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Abstract

In this paper we propose a Pyramidal Classi�cation Algorithm, which together

with an appropriate aggregation index produces an indexed pseudo-hierarchy (in

the strict sense) without inversions nor crossings. The computer implementation

of the algorithm makes it possible to carry out some simulation tests by Monte

Carlo methods in order to study the e�ciency and sensitivity of the pyramidal

methods of the Maximum, Minimum and UPGMA. The results shown in this

paper may help to choose between the three classi�cation methods proposed,

in order to obtain the classi�cation that best �ts the original structure of the

population, provided we have an a priori information concerning this structure.

Keywords: Pyramidal classi�cation methods, aggregation index, pseudo-hierarchy,

Robinsonian dissimilarity, Monte Carlo evaluation, overlapping clusters
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1 Introduction

Ultrametric trees are the most studied representations using discrete models.

The aim of this class of models is to produce a family of partitions that can be

interpreted as a set of \natural" classi�cations of a given population.

Pyramidal trees, introduced by E. Diday, are a logical generalization of ul-

trametric trees. In the pyramidal model, each classi�cation is given by a set of

overlapping clusters, instead of a partition. The pyramidal representation being

less restrictive, it is closer to the initial structure of the population than in the

hierarchical case. Bertrand and Diday [BD85], Diday [Did86b, Did86a], Durand

[Dur86, Dur88], Durand and Fichet [DF88] have studied some interesting topics

about this pyramidal structures, also called pseudo-hierarchical structures.

The aim of the pyramidal representation methods is to detect the presence

of a pseudo-hierarchical structure on a given population 
, starting from a

dissimilaritymatrix on this population. The process that has this aim consists of

transforming the initial dissimilarity into a Robinsonian dissimilarity by means

of a pyramidal clustering procedure; this Robinsonian dissimilarity obtained is

equivalent to an indexed pseudo-hierarchy.

Diday, inspired by the agglomerative hierarchical classi�cation algorithms,

proposes (see [Did86b]) an agglomerative pyramidal classi�cation algorithm

which is adapted to the peculiar characteristics of the pyramidal structures;

among these we can point out the fact that each group can have up to two

predecessors, as well as the existence of a total order on the population to be

classi�ed which is compatible with the pseudo-hierarchy. In general, this algo-

rithm produces indexed pseudo-hierarchies in a wide sense, which may present

inversion problems. In our work we propose a modi�cation of Diday's algo-

rithm that makes possible the construction of an indexed pseudo-hierarchy in

the strict sense and without inversion problems. So the algorithm described

in this paper produces simpler pseudo-hierarchies than Diday's one. This new

algorithm, which we call PIRAM, was introduced in [CGA95]. We think that the

new features of our algorithm will facilitate the application of the pyramidal

classi�cation methods in real problems.

In applied problems it is necessary to measure the �tting between the pseudo-

hierarchical structure obtained by using some algorithmand the initial structure

of the population. This �tting can be measured by comparing the dissimilarity

�, associated with the initial structure, and the dissimilarity d, associated with

the structure produced by the algorithm.1 This comparison can be made by

using a number of di�erent approaches (see [Gor96]). In this paper we will

concentrate on the analysis of the behaviour of the following coe�cients:

� The 
-Goodman-Kruskal coe�cient de�ned in [GK54] as


 =
(S+ � S

�
)

(S+ + S
�
)
;

where S+, S� are the number of pairs of couples fi; jg; fr; sg with (dij �

drs)(�ij��rs) > 0, or < 0 respectively (concordant resp. discordant pairs);

This coe�cient is interpreted in [Bak74] in the following way:

1The distance d between two individuals in the pseudo-hierarchy is the level at which

both individuals join the same cluster; this kind of distances are sometimes called threshold

distances.
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= probability of consistent ranking- probability of inconsistent

ranking.

A modi�cation of this coe�cient was used in [Hub74] to implement a

stopping rule (see [Gor96]).

� The cophenetic correlation coe�cient de�ned in [SR62] as

� =
Cov(d; �)

�(d)�(�)
:

Furthermore, the computer implementation of the algorithm PIRAM (see

[GCA94a], [GCA94b] and [GC96]), called PIRAM1.0, has allowed us to com-

pare the pyramidal and the \classical" hierarchical classi�cation methods (see

[CGA95]). We have also compared three di�erent pyramidalmethods {Maximum,
Minimum, and UPGMA{ associated with three di�erent ways of de�ning the

distance between clusters (aggregation index). In this paper we present the sim-

ulation tests by Monte Carlo methods produced in order to study the e�ciency

and sensitivity of these pyramidal methods in an empirical way and in terms of

the expected mean value of the 
 and � coe�cients (see [CA95a] and [CGA96]).

2 Pyramidal models

In this section we will introduce some concepts related to pyramidal models,

such as Robinsonian dissimilarity and pseudo-hierarchy.

Given a dissimilarity d, de�ned on a �nite set 
, we will call it a Robin-

sonian dissimilarity if it is a symmetric dissimilarity such that there exists a

total order �
 on 
, such that

maxfd(!i; !j); d(!j; !k)g � d(!i; !k)

for any !i; !j; !k 2 
 such that !i �
 !j �
 !k. From this de�nition it is easy

to see that any ultrametric dissimilarity is also a Robinsonian dissimilarity (see

[Did86b]).

Given a �nite set 
 and P 2 Pow(
), we will say that P is a pseudo-

hierarchy, if it satis�es the following properties:

P.1 
 2 P.

P.2 for all ! 2 
, f!g 2 P.

P.3 for all h; h0 2 P, h \ h0 = ; or h \ h0 2 P.

P.4 There exists a pre-order �P on 
 such that every h 2 P is an interval

with respect to �P. We say that �P is an order compatible with P.

Note that P 2 Pow(
) is a hierarchy if it satis�es [P.1], [P.2] and the fol-

lowing properties:

P.5 for all h; h0 2 P, h \ h0 2 f;; h; h0g.

P.6 For all h 2 P, [fh0 2 P : h0 � hg 2 fh; ;g.
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Since, given a hierarchy, there is always an order on the population compatible

with it, we can conclude that a hierarchy is a pseudo-hierarchy (see [Did86b]).

See also [GS94] for a deeper analysis of the relations between ultrametric dis-

similarities, Robinsonian dissimilarities, hierarchies and pyramids.

Given two groups of a pseudo-hierarchy, h and h0, we say that h0 is a prede-

cessor of h when h � h0 and there is no other group p in the pseudo-hierarchy

such that h � p � h0. In can be proved that any group in a pseudo-hierarchy

can have up to two predecessors, while in a hierarchy every group has only one

predecessor (see [Cap93]).

Given P as a pseudo-hierarchy on 
, a function i : P 7! R+, such that for

all ! 2 
; i(f!g) = 0 and for all h; h0 2 P, if h � h0 then i(h) � i(h0), is called

an index associated with P, and the pair (P; i) is called an indexed pseudo-

hierarchy. If, in addition, the function i veri�es that for all h; h0 2 P, if h � h0

then i(h) < i(h0), we will say that (P; i) is an indexed pseudo-hierarchy in

the strict sense. The elements in a pseudo-hierarchy will be called groups

of the pseudo-hierarchy, and if a pseudo-hierarchy is indexed, the value of the

index over each group will be called index of the group.

If (P; i) is an indexed pseudo-hierarchy on 
, the dissimilarity associated

with (P; i) is de�ned as the threshold distance, i.e.,

d(!1; !2) = i(h)

where h is the smallest (with respect to the inclusion relation) h 2 P such that

!1 2 h and !2 2 h (see [Cap93]).

The relationship between Robinsonian dissimilarities and pseudo-hierarchies

is studied, among others, in [Did86a] and in [CA95b] where the following results

can be found:

Theorem 2.1 If (P; i) is an indexed pseudo-hierarchy on 
, then the dissimi-
larity associated with (P; i) is a Robinsonian dissimilarity.

Remark 2.1 Every Robinsonian dissimilarity determines an indexed pseudo-
hierarchy, which is unique, so we can conclude that there exists a natural bijec-
tion between the set of indexed pseudo-hierarchies and the set of Robinsonian
dissimilarities on a set 
.

The type of overlapping clustering associated with an indexed pseudo-hierar-

chy can be represented graphically in a pyramid-like shape by using a type of

connex graphs called pyramidal trees (for this reason sometimes we write

pyramid for pseudo-hierarchy). The visual representation of Indexed Hierarchies

is provided by the well known dendrograms. Let us see some examples

Example 2.1 Let 
 = f!1; !2; !3; !4; !5g, with !1 � !2 � !3 � !4 � !5. Let

P = ff!1g; :::; f!5g; f!2; !3g; f!3; !4g; f!1; !2; !3g; f!3; !4; !5g;

f!2; !3; !4g; f!2; !3; !4; !5g; f!1; !2; !3; !4g;
g;

if we de�ne

i(f!jg) = 0, for j 2 f1; :::; 5g i(f!2; !3; !4g) = 5

i(f!2; !3g) = 2 i(f!2; !3; !4; !5g) = 5

i(f!3; !4g) = 2:5 i(f!1; !2; !3; !4g) = 6

i(f!1; !2; !3g) = 3 i(
) = 7

i(f!3; !4; !5g) = 4,
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then P is an indexed pseudo-hierarchy.

If we start from the singletons, f!1g; :::; f!5g and we determine their succes-

sive predecessors, we obtain the graphical representation of the pseudo-hierarchy

displayed in Figure 1, and a representation of the indexed pseudo-hierarchy

(P; i) displayed in a pyramidal form in Figure 2.

Figure 1: A pseudo-hierarchy

f!1g

f!2g

f!3g

f!4g

f!5g

f!1; !2; !3g

f!2; !3; !4g

f!3; !4; !5g

f!1; !2; !3; !4g

f!2; !3; !4; !5g




f!2; !3g

f!3; !4g

Example 2.2 Note that, if we proceed as in the hierarchical case, the pyramidal

classi�cation obtained from the pyramidal tree shown in Figure 2 at level 4, and

which correspond to the vertical lines crossed by the horizontal line drawn at

that level, are the following: f!1; !2; !3g; f!2; !3g; f!3; !4g; f!3; !4; !5g, which,

obviously, is a set of overlapping clusters.

Figure 2: Pyramidal graph of the pseudo-hierarchy of Example 2.1

7

6

5

4

3

2

1

!1 !2 !3 !4 !5
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We introduce now two concepts: a function f : P 7! R+ on a pseudo-

hierarchy P presents an inversion if there exist h; h0 2 P such that h � h0

and f(h) > f(h0). An order � on 
 originates a crossing over a set P 2

Pow(
) either if there exists a group h 2 P which is not an interval with

respect to this order or there exist groups h; h0 2 P such that h \ h0 6= ;

and h \ h0 62 P. Examples of pyramidal-like shapes that present inversion or

crossings are displayed in Figure 3. Note that due to its de�nition, the index

of a pseudo-hierarchy cannot present inversions and an order compatible with a

pseudo-hierarchy cannot present crossings. Nevertheless, these concepts which,

in fact, are implicit in the de�nition of a pseudo-hierarchy, should be considered

in the process of generating pseudo-hierarchies from dissimilarity matrices.

Figure 3: (A) Inversion: h � h0 and i(h0) < i(h); (B) Crossing: h \ h0 =

(!2; !3; !4) 6= ; but h \ h0 62 P; (C) h = (!2; !4) 2 P is not an interval w.r.t.

the order associated with the pseudo-hierarchy.

h

h0
p

p

(A)

p

q

q

h0

h

(B)
!1 !2 !3 !4 !5

(C)
!1 !2 !3 !4

h
q

3 PIRAM, a Pyramidal Classi�cation Algorithm

Let 
 = f!1; :::; !ng be a �nite set and let �0 be a dissimilarity de�ned on the

individuals of 
. Like in the agglomerative hierarchical case, the algorithm we

present builds a sequence of levels in such a way that the (i + 1) � th level is

obtained by joining two groups among the groups obtained at the i�th level. In

order to compute the distance between groups, an aggregation index should be

chosen. Since the two groups joined may overlap, additional conditions should

be stated to build up an order on 
 which is intended to be compatible with

the �nal pseudo-hierarchy. The process will continue until all the individuals of

the population belong to a single group.

So, after having �xed the function f in (1), the algorithm of pyramidal

classi�cation PIRAM described hereinafter produces

� a sequence R0; : : : ; Rm, each Ri being a set of overlapping classes of ele-

ments of 
, in such a way that P = [Ri is a pseudo-hierarchy;

� a sequence of dissimilarities �0; �1; : : : ; �m, each �i de�ned on the set Ri;
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� a sequence �0;�1; : : : �m=�P of partial linear orders on the set 
 such

that �P is a total order on 
, every h 2 Ri is an interval with respect to

�i, and �i+1 extends �i, i.e., if !j �i !k then !j �i+1 !k;

� an increasing sequence of real numbers r0; : : : ; rm which will correspond

with the range of the index associated with the pseudo-hierarchy P.

Note that the existence of an order compatible with the pseudo-hierarchy

P makes it possible to interpret the groups of P as �P-intervals and, in fact,

each of its groups can be displayed as a sequence of distinct elements of 
. So,

when merging two groups, the set-theoretical operation \join" can be seen as a

certain kind of concatenation operation between sequences. So we will consider

the following operation:

If hi = (�1; : : : ; �n) 2 
n and hj = (�1; : : : ; �l) 2 
l then

hi + hj =

8>><
>>:

(�1; : : : ; �n; �1; : : : ; �l) if hi \ hj = ;

(�1; : : : ; �n; �k; : : : ; �l) if hj = (�s; : : : ; �n; �k; : : : ; �l) and

(�1; : : : ; �s�1) \ hj = ;

not de�ned in any other case

We describe now the steps of the algorithm:

A1. The procedure starts with the set R0 = ff!1g; : : : ; f!ngg, and the dissim-

ilarity �0. Let r0 = 0 and let �0 be the partial order de�ned by !i �0 !j
i� i = j. For any ! 2 
 we de�ne i(f!g) = 0.

Given Rk�1; �k�1;�k�1 and rk�1, we consider ik = rk�1 and

A2. We choose a pair (hi; hj) 2 R2
k�1 such that �k�1(hi; hj) = ik and it satis�es

the following conditions

A2.1 hi + hj is de�ned.

A2.2 there is no other pair (h�i ; h
�

j) such that hi � h�i , hj � h�j and

�k�1(h
�

i ; h
�

j) = ik.

A2.3 there is a partial linear order on 
, �k, such that all the elements in

Rk�1 [ fhi + hjg are intervals with respect to �k and such that �k

extends �k�1.

A2' If no pair satis�es A2.1, A2.2 and A2.3 then we set a = ik and we consider

a new value of ik := minf�k�1(hr ; hs) : �k�1(hr; hs) > a; hr; hs 2 Rk�1g

and we go back to step A2.

A3. Assume that the pair (hi; hj) chosen in step A2 satis�es conditions A2.1,

A2.2, and A2.3. We say that hi and hj have been joined. We de�ne

hn+k = hi+hj, i(hn+k) = i(hi+hj) = �k�1(hi; hj) and rk = �k�1(hi; hj).

To build the set Rk we consider the set R�

k = Rk�1 [ fhi + hjg and

A3.1 we delete hi from R�

k, if hi has been joined twice;

A3.2 we delete hj from R�

k, if hj has been joined twice;

A3.3 we delete from R�

k all those elements hr in Rk�1 such that i(hr) =

i(hi + hj).

6



A3.4 we delete fromR�

k all those elements hr inRk�1 such that hr � hi+hj
and hr contains none of the extrema of hi + hj (see Figure 4).

Finally, a new dissimilarity �k is de�ned between the groups of the set Rk

in the following way:

�k(h; h
0) =8<

:
0 if h \ h0 2 fh; h0g

�k�1(h; h
0) if h; h0 2 Rk�1

maxff(�k�1(h; hi); �k�1(h; hj); : : :); i(h
0)g if h0 = hn+k = hi + hj

(1)

where f is the function that determines the pyramidal method used, and

which has to be the same within all the process. Usually (see [KR90]) we

consider f = max (Maximum Method which yields the complete link

pyramidal method) or f = min (Minimum Method which yields the

single link pyramidal method) or f = UPGMA (UPGMA method,

see [SM58]).

A4. Steps A.2 and A.3 are iterated until hi+hj contains all the elements of 
.

Figure 4: Step A3.4. The extrema of hs are !1 and !4; the extrema of hr are

!2 and !3; hj = f!4g.

!1 !2 !3 !4

hr

hs = hi + hj

q

q

hi
pq

Note that by conditions A3.1 and A3.2 each group in the pseudo-hierarchy

can only be joined twice. Thus each group can have at most two predecessors.

Conditions A2.2 and A3.3 are the basic points which di�erentiate our al-

gorithm from Diday's one. Thanks to these conditions, the algorithm becomes

faster and the pseudo-hierarchy produced is indexed in the strict sense as shown

in [CGA95]. In addition, as we will see in Theorem 3.1, the pseudo-hierarchy

built by the algorithm introduced does not present inversions nor crossings, and

therefore the inversion problems of Diday's algorithm are solved.

Theorem 3.1 ([CGA95]) The algorithm PIRAM of pyramidal classi�cation,
together with the clustering index de�ned in (1), builds an indexed pseudo-
hierarchy without crossings nor inversions.

Proof: It is straightforward to see that this pyramidal classi�cation algorithm

builds an indexed pseudo-hierarchy. The proof is similar to the proof that Di-

day's algorithm also builds an indexed pseudo-hierarchy (see [Did86b, Did86a]),

and will be omitted here.
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Due to condition A2.3, the order �P is a total order on 
 such that all the

elements of the pseudo-hierarchy are intervals with respect to this order. Due

to condition A3.4, the group hr, which is deleted from R�

k, will never be joined

in a posterior step of the algorithm. This two facts make the pseudo-hierarchy

crossings-free, that is, the resulting indexed pseudo-hierarchy will not present

crossings (see Figure 4).

Concerning inversion, by A2', the de�nition of �k(h; h
0) in (1) 2 and the use

of the sequence r0; : : : ; rm, the pseudo-hierarchy will also be inversion-free.

From this algorithm we have developed a system for pyramidal classi�cation

(called PIRAM1.0) such that, starting from the number of individuals to classify

and a matrix containing the dissimilarities between them, the system classi�es

individuals by the Minimum, Maximum and UPGMA methods, giving as an

output an indexed pseudo-hierarchy in the strict sense, and the corresponding

pyramidal tree. As �tting measurements between the pyramidal structure ob-

tained and the initial structure of population, the correlation coe�cient � and

the 
 coe�cient of Goodman-Kruskal are calculated, both de�ned between the

pyramidal dissimilarity obtained and the initial dissimilarity.

4 Monte Carlo evaluation of the pyramidal clas-

si�cation methods.

Based on the algorithm PIRAM and on the corresponding computer system

PIRAM1.0, several Monte Carlo simulation tests have been performed. The

goal is to assess in an empirical way the e�ciency and sensitivity of the Mini-

mum, Maximum and UPGMA pyramidal methods in regaining the pyramidal

structure underlying in the initial data, always in terms of the expected mean

value of the 
 and � coe�cients. In this study we follow the methodology in-

troduced by F. B. Baker in [Bak74] to compare two hierarchical procedures

but with several modi�cations other than the obvious di�erence between the

structures considered. The main di�erences are the following: a) the \noises"

added to the initial dissimilarities follow a normal distribution instead of being

of the form RbKX where Rb is the basal value, K is an a priori constant and
X is a random number �1 � X � 1; and b) we compare the \initial" and the

\�nal" dissimilarities but we also compare the \perturbed" dissimilarity with

the \�nal" dissimilarity. This latter comparison makes it possible to evaluate

the behaviour of the algorithm when studying arbitrary structures and to com-

pare the spread of the distribution of the coe�cients in the general case and for

certain particular cases.

In the simulation tests, populations of n = 4; 5; 6; 10;16;20 individuals have

been considered. For each of these populations, we have �xed two dissimilari-

ties, �P(n) and �E(n). While the dissimilarities �P(n) are chosen to be strictly

Robinsonian, corresponding to strictly pyramidal structures, the dissimilari-

ties �E(n) are chosen to be enchained ultrametric. These dissimilarities are

called basal dissimilarities and are displayed in Appendix A. Let �P(n) and

�E(n) be the standard deviation of the corresponding dissimilarities. Next, we

have perturbed 10,000 times each of the basal dissimilarities �B(n); B 2 fP;Eg

with three random variables �k(n; i) � N (0; �kB(n)) for k 2 fl;m; hg such that

2note that by this de�nition �k(h;hn+k) � i(hn+k)
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�lB(n) = �B(n)=3; �
m
B (n) = �B(n) and �hB(n) = 3�B(n). In this way �kB(n)

becomes a measure of the distortion degree (error level) introduced in the

basal structures (k = l: (l)ow, k = m (m)edium, k = h (h)igh) and we ob-

tain, for each basal dissimilarity and each i � 10; 000, three new dissimilarities

�kB(n; i) = �B(n) + �k(n; i) with k 2 fl;m; hg, B 2 fP;Eg, called perturbed
dissimilarities.

From the perturbed dissimilarities, and by using the system PIRAM1.0, we

compute the dissimilarities associated with the pyramidal structure obtained by

using the method of the Maximum (dkB(MAX;n; i)), Minimum (dkB(MIN; n; i))

and UPGMA (dkB(UPGMA;n; i)). Finally, the obtained Robinsonian dissim-

ilarity is compared with both the perturbed and the basal dissimilarities. See

Figure 12 for a graphical display of the whole process. We have called test S1

the test in which the basal dissimilarities are strictly Robinsonian and test S2

the test in which the basal dissimilarities are enchained ultrametric. The results

obtained in test S1 are shown in Tables 1 and 3 and the ones obtained in test

S2 in Tables 2 and 4.

5 Results and conclusions

Next we discuss the empirical results of the tests S1 and S2 reported in see

Appendix C and based in 10,000 samples for each n.

Concerning sensitivity to data errors of the pyramidal classi�cation methods,

we should study the in
uence of small variations of the initial dissimilarities on

the pyramidal structure obtained through the algorithm. As a �rst approach

we can state that for each value of n, for each level of perturbation and each

basal dissimilarity, as the distortion level increases the value of the coe�cients

M
 and M� decrease and the value of S
 and S� increase.

Concerning the e�ciency of the methods considered, if the original struc-

ture of the population is strictly pyramidal, when looking at the comparison

Basal/Final (Table 1), we can observe that the values of 
 and � obtained for

the Maximum method are higher than for any other method. In addition, the

values of the standard deviation of the coe�cients are also smaller for the Max-

imum method, independently of the number of individuals and of the pertur-

bation level considered, as can be seen in the following table, that summarizes

the behaviour of the coe�cients for each error level and each method:

Methods

Error level Coe�cient Maximum UPGMA Minimum

low M
 �0.99 �0.75 �0.6

S
 �0.02 �0.1 �0.1

medium M
 0.85!0.90 �0.75 �0.6

S
 0.05!0.17 �0.1 �0.1

high M
 0.37!0.45 0.28!0.34 0.16!0.36

S
 0.39! 0.13 0.37 !0.14 0.37 ! 0.10

Concerning the average value for M� and S�, at the low error level the value of

M� is 0.99 and the value of S� is 0.01 for the Maximum method, while for the

other two methods the values of M� are smaller and the values of S� greater

(roughly 0.09). At the medium error level the values of M� for the Maximum

method are 10% lower than the corresponding to the low error level and the
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values of S� are 10% higher; for the other two methods the values of M� are

considerably less and the values ofM� are slightly higher than for the Maximum

case. At the high error level, the values of M� are less than at the low error

level and the values of S� tend to be very high. So we can conclude that the

Maximummethod produces better results and more homogeneous. Concerning

sensitivity to data errors, the Maximum method is the least sensitive; even at

the medium error level it regains the initial structure yielding \good" values

for the coe�cients. The UPGMA method is more sensitive to data error, but

at the high error level it is similar to the Maximum method. The Minimum

method exhibits some di�culties in regaining the initial structure and so it is

more sensitive to data errors.

Thus, from an empirical point of view we can state that if the initial structure

of the population is strictly pseudo-hierarchical (not a hierarchy), the pyramidal

method of the Maximum regains the pseudo-hierarchical structure underlying

in the initial data in a better way than the other two methods and it is the least

sensitive to the introduction of noise in the original data, so it will produce a

better classi�cation; the Minimum method is the most sensitive to data errors

and the classi�cation produced by this method will less resemble the initial

structure than the classi�cation produced by any of the other methods.

If the structure of the population is ultrametric enchained the values of 


and � obtained for the Minimum method are higher than the ones obtained by

the other methods, as can be seen in the following table, that summarizes the

results displayed in Table 2.

Methods

Error level Coe�cient Maximum UPGMA Minimum

low M
 0.97 0.98 0.98

S
 0.02 0.02 0.02

medium M
 0.63!0.91 0.79 ! 0.93 0.83 ! 0.93

S
 0.06!0.19 0.06!0.19 0.06!0.19

high M
 0.21!0.48 0.35 !0.45 0.42 ! 0.49

S
 0.40! 0.12 0.56!0.16 0.56 ! 0.14

We should note that although the range of values and the maximum values

of M
 are similar for the three methods, the values of M
 decrease at a faster

rate for the UPGMA method than did for the Minimummethod, and faster for

the Maximum method than for the UPGMA. In addition, the minimum value

of the coe�cients is smaller for the Maximum case that for the UPGMA and

smaller for the UPGMA than for the Minimum. The Minimum method yields

stable and homogeneous values for the low and medium error level, while at the

high perturbation level the values are stable, with small deviations. So, in this

case we can see that the Minimum method exhibits less sensitivity, and that a

signi�cant decrease of the values of M
 and M� and a signi�cant increment of

S
 and S� is only obtained when the error level is high. For instance, we can

observe that for the Minimum method the value of M
 decreases a 14% when

we go from the low error level to the medium error level, while in the other two

cases this coe�cient decreases a 17% for the UPGMA method and a 30% for

the Maximum case.

Finally, we can conclude that if the structure of the initial data is enchained

ultrametric, the Minimum method yields a better classi�cation of the popula-

tion. Thus in this case the most e�cient method is the Minimum one. This

10



method is also the least sensitive to data errors. These results follow from a

more general result, proved in [CGA95], which states that the Minimum pyra-

midal method and the Hierarchical Minimum method are the same, and, as it

is well known, the last one tends to produce enchained ultrametric structures.

Concerning the relation Perturbed/Final, the di�erences between the coef-

�cients M
 and M� increase as n grows, M
 being lower than M�. Analyzing

the values of the coe�cient for each of the methods, we can see that for the

Maximum method the values of M
 in the strictly pyramidal case are quite

lower than the corresponding values of M�

In addition, the simulation tests performed and the results obtained make it

possible to draw some conclusions concerning the independence of our algorithm

with respect to the initial structure of the population. Note that when the

error level is high, we can consider that the perturbed dissimilarities have been

generated randomly from normal distributions. In this case we can observe

that the results of Tables 3 and 4 are very similar, independently of the initial

structure of the data (for the Maximum method the di�erence between the

values of 
 and � for the cases enchained and strictly pyramidal and the highest

error level is, at the most of 0.02); also, the standard deviations are quite small,

so we can conclude that the algorithm is independent of the initial structure of

the population. Besides, the low values of � suggest that the results obtained

when comparing the initial and the �nal dissimilarities are signi�cant, because

of the concentration of the values of the coe�cients around their mean value.

So, we can conclude that, although some methods are better for certain initial

structures, the algorithm exhibits an uniform behaviour.

At the low and medium error level, the Maximum method yields better

results that the other two methods, independently of the basal structure con-

sidered. By examining the two extremal cases we can see that if the basal

structure is enchained, up to medium perturbation on the data, the methods

produce similar results; for the strictly pyramidal basal structure, the maximum

yields very good values while the other are worse. From these facts and the pre-

vious discussion we can conclude that if we have a priori information concerning

the structure of the population, indicating that the structure is enchained, then

the best method we can use is the Minimumone. In absence of this kind of infor-

mation or with information suggesting any other basal structure, the Maximum

method will produce better results.

11



A Basal Dissimilarities used in tests S1 and S2

A.1 Enchained dissimilarities (Test S1)

Figure 5: �E(n); �E(4) = 0:74, �E(5) = 0:1, �E(6) = 1:25, �E(10) = 2:21,

�E(16) = 3:63, �E(20) = 4:64
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A.2 Strictly Robinsonian dissimilarities (Test S2)

Figure 6: �P(4); �P(4) = 1:37
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Figure 7: �P(5); �P(5) = 1:56
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Figure 8: �P(6); �P(6) = 1:5
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Figure 9: �P(10); �P(10) = 1:7
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Figure 10: �P(16); �P(16) = 2:43
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Figure 11: �P(20); �P(20) = 2:4
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B The simulation process

Figure 12: Tests S1 and S2
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C Tables

Means (MX ) and standard deviations (SX ) of the values of the coe�cients


 and � calculated between the basal or perturbed dissimilarities and the �nal

(Robinsonian)dissimilarity obtained by the methods of the Maximum,Minimum

and UPGMA.

Table 1: Basal dissimilarity: Strictly Robinsonian; Comparison Basal-Final

Maximum UPGMA Minimum
n �nk M
 S
 M� S� M
 S
 M� S� M
 S
 M� S�
4 l 1.00 0.03 0.99 0.01 0.99 0.07 0.87 0.06 0.99 0.07 0.82 0.07

m 0.88 0.17 0.87 0.13 0.79 0.28 0.68 0.22 0.81 0.28 0.65 0.20
h 0.45 0.42 0.46 0.39 0.34 0.45 0.33 0.37 0.36 0.47 0.33 0.37

5 l 0.99 0.02 0.98 0.01 0.73 0.13 0.81 0.09 0.63 0.04 0.67 0.09
m 0.83 0.17 0.87 0.11 0.61 0.18 0.65 0.17 0.60 0.17 0.60 0.14
h 0.38 0.31 0.44 0.31 0.31 0.32 0.34 0.30 0.31 0.32 0.33 0.30

6 l 0.99 0.02 0.98 0.01 0.49 0.14 0.52 0.10 0.45 0.10 0.47 0.06
m 0.85 0.14 0.88 0.10 0.53 0.17 0.56 0.14 0.48 0.14 0.49 0.10
h 0.37 0.27 0.43 0.27 0.28 0.26 0.31 0.24 0.27 0.24 0.29 0.22

10 l 0.99 0.01 0.98 0.01 0.76 0.10 0.77 0.07 0.59 0.16 0.64 0.08
m 0.87 0.08 0.66 0.15 0.68 0.10 0.52 0.17 0.56 0.10 0.57 0.11
h 0.40 0.19 0.29 0.21 0.33 0.18 0.22 0.18 0.27 0.16 0.25 0.18

16 l 0.98 0.01 0.98 0.08 0.77 0.05 0.59 0.16 0.62 0.08 0.63 0.06
m 0.90 0.05 0.73 0.11 0.74 0.06 0.56 0.16 0.60 0.09 0.57 0.08
h 0.41 0.14 0.29 0.18 0.37 0.14 0.18 0.13 0.27 0.12 0.25 0.10

20 l 0.98 0.01 0.99 0.00 0.78 0.07 0.80 0.04 0.53 0.15 0.61 0.09
m 0.85 0.10 0.91 0.05 0.72 0.10 0.76 0.06 0.54 0.17 0.60 0.09
h 0.26 0.15 0.38 0.13 0.28 0.18 0.36 0.14 0.16 0.11 0.25 0.10

Table 2: Basal dissimilarity: Enchained; Comparison Basal-Final

Maximum UPGMA Minimum
n �nk M
 S
 M� S� M
 S
 M� S� M
 S
 M� S�
4 l 0.95 0.07 0.99 0.01 0.84 0.13 0.88 0.06 0.99 0.05 0.83 0.07

m 0.95 0.07 0.97 0.05 0.79 0.17 0.78 0.17 0.88 0.19 0.76 0.16
h 0.95 0.07 0.95 0.07 0.76 0.20 0.73 0.20 0.79 0.21 0.73 0.19

5 l 0.96 0.04 0.99 0.01 0.66 0.16 0.82 0.09 0.55 0.10 0.67 0.10
m 0.89 0.09 0.95 0.05 0.62 0.18 0.71 0.16 0.61 0.19 0.68 0.16
h 0.84 0.10 0.89 0.08 0.64 0.18 0.68 0.18 0.65 0.19 0.67 0.17

6 l 0.94 0.04 0.99 0.01 0.44 0.14 0.54 0.11 0.42 0.11 0.5 0.07
m 0.85 0.08 0.93 0.05 0.53 0.17 0.63 0.15 0.51 0.17 0.59 0.13
h 0.75 0.10 0.84 0.08 0.56 0.15 0.64 0.15 0.54 0.16 0.61 0.14

10 l 0.84 0.04 0.98 0.01 0.62 0.10 0.76 0.07 0.49 0.16 0.65 0.08
m 0.67 0.08 0.86 0.05 0.50 0.11 0.67 0.09 0.43 0.13 0.60 0.10
h 0.50 0.08 0.70 0.07 0.40 0.10 0.55 0.11 0.33 0.12 0.50 0.12

16 l 0.78 0.04 0.98 0.01 0.61 0.08 0.76 0.05 0.48 0.15 0.64 0.08
m 0.57 0.07 0.84 0.03 0.47 0.07 0.68 0.06 0.38 0.11 0.59 0.08
h 0.34 0.06 0.59 0.05 0.30 0.06 0.48 0.07 0.22 0.07 0.41 0.09

20 l 0.80 0.04 0.98 0.00 0.63 0.07 0.78 0.04 0.44 0.15 0.62 0.08
m 0.58 0.06 0.83 0.03 0.49 0.07 0.68 0.05 0.38 0.12 0.58 0.08
h 0.28 0.05 0.54 0.05 0.26 0.06 0.45 0.06 0.18 0.06 0.37 0.08
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Table 3: Basal dissimilarity: Strictly Robinsonian; ComparisonPerturbed-

Final
Maximum UPGMA Minimum

n �nk M
 S
 M� S� M
 S
 M� S� M
 S
 M� S�
4 l 1.00 0.00 0.98 0.01 1.00 0.00 0.99 0.01 1.00 0.00 0.99 0.01

m 0.91 0.15 0.89 0.09 0.93 0.19 0.93 0.10 0.93 0.19 0.93 0.10
h 0.48 0.40 0.49 0.37 0.42 0.56 0.47 0.50 0.42 0.56 0.47 0.49

5 l 1.00 0.00 0.98 0.01 1.00 0.00 0.99 0.01 1.00 0.00 0.99 0.01
m 0.85 0.14 0.88 0.08 0.90 0.17 0.92 0.08 0.91 0.17 0.92 0.08
h 0.42 0.30 0.47 0.29 0.43 0.42 0.47 0.39 0.44 0.43 0.48 0.38

6 l 1.00 0.01 0.98 0.01 1.00 0.00 0.99 0.01 1.00 0.00 0.99 0.01
m 0.82 0.12 0.87 0.07 0.89 0.15 0.91 0.08 0.89 0.16 0.92 0.07
h 0.38 0.25 0.44 0.26 0.42 0.35 0.47 0.34 0.44 0.37 0.48 0.34

10 l 0.96 0.02 0.98 0.01 0.99 0.03 0.99 0.01 0.99 0.02 0.99 0.00
m 0.73 0.10 0.84 0.07 0.84 0.11 0.91 0.05 0.86 0.10 0.92 0.04
h 0.30 0.17 0.38 0.18 0.39 0.24 0.46 0.23 0.45 0.24 0.53 0.23

16 l 0.94 0.02 0.98 0.01 0.97 0.03 0.99 0.00 0.98 0.03 0.99 0.00
m 0.66 0.11 0.79 0.09 0.80 0.08 0.90 0.04 0.83 0.08 0.92 0.03
h 0.23 0.14 0.31 0.14 0.35 0.18 0.44 0.18 0.46 0.17 0.56 0.17

20 l 0.93 0.02 0.98 0.01 0.96 0.03 0.99 0.00 0.97 0.02 0.99 0.00
m 0.63 0.11 0.77 0.09 0.79 0.07 0.90 0.04 0.83 0.06 0.93 0.02
h 0.21 0.12 0.29 0.12 0.35 0.16 0.43 0.16 0.49 0.14 0.60 0.14

Table 4: Basal dissimilarity: Enchained; Comparison Perturbed-Final

Maximum UPGMA Minimum
n �nk M
 S
 M� S� M
 S
 M� S� M
 S
 M� S�
4 l 1.00 0.00 1.00 0.00 1.00 0.00 0.99 0.01 1.00 0.00 0.99 0.01

m 0.99 0.04 0.98 0.03 0.93 0.14 0.90 0.09 0.93 0.13 0.90 0.90
h 0.96 0.07 0.96 0.06 0.78 0.21 0.75 0.19 0.79 0.21 0.75 0.18

5 l 0.98 0.02 0.99 0.01 1.00 0.01 0.98 0.01 1.00 0.00 0.98 0.01
m 0.94 0.07 0.97 0.03 0.86 0.13 0.88 0.08 0.86 0.13 0.88 0.07
h 0.86 0.09 0.91 0.08 0.65 0.18 0.70 0.16 0.66 0.19 0.69 0.16

6 l 0.97 0.02 0.99 0.01 1.00 0.01 0.98 0.01 1.00 0.01 0.98 0.01
m 0.88 0.07 0.94 0.04 0.81 0.11 0.87 0.07 0.81 0.11 0.86 0.07
h 0.77 0.10 0.86 0.08 0.58 0.15 0.67 0.14 0.57 0.16 0.65 0.15

10 l 0.93 0.02 0.98 0.01 0.95 0.03 0.97 0.01 0.96 0.02 0.98 0.01
m 0.74 0.07 0.88 0.04 0.72 0.07 0.84 0.05 0.71 0.07 0.84 0.04
h 0.53 0.09 0.71 0.08 0.44 0.10 0.58 0.10 0.41 0.11 0.56 0.10

16 l 0.89 0.02 0.97 0.01 0.91 0.02 0.97 0.00 0.91 0.02 0.97 0.00
m 0.63 0.08 0.81 0.06 0.66 0.05 0.82 0.04 0.66 0.04 0.82 0.03
h 0.36 0.07 0.58 0.06 0.35 0.07 0.52 0.07 0.32 0.07 0.48 0.08

20 l 0.88 0.02 0.97 0.01 0.90 0.02 0.97 0.00 0.90 0.01 0.97 0.00
m 0.59 0.08 0.78 0.06 0.65 0.04 0.81 0.03 0.64 0.03 0.82 0.02
h 0.31 0.06 0.53 0.05 0.32 0.07 0.50 0.06 0.30 0.06 0.45 0.07
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