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Abstract

We present simple procedures for the prediction of a real valued
sequence. The algorithms are based on a combination of several sim-
ple predictors. We show that if the sequence is a realization of a
bounded stationary and ergodic random process then the average of
squared errors converges, almost surely, to that of the optimum, given
by the Bayes predictor. We offer an analog result for the prediction
of stationary gaussian processes.
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1 Introduction

One of the many themes of Sid’s research was the search for prediction and
estimation methods for time series that do not necessarily satisfy the clas-
sical assumptions for autoregressive markovian and gaussian processes (see,
e.g., [17, 18, 26, 27, 28]). He firmly believed that most real-world applica-
tions require such robust methods. This note is a contribution to the line of
research pursued and promoted by Sid who directed us to this beautiful area
of research.

We study the problem of sequential prediction of a real valued sequence.
At each time instant ¢+ = 1,2, ..., the predictor is asked to guess the value of
the next outcome y; of a sequence of real numbers y1, yo, . .. with knowledge
of the past 3:™" = (y1,... ,5i—1) (where 40 denotes the empty string). Thus,
the predictor’s estimate, at time i, is based on the value of 3~'. Formally,
the strategy of the predictor is a sequence g = {g;}2, of decision functions

g :R' SR

and the prediction formed at time i is g;(y'™'). After n rounds of play, the
normalized cumulative prediction error on the string y7 is

1 n

Ln(9) = = > (g:(i™") —w)*
i=1
In this paper we assume that yi,ys,... are realizations of the random
variables Y7, Y,, ... drawn from the real valued stationary and ergodic process

{V,}*,. The fundamental limit for the predictability of the sequence can
be determined based on a result of Algoet [2], who showed that for any
prediction strategy g and stationary ergodic process {Y,}>,,

liminf L,(g) > L* almost surely,

n—0o0

where
L* =E (Yo — E{Y|Y .})?]

is the minimal mean squared error of any prediction for the value of Y; based
on the infinite past Y-, = (..., Y. 3, Y 5, Y ).
This lower bound gives sense to the following definition:



Definition 1 A prediction strategy g is called universal with respect to a
class C of stationary and ergodic processes {Y,,}*°., if for each process in the
class,

lim L,(g9) = L* almost surely.
n—oo

Universal strategies asymptotically achieve the best possible loss for all
ergodic processes in the class. Algoet [1] and Morvai, Yakowitz, Gyorfi [17]
proved that there exists a prediction strategy universal with respect to the
class of all bounded ergodic processes. However, the prediction strategies
exhibited in these papers are either very complex or have an unreasonably
slow rate of convergence even for well-behaved processes.

The purpose of this paper is to introduce several simple prediction strate-
gies which, apart from having the above mentioned universal property of [1]
and [17], promise much improved performance for “nice” processes. The al-
gorithms build on a methodology worked out in recent years for prediction
of individual sequences, see Vovk [29], Feder, Merhav, and Gutman [7], Lit-
tlestone and Warmuth [15], Cesa-Bianchi et al. [5], Kivinen and Warmuth
[14], Singer and Feder [22], and Merhav and Feder [16] for a survey.

An approach similar to the one of this paper was adopted by Gyorfi,
Lugosi, and Morvai [13], where prediction of stationary binary sequences
was addressed. There we introduced a simple randomized predictor which
predicts asymptotically as well as the optimal predictor for all binary ergodic
processes. The present setup and results differ in several important points
from those of [13]. On the one hand, special properties of the squared loss
function considered here allow us to avoid randomization of the predictor,
and to define a significantly simpler prediction scheme. On the other hand,
possible unboundedness of a real-valued process requires special care, which
we demonstrate on the example of gaussian processes. We refer to Nobel [19]
to recent closely related work.

In Section 2 we introduce a universal strategy for bounded ergodic pro-
cesses which is based on a combination of partitioning estimates. In Section
3, still for bounded processes, we consider, as an alternative, a prediction
strategy based on combining generalized linear estimates. In Section 4 we
replace the boundedness assumption by assuming that the sequence to pre-
dict is an ergodic gaussian process, and show how the techniques of Section
3 may be modified to take care of the difficulties originating in the unbound-
edness of the process.



The results of the paper are given in an autoregressive framework, that
is, the value Y; is to be predicted based on past observations Ylt_1 of the
same process. We may also consider the more general situation when Y; is
predicted based on Y/™' and X!, where {X,}*_ is an R?-valued process
such that {(X,,Y,)}*>, is a jointly stationary and ergodic process. The
prediction problem is similar to the one defined above with the exception
that the sequence of X;’s is also available to the predictor. One may think
about the X;’s as side information. Formally, now a prediction strategy is a
sequence g = {g;}3°, of functions

g R x (RY) - R

so that the prediction formed at time i is g;(y: ™", 2¢). The normalized cumu-
lative prediction error for any fixed pair of sequences =7, y7 is now

n
La(9) = (ol ) — )

i=1
All results of the paper may be extended, in a straightforward manner to
this more general prediction problem. As the extension does not require new
ideas, we omit the details.

Another direction for generalizing the results is to consider predicting

vector-valued processes. Once again, the extension to R¢-valued processes
{Y,,}>, is obvious, and the details are omitted.



2 Universal prediction by partitioning esti-
mates

In this seqution we introduce our first prediction strategy for bounded ergodic
processes. We assume throughout the section that |Y5| is bounded by a
constant B > 0, with probability one. First we assume that the bound B is
known. The case of unknown B will be treated later in a remark.

The prediction strategy is defined, at each time instant, as a convex com-
bination of elementary predictors, where the weighting coefficients depend on
the past performance of each elementary predictor.

We define an infinite array of elementary predictors h*9 k¢ =1,2,...
as follows. Let P, = {Ay;,7 =1,2,...,me} be a sequence of finite partitions
of the feature space R, and let G; be the corresponding quantizer:

Gi(z) =4, if v € Ay

With some abuse of notation, for any n and y? € R", we write G,(y]) for
the sequence Gy(y1),- .. ,Ge(y,). Fix positive integers k, ¢, and for each k-
long string s of positive integers, define the partitioning regression function
estimate

_ Z{k<i<n:G1(y§:i)=5} Yi
{k <i<n:Guy;) = s}

En (y?_las) s n > k+1,

where 0/0 is defined to be 0.
Now we define the elementary predictor A% by

hﬁf’@(y?’l) _ Evr(lk,é)(y?fl’ Ge(y™2h)), n=12...

That is, h,%k’e) quantizes the sequence y7 ! according to the partition P, and
looks for all appearances of the last seen quantized strings Gg(ygji) of length
k in the past. Then it predicts according to the average of the y;’s following
the string.

The proposed prediction algorithm proceeds as follows: let {gx .} be a
probability distribution on the set of all pairs (k, £) of positive integers such
that for all £, £, gx, > 0. Put ¢ = 8B?, and define the weights

Wy g = g~ G DL (ED)/e



and their normalized values
Wy k0

Vi ke = ) .
Zz,]:l wt,Z:J

The prediction strategy g is defined by

a@Wi ) =Y vah®GY), t=1,2,... (1)
k=1

Theorem 1 Assume that

(a) the sequence of partitions is nested, that is, any cell of Pyy1 is a subset
of a cell of Py, £=1,2,...;

(b) if diam(A) = sup, 44 llz — yl| denotes the diameter of a set, then for
each sphere S centered at the origin

lim max diam(A,;)=0.
05500 j: Ay ;NSHD ’

Then the prediction scheme g defined above is universal with respect to the
class of all ergodic processes such that P{Y; € [-B,B]} = 1.

One of the main ingredients of the proof is the following lemma, whose
proof is a straightforward extension of standard arguments in the prediction
theory of individual sequences, see, for example, Kivinen and Warmuth [14],
Singer and Feder [23].

Lemma 1 Let hy, ho, ... be a sequence of prediction strategies (experts), and
let {qk} be a probability distribution on the set of positive integers. Assume
that h;(y7 ™) € [-B, B] and y} € [-B, B|*. Define

Wi = qkef(tfl)Lt_1(f~lk)/c

with ¢ > 8B?, and

- Wy k
t.k — o0 .
’ Zi:l Wy,

If the prediction strategy g is defined by
° ~
Gt = vkl t=1,2,...
k=1
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then for everyn > 1,

Here —1n0 is treated as oo.

Proof. Introduce W; =1 and W, = 2130:1 wy for ¢ > 1. First we show
that for each t > 1,

[zo:j Utk (?Jt - }le (yf_1)>

2
Wit

< —cl
< —cln t

(2)

Note that

o0 - RS o0 - RS
Wiy = Zwt,ke_(‘w_hk(yi ) e = VVtZUt,ke_(‘w_hk(yi ) e,

k=1 k=1

so that

Wit = —(ve—hr(yi™? 2
—cl = _—cl yt—hi(y; )) /c .
cln W cln (,;:1 Vg k€

Therefore, (2) becomes

2
1 [ ~ ~ oo I RN
exp | -~ [Z Utk (yt — hi(y} 1))] > th,ke (ve—he(wi™)"/ 5

k=1 k=1

which is implied by Jensen’s inequality and the concavity of the function



Fy(2) = e =2/ for ¢ > 8B2. Thus, (2) implies that

n

nLa@ = > (v —3™)’

t=1

= i [i Utk (yt - ﬁk(yi_l))]

Wi
< —c Z In W,
t=1

= —cln Wn+1

= —cln (Z wn+1,k>
k=1

= —cln (Z le‘”Ln(ﬁk)/c>
k=1

< —cln (sup qke"L"(ﬁ’“)/c>
k

= i%f (—cln qr + nLn(Bk)> ;

which concludes the proof. O

Another main ingredient of the proof of Theorem 1 is known as Breiman’s
generalized ergodic theorem [4], see also Algoet [2].

Lemma 2 (BREIMAN [4]). Let Z = {Z;}>*_ be a stationary and ergodic
process. Let T denote the left shift operator. Let f; be a sequence of real-
valued functions such that for some function f, fi(Z) — f(Z) almost surely.
Assume that Esup, |fi(Z)| < co. Then

o1
lim —
t—oon

Z [(T'Z) =Ef(Z) almost surely.
i=1

Proof of Theorem 1. By a double application of the ergodic theorem, as



n — 0o, almost surely,

>~<

% Z{k<z’<n:Gl(yj_—kl):s} i
Lk <i<n: GV = s}
E{Yolig,(v-1=0}

P{G,(Y_}) =5}

= E{W|G(Y7) = s},

EFO(yrt )

and therefore

lim sup |E,(f’e)(Y1"_1, s) — E{Y|G,(Y ) = s} =0 almost surely.

n—oo s

Thus, by Lemma 2, as n — oo, almost surely,

n

1

Lu(h®9) = =3 RO - )2
n
=1
1 - - i i—
= EZ(ET(LIC’@(}G LYS) - Y)?
=1
= E{(Yo - B{Y|G.(Y5)})*}
déf ek,g.

Since the partitions P, are nested, E {¥5|G,(Y')} is a martingale indexed
by the pair (k, £). Thus, the martingale convergence theorem (see, e.g., Stout
[24]) and assumption (b) for the sequence of partitions implies that

lim ¢, =B {(Y0 - E{mY:og})?} = L.

k,—00

Now by Lemma 1,



and therefore, almost surely,

limsup L,(g) < limsupinf (Ln(hw’@)_L“q’M)

n—00 n—oo kit n

IN

|
inf lim sup (Ln(h(’“af)) _ M)

*  n—aoo n

IN

inf lim sup L, (h*9)

k,Z n—oo

inf €Ly
ke

lim €,
kfl—oco

= L*

and the proof of the theorem is finished. O

Theorem 1 shows that asymptotically, the predictor g; defined by (1)
predicts as well as the optimal predictor given by the regression function
E{Y}|Y'}}. In fact, G; gives a good estimate of the regression function in
the following sense:

Corollary 1 Under the conditions of Theorem 1

n

1 . ; 2
lim =S (B{V[V'2} — (Y )’ =0  almost surely.
nggon;:l( (ViV} — ai(Y77h) almost surely

Proof. By Theorem 1,

. 1 . i—1\)2 *
nlgx()lo - Z (Yi—g(Yy ) =L almost surely.

=1

Consider the following decomposition:
(Yi-a(¥i™)® = (N-BY'})’ | |
+2 (Y - E{Yi[Y0}) (B{YiIY o} — gi(¥7 )
+ BV} —a(vi )"

Then the ergodic theorem implies that

1< o
lim —» (Y, - E{Vj|Y}}) =L’ Imost surely.
n;“gon;( {vi[y>o}) almost surely
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It remains to show that

n

.1 i1 i1 i—1y) _
lim — > (V- B} BV - g(YiT) =0  almost surely.
(4)

i=1
But this is a straightforward consequence of a classical srong law of large
numbers for martingale differences, due to Kolmogorov, which states that it
{Z;} be a martingale difference sequence with

“EZ?
n2

< 00,

n=1

then

R
nh_)rgo - ; Z;i=0 almost surely.

Thus, (4) is implied by Kolmogorov’s theorem since the martingale differences
Zi = (Y —E{Vi|Y'}) (BE{Vi[Y’l} — ¢;(Y{™")) are bounded by 4B2. O

Remark. UNKNOWN B. The prediction strategy studied in this section
may be easily extended to the case when the process {Y,,}*_ is bounded,
but B is unknown, that is, when no upper bound is known to the range of
the process. In such a case we may simply start with the hypotheses B =1
and predict according to (1) until we find a value Y,, with |Y,| > B. Then
we reset the algorithm and start the predictor again but with doubling the
value of the previous B, and keep doing this. Then the universal property of
Theorem 1 obviously remains valid to this modified strategy.

Remark. CHOICE OF g¢;,. Theorem 1 is true independently of the choice
of the gx,’s as long as these values are strictly positive for all k¥ and ¢. In
practice, however, the choice of g, may have an impact on the performance
of the predictor. For example, if the distribution {gj,} has a very rapidly
decreasing tail, then the term —In gy ,/n will be large for moderetely large
values of k and /, and the performance of g will be determined by the best of
just a few of the elementary predictors A%, Thus, it may be advantageous
to choose {g ¢} to be a large-tailed distribution. For example, gy, = cok 2( 2
is a safe choice, where ¢ is an appropriate normalizing constant.

10



Remark. SEQUENTIAL GUESSING. If the process takes values from a finite
set, one is often interested in the sequential guessing of Y,, upon observing
the past Y"~'. Such a problem was investigated (among others) by Gyérfi,
Lugosi, and Morvai in [13], where it was assumed that Y, takes one of two val-
ues: Y, € {0,1}. Sequential guessing is then formally defined by a sequence
f=A{fi}2, of decision functions

fi {0, 1}t = {0,1}

and the guess formed at time 4 is f;(Y7™'). The normalized cumulative loss
of guessing by f on the string Y/" is

n 1 .
RY(f) == Liihevy
=1

where I denotes the indicator function. Algoet [2] showed that for any guess-
ing strategy f and stationary ergodic binary process liminf, ,., R7(f) > R*
almost surely, where

R* = E [min (P{Y, = 1YL}, P{¥; = 0]V 1})]

is the minimal expected probability of error of guessing Y, based on the infi-
nite past Y. The existence of a guessing scheme f for which lim,,_,o, R}?(f) =
R* almost surely follows from results of Onrstein [20] and Bailey [3]. In [13]
a simple guessing procedure was proposed with the same asymptotic guar-
antees and with a good finite-sample behavior for Markov processes. The
disadvantade of the predictor given in [13] is that it requires randomization.
Here we observe that with the help of predictors having the universal conver-
gence property of Theorem 1 we may easily define a nonrandomized guessing
scheme with the desired convergence properties. Given a prediction strategy

g : R x (RY) 5 R

for a binary process {Y,}, we simply define the guessing scheme f by the
decision functions

e [ a2 12
filyi )_{ 0 otherwise.

Then we may use the properties of g established in Corollary 1 to conclude
that the guessing scheme g defined above has an average number of mistakes

11



RY(f) converging to the oprimum R* almost surely. Indeed, defining the
decision, based on observing the infinite past 4., minimizing the probability
of error of guessing Y;:

1 if B[V =yt >1/2
0 otherwise,

fily=e) = {
we may write

limsup RY(f) — R*

n—0o0
: IS IS x(yrie1 i—1
= limsup (g > i — - D PR # ViV })
i=1 i=1
(by the ergodic theorem)
: 1y i i BN * (Vi i
= limsup (5 D P{AMT ) #F NI} - =D P{f(VI) # VYIS )
nee i=1 i=1
(by the martingale convergence theorem)
2 : :
< limsup— E{Y;|Y" 1V — g, (V7!
< n%opn;\ {Vily'o} — a(Yi )

(by Theorem 2.2 in [6])

n

< limsup?2 EZ‘E{EWj;}}_Qi(YfI)P

n—00 n i1
— 0 (by Corollary 1.)
Thus, any predictor with the universal property established in Theorem

1 may be converted, in a natural way, into a universal guessing scheme. An
alternative proof of the same fact is given by Nobel [19].

12



3 Universal prediction by generalized linear
estimates

This section is devoted to an alternative way of defining a universal predictor
for the class of all bounded ergodic processes. Once again, we apply the
method described by Lemma 1 to combine elementary predictors, but now,
instead of partitioning-based predictors, we use elementary predictors which
are generalized linear predictors. Once again, we consider bounded processes,
and assume that a positive constant B is known such that P{|Y;| < B} = 1.
(The case of unknown B may be treated similarly as in Section 2.)

We define an infinite array of elementary predictors h*9 k¢ =1,2,...
as follows. Let {¢§~k)}f:1 be real-valued functions defined on R*. The ele-

mentary predictor h(*4) generates a prediction of form
h (kL) Y'n 1 Z Cn,]qs Yn__k;l)

such that the coefficients ¢, ; are calculated based on the past observations
Y"1, Before defining the coefficients, note that one is tempted to define the
Cn,i's as the coefficients which minimize

n—1 2

Z ( Z C] Y;z 1 )

i=k+1

if n > k, and the all 0 vector otherwise. However, even though the minimum
always exists, it is not unique in general, and therefore the minimum is
not well-defined. Instead, we define the coefficients by a standard recursive
procedure as follows (see, e.g., Tsypkin [25], Gyorfi [12], Singer and Feder
[23]). Introduce

k i— k i—
X; = (6 (vih), .. o (vis)T

Il
H'M:
= ]
UL
+

and

i=k+1

13



Let o be an arbitrary positive constant, put B, = A,, + oI, and define
en=(Cn1y---sCnp) = (An +0l)"'M, = B, ' M,
It easy to see that the inverse can be calculated recursively by

B 'X,XI'B-!
B}, =B, - ——t
1+ XTB-1X,

which makes the calculation of ¢, easy.
Theorem 2 Define

B if hEO(Yr 1) > B
h%k,é)(y'lnfl) ={ _B if KEO(Y" )< —-B n=12....
RED (YY) otherwise

Suppose \¢§k)| <1 and for any fized k the set

£
{Zcm?“’; (€ co) €=1,2,...}
j=1

is dense in C([—B, B)¥). Define a prediction strategy by combining the el-
ementary predictors h\*9) given by (1). The obtained predictor is universal
with respect to the class of all ergodic processes with P{Y; € [-B, B]} = 1.

Proof. Let A, =EA,, and let (A, ;, on;) j =1,2,...¢ be an eigensystem
of A, that is, {¢,,;} are orthogonal solutions of the equation

Angpnﬂ = A”a]gpnﬂ
and
/\n,l 2 2 )\n,ézo-

Let 0 < ¢ < ¢ be the integer for which A, ; > 0 if j < ¢ and \,; = 0 if
j > {'. Express the vector M, = EM, as

.
M, = E UjPn,js
=1

14



and define

el
U4
* * * 7
c=(cd,...,c) = W T Pnj-

(It is easy to see that the value of the vector ¢* is independent of n.) It is
shown by Gyérfi [12] that

¢ 2 ¢ 2
(Yo - c;¢§-’“><y:;>) = min E (Yo - chaSS-’“)(Y:;))
i=1 i=t

(CI""7C»£)

and moreover

lim (cp1,...5Cne) = (€], ..., €}) almost surely. (5)
n—»00

Also, observe that by the ergodic theorem, for any fixed (cy, ..., c),

n

2 P 2
1 i _
fim L 2 (Y Zcm v ) o (%—&%’“(Yﬁ) ©)
i=k+1 7j=1
almost surely.

Therefore by (6), (5) and Lemma 2

1 . 2
: k.l : k.l i—
lim Ln(h( )) = nhm e E (YZ- — h! )(Y1 1))

n—00

A
2
|
/N
&<
=
=
S
|
N

n—oo M ol
n 0 2
k i—
= Jim 3 (Yz- -3 el >)
i=k+1 j=1
) 2
= E (YO — Z c;f¢§-k)(Yk1)> almost surely
7j=1
def
= Ek,g.

15



Next define the coefficient vector & = (.1, ..., ¢.¢) to be any vector which
achieves the mimimum in

(CI;---,CZ)

. 2
min E (E{Y()\Y_kl} - Z Cj¢§'k) (Y__kl)>

j=1

Then

) 2
e = B{(Vo-BWPL)}+E (E{YO|Y_§O} - Zc;f¢§k)(Ykl))

Y 2
< L'+E (E{WY:OL}—Zék,jcb?“(Y:;))
j=1
* -1 —17)\2
< U+ 2B {(EMY L - BV
) 2
+2E (E{Yb‘y—_kl} - Zék,jd);k) (Y—_kl)>
j=1
def

It is immediate by the martingale convergence theorem that

k—o0

On the other hand, by the denseness assumption of the theorem, for any
fixed k,

' 2
. BT -1 5 (k) y -1 =
eliglo Ve = eli)lgE (E{YO|Y—k } - E 1: 05 (Y2, )) = 0.

]:

Thus, we conclude that

infep,= lim €,,=L".
kt k,£—00 k.t

16



Finally, by Lemma 1,

1
limsup L,(9) < limsupinf (Ln(h(’“’e))— €kt “W>

n—00 n—oo Kk, n

IN

inf lim sup ( L (R0 — M)

kt nooco n

IN

inf lim sup L, (h*9)

kae n—oo
inf €Ly
e bl

y

L,

which concludes the proof. O

Again, as in Corollary 1, we may compare the predictor directly to the
regression function. By the same argument, we obtain the following result.
The details are left to the reader.

Corollary 2 Under the conditions of Theorem 2

R i—1 i-1\)2 _
nh_)rgo - Z (EVIY' - a? ) =0 almost surely.

=1

17



4 Prediction of (Gaussian processes

Up to this point we have always assumed that the process to predict is
bounded. This excludes some important unbounded processes such as gaus-
sian processes. In this section we define a predictor which is universal with
respect to the class of all stationary and ergodic gaussian processes. For
gaussian processes the best predictor (i.e., the regression function) is linear,
and therefore we may use the techniques of the previous section in the special
case when qﬁgk)(y{“) = y,. However, the unboundedness of the process intro-
duces some additional difficulty. To handle it, we use bounded elementary
predictors as before, but the bound is increased with n. Also, we need to
modify the way of combining these elementary predictors.

The proposed predictor is based on a convex combination of linear pre-
dictors of different orders. For each £ = 1,2,... introduce

k
RO = njtnj
i=1

where the vector ¢, = (¢,1,- .. ,cny) of coefficients is calculated by the for-
mula introduced in Section 3:

cn = (Ap+0)"'M, ,

where o is a positive number, A, = Z?;kIHXiXZ-T and M, = Z?;kl+1 Y, X;
with X; = V7! for i > k.

Introduce the notation

1 N
Ly(9) = N_on. (9i(yi™") —wa)* .
1=n+1

Then the predictor g is defined as follows: for all m = 0,1, 2,..., if n is such
that 2™ < n < 2™t then

iy = 4 2 opi b () if |50, o A9 (g 1)| < In(n)
A In(n) sgn <ZZ°:1 vﬂ)h(k)(y?*l)) otherwise.
where
o™ 1
R = ey and wl) = g RO G
Zk:l wn,k

18



with g, = 2*(m+1)Ik§2m+1.

Thus, we divide the time instances into intervals of exponentially increas-
ing length and, after initializing the predictor at the beginning of such an
interval, we use a different way of combining the elementary predictors h(¥)
in each such segment. The reason for this is that to be able to combine
elementary predictors as in Lemma 1, we need to make sure that the predic-
tor as well as the outcome to predict is appropriately bounded. In our case
this can be achieved based on Lemma 3 below which implies that with very
large probability, the maximum of n identically distributed normal random
variables is at most of the order of /logn.

Theorem 3 The prediction strateqy g defined above is universal with respect
to the class of all stationary and ergodic zero-mean gaussian processes. Also,

2(1 1)3 1
L, (g) < inf L, (h®)) + M +0 (—) almost surely.
k>1 n n

At a key point the proof uses the following well-known properties of gaus-
sian random variables:

Lemma 3 (Pisier [21])). Let Zi,...,Z, be zero-mean gaussian random
variables with BE{Z?} = 0%, i =1,... ,n. Then

£ {2} < o2z

i<n

and for each u > 0,
P {m<aX\ZZ-| -E {m<ax |Zz|} > u} < e W
Proof of Theorem 3. Lemma 3 implies, by taking u = 204/21n(2n),

1
P {%IS%X|E| > 30\/21n(2n)} < 2y

This implies, by the Borel-Cantelli lemma, that with probability one there
exists a finite index 7" such that for all n > 7", max;<, |Yi| < 304/21n(2n).

19



Also, there exists a finite index 7" such that for alln > T, max;<, |Y;| < In(n).
Therefore, denoting 7 = 21°827+1 we may write

nL,(g) =

IN

IN

IN

<

[logy n|—1
m m—+1__
Z 2" Lom ~'(9) + (n—7/2+ 1) L7 5(9)

[logy n|—1 "

ATW (T + 1)+ ) 2"L3." "Hg) + (n —71/2+ 1)L 5(9)
m=log, T|

(since max(|Yy|,|g(Y"" V)]) < In(T +1)if n < T)

AT In*(T +1) U%zn: 12’” L2’"“ L(hk)y — 2m? In e m

n 5
_ _ 2|log, n|? In g
+(n n/2—|—1)llcgf1 (Ln/Q(h ) n—T2 1

(by Lemma 1)

[logyn|—1

4T1n2(T+1)+lch>lfl Z 2mL2m+1 1 h( ))

[log, | 2
2m*(m+1)
—7m/241 h(k) i S s
+(n—n/2+ 1)Ly (A1) + m§:0 o

AT In?*(T + 1) + n inf L (h™) + 2(log, n + 1)2.

In other words,

2(1 1)3 1
Ly (g) < inf L, (h*)) + % +0 (ﬁ) almost surely.

k>1

This proves the second statement of the theorem. To prove the claimed uni-
versality property, it suffices to show that for all ergodic gaussian processes,

lim sup 1nfL (h®)) = L*.

n—oo
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This can be done similarly to the proof of Theorem 2:

n

1 . 2
. BN 1 k) (vrie1
Jim L) = Jim T 3 (= hO07T)
i=k+1
1 n k 2
<t (v
i=k+1 j=1
k 2
= E (YO — ch.y_j)
7j=1
def
= €.
Define the coefficient vector (&1, ..., ¢k, such that it minimizes

k 2
min E (E{%\Y:,s} - ch-])
j=1

(Cl,...,Cg

(If the minimum is not unique, choose one arbitrarily.) Then

o = B{(%-E{XY2L)’}+E (E{MY:OL} -2 c;*Y—])

k 2
< I'4E (E{my_;}—Zék,jY-j)
j=1
* -1 —11)2
< I+ 2B {(B{YY2L} - B{vv3})’}

k 2
+2E (E{Yo|Y_k1} - 5k,jyj>
7j=1
= L" 4+ 260

since

k 2
E (E{Y0|Y‘k1} -y a,w-Y]) = 0.
j=1

Now the proof can be finished by mimicking the proof of Theorem 2.
Once again, we may derive a property analogous to Corollary 1:
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Corollary 3 Under the conditions of Theorem 3,

1 — , N2
lim — E{Y;|Y" 1V — g (YF)) =0 Imost ly.
im - (B{YL} - g7 almost surely

n—00 £
=1

Proof. We proceed exactly as in the proof of Corollary 1. The only
thing that needs a bit more care is checking the conditions of Kolmogorov’s
strong law for sums of martingale differences, since in the gaussian case
the corresponding martingale differences are not bounded. By the Cauchy-
Schwarz inequality,

Bz2 = B{(%i— BV BV - g6(i)’)
\/E {(Yi - E{)@|Yi;.3})4} E {(E{Yi\Yonl} - gi(Yf‘1))4}

VEE (YA} (B {Y/} +E {0,057 1)1})
Cv/(1+ (log1)*)
C'(logi)?

IN

INIA A

where C' and C" are positive constants, which implies > "°, EZ?/i* < 00, s0
the condition of Kolmogorov’s theorem is satisfied. O

Remark. RATES OF CONVERGENCE. The inequality of Theorem 3 shows
that the rate of convergence of L, (g) to L* is determined by the performance
of the best elementary predictor h¥). The price of adaptation to the best
elementary predictor is merely an additional term of the order of n~"log® n.
This additional term is not much larger than an inevitable estimation error.
This is supported by a result of Gerencsér and Rissanen [10] who showed
that for any gaussian ARMA(p + ¢) process and for any predictor g,

EL,(g9) > L*+ (1 —0(1))L*(p+ q)hITn .

On the other hand, Gerencsér [9] showed under some mixing conditions for
ARMA(p, ¢) processes that there exists a predictor g, , such that

1
Ln(gpq) = L" + (1 +0(1))L*(p + q) B almost surely.

n
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Further rate-of-convergence results under more general conditions for the
process were established by Gerencsér [8]. Another general branch of bounds
can be found in Goldenshluger and Zeevi [11]. Consider the MA(co) repre-
sentation of Y,

Yn = Z ’l/}ien—i
i=1
with transfer function
P(z) = iz
i=1

Goldenshluger and Zeevi show that if for 0 </ <1< L <ooand p>1
I <[¥(2)] < L, for |2] < p,

then for large n

and for k = k, = {IH"J

2lnp

1 &Ini Inn)?
BL,(h) < L'+ O L)~ 3 < 1+ 0,2,
7

n .
=1 n

Thus, for the processes investigated by Goldenshluger and Zeevi, the predic-
tor g of Theorem 3 achieves the rate of convergence

1 3
EL,(g) < L* +0 ( Oi ”) .
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