behavior and Asset Prices

We've seen that by adding idiosyncratic risk to an agent's income the life cycle savings
motive is swamped by a precautionary savings motive. We now investigate how individuals
choose to allocate these savings between risky and riskless assets and the implications for
asset prices.

Figures 9 and 10 characterize life cycle portfolio behavior in our economy. In Figure 9
we characterize the portfolio choice of the median agent of each age cohort, as well as the
fraction of agents who are constrained in each of the two asset markets. The latter is a loose
guide to how representative the behavior of the median agent is for the entire distribution.
In Figure 10, we plot a typical set of theoretical portfolio decision rules, the understanding
of which is critical for understanding the behavior displayed in Figure 9.

Starting with Figure 9, the salient features of portfolio choice are as follows. First,
almost all the young agents | those between age 23 (newborn) and, roughly, age 30 |
hold all their wealth in the form of bonds. Most of these agents would actually like to hold
a levered position in bonds, but cannot because of the stock market short-selling constraint.
Second, almost all the old agents | essentially those aged 60 and above | are constrained
in the bond market and hold a levered position in the stock market. Finally, most of the
agents who are at an interior position in both asset markets belong to intermediate age
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cohorts: the `prime age workers.' It is the behavior of these agents, therefore, that is
critical for understanding the equity premium in our environment.

These patterns of portfolio choice mimic several salient features of U.S. data which
seem important for a story linking the life cycle, idiosyncratic risk, and asset pricing. Our
economy features a substantial fraction of agents who choose not to hold stock, one of the
striking features of U.S. household portfolio composition (c.f., Mankiw and Zeldes (1991)).
As we'll argue further, this serves to `concentrate the aggregate risk' and increases the pre-
mium paid to those who hold it. Our economy also has the feature that the lion's share of
the stock market is owned by older agents, agents who face little, if any, idiosyncratic risk.
While this stands in stark contrast to `folklore' portfolio theory | the notion that stock-
holding should decrease with age | it is consistent with some aspects of U.S. data. Heaton
and Lucas (1998), for instance, �nd that the households which hold the most substantial
fraction of their wealth as stocks are both rich and elderly, a striking characteristic of our
economy. They also �nd evidence suggesting that a life cycle pattern in idiosyncratic risk |
middle aged households having relatively more exposure to risks associated with proprietary
business ownership | is important for portfolio choice, another key aspect of our model.
While Heaton and Lucas's notion of idiosyncratic income risk is clearly richer than ours
| the distinction between labor market and privately owned business risk plays a key role
in their study | we still think the comparison is relevant. Idiosyncratic income risk has,
almost by de�nition, an important life cycle aspect to it. This `life cycle of idiosyncratic
risk' manifests itself in portfolio composition | both in the data and in our model | and
must therefore be relevant for the determination of prices. This simple relationship lies at
the heart of our asset pricing model.

There are three critical forces governing the portfolio choices represented in Figure
9. The �rst is the composition of an investor's wealth which, as we've seen in Figure 8,
exhibits a strong life cycle pattern. Newborn agents begin life with zero �nancial assets: a
stark abstraction but one which captures the fact that younger households hold the lion's
share of their wealth in terms of human capital (claims to future wage receipts, in our
case). As they age they must save, both for precautionary and retirement related motives.
The fraction of their total wealth attributable to human capital is therefore monotonically
decreasing, a fact of life which has been emphasized by many previous authors in studies of
life cycle portfolio behavior (c.f., Bodie, Merton, and Samuelson (1992), Jagannathan and
Kocherlakota (1996) and references therein). In our setup, and in U.S. data, the returns
to human and physical capital | wages and `dividends,' respectively | are positively
correlated, with the variability of the wages exceeding that of dividends. Agents with the
greatest degree of wage risk will therefore seek to short-sell physical capital and invest
the proceeds in bonds. Since short-selling is prohibited, the outcome we observe, which is
displayed in Figure 9, is that young agents hold all their wealth in bonds and then gradually
shift into stocks as they age.

Our economy therefore has the simple feature that stock holding is increasing in wealth,
a feature shared by most related papers (see, for instance, Krusell and Smith (1997), Figure
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3). This behavior is documented in Figure 10, where we graph the decision rules which
govern portfolio choice for a newborn agent. The graph shows that when an agent is
relatively poor, they choose to hold only bonds. For a small range of intermediate wealth
levels both bonds and stock are held, and for a relatively high wealth level a levered position
in stock is chosen. As an agent ages, the shapes of the decision rules change somewhat. Most
importantly, the range of wealth levels associated with an interior choice in both markets
increases, a manifestation of mature workers | those who face the most aggregate wage
risk | seeking a compromise between higher returns and diversi�cation against aggregate
shocks.

The second force impinging on Figure 9 relates to intergenerational heterogeneity and
how agents of di�erent ages face di�erent amounts of aggregate uncertainty. To best un-
derstand this, the complete markets allocation | an allocation which e�ciently distributes
aggregate risk across generations | is quite informative. Presuming that idiosyncratic risk
is eliminated, perhaps via a centralized �nancial intermediary, a complete markets alloca-
tion can be supported by unconstrained trade in two assets: stocks and bonds. In this
case we �nd portfolio behavior to be qualitatively similar to the incomplete markets case
represented in Figure 9: the young hold bonds issued by the old. The reason is, again,
related to the composition of wealth and the income that it generates. Young agents derive
most of their income from the labor market. Since wage income is more volatile than capital
income in our economy (labor's share of aggregate income is larger), a complete markets
allocation features young agents short-selling stock and investing the proceeds in bonds.
Retired agents, on the other hand, hold levered positions in stock, e�ectively assuming
more aggregate risk than they would face otherwise. A small proportion of older working
agents hold positive amounts of both stocks and bonds, something akin to the common no-
tion of a diversi�ed portfolio. The net result is a redistribution of aggregate risk from those
who are endowed with the most of it | the young | to those who are endowed with the
least | the old. Interestingly, the life cycle pattern in wealth is crucial for this outcome.
If, hypothetically, we consider a young worker and a prime age worker agent with equal
wealth, then the complete markets allocation will feature the younger worker holding more
stock than the older worker, the reason being that labor market productivity is increasing
with age.

The degree of exposure to aggregate shocks, therefore, works in the same direction as
the composition of wealth: it makes older workers better equipped in terms of bearing ag-
gregate risk. A third factor which is important for Figure 9, one which tends to strengthen
these e�ects, turns out to be the lynchpin for our asset pricing results: countercyclically
heteroskedastic income shocks (CCV). Both Constantinides and Du�e (1996) and Mankiw
(1986) have persuasively shown that agents will demand a premium to hold stocks which
pay relatively little when idiosyncratic shock volatility increases. More precisely, the condi-
tional risk premium | the familiar covariance term which is the bread and butter of asset
pricing theory | involves the covariance of stock returns with the (time varying) cross sec-
tional variation in the consumption distribution. In our baseline economy this covariance
is strongly negative. The average of the correlation between the variance of the innovation
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in consumption and the risky asset return, across age all cohorts, is �0:42. The average
across working agents is �0:89 and the average across retirees is 0:13.

The CCV which we impart into income, therefore, becomes manifest in consumption.
The crucial link in terms of Figure 9 | as well as the determination of prices | involves
which group of agents are e�ectively `pricing' the excess return portfolio and how much of
the CCV risk they bear in equilibrium. Figure 9 shows that these agents are the prime age
workers: those, roughly, between ages 35 and 60. These agents face less CCV risk than the
very young, owing to the fact that they derive a substantial fraction of their income from
capital. In this sense they are `better equipped' to bear CCV risk, which results in the
young choosing to avoid stock altogether. On the other hand, prime age workers are the
most productive, something which aggravates their attitude towards CCV risk. In any case,
it is the prime age workers who hold the interior portfolio in our economy, and therefore
`set the price.' These workers bear an appreciable amount of the aggregate, CCV risk |
some of which they implicitly take o� of the hands of younger workers | and demand to
be compensated for doing so. We �nd that this e�ect is the central one in terms of driving
risk premia in our economy. Were the equilibrium characterized, for instance, by the old
holding all the stock, CCV risk would not be `priced' in equilibrium and our economy would
generate much smaller Sharpe ratios.

This completes the discussion of the economics behind portfolio choice. Good compu-
tational economics, however, should verify economic interpretations with supporting ex-
periments. A natural question in this regard asks what happens to equilibrium portfolio
behavior and asset returns if we alter the magnitude of the conditional variation (the CCV)
in the income shocks. Are the CCV shocks important for portfolio choice, pricing, or both?
We �nd that the answer is `pricing,' as long as stocks don't represent a hedge against in-
creases in conditional variance. More speci�cally, in a homoskedastic economy (represented
by the unity point, CCV=1, in Figure 5), portfolio choices do not change, qualitatively,
relative to the baseline case of CCV=2.2. That is, young agents still avoid stock by lending
to the old, who hold a levered position in equity. What does change is that the reward paid
to those who do bear the stock market risk drops by a factor of 8 (see Figure 5). In contrast,
in an economy with procyclical cross sectional variation | one in which stocks pay o� more
when cross sectional variation increases | young agents view stocks as a hedge against in-
creases in idiosyncratic risk and choose to hold all their wealth as stock. One would expect
this to lead to a further reduction in the excess stock market return, as retirees become the
marginal agents (holding all the bonds), but do not face any CCV risk. This is con�rmed
by Figure 5. These experiments suggest, therefore, that our interpretation of the baseline
case is valid. The three e�ects we've described all work in the same direction; they tend to
make the young hold bonds and the old hold stock. Removing one e�ect | the CCV |
does not change this, but it does change pricing in a predictable manner. Altering the sign
of the CCV risk, on the other hand, does change the `comparative advantage' of the young
in terms of bearing aggregate risk and, if large enough in magnitude, changes portfolio
behavior in a manner which is consistent with our analysis.
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To summarize, the equity premium in our economy is driven by a subset of the working
population being averse to the poor hedge which stocks provide against times when idiosyn-
cratic risk increases. Relative to the working population, these agents bear a disproportion-
ate share of society's aggregate risk. They don't do this, of course, out of benevolence, but
because they are better equipped to bear aggregate risk and because they receive compen-
sation for doing so. This comparative advantage in risk bearing is driven by an inescapable
aspect of labor market risk: individuals have less of it the older they are. In this sense our
asset pricing theory is driven by a natural link between a life cycle pattern in idiosyncratic
risk and a life cycle pattern in portfolio choice.

5 Interpretation and Alternative Parameterizations

Our baseline economy delivers Sharpe ratios which, while being signi�cantly larger than
those of related studies, remain de�cient when compared with U.S. data. A natural question,
then, is `what does one have to do, in our framework, to generate risk premia of a realistic
magnitude?' We address this question through several alternative parameterizations. We
also provide quantitative results from a calibrated version of the Constantinides and Du�e
(1996) economy, which we �nd to be an informative benchmark in terms of what is driving
our results. Additional sensitivity analyses, designed primarily to assess the robustness of
our computational methods, are discussed in appendix B.

Figures 5, 7 and 8 have already provided information on how our economy behaves
under di�erent values for the parameter �, the autocorrelation of the idiosyncratic shocks.
We see that increases in � tend to increase savings, change the life cycle pattern in the
variability of consumption growth, and increase the Sharpe ratio on the risky asset. The
latter is particularly important in understanding how our results di�er from those of others.
Heaton and Lucas (1996), for instance, �nd the asset pricing e�ects of large increases in
CCV to be small. Our results are consistent in the sense that relatively low autocorrelation
| the � = 0:5 locus in Figure 5 corresponds to their assumed value | leads to small Sharpe
ratios, irrespective of the magnitude of CCV.

In Exhibit 1 we demonstrate the e�ect of increasing the risk aversion coe�cient, �, from
2 to 4.5. The latter is chosen because it generates a Sharpe ratio which is close to the U.S.
sample moment of 0.41. Exhibit 1 also reports comparable values for the Constantinides
and Du�e (1996) model and | to provide a complete markets benchmark | the Mehra
and Prescott (1985) model. In both cases the models are calibrated so as to generate a
meaningful comparison; details are provided in appendix C. The economies associated with
our model feature unit root idiosyncratic shocks, something which is motivated by both
computational considerations (unit root economies are less costly to compute) and a desire
to provide a close connection to the Constantinides-Du�e framework (which is distinguished
by unit root shocks).
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Exhibit 1: E�ects of Higher Risk Aversion

Sharpe ratios in percent

Risk Aversion CCV MP CD STY

� = 2 homoskedastic 3.04 3.04 0.88
120% increase { 11.39 16.10

� = 4:5 homoskedastic 5.55 5.55 3.01
120% increase { 33.60 39.02

Entries correspond to Sharpe ratios, expressed as percentages, associated with the Mehra and Prescott

(1985) (MP) model, the Constantinides and Du�e (1996) (CD) model, and our model (STY), with unit

root idiosyncratic shocks. In each case the rate of time preference is chosen so as to match the expected

return on the risky asset. The particular value for the risk aversion coe�cient we report, � = 4:5 is chosen so

that our economy generates a Sharpe ratio which is approximately equal to that observed in U.S. data over

a long horizon, 41 percent. More explicit details of how we calibrate each model are provided in appendix

C.

Exhibit 1 makes several important points. First, an increase in risk aversion has a
substantially greater impact upon the price of risk in the heterogeneous agent economies
than in the representative agent economy. In the Mehra-Prescott environment, a 125%
increase in the value of risk aversion coe�cient increases the Sharpe ratio by just over 80%,
whereas the increase is 140% and almost 200% for our economy and the Constantinides-
Du�e economy, respectively. This disproportionate e�ect is, in fact, strongly suggested by
the form of the Constantinides-Du�e representative agent. In their model, the mapping
between �, the risk aversion coe�cient of actual agents, and �̂, the risk aversion coe�cient
of the representative agent, is:

�̂ = ��
�(�+ 1)

2
b ;

where b is a parameter which relates to the amount of CCV inherent in the economy (see
appendix C for details). For values of b less than zero | which de�nes what we mean by
CCV| increases in the `e�ective' risk aversion coe�cient, �̂, are increasing in the level of �.
For instance, a value of � = 2 corresponds to a value for �̂ of 11.4, whereas � = 4:5 generates
�̂ = 43:2. The fact that our economy shares this feature | increases in risk aversion having
disproportionately large e�ects on risk premia | is encouraging. It serves as one check
on our computational solution and, just as importantly, suggests that our economy can
generate sizable risk premia (per unit of volatility) while maintaining moderate attitudes
towards risk amongst its inhabitants.
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A second important feature of Exhibit 1 relates to the absolute magnitudes of the Sharpe
ratios. For a comparable amount of heterogeneity and CCV, our economy generates larger
Sharpe ratios than the Constantinides-Du�e model, and at the same time does so in what
is certainly a less extreme environment (e.g., our economy features non-degenerate trade in
asset markets and, as we argue in Storesletten, Telmer, and Yaron (1997), a realistic degree
of imperfect risk sharing). We attribute the di�erences to the distinguishing characteristic
of model, the life cycle. In an admittedly loose sense, our interpretation is as follows.

An important characteristic of the allocations in our model is partial risk sharing; agents
are able to use asset markets to eliminate roughly 1/3 of their labor market risk, even in
the presence of unit root shocks. Ceteris paribus, this will reduce risk premia in our model,
relative to those in the autarkic Constantinides-Du�e environment. On the other hand,
we've argued above that risk premia are likely to be driven up by life cycle considerations,
in particular the fact that the agents who are most exposed to CCV risk | the prime age
workers | must hold a disproportionate share of it. The fact that Sharpe ratios in our
model exceed those of our Constantinides-Du�e calibration suggests that this second e�ect
dominates the �rst. In other words, the positive e�ect of the `life cycle of idiosyncratic
risk' on risk premia outweighs the negative e�ect of partial risk sharing. In this sense we
interpret the OLG aspect of our economy as being a quantitatively important ingredient in
understanding the interaction of idiosyncratic risk and asset pricing.

One �nal alternative we have investigated involves a large increase in aggregate volatil-
ity. As we've argued above, a key restriction of a model with our type of aggregate produc-
tion technology | a restriction which is absent in an endowment economy | is a strong
link between the volatility of aggregate quantities and the volatility of risky asset returns.
Risky asset returns are equal to the marginal product of aggregate capital. Their volatility,
therefore, is driven by variation in technology shocks and variation in aggregate capital.
Aggregate capital is, by its very nature, a low volatility process. Volatility in technology
shocks is strongly restricted by volatility in aggregate output, consumption, investment,
and so on. Models such as ours, therefore, cannot generate high volatility in asset returns
without generating unrealistically high volatility in aggregate quantities.

In order to get a feel for the impact of higher return volatility on risk premia, our
�nal experiment (results not reported) ignores restrictions on aggregates. Speci�cally, we
increase the volatility of the technology shock process, Z, until the standard deviation of
the risky asset return matches that of the S&P 500 (roughly 16 percent per annum). We
�nd that the excess return on the risky asset is roughly 4 percent per annum, with a Sharpe
ratio of 25 percent. This compares somewhat favorably with a similar exercise conducted in
a representative agent context. Using our calibration of the Mehra-Prescott economy, but
where variation in the endowment process is chosen to match the standard deviation of the
S&P 500, we compute an equity premium of 3.2 percent and a Sharpe ratio of 15 percent.
The overall implication is that the form of heterogeneity we study is incrementally helpful
for understanding asset returns, even if the `puzzle' of excessive volatility in stock returns
is abstracted from.
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6 Conclusions

Our line of inquiry is motivated by the supposition that individual households face a number
of important sources of idiosyncratic risk, that they are unable (or unwilling) to eliminate
them from their consumption choices, and that these risks have an important e�ect on their
savings and investment behavior. This is a statement which, we think, is fairly uncontro-
versial in that it is supported by a large empirical literature, a strong body of economic
theory (e.g., models which study agency relationships) as well as casual introspection and
plain common sense. The asset pricing literature is concerned with a somewhat deeper
issue: whether or not these idiosyncratic sources of income and consumption variation have
anything to do with observed levels of interest rates and return di�erentials between risky
assets. The challenge then, is to formalize our supposition in a model and examine the
pricing implications.

A focal point of our paper is the notion that the OLG formalization is an attractive
alternative to what has become more commonplace in the literature: the in�nite horizon
model, with or without dynastic mortality risk. To understand this, it is useful to consider
recent experiences with in�nite horizon models. Our reading of the literature suggests
that the intuition one gets from the `permanent income hypothesis' carries forth to varying
degrees in an equilibrium model where savings and investment behavior are disciplined by
both the (implicit) need to �nd another agent to trade with, and the changing nature of the
price process which governs this trade. In other words, the nature of competitive equilibrium
in these models is that agents consume permanent shocks and diversify away transitory ones.
Any departures from this statement are almost exclusively driven by frictions of one form
or another, such as portfolio constraints and transactions costs.

This leads one to the thought that some combination of `permanent shocks' and frictions
must characterize a model in which idiosyncratic risk is to have an appreciable impact. The
OLG framework is attractive in this sense, in that (a) permanent shocks are easily modeled
in a tractable, recursive framework (indeed, all shocks are `permanent' to some degree), and
(b) a number of natural constraints on savings and investment behavior arise as a result
of both �niteness and life cycle patterns in wealth and income. An obvious example, one
which is starkly presented in our model, is that the young are relatively asset-poor and are
unlikely to be able to self-insure until a bu�er stock has been accumulated. In addition, the
`constraint' that one must typically save for retirement mitigates the extent to which any
given bu�er of assets is useful for eliminating even transitory sources of income variation.
We �nd the summation of these e�ects to be quantitatively important. Our model has little
di�culty satisfying a necessary condition that has hampered previous work, the condition
that allocations be su�ciently far from �rst-best.

That the OLG model may generate imperfect risk sharing outcomes in a plausible way
is one thing. In addition, the framework seems well suited for asset pricing questions which,
in our class of models, hinge on the dependence between idiosyncratic and aggregate sources
of variation. This dependence cannot be in the �rst moment | having a mean of zero is
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what de�nes the term `idiosyncratic' | so we follow Mankiw (1986) and Constantinides and
Du�e (1996) in incorporating it in the second moment, something we label `countercyclical
cross sectional variation,' or `CCV.' What drives our results turns out to be the manner
in which CCV interacts with the life cycle. Because we model idiosyncratic risk as being
persistent and as arising in the labor market, a distinguishing feature of our economy is
something which seems quite natural: young agents face more idiosyncratic risk than old
agents. Age, in other words, a�ects the way in which an agent views the risk which the CCV
dependence represents. This in turn a�ects portfolio choice | the young choose to hold
only the riskless asset | and forces a greater than per-capita share of the aggregate risk
onto risky asset holders. The latter, in our equilibrium, turn out to be high productivity
working agents who dislike CCV risk, demand a premium in order to bear it, and thereby
drive up the excess return paid to equity. It is in this sense that the life cycle in our model is
an integral part of the mapping between idiosyncratic risk and asset returns. A natural life
cycle pattern in idiosyncratic risk leads to a life cycle pattern in portfolio choice which leads
to a life cycle pattern in the characteristics of the group of investors who are relevant for
price determination. Again, we �nd the quantitative implications to be substantial. Our
economy generates far greater Sharpe ratios than comparable, production-based models,
and can match the Sharpe ratio on the U.S. stock market with only a moderate increase in
risk aversion, relative to conventional values.

The importance of life cycle portfolio behavior for asset prices has also been emphasized
in recent work by Constantinides, Donaldson, and Mehra (1997) (CDM). They stress the
impact of young agents not holding any stock and of the economy's aggregate risk, therefore,
being concentrated on older agents. The same feature is important in our model, but for
fundamentally di�erent reasons. Aside from a number of important quantitative issues, the
main characteristic which distinguishes our approach is idiosyncratic risk within generations,
something which we've argued is fundamental for our results. The implications for individual
behavior | and therefore for testable restrictions | are strong. In our model, the decision
of a young agent to avoid equity is very much a portfolio allocation decision: equity is
too risky, so they choose not to hold any. In the CDM framework, at least the version
of their model which generates sizable equity premia, the driving force is consumption
smoothing and how it interacts with borrowing constraints. Young agents receive a relatively
meager endowment, cannot borrow or short sell equity, and therefore choose not to hold any
assets whatsoever. These are starkly di�erent interpretations of why one might see a young
household choose not to hold equity. The testable restrictions are related to overall savings
behavior and how important the precautionary motive is. Our framework is consistent
with the average young household (poor young households in our model do face binding
borrowing constraints) being a net saver during the �rst third of their lives. That is, the
precautionary motive dominates the life cycle motive, and the decision to avoid equity is
driven by risk, in our case CCV risk. The CDM framework is consistent with the same
average, young household not accumulating any assets and, in contrast, viewing equity (in
a shadow value sense) as an attractive investment. Which of these interpretations is more
important | it seems clear to us that the world features aspects of each of them | is
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something we leave to future work.

We choose to address quantitative issues in our model by exploiting information from
the PSID. A reasonable criticism is that the PSID does not contain a representative share
of stock-holding households. Heaton and Lucas (1998) implicitly make this point in their
study of household portfolio behavior based on a wealthier set of households. Our interest in
the PSID, in spite of this limitation, is best understood as follows. What we are primarily
interested in are low-frequency movements in asset returns and their relationship to the
real economy. The crux of our approach is that, in addition to aggregate variables, cross
sectional variables play an important role this relationship. The manner in which the cross
sectional distribution matters can be interpreted in (at least) two ways. One interpretation
is that, in order to make decisions, each agent requires information on every other agent's
wealth, labor market status, and so on. An alternative interpretation, one which we prefer,
is that a lower dimensional representation exists. That is, what matters for forecasting
future prices is not the entire distribution, but just a small set of its characteristics. This
is the sense in which Krusell and Smith (1998), Telmer and Zin (1995) and others refer
to a model as admitting an `approximate aggregation.' Given this interpretation | that
our interest in the cross section remains as a macroeconomic variable | our feeling is that
there is no better dataset than the PSID for measuring several of its simple properties,
most speci�cally how its variance changes over the business cycle. Moreover, our feeling is
that the simple statistics we obtain from the PSID, most importantly autocorrelation and
CCV, are likely to move in our favor were we able to obtain a more representative dataset.
For instance, our guess is that `entrepreneurial risk' (to borrow a phrase from Heaton and
Lucas (1998) and Polkovnichenko (1999)) is likely to be even more persistent than the labor
market risk inherent in the PSID, in addition to having rich cyclical dynamics.

Many previous papers on idiosyncratic risk and asset pricing have contributed by pro-
viding negative results: demonstrating what cannot solve the equity premium puzzle. Our
results are encouraging in that they are positive in nature, suggesting several factors which
may be quantitatively important in terms of resolving the puzzle. Plausible parameteri-
zations of our model, both in terms of preferences and PSID data, can generate Sharpe
ratios which match U.S. data, even in the absence of frictions such as transactions costs
and the like. While positive results are, in a sense, more constructive, they are also more
easily challenged. The most glaring weakness in our set-up is simple: volatility. Our model
clearly stands no chance of accounting for the level of the equity premium (as opposed to
the Sharpe ratio) because risky asset returns are pinned down by our aggregate technology,
which is in turn calibrated to macroeconomic information on the U.S. capital stock. In
other words, we are unable to address the issue of why stock returns are so variable rela-
tive to returns on physical investment. First on our list of alternative models, chosen to
address this issue, are models with adjustment costs to physical capital or irreversibilities.
In our current model investment in completely reversible, implying that the price of capital
is always unity. Adjustment costs would drive the price from unity and result in a model in
which the word `stock' is more closely associated with the common stocks underlying the
U.S. data we attempt to explain.

36



References

Abowd, J. and D. Card, (1989), On the covariance structure of earnings and hours changes,
Econometrica 57, 411{455.

Aiyagari, S. R., (1994), Uninsured idiosyncratic risk and aggregate saving, Quarterly Jour-

nal of Economics 109, 659{684.

Aiyagari, S. R. and M. Gertler, (1991), Asset returns with transactions costs and uninsured
individual risk, Journal of Monetary Economics 27, 311{331.

Altonji, J. G., F. Hayashi, and L. J. Kotliko�, (1991), Risk sharing, altruism, and the factor
structure of consumption, NBER working paper number 3834.

Altug, S. and R. A. Miller, (1990), Households choices in equilibrium, Econometrica 58,
543{70.

Alvarez, F. and U. Jermann, (1997), Asset pricing when risk sharing is limited by default,
Unpublished working paper, University of Chicago.

Arrow, K., (1970), Essays in the Theory of Risk Bearing , North-Holland, London.

Attanasio, O. and S. J. Davis, (1996), Relative wage movements and the distribution of
consumption, Journal of Political Economy 104, 1227{1262.

Bodie, Z., R. C. Merton, and W. F. Samuelson, (1992), Labor supply 
exibility and portfolio
choice in a life cycle model, Journal of Economic Dynamics and Control 16, 427{49.

Casta~neda, J., J. D��az-Gim�enez, and J. V. R��os-Rull, (1994), Unemployment dynamics,
aggregate 
uctuations, and income distribution, Working paper, University of Penn-
sylvania.

Constantinides, G. M., J. B. Donaldson, and R. Mehra, (1997), Junior can't borrow: a
new perspective on the equity premium puzzle, Working paper, University of Chicago,
GSB.

Constantinides, G. M. and D. Du�e, (1996), Asset pricing with heterogeneous consumers,
Journal of Political Economy 104, 219{240.

Cooley, T. F. and E. C. Prescott, (1995), Economic Growth and Business Cycles, chapter 1,
1{38, Princeton University Press, New Jersey, In Frontiers of Business Cycle Research,
T. Cooley, editor.

Deaton, A., (1991), Savings and liquidity constraints, Econometrica 59, 1221{1248.

Deaton, A. and C. Paxson, (1994), Intertepmoral choice and inequality, Journal of Political
Economy 102, 437{467.

37



den Haan, W., (1994), Heterogeneity, aggregate uncertainty and the short term interest
rate: a case study of two solution techniques, Working paper, University of California
at San Diego.

den Haan, W., (1997), Solving dynamic models with aggregate shocks and heterogeneous
agents, Macroeconomic Dynamics 1, 355{386.

den Haan, W. and A. Marcet, (1994), Accuracy in simulations, Review of Economic Studies

61, 3{17.

Gordon, R. J., ed., (1986), The American Business Cycle: Continuity and Change, Univer-
sity of Chicago Press.

Gottschalk, P. and R. Mo�t, (1992), Earnings and wage distributions in the NLS, CPS and
PSID, Manuscript, Brown University.

Heaton, J. and D. J. Lucas, (1996), Evaluating the e�ects of incomplete markets on risk
sharing and asset pricing, Journal of Political Economy 104, 443{487.

Heaton, J. and D. J. Lucas, (1998), Portfolio choice and asset prices; the importance of
entrepreneurial risk, Working paper, Northwestern University.

Hubbard, R. G., J. Skinner, and S. P. Zeldes, (1994), The importance of precautionary
motives in explaining individual and aggregate savings, Carnegie Rochester Conferance
Series on Public Policy 40, 59{126.

Huggett, M., (1993), The risk free rate in heterogeneous-agents, incomplete insurance
economies, Journal of Economic Dynamics and Control 17, 953{969.

Huggett, M., (1996), Wealth distribution in life-cycle economies, Journal of Monetary Eco-

nomics 38, 469{494.

Jagannathan, R. and N. Kocherlakota, (1996), Why should older people invest less in stocks
than younger people?, Federal Reserve Bank of Minneapolis, Quarterly Review 20, 11{
23.

Kreps, D., (1979), Three essays on capital markets, Technical Report 298, Institute for
Mathematical Studies in the Social Sciences, Stanford University.

Krusell, P. and A. A. Smith, (1997), Income and wealth heterogeneity, portfolio choice, and
equilibrium asset returns, Macroeconomic Dynamics 1, 387{422.

Krusell, P. and A. A. Smith, (1998), Income and wealth heterogeneity in the macroeconomy,
forthcoming, Journal of Political Economy.

Lucas, D. J., (1994), Asset pricing with undiversi�able risk and short sales constraints:
Deepening the equity premium puzzle, Journal of Monetary Economics 34, 325{341.

38



MaCurdy, T. E., (1982), The use of time series processes to model the error structure of
earnings in a longitudinal data analysis, Journal of Econometrics 18, 83{114.

Mankiw, N. and S. Zeldes, (1991), The consumption of stockholders and non-stockholders,
Journal of Financial Economics 29, 97{112.

Mankiw, N. G., (1986), The equity premium and the concentration of aggregate shocks,
Journal of Financial Economics 17, 211{219.

Marcet, A. and K. J. Singleton, (1991), Equilibrium assets prices and savings of hetero-
geneous agents in the presence of portfolio constraints, forthcoming, Macroeconomic

Dynamics.

Mehra, R. and E. Prescott, (1985), The equity puzzle, Journal of Monetary Economics 15,
145{61.

Mrkaic, M., (1997), Estimation of incomplete markets models with panel data { the case of
the permanent income hypothesis, Working Paper, Carnegie Mellon University.

Polkovnichenko, V., (1999), Heterogeneity and proprietary income risk: implications for
stock market participation and asset prices, Manuscript, Northwestern University.

R��os-Rull, J. V., (1994), On the quantitative importance of market completeness, Journal
of Monetary Economics 34, 463{496.

Rouwenhorst, K. G., (1995), Asset pricing implications of equilibrium business cycle models,
chapter 10, 294{330, Princeton University Press, New Jersey, In Frontiers of Business

Cycle Research, T. Cooley, editor.

Storesletten, K., (1999), Sustaining �scal policy through immigration, forthcoming, Journal
of Political Economy.

Storesletten, K., C. I. Telmer, and A. Yaron, (1997), Consumption and risk sharing over
the life cycle, GSIA working paper no. 1997-E228, Carnegie Mellon University.

Telmer, C. I., (1993), Asset pricing puzzles and incomplete markets, Journal of Finance 48,
1803{1832.

Telmer, C. I. and S. E. Zin, (1995), Approximate aggregation with incomplete markets,
GSIA working paper no. 1994-E5.

Weil, P., (1992), Equilibrium asset prices with undiversi�able labor income risk, Journal of
Economic Dynamics and Control 16, 769{790.

White, H., (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct
test of heteroskedasticity, Econometrica 48, 817{38.

Zhang, H., (1997), Endogenous borrowing constraints with incomplete markets, forthcom-
ing, Journal of Finance.

39



A Data Appendix

Our data sources are the family �les and the individual �les of the Panel Study on Income
Dynamics (PSID), covering the years 1969-1992. Since each PSID cross section covers
income earned the previous year, we refer to the time dimension as being 1968-1991. We
base our analysis on a sequence of 22 overlapping panels, each of which has a time dimension
of 3 years. For instance, the �rst panel, which we refer to as having a `base year' of 1968,
consists of earnings data from the years 1968, 1969, and 1970. The panel with a base year
of 1969 contains data from 1969, 1970 and 1971. These overlapping panels allow for the
identi�cation of our model's time series parameters while at the same time maintaining a
broad cross section (due to the introduction of new households) and a stable age distribution.
In addition, our statistical methods explicitly incorporate the overlapping nature of the
panels into our estimate of the covariance matrix.

We de�ne a household's total earnings as wage earnings plus transfers. Wage earnings are
de�ned as the sum of the wage earnings of the household head plus those of their spouse.
`Transfers' include a long list of variables de�ned by the PSID (the 1968 variable name,
for instance, is V1220), but the lion's share is attributable to unemployment insurance,
workers compensation, and transfers from non-household family members. Total earnings
are converted to real earnings per household member by using the CPI de
ator and by
dividing by the number of household members.

Given a speci�c base year, a household is selected into the associated panel if the fol-
lowing conditions are met for the base year and each of the two subsequent years:

� The head of the household is male.

� There are no changes in family structure except for the number of children.

� Total earnings are positive in each year.

� Total earning growth rates are no larger than 20 and no less than 1/20 in any consec-
utive years.

In addition, we follow standard practice in excluding households which were originally
included in the Survey of Economic Opportunity.

The net result is a sequence of panels in which average age is quite stable | the mean
and standard deviation, across the panels, of average age is 44.2 and 1.1, respectively |
and the number of households per panel is quite large. The average number of households,
across the panels, is 2,045 and the standard deviation is 228. This compares with the 610
households who populate the associated longitudinal panel (see below).

40



Aggregate Data

Aggregate GNP data, used to construct the indicator functions in equation (12), are an
amalgamation of annual data from Gordon (1986) for the years 1910-1958 and annual data
from CITIBASE for the years 1959-1992. The data in Gordon (1986) are reported as 1972
dollars. The CITIBASE data were de
ated using the CPI de
ator and were converted to
per-capita values using CITIBASE data on the non-military U.S. population.

Longitudinal Panel

For comparison's sake we also constructed a 24 year longitudinal panel using the same
selection criteria as above. The result is a panel on 610 households where the average age is
roughly 39 in 1968 and, therefore, 62 in 1991. The standard deviation of age in each annual
cross section is 10.54.

When we apply the methodology of Heaton and Lucas (1996) | estimating household-
speci�c parameters and averaging across the estimates | we replicate the qualitative fea-
tures of their results. The estimate of the autocorrelation parameter, �, is 0.64 and 0.50
using their sample and our sample, respectively. When we use our methodology we obtain
an estimate of 0.931, which is essentially identical to that from the overlapping panels in
Table 1. The di�erences in our approaches are as follows. We detrend the data somewhat
di�erently (including life cycle and education e�ects). The parameters in our speci�cation
are constrained to be the same across all households. The moment conditions underlying
our estimates condition on household age, something which we �nd can have substantial
e�ects. Finally, we do not explicitly allow for household-speci�c �xed-e�ects as they do,
by estimating an intercept parameter, per-household. This last item turns out to be par-
ticularly important. We �nd that taking out a household speci�c mean, or `�xed e�ect,'
reduces our methodology's estimate of � to 0.75.

Individual �xed e�ects, then, can have an important e�ect on one's view of persistence.
Our feeling is that there is no easy answer here. Our approach economizes on parameters
(involving 610 fewer) by modeling deterministic cross sectional variation as being related to
education levels alone. The cost is the strong likelihood of mistaking shocks for deterministic
(at birth) di�erences. One common approach is to eliminate the �xed e�ects by di�erencing
or quasi-di�erencing the data (i.e., basing moment conditions on, respectively, ui;t+1 � uit
or ui;t+1 � �uit). We �nd that our inference of high persistence is relatively robust in this
sense. Based on the longitudinal panel, our estimate of � is never less than 0.83 and in most
cases is roughly 0.90 (depending on the particular speci�cation and sample).

A.1 Estimation

Our estimation procedure has two distinct steps. In the �rst stage we estimate equation
(7). In the second stage we estimate the system given in (12).
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Let the parameters of the �rst stage (the coe�cients of the year dummies, age, age
squared, and education ) be summarized by �1. Also, let the parameters of the system in
(12) be denoted by �2 (that is �H , �L, ��, �). The joint system we estimate can be written
compactly as

E

"
 1(y

h
it; �1)

 2(y
h
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#
= 0 (13)

where  1 and  2 are the moment conditions corresponding to (7) and (12) respectively. The
triangular structure of the moment condition allows us to get consistent estimates of �1 using
only  1. We then estimate �2 using moment conditions  2. This second step incorporates
the standard errors in estimating �1 using a standard two-step GMM procedure. The
additional complication that arises in our set-up is due to the overlapping structure of our
repeated panels. Since these panels overlap each other by 2 years an MA(2) correction is
added to the estimate of the covariance matrix associated with moment conditions  2.
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where the superscript t in u denotes the base year of the panel from which this agent is
selected. By assumption  

h;j
2;i;t is not correlated with  
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2;i;t+k 8k 6= 0, and j; l = 0; 1; 2.

It can be easily shown, however, that due to the overlap of the sample, for each t,  h;02;i;t,
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h;2
2;i;t are correlated. We stack the repeated 3 moment conditions and use sample

counterparts to estimate these covariance terms { where the covariance matrix is block-
diagonal and each 3� 3 block has non-empty o�-diagonal elements.

Our results are robust to selecting fewer moment conditions, using subsets of the years
above, and to a system in which the parameters of interest are exactly identi�ed. For
the exactly identi�ed case, we also experimented with repeated panels of 4 years and the
additional moment condition
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B Computational Appendix

Our general solution strategy follows the work of den Haan (1994), den Haan (1997) and,
in particular, Krusell and Smith (1997) and Krusell and Smith (1998). The crucial step is
the speci�cation of a �nite dimensional vector to represent the law of motion for �. Given
this, each individual faces a �nite horizon dynamic programming problem. The essence of
the �xed point problem is the consistency of the law of motion for � with the law of motion
implied by individual decisions. More speci�cally, our algorithm involves the following steps.

1. Approximate the distribution of agents, �, with a �nite number of moments or statis-
tics, �m. Following Krusell and Smith (1997), we began with just the �rst moment,
aggregate capital, �k. Having found this to be inadequate for our problem, we added
a second, the conditional expected equity premium, �. Krusell and Smith (1997), for
comparison, use aggregate capital and the bond price.

The conditional expected equity premium (CEEP) is de�ned as �t � EtfRt+1g� q
�1
t ,

where Rt+1 is the return on equity in period t+ 1 and qt is the period t price of a
claim that pays one unit of the consumption good in period t+ 1. Note that, given
�t and conditional expectations over the future states of the world, the implicit bond
price is qt = (EtfRt+1g � �t)

�1.

Conceptually, � is an in�nite dimensional vector and can depend on almost any con-
ceivable state variable. Our use of � (a "price") as a state variable may seem odd, but
should be thought of as a convenient way to summarize the information which agents
need for their savings and portfolio allocation decisions. The alternative and perhaps
more direct route would have been to specify moments of bond holdings by age and
wealth and possible higher order moments of capital. In this sense our two-moment
formulation represents a relatively e�cient use of state variables that must be part of
an agent's information set.

2. Approximate the agents' expectations of the law of motion for �0m with a linear func-
tion of �m, Z and Z 0:

log( �k0) = a0(Z;Z
0) + a1(Z;Z

0) log(�k) + a2(Z;Z
0)� (14)

�0 = b0(Z;Z
0) + b1(Z;Z

0) log(�k) + b2(Z;Z
0)�

The aggregate shock Z can only take on two values, Z 2 fZ; �Zg, so each of the
coe�cients above can take on four di�erent values. Assume a particular set of values
for

fa0(Z;Z
0); a1(Z;Z

0); a2(Z;Z
0); b0(Z;Z

0); b1(Z;Z
0); b2(Z;Z

0)gZ;Z02fZ; �Zg.
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3. Given a set of expectations over �0m, now de�ned as �0m = Ĝ(�m; Z; Z
0), solve an

appropriately modi�ed version of (5):

V̂h(�m; Z; z; �; a) = max
b0
h+1

;k0
h+1

fu(ch) +

�
�h+1

�h
E
h
V̂ 0
h+1(Ĝ(�;Z;Z

0); Z 0; z0; �0; k0h+1R(Ĝ(�;Z;Z
0); Z 0) + b0h+1)

i�
(15)

subject to (4) and (14).

The implementation of this is described below.

4. Assume an initial distribution of a large, but �nite, number of agents, �, across wealth,
idiosyncratic shocks and age (we use 400 agents in each age cohort). Using the decision
rules obtained in (15), simulate a long sequence of the economy (2100 periods) and
discard the �rst 100 periods from this sequence. Note that, for each period in time,
the CEEP � must be set so that the bond market clears. That is, �nd a �� such thatZ

b0h(
�k; ��; Z; z; �; a)d� = 0 :

This is the sense in which � is an `endogenous moment.'

5. Update Ĝ by running a linear regression of �0m on �m from the realized sequence in
Step 4. If the coe�cients change, use the updated Ĝ and return to Step 3. Continue
this process until convergence.

6. Evaluate the ability of Ĝ to forecast �0m. If the goodness of �t is not satisfactory,
return to Step 1 and increase the number of moments or change the functional form
of Ĝ.

Dynamic Programming Problem

We now turn to how the dynamic programming problem in (15) is solved. We solve the
decision rules backward, starting at the terminal age.

1. First, we choose a grid for the continuous variables in the state space. That is, we
pick a set of values for �k, �, and a. The grid points are typically chosen to lie in the
stationary region of the state variables and in addition, for wealth, near the borrowing
constraint and far in excess of the maximum observed wealth holdings (conditional
on age). We pick 5 points for aggregate capital, 5 points for the conditional expected
equity premium, and 25 points for individual wealth at each age.

2. Second, we make piecewise linear approximations to the decision rules by solving for
portfolio holdings on the grid and iterating on the Euler equations.
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This is done in the following way. Given the terminal condition associated with (4)
and the form of utility function, we know that the decision rules of the oldest agents
(H years old) must be b0H+1 = k0H+1 = 0, in any state of the world. That is, the agent
consumes all their wealth.

Knowing cH , we can in turn compute b0H and k0H at each grid point using Euler
equations of an H � 1 year old agent (and imposing the borrowing constraints and
Kuhn-Tucker conditions):

u0H�1(cH�1) � Efu0H (c
0
H)R

0 j �m; Z; z; �g

qu0H�1(cH�1) � Efu0H (c
0
H) j �m; Z; z; �g (16)

Knowing b0H and k0H at each grid point, we then make a piecewise linear approximation
of the decision rules by linear interpolation (outside the grid we do linear extrapola-
tion). Given this approximated decision rule, we can, for any state variable, compute
cH�1. Using this we can again compute b0H�1 and k

0
H�1 at each grid point by solving

for the associated Euler equations, (16), for H � 2 year old agents. This process is
iterated backward until h = 1.

Note that no further iterations are needed; given the (imperfect) expectations Ĝ and
the decision rules for h + 1 years old agents, the piecewise approximations are found
in one single step for h years old agents.

Accuracy

We now discuss accuracy issues concerning our solution method.

Euler equations

The solutions on the grid points are exact by construction. To evaluate whether the in-
terpolation between grid points gives rise to systematic Euler equation pricing errors we
follow den Haan and Marcet (1994) and use simulation to construct the following moment
conditions:

g(c; Z; z;R; q) �
1

T

TX
t=1

HX
h=1

1

N�
h

N�
hX

i=1

" 
�(
ch+1i;t+1

chi;t
)��

�
Rt+1

1

qt

�
� 1

!

 zhi;t

#
(17)

where T is the number of periods in the simulation, N�
h is the number of unconstrained

agents within age cohort h, and the instruments are zhi;t = f1; ahi;t; Rtg. The p-values cor-
responding to the �2 statistic based on moment conditions g(�) and the corresponding
covariance matrix did not exceed .12 { indicating very small pricing errors.
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Law of motion of �

We now describe in more detail the Ĝ function which our algorithm converges to. It turns
out that we can forecast �0m very well with only two moments { aggregate capital and CEEP.
The coe�cient of variation of the forecasting error is very small, less than 0.7% for �0 and
less than 0.2% for �k. The R2 of equation (14) is more than 0.98 for forecasting �k in either
combination of fZ;Z 0g, and more than 0.94 for forecasting �. Our simulations produce
a sequence of realized moments of �, which we denote Ĝt+1. The di�erence between the
realized moments for � and the forecasting formula for these moments which agents use in
their decisions, Ĝm;t+1 must be orthogonal to other variables available at time t. Formally,
1p
T

PT
t=1

h
(Ĝt+1 � Ĝm;t+1)
 zt

i
S�1w

1p
T

PT
t=1

h
(Ĝt+1 � Ĝm;t+1)
 zt

i0
is asymptotically �2df

where df equals the dimension of z times the number of moments in G.

The moments we use in z include the variance of asset holdings for workers, the number
of unconstrained agents in the bond market, the wealth holdings of the 10% richest agents,
and the variance of the wealth holdings of the 10% richest agents, the third and fourth
non central moments of wealth. We do not reject the hypothesis that these z's cannot help
further predict Ĝ. In particular, the p-values for this statistic are no larger than 0.07 and
0.10 for �k and � respectively for the two di�erent Z shocks.

Markov chain for Persistent Income Process

The persistent process, which its variance depends on the aggregate state variable Z, is
approximated with an 11-state Markov chain. The elements of the process � are � 2

f�3:1238;�2:6082;�2:0925;�1:5769;�1:0612;�0:5455;�0:0299; 0:4858; 1:0014; 1:5171; 2:0327g.
We account for the dependence of this process on the aggregate shock Z by having two dis-
tinct 11� 11 transition matrices, each corresponding to one of the shocks Z can take.
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C Calibration Appendix

In this section we describe how we calibrate the Constantinides and Du�e (1996) and
Mehra and Prescott (1985) economies which appear in Exhibit 1. We also demonstrate
the sense in which our speci�cation for countercyclical cross sectional variation (CCV) |
heteroskedasticity in the innovations to the idiosyncratic component of log income | is
consistent with the approach used by previous authors (e.g., Heaton and Lucas (1996),
Constantinides and Du�e (1996)). In each case the cross sectional variance which matters
turns out to be the variance of the change in the log of an individual's share of income
and/or consumption.

Our calibration of both the Constantinides-Du�e and the Mehra-Prescott models is
driven by a two state Markov chain for aggregate consumption growth. In order to make
the comparison in Exhibit 1 as meaningful as possible, we calibrate the parameters of the
Markov chain to match the mean, standard deviation and autocorrelation of aggregate con-
sumption growth from our baseline economy. The di�erences in the values we use, relative
to those used in Mehra and Prescott (1985), are minor, owing largely to the fact that our ag-
gregate economy is calibrated to HP �ltered U.S. data from the outset. Speci�cally, whereas
Mehra-Prescott base their calibration on a mean, standard deviation and autocorrelation
(of aggregate consumption growth) of 0.018, 0.036 and �0:14, respectively, our calibration
is based on values of 0.015, 0.023 and �0:23.

We calibrate the Constantinides and Du�e (1996) model via a simple reinterpretation
of the preference parameters of the Mehra and Prescott (1985) representative agent. Recall
that we use � and � to denote an individual agent's utility discount factor and risk aversion
parameters, respectively. Constantinides and Du�e (1996) construct a representative agent
(their equation (16)) whose rate of time preference and coe�cient of relative risk aversion
are (using our notation),

� log �̂ = � log(�)�
�(� + 1)

2
a ; (18)

and

�̂ = ��
�(�+ 1)

2
b ; (19)

respectively. In these formulae, the parameters a and b relate the cross sectional vari-
ance in the change of the log of individual i's share of aggregate consumption (y2t+1, using
Constantinides-Du�e's notation) to the growth rate of aggregate consumption, as follows.

Var(log
ci;t+1=ct+1

cit=ct
) = a+ b log

ct+1

ct
: (20)

All that we require, therefore, are the numerical values for a and b which are implied by
our PSID-based estimates in Table 1.
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Our estimates are based on individual income, yit. In the context of the Constantinides-
Du�e model, where the equilibrium outcome is autarkic, we interpret these estimates as
pertaining to individual consumption, cit. The alternative | using individual consumption
data to calibrate the model | is both more problematic (given the quality of the available
consumption data) and less likely to generate sizable asset pricing e�ects. Using income
data, in this sense, gives the Constantinides-Du�e model a leg up. In addition, the ob-
jective here is more relative than absolute. Asset prices in our OLG model are functions
of consumption allocations, which are, in turn, functions of our estimates of idiosyncratic
income risk parameters. What Exhibit 1 asks is, what would the Constantinides-Du�e
economy look like, were its agents to be endowed with idiosyncratic risk of a similar magni-
tude? Moreover, how does our model measure up, in spite of its non-degenerate (and more
realistic) risk sharing technology? Using income data seems appropriate in this context.
Notationally, for the remainder of this appendix, we therefore set cit = yit.

Next, we need to establish the relationship between our speci�cation for idiosyncratic
shocks and the individual shares of aggregate consumption which appear in equation (20).
Denote individual i0s share at time t as 
it, so that,

log 
it � log cit � log ~Etcit ;

where the notation ~Et(�) denotes the cross sectional mean at date t, so that ~Etcit is date t,
per capita aggregate consumption. For our speci�cation, if we ignore the transitory shocks,
"it, as well as the terms which capture cross sectional variation due to age and education
(see equation (7) in section 3.2), then our estimation in Table 1 boils down to a time series
model of the residuals from a regression involving only year-dummy variables. In a large
cross section this will be,

zit = log cit � ~Et log cit ;

which have a cross sectional mean of zero, by construction, and a sample mean of zero, by
least squares. The di�erence between our speci�cation and the log-share speci�cation is,
therefore,

log 
it � zit = ~Et log cit � log ~Etcit

= ~Et log 
it � log ~Et
it :

The share, 
it, is de�ned so that its cross sectional mean is always unity. The second term
is therefore zero. For the �rst term, note that in both our economy and the statistical
model underlying our estimates, the cross sectional distribution is log normal, conditional
on knowledge of current and past aggregate shocks. If some random variable x is log normal
and E(x) = 1, then E(log x) = �Var(log x)=2. As a result,

log 
it � zit = �
1

2
~Vt(log 
it) ;

where ~Vt denotes the cross sectional variance operator. It is important to note that, because
lives are �nite in our model, and because we interpret data as being generated by �nite
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processes, this cross sectional variance will always be well de�ned, irrespective whether or
not the shocks are unit root processes.

The quantity of interest in equation (20) can now be written as,

log
ci;t+1=ct+1

cit=ct
� log 
i;t+1 � log 
it

= zi;t+1 � zit �
1

2

�
~Vt+1(log 
i;t+1)� ~Vt(log 
it)

�
(21)

The term in parentheses | the di�erence in the variances | does not vary in the cross
section. Consequently, application of the cross sectional variance operator to both sides of
equation (21) implies,

~Vt+1

�
log

ci;t+1=ct+1

cit=ct

�
= ~Vt+1 (zi;t+1 � zit) :

Ignoring the transitory shocks, the process underlying the estimates in Table 1 is:

zi;t+1 � zit = (1� �)zit + �i;t+1 ;

where the variance of �i;t+1 depends on the aggregate shock. For values of � close to unity
the variance of changes in zit is approximately equal to the variance of �i;t+1. The left side
of equation (20) is, therefore, approximately equal to the variance of innovations, �i;t+1,

~Vt+1

�
log

ci;t+1=ct+1

cit=ct

�
� ~Vt+1 (�i;t+1) :

In this sense, the estimates of �H and �L in Table 1 provide estimates of what is necessary
to calibrate the Constantinides-Du�e model.

All that remains are to map our estimates into numerical values for a and b from equation
(20). Since aggregate consumption growth | the variable on the right side of equation (20)
| takes on only two values (3.8 percent and �0:8 percent), computing the parameters a
and b simply involves two linear equations:

0:037 = a+ 0:038b

0:181 = a� 0:008b ;

where the values on the left are the cross sectional variances from Table 1. The resulting
values are a = 0:156 and b = �3:130.

To summarize, the Sharpe ratios reported in Exhibit 1 for the Mehra-Prescott economy
are simply those associated with their model, given the slightly di�erent calibration for the
aggregate consumption process, discussed above. The values for the Constantinides-Du�e
model correspond to the same Mehra-Prescott economy, but where the parameter values
are re-interpreted as is dictated by equations (18) and (19). In each case, the value for �|
the risk aversion coe�cient associated with an actual agent | is set according to the entry
in the table whereas the value for � is chosen to match the theoretical expected return on
the risk asset to its sample counterpart of just under 7 percent per annum.
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Table 1
Idiosyncratic Endowment Process: Parameter Estimates

� �2� �2H �2L �2"

A. Homoskedastic Innovations

Estimate .935 .061 { { .017
Standard Error .008 .004 { { .005

B. Heteroskedastic Innovations

Estimate .916 { .037 .181 .025
Standard Error .009 { .007 .033 .007

Entries describe GMM estimates, based on the age-dependent moments (12), for the idiosyncratic

endowment process described in the text:

uhit = zhit + "it

zhit = �zh�1i;t�1 + �it ;

where "it � Niid(0; �2"), �it � Niid(0; �2�(Yt)) and

�2�(Yt) = �2H if yt � yt�1 �

TX
j=2

(yj � yj�1)=(T � 1)

= �2L if yt � yt�1 <

TX
j=2

(yj � yj�1)=(T � 1) :

We use uhit to denote the idiosyncratic component of the i'th household's endowment at time t,

where the household head is of age h. Our annual panel, obtained from the Panel Study on Income

Dynamics (PSID), spans the years 1968-1991 and is fully described in the text and in appendix A.

Observations on uhit are obtained as the residuals from the �rst-stage regression, equation (7) in the

text. We use yt to denote the logarithm of per capita income, Yt, which we obtain from the U.S.

National Income and Product Accounts (NIPA) for the years 1910-1991. The longer time series on

aggregate income is necessary (and helpful) because of the heteroskedastic nature of the innovations,

�it (further details are provided in the text). Standard errors are computed using the White (1980)

estimator and incorporate sampling uncertainty from the �rst-stage regression.
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Table 2
Aggregate Moments: Baseline Economy

Panel A: Population Moments, Baseline Theoretical Economy

Std Dev Autocorrelation Correlation with Output

Output 0.060 0.44 1.00
Investment 0.141 0.20 0.86
Consumption 0.018 0.67 0.89

Panel B: Sample Moments, Detrended U.S. Economy, 1955-1997

Std Dev Autocorrelation Correlation with Output

Output 0.022 0.52 1.00
Investment 0.085 0.36 0.85
Consumption 0.018 0.62 0.91

U.S. sample moments are based on annual NIPA data obtained from the Bureau of Economic
Analysis, 1955-1997. Each series was detrended by applying the Hodrick-Prescott �lter with
a smoothing parameter of 100 to the natural logarithm of the de
ated series. Theoretical
moments are also based on logarithms and are computed as sample averages of a long
simulated time series.
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Table 3
Population Moments: Asset Prices

Mean Std Dev Autocorrelation

Panel A: Baseline Theoretical Economy

Bond return 4.61 0.18 0.257
Return on capital 4.65 0.69 0.222
Excess return on capital 0.054 0.67 0.003
Sharpe ratio, capital 8.02

Panel B: Complete Markets Theoretical Economy

Bond return 10.01 0.30 0.907
Return on capital 10.02 0.52 0.413
Excess return on capital 0.0043 0.42 0.027
Sharpe ratio, capital 1.03

Panel C: Annual Sample Moments, U.S. Economy

Bond return 1.30 1.88 0.75
Return on equity 8.15 16.67 -0.18
Excess return on equity 6.85 16.64 -0.23
Sharpe ratio, equity 41.17

U.S. sample moments for equity and short term bonds are computed using non-overlapping annual returns, (end of)

January-over-January, 1956-1996. Estimates of means and standard deviations are qualitatively similar using annual

data beginning from 1927, or a monthly series of overlapping annual returns. Equity data correspond to the annual

return on the CRSP value weighted index, inclusive of distributions. Each annual short term bond return corresponds

to an end of January investment in the one month U.S. treasury bill, with the proceeds rolled over in the one month

bill for the subsequent year. Nominal returns are de
ated using the GDP de
ator.

All return moments are expressed as annual percentages. The Sharpe ratio, expressed here in percentage, is the ratio

of the unconditional mean to the unconditional standard deviation. Theoretical moments are computed as the sample

averages of a long simulation.
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Figure 1
Level of Income: Cross Sectional Moments by Age
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Sample moments are estimated using a sequence of three year, overlapping panels from
the Panel Study on Income Dynamics (PSID), spanning the years 1968-1991. Appendix
A provides a detailed description of our sampling procedure and income de�nition. Each
point on a given graph is computed by pooling time series observations on the associated
age cohort and computing the relevant cross sectional sample moment(s). Skewness and
kurtosis coe�cients are scaled in the standard manner so as to make deviations from zero
represent departures from normality.
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Figure 2
Logarithm of Income: Cross Sectional Moments by Age
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Sample moments are estimated using a sequence of three year, overlapping panels from
the Panel Study on Income Dynamics (PSID), spanning the years 1968-1991. Appendix
A provides a detailed description of our sampling procedure and income de�nition. Each
point on a given graph is computed by pooling logarithms of time series observations on
the associated age cohort and computing the relevant cross sectional sample moment(s).
Skewness and kurtosis coe�cients are scaled in the standard manner so as to make deviations
from zero represent departures from normality.
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Figure 3
Logarithm of Income: Cross Sectional Moments by Time
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Sample moments are estimated using a sequence of three year, overlapping panels from
the Panel Study on Income Dynamics (PSID), spanning the years 1968-1991. Appendix A
provides a detailed description of our sampling procedure and income de�nition. Each point
on a given graph represents the associated sample moment of the cross sectional distribution
at a given point in time. The solid line in the `detrended mean' graph represents deviations
around a linear trend �t through the cross sectional mean (the upper left graph). The dashed
line represents the growth rate in the cross sectional mean. The correlation between the
deviations from the mean and the coe�cient of variation is �0:85, whereas the correlation
between the growth rate and the coe�cient of variation is �0:33. Skewness and kurtosis
coe�cients are scaled in the standard manner so as to make deviations from zero represent
departures from normality.
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Figure 4
Simulated Cross Sectional Standard Deviation
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The solid line represents one particular time series realization | over 24 years | of the
overall (i.e., across all generations) cross sectional standard deviation of labor market income
from our theoretical model. The upper, dashed line, corresponds to the limit point, should
the idiosyncratic shocks be drawn from the high variance (recessionary) distribution, for a
long sequence of consecutive periods. The lower dashed line represents the analogous limit
point, but where the shocks are drawn from the low variance (expansionary) distribution.
Further details are provided in section (3.3) of the text.
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Figure 5
Sharpe Ratio on Excess Return Portfolio: E�ect of Heteroskedastic
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Points on the graph represent the Sharpe ratio | the ratio of the unconditional mean to uncon-

ditional standard deviation | on a portfolio which pays the excess return on the risky aggregate

technology in our two-asset economy. Each locus represents a set of economies with a di�erent

value for �, the persistence parameter for idiosyncratic shocks. The horizontal axis represents the

proportional increase in the conditional standard deviation of the idiosyncratic shock process as

our economy moves from the high productivity aggregate state to the low productivity aggregate

state. For instance, the point corresponding to a `Proportional increase in conditional std dev in

low aggregate state' of unity is simply the homoskedastic economy. The point at 2.0 represents an

economy where the conditional standard deviation doubles when moving from the high productivity

state to the low productivity state. Theoretical moments are computed as the sample averages of a

long simulation.
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Figure 6
Variability of Consumption and Labor Income by Age
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This graph corresponds to the baseline economy described in section 4.1. The dashed line represents

the cross sectional variance (which coincides with the unconditional time-series variance for an

unborn agent) of the logarithm of wage income for each age cohort, prior to retirement. The solid

line represents the age-speci�c, cross sectional variance of the logarithm of individual consumption.

As a reference point, the variance of the logarithm of per capita consumption is 0.0003 (for a standard

deviation of 0.018). Theoretical moments are computed as the sample averages of a long simulation.
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Figure 7
Variability of Consumption Growth by Age
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Each line represents the coe�cient of variation of the consumption growth rate for agents in a given

age cohort. The solid line corresponds to the baseline economy, whereas the dashed line corresponds

to the complete markets counterpart discussed in the text. The population moments in this graph

were computed by averaging over realizations from a simulation of 2000 time periods with 400 agents

in each age cohort.
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Figure 8
Average Financial Wealth by Age
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Each line represents the average value of �nancial wealth | capital plus bonds | across agents in

a given age cohort. The solid line corresponds to the baseline economy, whereas the dashed line

corresponds to the complete markets counterpart discussed in the text. The population moments in

this graph were computed by averaging over realizations from simulation of 2000 time periods with

400 agents in each age cohort.
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Figure 9
Riskfree Asset Portfolio Weight, by Age
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FIX THIS. The graph gives the fraction of �nancial wealth invested in the riskfree asset for the

median agent of a given age cohort. The stars correspond to age cohorts for which the median

agent (by bondholdings) is constrained in the bond market. Similarly, the circles correspond to age

cohorts for which the median stockholder is constrained (at zero). The population moments in this

graph were computed by averaging over realizations from simulation of 2000 time periods with 400

agents in each age cohort. This graph corresponds to an economy with unit root labor income.
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Figure 10
Theoretical Decision Rules
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