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Abstract

This paper presents a comparative analysis of linear and mixed models for short

term forecasting of a real data series with a high percentage of missing data. Data

are the series of signi�cant wave heights registered at regular periods of three hours

by a buoy placed in the Bay of Biscay. The series is interpolated with a linear

predictor which minimizes the forecast mean square error. The linear models are

seasonal ARIMA models and the mixed models have a linear component and a

non linear seasonal component. The non linear component is estimated by a non

parametric regression of data versus time. Short term forecasts, no more than two

days ahead, are of interest because they can be used by the port authorities to notice

the 
eet. Several models are �tted and compared by their forecasting behavior.
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1. INTRODUCTION

The study of natural phenomena provides large data bases from measurements of

physical magnitudes. In many cases, these measurements are registered in regular time

intervals and it is possible to build time series, which present particular characteristics

depending on the studied physical phenomenon and on the used instrumental.

In this paper we analyze the series of signi�cant wave heights registered every three

hours by a buoy located in the Bay of Biscay. Particular characteristics of the series are the

large size (14608 data), the unusual periodicity (s = 2920 data, one year), the possibility

of daily seasonality, and the large number of missing data due to data transmission failures

and damages in the measuring devices. We discuss a methodology to analyze the series

which can be applied to series with similar characteristics. The interest is in proposing

a model for these series in order to carry out fast short term predictions, one or two

days ahead. These forecast horizons are important for the port authorities since they can

alert to the 
eet of sea variations. For this reason we propose univariate models for the

signi�cant wave height series in spite of the fact that the predictions could improve with

a structural model including information of temperatures, winds, etc. The analysis of the

signi�cant wave height series is divided in three stages: (1) missing data interpolation;

(2) identi�cation and estimation of appropriate models; and (3) model selection.

The amount of missing data (approximately a 13%) and the times when they appear

make di�cult the model identi�cation and estimation. Most of the missing data are

isolated and the intervals between them are relatively short, however there are also some

long periods without registrations. Moreover, when a model includes information from

the data in the previous years, the lack of only one data will prevent the model from

predicting the values in the same instants of posterior years. Thus, our �rst task is to

overcome the problems derived from the large number of missing data.

A natural missing data interpolation using the mean of all the data registered the

same day in other years allows us to identify a model. With this initial model the optimal

missing data interpolation procedure proposed by Maravall and Pe~na (1997) is used to

complete the series. Then, we propose two di�erent types of models for the optimally
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interpolated series: on the one hand, seasonal ARIMA linear models following the Box-

Jenkins methodology (Box and Jenkins, 1976), and on the other, mixed models with a

non linear part for the seasonal component and a linear part for the regular dependence

structure. We select the model which provides better out-of-sample short term forecasts

by comparing the predictions with the data observed in the last month (not used in the

estimation stage).

This article is organized as follows. Next subsection deals with the signi�cant wave

height de�nition and with the data description. Section 2 analyzes the problem of missing

data interpolation. Section 3 discusses the two types of models: linear and mixed models.

Section 4 compares the short term forecasts from the models. Finally, section 5 presents

some �nal comments.

1.1. Signi�cant wave height

The wave height is de�ned as the distance between the minimum wave value, valley, and

the maximumvalue, crest. This distance is usually computed by using special instruments

positioned in buoys. The instruments register the wave accelerations in short time inter-

vals during a period of approximately 30 minutes. The aboard sensor integrates twice the

series of accelerations to obtain the series �i of wave heights. The short term sea surface

elevation is a stochastic stationary process in mean since it is assumed that the sea level

is constant, and stationary in variance.

For many years the surge information came from visual registrations on ships in route

and the human perception tends to overvalue the wave height. Therefore, in order to make

compatible the historical information with the current automatic data, it is necessary to

de�ne a parameter which permits to join up both sources of information. The commonly

used parameter is the mean value of the third higher heights, known as signi�cant wave

height.

The signi�cant wave height h can be approached by 4��, where the variance �
2
� is the

integral of the spectral density f of the series �i, �
2
� =

R
f(�)d�. The spectral density

f is computed by means of the fast Fourier transformation (FFT) and h is obtained by
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Figure 1: Signi�cant wave height series and the missing data in the lower line.
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Figure 2: Series of box-plots with the every month data.

numerical integration of f . This procedure is repeated periodically and a series of values

ht is recorded. For more details on the construction of the surge series see the books of

Goda (1985) and Sorensen (1993).

The series ht we analyze here comes from the registrations in a buoy located near the

Gij�on coast (north of Spain). The acceleration is measured every 0.5 seconds in a total of

5120 instants, this means an observation period of about 42 minutes. These registrations

are carried out every three hours producing the series of signi�cant wave height. The

available data are the 14608 signi�cant wave heights recorded every three hours from

1-1-1986 to 1-31-1991, except 1871 missing data. Figure 1 shows the series and, in the

lower line, the missing data. In Figure 2 we present a time series of box-plots constructed

with the data in every month. We observe that data are asymmetric and more variable in

the winter months. Due to the heteroskedasticity and asymmetry problems we transform

the data. From now on, we work with the series zt of signi�cant wave height logarithms,

zt = log ht.
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2. MISSING DATA INTERPOLATION

The autocorrelation function (ACF) and the partial autocorrelation function (PACF)

are the main tools used in the ARIMA model identi�cation stage. However, the auto-

correlation function estimation is di�cult when there are missing data in the series. The

number of available data to estimate each correlation coe�cient �k decreases rapidly when

k raises.

In spite of the absence of 1871 data in the series zt we could estimate its ACF since there

are still many observations in this series. However, due to the non stationary behavior of

the series it is necessary to transform zt with a regular and a seasonal di�erences (the last

one is of order s = 2920). Then one year and all the di�erences including a non registered

data are missed. The number of missing observations is such that it is impossible to

estimate the simple and partial autocorrelation function for the di�erentiated series. To

avoid this problem we propose the following procedure: 1) interpolate the series replacing

each missing data by the logarithm of the mean of all the data registered the same day

and at the same hour in every year (the result of this initial interpolation is shown in

Figure 3); 2) identify and estimate an ARIMA model for this naive interpolation; and

3) interpolate again the original series substituting each missing data by its conditional

expected value given the observations and assuming that the previous model is the actual

data generator process (this will be called the optimal interpolation).

2.1. ARIMA models: identi�cation and estimation.

A general ARIMA model expression for a time series zt is

(1�B
s)D(1�B)d�(Bs)�(B)zt = �(Bs)�(B)at; (2.1)

where �(B) = (1 � �1B � : : : � �pB
p) and �(B) = (1 � �1B � : : : � �qB

q) are the

autoregressive and moving average polynomials respectively, �(Bs) = (1 � �
s
1B

s
� : : :�

�
s
PB

Ps) and �(Bs) = (1��
s
1B

s
� : : :��

s
QB

Qs) are the seasonal autoregressive and moving

average polynomials respectively, d and D are the number of regular and seasonal required
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Figure 3: a) Series with initial interpolation; b) interpolated data.

di�erences to achieve stationarity. The disturbances at are assumed to follow a white noise

gaussian process with variance �2.

The ARIMA model identi�cation consists on determining the regular and seasonal

orders of di�erentiation, and the degrees of the autoregressive and moving average lag

polynomials for the regular and the seasonal parts. The �nal selection is usually based

on several criteria: (a) parsimony in the number of parameters; (b) non structure in the

residual sample ACF and PACF; (c) lower residual variance �̂2; and (d) higher adjusted

determination coe�cient R2 (for models with identical number of di�erences).

The sample ACF of the interpolated series shows the non stationary behavior of

the series in the regular and seasonal parts (see Figure 4a). Therefore, we di�erenti-

ate the series with a regular and a seasonal di�erences. Sample ACF and PACF for

the di�erentiated series are shown in Figures 4b, 4c and 4d. We identify four seasonal

ARMA(p; q)(p8; q8)(ps; qs) models. They are displayed in Table 1, as well as the parameter
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Model Parameters Estimated parameters (t-value)

(1) AR(16)MAs(1) �1 �2 �3 �4 -0.078 (-8.5) -0.030 (-3.2) -0.045 (-4.8) 0.017 ( 1.9)

�̂2 = 0:045, R2 = 0:854 �5 �6 �7 �8 0.005 ( 0.7) -0.028 (-2.9) -0.034 (-3.7) -0.050 (-5.5)

�9 �10 �11 �12 -0.052 (-5.9) -0.087 (-6.4) -0.093 (-5.3) -0.029 (-2.6)

�13 �14 �15 �16 -0.042 (-4.6) -0.070 (-7.6) -0.061 (-6.6) -0.009 (-1.0)

�s
1

0.536 (55.8)

(2) MA(1)AR8(1)MAs(1) �1 0.066 (7.1)

�̂2 = 0:046, R2 = 0:851 �8
1

-0.043 (-4.6)

�s
1

0.535 (55.9)

(3) MA(1)MAs(1) �1 0.062 (6.8)

�̂2 = 0:046, R2 = 0:851 �s
1

0.534 (55.8)

(4) MAs(1) �s
1

0.534 (55.7)

�̂2 = 0:046, R2 = 0:850

Table 1: ARIMA models for the initial interpolation with regular and seasonal di�erences, s = 2929.

estimates, the t statistics, the residual variance and the R2 values. Neither the ACF nor

the PACF for the four models present structure. Model 1 is discarded because of the high

number of parameters. The other criteria are not very useful to discriminate among the

models 2, 3 and 4. We select the MA(1)AR8(1)MAs(1) because its three parameters are

signi�cant.

2.2. Optimal interpolation

When the ARIMA model is known, for in�nite and non stationary series the conditional

expectation of the missing data is the optimal predictor in the sense that it minimizes

the mean square error of prediction. Brubacher and Wilson (1976) proved that this

predictor only depends on the observed series and on the autocorrelation function of the

dual process introduced by Cleveland (1972). When the series is only observed up to

zT+n and any coe�cient �k of �(B) = 1 � �1B � �2B
2
: : : (the in�nite autoregressive

representation of the model (2.1), �(B)zt = at) is positive for k > n, the optimal �lter
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Figure 4: Initial interpolation: a) sample ACF of the series; b) and c) sample ACF of the di�erentiated

series; d) sample PACF of the di�erentiated series.
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must incorporate a correction for missing data near to the end of the series. Maravall

and Pe~na (1997) obtained the optimal missing data predictor by correcting the weights

of each observation. Assuming that �2 = 1, the predictor is given by

ẑT;n = �
1X
k=1

�
D
k;nzT�k �

nX
k=1

�
D
�k;nzT+k; (2.2)

where , �Dk;n = �
�2
D;n

Pn
j=0 �j�j+k for k � 1 and �

D
�k;n = �

�2
D;n

Pn�k
j=0 �j�j+k for k = 1; 2; : : : ; n

are the autocorrelations of the truncated dual process, the coe�cient �0 is de�ned as

�0 = �1 and �
2
D;n =

Pn
j=0 �

2
j . .

The signi�cant wave height series zt includes more than a single missing data. The

optimal predictor for this general case also depends on the dual autocorrelation function

in a similar way and its expression is given by Maravall and Pe~na (1997). The coe�cients

of �(B) are computed from the estimated model:

(1 + 0:04B8)(1�B)(1�B
2920)zt = (1� 0:06B)(1 � 0:53B2920)at:

The series with optimal interpolation is shown in Figure 5. We can appreciate the dif-

ferences between the naive and the optimal approaches to interpolate the series comparing

Figures 3 and 5. It seems that the variability of the original series is better captured by

using the optimal interpolator.

3. MODEL IDENTIFICATION

We propose two alternative types of models for the optimally interpolated series. The

�rst models are seasonal ARIMA models identi�ed with the same methodology applied

in the section 2. The second models di�er from the former in the consideration of the

climatological e�ects on the signi�cant wave height. We observe that the low frequency

cycles are variable because the meteorological stations not always arrive in the same dates

of the calendar. It is obvious that there are winters or summers that anticipate or retard

their presence. This fact would not cause very signi�cant di�erences in the seasonal

component if the series is measure in longer periods, like months or quarters for example.
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Figure 5: a) Series with optimal interpolation; b) interpolated data.

However, data in zt are collected every three hours and the disagreement between di�erent

years is notably appreciable. In this case a seasonal di�erence could not be the best way

to eliminate the non stationary seasonal component. We propose to eliminate the seasonal

e�ects by smoothing the series with a nonparametric regression of data versus time. Then

we assume the model

zt = c(t) + xt; t = 1; : : : ; N;

where c(t) is almost a periodic function with one year period and xt is a process following

a regular ARIMA model.

3.1. Linear model

The ARIMA model selection for the series with optimal interpolation presents essential

changes with respect to the work presented in section 2 for the series with the initial

interpolation. In Figure 6 the sample ACF and PACF are displayed for the series with
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Figure 6: Optimal interpolation: a) and b) ACF of the di�erentiated series; c) PACF of the di�erentiated

series.

optimal interpolation and a regular and a seasonal di�erences. We appreciate the next

di�erences with respect to the ACF and PACF in Figure 4: 1) the �rst order autocor-

relation coe�cient is positive for the series with optimal interpolation while before was

negative; and 2) there is a negative autocorrelation of order 2s = 5840 which was not

present before.

Some evidences con�rm that the model used for the optimal interpolation is closer to

the actual model than the model obtained from naive interpolation. Firstly, the ACF of

the optimally interpolated series is more in accordance with the observed data informa-

tion than the ACF of naively interpolated data. To support this comment, we compare

the �rst order autocorrelation coe�cient �1 with an estimate that is independent of the

interpolation method: it is computed with all the data sequences non including missing

data in two consecutive years. Using all of these sequences with more than 15 data we

obtain an estimation of 0.1988 for �1, while with the optimal interpolation �̂1 = 0:2086

and with the initial estimation �̂1 = �0:0519. Additionally, we can iterate the process
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Model Parameters Estimated parameters (t-value)

(1) AR(16)ARs(3) �1 �2 �3 �4 0.169 (9.1) -0.005 (-0.2) -0.048 (-2.6) 0.065 (3.5)

�̂2 = 0:022, R2 = 0:939 �5 �6 �7 �8 0.004 ( 0.2) -0.011 (-0.6) -0.050 (-2.7) -0.036 (-1.9)

�9 �10 �11 �12 -0.022 (-1.2) -0.036 (-1.9) -0.037 (-2.0) -0.012 (-0.6)

�13 �14 �15 �16 -0.058 (-3.1) -0.072 (-3.9) -0.059 (-3.1) 0.004 (0.2)

�s

1
�s

2
�s

3
-0.539 (-28.3) -0.464 (-25.7) -0.206 (-12.1)

(2) MA(1)AR8(1)ARs(3) �1 -0.175 (-9.6)

�̂2 = 0:022, R2 = 0:937 �8
1

-0.038 (-2.0)

�s

1
�s

2
�s

3
-0.536 (-27.7) -0.463 (-25.6) -0.200 (-11.7)

Table 2: ARIMAmodels for the series with optimal interpolation and a regular and a seasonal di�erences,

s = 2929.

of optimal interpolation and interpolate again the series using as initial model the one

identi�ed from the �rst optimal interpolation. If we do that, the sample ACF and PACF

of the series with second optimal interpolation are practically equal to those obtained in

the previous step, displayed in Figure 4. Thus, the identi�ed model after the �rst optimal

interpolation is very near to the \�x point" model of that iterative process. The di�er-

ences in ACF's and PACF's that we appreciate show that the initial interpolation might

produce perverse implications in the model identi�cation.

We present in Table 2 the identi�ed models for the series zt with optimal interpolation.

Considering the parsimony in the number of parameters, we select the MA(1)AR8(1)ARs(1)

model:

(1 + 0:03B8)(1 + 0:53B2920+0:46B5840+0:19B8760)(1�B)(1�B
2920)zt = (1 + 0:17B)at:
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3.2. Mixed models

We propose to smooth the series with a nonparametric Nadaraya-Watson kernel estimate

of the regression function (see, for instance, H�ardle, 1990),

ĉ(t) =

NX
i=1

ziK

�
t� i

b

�

NX
i=1

K

�
t� i

b

� ; t = 1; : : : ; N;

where the kernelK is a density function with variance 1 and b is the smoothing parameter

or bandwidth. The kernel estimate of c(t) is a weighted average of the observations

registered in periods near t and the bandwidth controls which points are considered to be

in the neighbourhood of t. The weights for periods near t are higher when the bandwidth

is smaller. For large b the estimate of c(t) is a smooth function, while for b excessively

small ĉ(t) preserves part of the variability present in the sample. Therefore, the bandwidth

choice is crucial in nonparametric regression estimation. The decission about the kernel

K a�ects less in the estimation. We select the Epanechnikov kernel for its optimality

properties (see Silverman, 1986). The criterion to choose the bandwidth is to reach the

objectives pursued with the smoothing procedure as much as possible: the estimation

of xt, x̂t = zt � ĉ(t), should not have seasonal structure, and ĉ(t) should be a periodic

function. The �rst objective is achieved with bandwidths small enough, while the second

requires wide bandwidths. The trade-o� between both approaches allows us to overcome

the di�cult task of choosing the bandwidth b and lead us to the value b = 480. This

means that in the estimation of c(t) we use observations separated from the period t up

to two months.

We estimate c(t) using only observed data (no interpolation is needed at this point

because the relative large size of the bandwidth). The nonparametric estimate is shown

in Figure 7a, and x̂t for the series with the optimal interpolation is shown in Figure 7b.

Now we �t a regular ARIMA model to x̂t = zt � ĉ(t). In Figure 8a the �rst 8000 lags

of the sample ACF of x̂t are shown. We observe that the seasonal autocorrelations (lags

multiples of s= 2920) are non signi�cant or they are very close to the con�dence bands.
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Figure 7: a) Nonparametric estimation of zt; b) series x̂t = zt � ĉ(t).

Considering that the seasonal e�ects have been su�ciently mitigated with the smoothing

procedure we identify a model for the regular structure of x̂t. Non stationarity is also

appreciated and we take a regular di�erence. In Figures 8b and 8c are shown the �rst 100

values of the sample ACF and PACF of the di�erentiated series. The models we identi�ed

are listed in Table 3. The most appropriate model is a MA(1)AR8(1) model, according

with the criterion of parsimony in the number of parameters. Other criteria do not show

strong di�erences between both models. Therefore, the �nal decision depends on which

model provides better forecasts.

4. SHORT TERM FORECASTING

In this section we present a comparative study of the seasonal ARIMA and mixed

models estimated in section 3. The objective is to select the model which generates

better forecasts for future data. The interesting forecast horizon for the port authorities

is two days, that is equal to 16 steps ahead predictions.
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Figure 8: Series x̂t = zt� ĉ(t): a) ACF; b) ACF of the di�erentiated series; c) PACF of the di�erentiated

series.

Model Parameters Estimated parameters (t-value)

(1) AR(16) �1 �2 �3 �4 0.194 (23.4) -0.057 (-6.7) -0.035 (-4.2) 0.057 (6.8)

�̂2 = 0:019, R2 = 0:921 �5 �6 �7 �8 0.006 (0.8) -0.038 (-4.5) -0.030 (-3.5) -0.023 (-2.7)

�9 �10 �11 �12 -0.043 (-5.1) -0.031 (-3.7) -0.024 (-2.8) -0.012 (-1.5)

�13 �14 �15 �16 -0.037 (-4.4) -0.059 (-7.1) -0.043 (-5.1) 0.005 (0.6)

(2) MA(1)AR8(1) �1 -0.204 (-25.2)

�̂2 = 0:020, R2 = 0:919 �8
1

-0.021 (-2.5)

Table 3: ARIMA models for x̂t = zt � ĉ(t) with a regular di�erence.
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Figure 9: Annual cycle estimation and forecasting.

Prediction with ARIMA models is carried out in the usual way (see Box and Jenkins,

1976). However, when a mixed model is used, the forecast is the sum of the forecast with

c(t) and the ARIMA forecast of xt. The prediction of the annual cyclic component c(t)

is the mean of the complete cycles estimated with nonparametric regression

ĉN (N + t) =
1

A

AX
i=1

ĉ(t+ (i� 1)s); t = 1; : : : ; s; (4.3)

where A is the number of complete years in the series. In order to avoid the e�ect of the

ends of the series in the estimation, instead of (4.3) we suggest

ĉN(N + t) =
1

A� 1

AX
i=1

ĉ(t+ (i� 1)s)I[a1;a2](t+ (i� 1)s); t = 1; : : : ; s; (4.4)

where a1 = (1 + s=2) and a2 = ((A � 1)s + s=2). The equation (4.4) is the mean cycle

of the four complete cycles estimated from the second semester of 1986 to the end of the

�rst half of 1990. The estimate ĉ(t) for the observed years and the forecast ĉN (N + t) for

the �rst year outside of the sample are shown in Figure 9.

We predict for 20 days with the four models identi�ed and estimated in section 3.

Every two days we obtain 16 steps ahead predictions. The forecast origin is at 9:00 p.m.

on 12-31-1990, the last data used in the model estimation. The model comparison is based

on the forecast mean square error: an average of the distance between the real values and

the forecasts. We know the actual data registered during the twenty days in which the

forecasts are done.

The forecast mean square errors are speci�ed in Table 4 for each of the four models

when the forecast horizons go from 1 to 16 steps ahead. The last line in the table shows
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Prediction Seasonal ARIMA Mixed

horizon MA(1)AR8(1)ARs(3) AR(16)ARs(3) MA(1)AR8(1) AR(16)

1 step ahead 0.0086 0.0086 0.0325 0.0311

2 steps ahead 0.0513 0.0532 0.0492 0.0468

3 steps ahead 0.0666 0.0631 0.0678 0.0586

4 steps ahead 0.1152 0.1020 0.0754 0.0584

5 steps ahead 0.1233 0.0956 0.0786 0.0564

6 steps ahead 0.1882 0.1515 0.1153 0.0956

7 steps ahead 0.2215 0.1662 0.1333 0.0999

8 steps ahead 0.2518 0.1913 0.1736 0.1220

9 steps ahead 0.3034 0.2557 0.1384 0.0942

10 steps ahead 0.3497 0.2725 0.1842 0.1222

11 steps ahead 0.3730 0.2497 0.2420 0.1672

12 steps ahead 0.4240 0.3041 0.2654 0.1913

13 steps ahead 0.4194 0.2951 0.3067 0.2378

14 steps ahead 0.4230 0.3053 0.3001 0.2373

15 steps ahead 0.3976 0.2814 0.2914 0.2369

16 steps ahead 0.4185 0.2939 0.2980 0.2258

Mean 0.2584 0.1931 0.1720 0.1301

Table 4: Forecast mean square error with seasonal ARIMA and mixed models (s = 2929).

the mean values of the mean square errors. We observe that except for the one step

ahead prediction, the mixed models always overcome the pure ARIMA models. We also

appreciate that to include the autoregressive polynomial of order 16 in the regular part

provides the best forecasts with mixed models. Therefore, the most appropriate model in

order to predict with a two days forecast horizon is the mixedmodel with linear component

AR(16):

(1 � 0:194B + 0:057B2 + : : :+ 0:035B16)(1 �B)(zt � ĉ(t)) = at:

16



5. CONCLUSIONS

The �nally proposed model to short term forecast the signi�cant wave height is a

mixed model in which we �t an AR(16) to the linear part, free from the cyclic behavior of

the series. We have seen that this is the model with minimum forecast mean square error

in the 20 days where several models are compared. Another advantage of this model is

that the linear part not include seasonal di�erences. For this reason, in forecasting tasks,

this model demands less computer time than models including seasonal di�erences do.

To improve the system performance, the model should be updated periodically. We

propose to estimate the cycle c(t) each half year and to revise the parameter estimation

of the AR(16) polynomial every month.
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