
Finite Horizon Bargaining and the Consistent
Field�

Armando Gomes† Sergiu Hart‡ Andreu Mas-Colell§

April 1997

Abstract

This paper explores the relationships between noncooperative bargaining games
and the consistent value for non-transferable utility (NTU) cooperative games. A
dynamic approach to the consistent value for NTU games is introduced: the con-
sistent vector field. The main contribution of the paper is to show that the con-
sistent field is intimately related to the concept of subgame perfection for finite
horizon noncooperative bargaining games, as the horizon goes to infinity and the
cost of delay goes to zero. The solutions of the dynamic system associated to the
consistent field characterize the subgame perfect equilibrium payoffs of the non-
cooperative bargaining games. We show that for transferable utility, hyperplane
and pure bargaining games, the dynamics of the consistent field converge globally
to the unique consistent value. However, in the general NTU case, the dynam-
ics of the consistent field can be complex. An example is constructed where the
consistent field has cyclic solutions; moreover, the finite horizon subgame perfect
equilibria do not approach the consistent value.
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1. Introduction

This paper belongs to a general research program which studies the relationships be-

tween equilibria ofn-player noncooperative games and axiomatically generated solu-

tions for the cooperative game described in coalitional form. Here we carry out an

exploration based on the theory of differentiable dynamic systems.

For n-person situations of pure bargaining (where the cooperation of all players is

needed to achieve an outcome different from the threat values), the classical solution

concept proposed by axiomatic cooperative game theory is theNash(1950)bargaining

solution. Interestingly, the Nash solution has also been arrived at as a limit — when

the cost of delay in agreement becomes small — of the subgame perfect equilibria of

models of bargaining in extensive form (in particular, of the St˚ahl (1972) – Rubinstein

(1982) model of alternating offers; see Binmore (1987) and the book of Osborne and

Rubinstein (1990) for these and other models).

Similarly, for n-player games with transferable utility (TU), theShapley(1953)

value is a central solution concept derived by axiomatic cooperative game theory.

Again, bargaining models in extensive form have been proposed, whose solutions co-

incide with, or converge to, the Shapley value (Harsanyi (1981), Gul (1989), Hart and

Moore (1990), Winter (1994), Hart and Mas-Colell (1996b)).

The theory is less settled for the general non-transferable utility (NTU) games in

coalitional form. In this paper we focus on theconsistent (NTU-) value, an axiomatic

solution proposed by Maschler and Owen (1989, 1992), which generalizes both the

Nash solution for the pure bargaining case and the Shapley value for the TU case.

The point of departure for our current research is Hart and Mas-Colell (1996b), which

contains an analysis of an infinite horizon noncooperative bargaining game whose sta-

tionary subgame perfect equilibria are close, when the parameter that measures the cost

of delay in agreement is low, to the consistent values.

The present paper starts by developing a dynamic approach to the consistent value.
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It generalizes to NTU games some dynamic processes put forward by Maschler, Owen

and Peleg (1988) for pure bargaining games and by Maschler and Owen (1989) for

hyperplane games (an extension of TU games), and which, in these cases, globally

converge to the unique consistent value. Motivated by the axiomatic concept of con-

sistency we introduce the concept ofconsistent (vector) field. Roughly speaking, the

consistent field is defined, for every payoff configuration at the Pareto frontier, as the

direction to move locally along the frontier in order to reduce the “inconsistency” of

the payoff. The singularities of the consistent field are the consistent values and the so-

lutions (or flows) of the dynamic system associated with the consistent field constitute

a natural way by which players starting from arbitrary payoffs could adjust.

The main contribution of the paper is to show that the consistent field is intimately

related to subgame perfection for finitely horizon noncooperative bargaining games,

providing thus an unexplored link between the cooperative and noncooperative theoret-

ical formulations. The specific noncooperative bargaining game we study is thefinite

horizonversion of the bargaining game introduced by Hart and Mas-Colell (1996b).

Informally, this noncooperative game is a sequential game where the players have up to

T stages to reach an agreement. At each stage a player is selected at random to propose

a particular way to split the gains from cooperation, and will be ousted from the game

with a probability of 1� ρ if an unanimous agreement is not reached. The subgame

perfect Nash equilibrium (SPNE) of this game is easily obtained by backward induc-

tion, and the problem we address is to develop a characterization of the SPNE payoffs,

denotedw(ρ;T); for a low cost of delay factor 1�ρ and a large numberT of potential

rounds of negotiation.

We show that the limit ofw(ρ;T) depends on the relative rates at which 1� ρ
converges to 0 andT converges to infinity. Asρ converges to 1 andT converges to

infinity, in such a manner that the probabilityρT of all players remaining at the last

stage of the game converges to 1 — thus the convergence ofT to infinity is much

slower than the convergence ofρ to 1 — the SPNE payoffsw(ρ;T) converge tor;

a well defined, efficient point; we callr theRaiffa point. In the two-player case, this

result was obtained by Sj¨oström (1991), the pointr being the Raiffa bargaining solution
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(see Luce and Raiffa (1957,x6.7)).

Next, assume that the rate at whichT converges to infinity increases, so that the

probability of all players remaining at the last stage converges now to someµ< 1 (i.e.,

ρT ! µ or T(1�ρ)!� lnµ). We prove that in this case the SPNE payoffsw(ρ;T)

converge to the solution, at timet = � lnµ2 [0;∞); of the dynamic system associated

with the consistent field and having the Raiffa pointr as its initial condition att = 0:

We also show that if this solution trajectory starting atr converges, ast goes to infinity,

to a (local) attractora of the consistent field, thena is the limit of any sequence of

SPNE payoff whenρT converges to zero (and, of course,ρ ! 1 andT ! ∞). Finally,

we show that any point in the limit set of the trajectory of the consistent field solutions

through the Raiffa point can be reached as the limit of SPNE payoffs of an appropriate

sequence of finite horizon games withρT ! 0 (andρ! 1; T ! ∞).

All these results indicate that we can attach significance to the dynamic proper-

ties of the consistent field both on cooperative and noncooperative theory grounds, and

therefore we conclude that it is a vector field well worth analyzing in more depth. In

that vein, we show that the global dynamics are convergent to the unique consistent

value in the pure bargaining and in the hyperplane games cases. For the general case

we analyze the local dynamics of the consistent field around a consistent value. We

show that this local dynamics is composed of a “game part”, which depends only on

the particular consistent value, and a “geometry part”, which depends only on the cur-

vature of the Pareto frontier at the consistent value. Exploiting this relationship we can

construct examples with a wide variety of local behaviors: sink, source, saddle point.

We can also, using Hopf bifurcation theory, construct an NTU game where the consis-

tent field has cyclical solutions, thus indicating that the limit of SPNE solutions of finite

horizon bargaining games could well be a point which isnot a consistent value. This is

in contrast to the global convergence of the consistent field in the TU, hyperplane, and

pure bargaining cases. All this confirms once more the intuition that pure bargaining

games and TU (or, more generally, hyperplane) games are the most well behaved of

the NTU games, and thus the easier to analyze. The game theoretic behavior of general

NTU games is however considerably more complex than what one may be led to sus-
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pect from an analysis of these two cases. We refer to Hart and Mas-Colell (1996a) for

further elaboration of this point.

The paper is organized as follows: Section 2 presents the basic model — the under-

lying cooperative game in coalitional form, and the noncooperative bargaining game

— followed by a preliminary analysis of the subgame perfect equilibria of the latter.

Section 3 recalls the definition of the consistent NTU-value, and introduces the consis-

tent field and its associated dynamics. The results connecting the SPNE payoffs with

the dynamics of the consistent field are stated in Section 4. A (local) analysis of the

consistent field is carried out in Section 5; we then provide various examples for the

behavior of the resulting dynamics (and thus,a fortiori, of the SPNE payoffs). Proofs

are relegated to the Appendix.

2. The Model

Let (N;V) be anon-transferable utility (NTU) n-person game in coalitional form. The

set of players isN = f1;2; : : : ;ng andV is the coalitional (characteristic) function. For

each coalitionS� N, the setV(S) — a subset ofℜS — is the set of all allocations that

are feasible for the members ofS.

We make the following standard assumptions on(N;V):

(A1) For each coalitionS, the setV(S) is closed, convexandcomprehensive(i.e., if

x2V(S) andy� x theny2V(S)). Moreover, 02V(S):

(A2) For each coalitionS, the boundary (or Pareto frontier) ofV(S), denoted by

∂V (S), is C2 (i.e., at each boundary point there is a single outward normal di-

rection, which varies in a continuously differentiable manner with the point) and

nonlevel(i.e., the outward normal vector at any point of∂V(S) is positive in all

coordinates).

(A3) Monotonicity: If Z� S thenV(Z)�f0SnZg �V(S) (i.e., completing a vector in

V(Z) with 0’s for the coordinates inSnZ results in a vector inV(S)).
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The noncooperative game we analyze is the finitely repeated version of the game

introduced by Hart and Mas-Colell (1996b). Then-person noncooperative bargaining

game(N;V;ρ;T); whereρ 2 [0;1] andT is a positive integer, is described inductively

as follows:

The game is a perfect information game consisting of at mostT rounds of

negotiation. In each roundt there is a setS� N of active players who can

reach an agreement, starting in the first round(t = 1) with S= N. One

player inS is chosen randomly, with all players inS equally likely to be

selected. Say playeri has been chosen. Theni proposes a feasible payoff

vector inV(S) to the other players inS. They can either agree or not (they

are asked in some prespecified order). The game ends with the proposed

payoffs if all players inSagree, or with payoffs equal to 0 if it is the last

roundt = T and there is no agreement. Otherwise, the game moves to the

next roundt+1; where with probabilityρ the set of active players does not

change, and with probability 1�ρ it becomesSni. In the latter case, the

payoff of the “dropped out” playeri is 0.

Thesubgame perfect Nash equilibrium (SPNE)of the above finite game with per-

fect information can be easily obtained by backward induction. Suppose that in the last

step of negotiation,T, the players in the coalitionShave “survived”. The equilibrium

strategies for these remaining players are as follows. If playeri 2 S is chosen to be the

proposer (which occurs with probability 1= jSj), theni’s strategy is to propose that vec-

tor eS;i 2 ∂V(S) such thatej
S;i = 0 for all j 2 Sni (efficiency then uniquely determines

the payoff of playeri). The strategy for eachj 2Sni is to accept anyxS2V(S) such that

xj
S� 0: The (expected) equilibrium payoff vector (before the selection of the proposer)

is theneS := (1=jSj)∑i2SeS;i (note that the convexity ofV(S) implies thateS2V(S)).

At round T � 1 of the negotiation the SPNE strategies are as follows. Suppose

that S is the set of remaining players at this stage. If playeri 2 S is chosen to be

the proposer theni’s strategy is to propose that allocationaS;i 2 ∂V(S) such thataj
S;i =
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ρej
S+(1�ρ)ej

Sni for all j 2Sni: The strategy for eachj 2Sni is to accept anyxS2V(S)

such thatxj
S� ρej

S+(1�ρ)ej
Sni:

The strategy profile above is the unique subgame perfect equilibrium strategy for the

game starting at roundT�1. To prove that, observe that with probabilityρ the proposer

i will remain for the next and last stage, and the expected payoff of the remainingS

players in the continuation game is, as seen above,eS. With probability 1�ρ player

i will drop out of the game, and the expected payoff of the remaining players in the

continuation game iseSni: It follows that the most playerj expects to get by rejecting

an offer of the proposeri is ρej
S+(1�ρ)ej

Sni , which implies that the strategy profile is

the unique SPNE of the game.

To formalize this, define apayoff configuration (p.c.) ato be a collection of payoff

vectors for all coalitions:a = (aS)S�N with aS 2 V(S) for all S� N: The backward

induction arguments are then captured by the following functionFρ : V ! V; where

V := ∏S�N
V(S) is the set of all payoff configurations.

Definition 2.1. The backward induction functionFρ : V !V maps each payoff con-

figurationa= (aS)S�N 2V to a payoff configurationFρ(a) = (bS)S�N 2V given by

(i) bj
S;i = ρaj

S+(1�ρ)aj
Sni for all S� N and all j 2 Sni;

(ii) bS;i 2 ∂V(S) for all i 2 S� N;

(iii) bS=
1
jSj ∑i2SbS;i for all S� N:

The backward induction function provides the expected payoffsFρ(a) at any stage

of the game, given that the payoffs in the continuation game are specified by the config-

urationa= (aS)S�N. The functionFρ is well-defined because of the assumptions (A1)

- (A3) imposed on the game(N;V).

The SPNE payoff configurationof the noncooperative game(N;V;ρ;T) can be

conveniently represented as the payoff configurationw(ρ;T) = (wS(ρ;T))S�N where

wS(ρ;T) is thejSj-dimensional vector representing the unique SPNE payoff vector of

the noncooperative game
�

S;VjS;ρ;T
�

restricted to the coalitionS� N.
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We have just proven above that the continuation games of the noncooperative game

(N;V;ρ;T) starting at roundT andT �1 have SPNE payoff configurations given by

w(ρ;1) = e andw(ρ;2) = Fρ(e); respectively. Now1 e= Fρ(0); where 0= (0S)S�N

is the payoff configuration with all coalitional payoff vectors equal to 0; andFρ(e) =

Fρ(Fρ(0)) = F2
ρ (0) is the second iterate ofFρ evaluated at 0: Proceeding inductively

one obtains the strategy profile of the SPNE and its corresponding payoff configuration:

w(ρ; t) = Fρ(w(ρ; t�1)) for all t. Therefore

Proposition 2.2. The SPNE payoff configuration of the noncooperative game(N;V;ρ;T)

is given byw(ρ;T) = FT
ρ (0); theT-th iterate of the functionFρ evaluated at the payoff

configuration0, whereFρ; the backward induction function, is given by Definition 2.1

above.

3. The Consistent Field

We now turn to the study of dynamics associated with the concept of the consistent

NTU-value, which was introduced by Maschler and Owen (1989, 1992) and analyzed

by Hart and Mas-Colell (1996b). In this section we develop the concept of thecon-

sistent field. This is a vector field defined over the Pareto frontier of the game that,

informally speaking, gives the direction that reduces the “inconsistency” in the payoff

configuration.

We start by recalling the definition of theconsistent valueof an NTU-game(N;V) :

Similarly to the Shapley value, letπ be a permutation of then players, and define

recursively the vector of marginal contributionsdπ (with π(i)-th coordinatedπ(i)
π ) by

dπ(1)
π = max

n
aπ(1) : a2V (fπ(1)g)

o
;and fori > 1 by

dπ(i)
π = max

n
aπ(i) : a2V (fπ(1) ; :::;π(i)g) andaπ( j) = dπ( j)

π for all j < i
o
:

So, for a given orderπ, each playerπ(i) getsdπ(i)
π ; which is the highest possible given

that all the previous playersπ( j) (for j < i) got dπ( j)
π . Consider now the vector of ex-

pected marginal contributionsΨ(N;V) := (1=n!)∑π dπ: SinceΨ(N;V) is an average

1We thank Vincent Feltkamp for pointing out that the induction may be conveniently started at 0:
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of vectors on the boundary∂V (N) of the convex setV(N), it will not in general be

efficient. However, for ahyperplane game(where, for eachS� N; the setV(S) is a

half-space, and so its boundary∂V (S) is a hyperplane), the expected marginal contri-

bution vectorΨ(N;V) is efficient. It is theconsistent valueof the hyperplane game2

(N;V). Further, for each coalitionS� N we haveΨ(S;V) 2 ∂V (S) ; the efficient pay-

off configuration(Ψ(S;V))S�N is called theconsistent value payoff configurationof

the hyperplane game(N;V):

For a general NTU-game, the construction of the consistent value is based on

the hyperplane case. For each efficient payoff configurationa = (aS)S�N 2 ∂V :=

∏S�N ∂V(S)with supporting normal vectorsλS� λS(aS)2ℜS
++ to the boundary∂V (S)

ataS; associate thesupporting hyperplane game(N;V 0
a) defined byV 0

a(S) :=
�

c2ℜS : λS�c� λS�aS
	

for all S� N: Let b� b(a) := (Ψ(S;V 0
a))S�N be the consistent p.c. of the supporting

hyperplane game(N;V 0
a). If b= a thena is aconsistent value payoff configurationof

the NTU-game(N;V) :

Following Hart and Mas-Colell (1996b, Proposition 4), a consistent value payoff

configurationa= (aS)S�N for the game(N;V) can be characterized by

(i) aS2 ∂V(S) for all S� N;

(ii) λS�aS= maxfλS�c : c2V(S)g for all S� N; and

(iii) ∑ j2Sni λi
S(a

i
S�ai

Sn j)= ∑ j2Sni λ
j
S(a

j
S�aj

Sni) for all S�N and eachi 2S:

Conditions (i) and (ii) state that the payoff vectoraS is on the Pareto frontier of

the coalitionSand thatλS is an outward normal vector to the boundary ofV(S) there:

The last condition (iii) may be viewed as a “preservation of average differences” re-

quirement: the average contribution toi from the remaining players equals the average

contribution ofi to the remaining players. We refer to Hart and Mas-Colell (1996b) for

further details. In particular, under our assumptions, consistent value p.c.’s exist and

are always non-negative.

2In the special that(N;V) is a TU-game, this is the Shapley value.
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Maschler, Owen and Peleg (1988) and Maschler and Owen (1989) have proposed

dynamic processes adapted to the consistent value for pure bargaining games3 and for

hyperplane games. We proceed to do this here for the general NTU case.

The dynamic approach to the consistent value that we analyze is an explicit proce-

dure that, starting from an arbitrary efficient p.c., adjusts the payoffs in the direction

indicated by the above characterization of the consistent value. The adjustment process

can be described as follows. Given an efficient p.c.a = (aS)S�N 2 ∂V; the payoffs

for each coalitionSare adjusted, assuming that the players inSalready agree with the

payoffsaZ for the smaller coalitionsZ $ S. Considering the supporting hyperplane

game(S;V 0
a) at a; and fixing the payoffs for the subcoalitions ofS; then, in order to

bring about consistency for the coalitionS, the payoffaS would need to be changed to a

payoffbS(a) in the hyperplaneV 0
a(S) satisfying the preservation of average differences;

i.e.,

λS(aS) �bS(a) = λS(aS) �aS; and

∑
j2Sni

λi
S(aS)(b

i
S(a)�ai

Sn j) = ∑
j2Sni

λ j
S(aS)(b

j
S(a)�aj

Sni): (3.1)

The change in the payoffaS is equal toCS(a) := bS(a)�aS; and theconsistent fieldat

a is defined to beC(a) = (CS(a))S�N. Thus, theS-coordinateCS of the consistent field

vector gives the direction in which to move locally along the efficient frontier∂V (S) so

that the consistency of the payoffs for the players in coalitionS is reduced, given that

the payoffs for the subcoalitions ofSare unchanged. The explicit expression produced

by (3.1) is given in the following definition.

Definition 3.1. Theconsistent field(or C-field) associated with the NTU-game(N;V)

is the vector fieldC(�) over the boundary∂V; with C(a) = (CS(a))S�N for anya2 ∂V

defined by the expression

Ci
S(a) =

1
jSjλi

S(a)
∑

j2Sni

�
λ j

S(a)(a
j
S�aj

Sni)�λi
S(a)(a

i
S�ai

Sn j)
�

(3.2)

3In the pure bargaining case, the consistent value coincides with the Nash bargaining solution.
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for all S� N andi 2 S, whereλS(a) is the unit normal vector to the boundary∂V(S) at

aS:

It is a simple computation to verify the equivalence of (3.1) and (3.2); it is actually

useful to write this expression yet another way, namely

Ci
S(a) =

1
jSjλi

S(a)

 
λS(a) �aS� ∑

j2Sni

�
λ j

S(a)a
j
Sni�λi

S(a)a
i
Sn j

�!
�ai

S: (3.3)

Note thatλS(a) �CS(a) = 0; thusC is indeed a vector field over the boundary∂V. The

singularities of the consistent field, i.e., the payoff configurationsa such thatC(a) = 0;

are precisely the consistent value p.c.’s of the game(N;V). Finally, note that whenever

a � 0 andai
S = 0 for somei and S; thenCi

S(a) � 0 (see (3.3) and useλS(a) � aS�
λS(a) � (aSni;0); which holds since(aSni;0) 2 V(S) by the monotonicity assumption

(A3)). Thus the consistent vector field “points inward” at boundary points of∂+V :=

∂V \fa� 0g:
Associated with the consistent fieldC over the boundary∂V is the dynamic system

da=dt = C(a) : For anya in the non-negative part of the boundary∂+V, there is a

unique functionΛt (a) : [0;∞)! ∂+V that satisfies

dΛt (a)
dt

= C(Λt (a)) ; and (3.4)

Λ0(a) = a:

We will refer toΛt (a) as thesolution of the consistent fieldstarting, att = 0; from the

non-negative efficient p.c.a: Note that the solutions are defined on the interval[0;∞)

because, by the “pointing inwards” property of the field, every solution that starts in the

non-negative part of the boundary will remain there. Fort = ∞; we defineΛ∞(a) as the

ω-limit set of the solution, i.e., the set of all limit points ofΛt(a) ast ! ∞:

Example 1: Pure Bargaining Games
An n-person pure bargaining game satisfiesV (S)\ℜS

+ = f0g for all S 6= N. For this

particular case, the consistent field has the same dynamics as the process introduced by
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Maschler, Owen and Peleg (1988). ForS 6= N we have(Λt (a))S� 0; so, the only

dynamics that matters is forS= N: For anya= aN 2 ∂+V (N) with supporting normal

λ(a) = λN(a); (3.2) becomes

Ci(a) =
1

nλi(a) ∑
j2Sni

�
λ j(a)aj �λi(a)ai�

(we have dropped the subscriptN throughout for ease of reading). The dynamics of the

C-field is simple: the unique singularity of the C-field, which is the unique consistent

value and coincides with the Nash bargaining solution, is a global attractor for the

field. (This can be verified by showing that the functionL(a) := ∏i2N ai is a Lyapunov

function for the C-field; see Maschler, Owen and Peleg (1988)).

Example 2: Hyperplane Games
Let the hyperplane game(N;V) be given for each coalitionS by the unit normal

vectorλS and by the numberνS such thatV (S) =
�

aS2ℜS : λS�aS� νS
	
: The ex-

pression (3.3) for the C-field becomes

Ci
S(a) =

1
jSjλi

S

 
νS� ∑

j2Sni
(λ j

Saj
Sni�λi

Sai
Sn j)

!
�ai

S:

First observe that the C-field is a linear function ofa (sinceλS does not change

with aS) and that the unique singularity of the C-field is the unique consistent value.

To characterize the dynamics of the C-field we simply need to determine the sign of

the real part of the eigenvalues ofDC(a); the derivative of the field ata. The expres-

sion above forCi
S(a) immediately implies that the matrixDC(a) is triangular and all

its diagonal entries are�1 (indeed:∂Ci
S(a)=∂aj

Z = 0 if Z is not a subset ofS; more-

over,∂Ci
S(a)=∂ai

S= �1 and∂Ci
S(a)=∂aj

S= 0 for j 6= i): Therefore all the eigenvalues

of DC(a) are equal to�1; implying that the solution of the C-field converges exponen-

tially to the consistent value (e.g., see Palis and de Melo (1982)). Again, we conclude

that the dynamics is very simple: there is only one consistent value which is a global

attractor. A result similar to this has been obtained by Maschler and Owen (1989) for

the “correction function” they propose.
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4. From Subgame Perfect Equilibria to Consistent Field Solutions

We now address the problem of characterizing the SPNE solutions of the noncoopera-

tive game(N;V;ρ;T) as the probability of breakdown decreases to zero and the number

of periods of negotiation increases: That is, we want to find the limit of the SPNE pay-

off configurationsw(ρ;T) asρ ! 1 andT ! ∞: Recall the result of Proposition 2.2

thatw(ρ;T) = FT
ρ (0):

This section will show that the solutionsΛt of the consistent field are intimately

related to the subgame perfect Nash equilibria of the finitely repeated noncooperative

bargaining game. We start by highlighting a basic relationship between the consistent

field C and the backward induction functionFρ: All the proofs are in the Appendix.

Proposition 4.1. The derivative ofFρ(a) with respect toρ at any pointa2 ∂V satisfies

dFρ(a)

dρ jρ=1
=�C(a):

This result will be most useful because we are interested in the limit asρ converges

to 1 of the iterates of the functionFρ. Observing that forρ = 1 we haveF1(a) = a for

all a 2 ∂V, the result roughly states that, for efficient payoffs andρ close enough to

1, Fρ(a) can be approximated bya+(1�ρ)C(a) : This suggests a natural relationship

between the limit ofFT
ρ asT ! ∞ andρ ! 1 and the solution of the dynamic system

associated with the consistent field.

We first consider the case where there is no breakdown, i.e. whenρ = 1:

Proposition 4.2. For any payoff configurationa 2 V; the limit asT ! ∞ of FT
1 (a)

exists and is an efficient payoff configuration:limT!∞ FT
1 (a) 2 ∂V:

In particular, this proposition implies that the limit asT !∞ of the SPNE payoffs,

i.e. limT!∞ FT
1 (0), exists and is efficient (this was shown by Sj¨oström (1991) in the

two-player case). We call this point the Raiffa point (see Luce and Raiffa (1957,x6.7)).

Definition 4.3. TheRaiffa payoff configurationof the game(N;V); denotedr � r(N;V);

is given byr := limT!∞ FT
1 (0) :
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Depending on the rates at whichρ! 1 andT !∞; the SPNE p.c. may converge to

different limits. Specifically, those turn out to depend on the limit ofρT ; the probability

that all players remain up to the last stage of the game: If ρ ! 1; T ! ∞ andρT ! 1;

meaning thatT converges to infinity much slower thanρ converges to 1, then we will

see thatw(ρ;T) converges to the Raiffa p.c.r. As the relative rate at whichT converges

to infinity increases, so that the probabilityρT of all players remaining at the last stage

converges to someµ < 1; then we will see thatw(ρ;T) converges to an appropriate

point on the solution path of the consistent field starting atr. Formally,

Theorem 4.4. Let r be the Raiffa payoff configuration (given by Definition 4.3) and

let Λt be the solution of the consistent field (given by (3.4)). Then:

(i) If ρ! 1; T ! ∞ andρT ! µ2 (0;1]; thenw(ρ;T) converges toΛ� lnµ(r):

(ii) If Λt(r) converges ast ! ∞ to a local attractor (sink)a of the consistent field,

thenw(ρ;T) converges toa asρ! 1; T ! ∞ andρT ! 0:

(iii) Any payoff configuration inΛ∞(r); the ω-limit set of the solution of the con-

sistent field throughr; can be obtained as the limit ofw(ρk;Tk) for appropriate

sequencesρk ! 0 andTk ! ∞ with ρTk
k ! 0 (ask! ∞):

Note that whenµ= 1 we getΛ� lnµ(r) = Λ0(r) = r; thereforew(ρ;T) converges to

the Raiffa pointr asρ! 1; T !∞ andρT ! 1: As for the second part of the theorem,

it includes the two cases of pure bargaining and of hyperplane games, where, as we saw

in Examples 1 and 2 of Section 3, the unique consistent value is a global attractor.

5. Local Analysis of the Consistent Field

The results of Theorem 4.4 indicate that the dynamic properties of the consistent field

are of importance in describing the solutions of the noncooperative bargaining games.

We now proceed to analyze in more depth the dynamics of the consistent field.

The dynamics of the consistent field for a general NTU game can be significantly

more complicated than the dynamics for pure bargaining games and for hyperplane

14



games. For these two particular cases, as shown in Section 3, there is a unique consis-

tent value which is a global attractor for the C-field.

We propose to study the dynamic properties of the consistent field in a neighbor-

hood of a consistent value. As it is well known, the linear systemDC(a)(x�a) ; where

DC is the derivative ofC; can be used as an approximation of the consistent fieldC(x)

around the consistent valuea. By a standard result in dynamic system (the Hartman-

Grobman Theorem, e.g., Palis and de Melo (1982)), the local dynamics of the C-field

and the dynamics of the linear system are equivalent if the consistent value is a hyper-

bolic equilibrium (i.e., if the eigenvalues ofDC(a) have non-zero real part). Moreover,

these dynamics are determined by the eigenvalues ofDC(a):

As a first step we develop an expression for the derivative of the C-field at a consis-

tent value:

Theorem 5.1. The derivative of the C-fieldDC(a) at a consistent value payoff config-

urationa = (aS)S�N is a block triangular matrix. For allS� N; the diagonal block

matrix corresponding toS is DCS(a) : TaS∂V(S)! TaS∂V(S); whereTaS∂V(S) is the

tangent plane to the boundary∂V(S) at aS: Moreover,DCS(a)vS for anyvS2 TaS∂V(S)

can be expressed as

DCS(a)vS= GS(a)| {z }
game part

DλS(aS)| {z }
geometry part

vS � vS

whereλS(aS) is the unit length outward normal to∂V(S) at aS andGS(a) = (Gi j
S)i; j2S

is the matrix given by

Gii
S =� 1

jSjλi
S(aS)

∑
j2Sni

(ai
S�ai

Sn j) and

Gi j
S =

1
jSjλi

S(aS)

�
aj

S�aj
Sni

�
; for i 6= j:

The derivativeDCS(a) is thus naturally decomposed into agame part GS(a); which

depends only ona andλS(aS); and ageometry part DλS(aS); which is the Gauss cur-

vature map of the boundary∂V(S) at aS: The theorem is proved in the Appendix.
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We now proceed to exhibit a family of NTU games with various dynamics for the

consistent field around a consistent value: repulsor (source), saddle point, and cycle.

(Recall that in the cases of pure bargaining and hyperplane games there is a unique

global attractor.)

Example 3: A family of consistent fields with varied local dynamics
There are 3 players:N= f1;2;3g. We begin by fixing the games in all but the grand

coalition:

V (1) = V (2) =V (3) =
�

c2 ℜ1 : c� 0
	

V (12) =
n
(c1;c2) 2 ℜ2 :

c1

14
+

c2

9
� 2
o

V (23) =
n
(c2;c3) 2 ℜ2 :

c2

14
+

c3

9
� 2
o

V (13) =
n
(c1;c3) 2 ℜ2 :

c3

14
+

c1

9
� 2
o
:

Every subgame is therefore a hyperplane game, and, for allS$ f1;2;3g ; the con-

sistent solutionaS$ of the subgame(S;V) — which is unique — coincides with the

Raiffa point (and the Nash bargaining solution). Specifically:

a1 = a2 = a3 = 0

a12 = (14;9; �)
a23 = (�;14;9) (5.1)

a13 = (9; �;14):

We now come to the construction ofVh(123); which will depend on a parameter

h= (h1;h2); where 0� h1;h2� 8: Consider first the family of ellipsoids

Eh :=
n

x2ℜ3 : z= MTx is such that(z1)
2+

p
3h1(z2)

2+
p

3h2(z3)
2 = 3

o
;

whereM is the orthonormal matrix

M :=

0
B@

1p
3

0 2p
6

1p
3
� 1p

2
� 1p

6
1p
3

1p
2

� 1p
6

1
CA :
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This family is such thata123 := (10;10;10) belongs toEh and the unit normal toEh

at (10;10;10) is (1=
p

3;1=
p

3;1=
p

3); for all h: Moreover, ifVh(123) equalsE�
h :=

Eh+ℜ3
�; the comprehensive hull ofEh; then it is immediate to check that the payoff

configurationa (given by (5.1) anda123= (10;10;10)) is a consistent value.

However, it is not possible to putVh(123) = E�
h ; because the monotonicity of the

game would be violated. But this can be fixed. Note first that if we were to take

V (123) =W :=
�
(c1;c2;c3) 2ℜ3 : c1+c2+c3 � 30

	
— which has the same unit nor-

mal at(10;10;10) — then the game would be monotone. This implies that we can let

Vh(123) be a set that is close toW; it coincides withE�
h in an appropriately small

ε-neighborhood of(10;10;10), and is such that all our assumptions on the game are

satisfied.

Next, observe that ifV(123)=W then the grand coalition’s component of the Raiffa

point is(10;10;10): Suppose we were to alter this set by modifications that affect only

neighborhoods of the intersections ofW with the three axes. Then(10;10;10) would

remain a consistent value, but the Raiffa point would move. Moreover, by suitable

such small modifications we can place the Raiffa point anywhere we want in theε-

neighborhood of(10;10;10) (for ε sufficiently small). By continuity, all this remains

true forVh(123): Summarizing: in constructingVh(123) we can also make sure that the

Raiffa point for the grand coalition is placed at a specific point — to be determined

later — in theε-neighborhood of(10;10;10):

We are now ready to exhibit values of the parameterh for which the local behavior

of the consistent field ata is not attracting. A straightforward computation yields that

the two non-zero eigenvalues of the matrixDC123(a) are

3
p

3
40

(h1+h2)�1� 1
40

q
27h2

1�154h1h2+27h2
2:

Therefore:

(i) Forh1 = h2 = 5; the two eigenvalues have positive real part. Hence the consistent

valuea is a repulsor (source).

(ii) For h1 = 1 andh2 = 6; the two eigenvalues are real, one is positive and the other

is negative. Hence the consistent valuea is a saddle point.

17



(iii) For h1 = 3 andh2 = 40
p

3=9�3� 4:698; the eigenvalues have zero real part

and non-zero imaginary part. Moreover, ash1 moves from below 3 to above 3 (andh2

is unchanged); the real part moves from negative to positive. Therefore, by the Hopf

Bifurcation Theorem,4 there must be values ofh1 close to 3 such that there is a cycle in

theε-neighborhood ofa: In particular, the Raiffa point for the grand coalition may be

located on the cycle (remember that we can place it anywhere in theε-neighborhood,

without affecting the local behavior of the consistent field in this neighborhood). In this

case, by Theorem 4.4, we get an example of a sequence of finite horizon bargaining

problems withρ ! 1;T ! ∞ and ρT ! 0 and such that the subgame perfect Nash

equilibrium payoffs converge to a point (on the cycle) that isnot a consistent value.

A. Appendix

This appendix contains the proofs not given in text.

Proof of Proposition 4.1.Define the functionbS;i (ρ;a) by

bj
S;i (ρ;a) = ρaj

S+(1�ρ)aj
Sni; for all j 2 Sni

bi
S;i (ρ;a) = hi

S

�
ρa�i

S +(1�ρ)aSni
�

wherea�i
S denotes the vectoraS without thei-th coordinate, andhi

S(c
�i
S ) is defined as

thei-th coordinate of the point on the boundary ofV(S) with remainingSni coordinates

equal toc�i
S . To simplify notation we will omit the arguments(ρ;a) of the functionbS;i:

By definition,
�
Fρ(a)

�
S= (1=jSj)∑i2SbS;i:

4Hopf (1942) Bifurcation Theorem: Letx0 = F (x;α) be a one-parameter family of planar systems
with an equilibriumx(α) and eigenvaluesλ(α) = µ(α)+ iη(α). Suppose that, for some valueα0 of the
parameter, the equilibriumx

�
α0

�
is non-hyperbolic with purely imaginary eigenvalues (i.e.,µ

�
α0

�
= 0):

Moreover, asα crossesα0 in some direction,µ(α) changes from negative to positive andx(α) changes
from sink to source. Then, for allα on the side ofα0; and close enough to it, there is a periodic orbit sur-
rounding the equilibriumx(α) with radius of magnitudej α�α0 j1=2 : Also, if x

�
α0

�
is asymptotically

stable, then the closed orbit is stable and surrounds the unstable equilibrium. Otherwise, the closed orbit
is unstable and occurs for parameter values that make the equilibrium a sink.
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We first obtain the derivative ofbS;i with respect toρ:

∂bj
S;i

∂ρ
= aj

S�aj
Sni , for all j 2 Sni; and

∂bi
S;i

∂ρ
= ∇hi

S

�
ρa�i

S +(1�ρ)aSni
�
�
�

a�i
S �aSni

�
:

Using the fact that(∂hi
S=∂aj)

�
a�i

S

�
=�λ j

S(aS)=λi
S(aS) for a pointaS2 ∂V(S); we

obtain that the derivative∂bS;i=∂ρ evaluated atρ = 1 is

∂bj
S;i

∂ρ jρ=1
= aj

S�aj
Sni , for all j 2 Sni; and

∂bi
S;i

∂ρ jρ=1
= � 1

λi
S(aS)

∑
j2Sni

λ j
S(aS)

�
aj

S�aj
Sni

�
:

Substituting into the expression of
�
Fρ(a)

�
S yields:

∂
�
Fρ(a)

�i
S

∂ρ jρ=1
=

1
jSj ∑

j2Sni

∂bi
S; j

∂ρ jρ=1
+

1
jSj

∂bi
S;i

∂ρ jρ=1

=
1
jSj ∑

j2Sni

�
ai

S�ai
Sn j

�
� 1
jSjλi

S(aS)
∑

j2Sni
λ j

S(aS)
�

aj
S�aj

Sni

�

=
1

jSjλi
S(aS)

∑
j2Sni

�
λi

S(aS)
�

ai
S�ai

Sn j

�
�λ j

S(aS)
�

aj
S�aj

Sni

��

= �Ci
S(a) ;

which proves the result.

Proof of Proposition 4.2.Let a2V and putb := F1(a): For eachS�N and eachi 2S;

let αi
S� 0 be such that(ai

S+αi
S;a

�i
S ) 2 ∂V(S): Thenbi

S= ai
S+(1=s)αi

S; wheres := jSj:
Similarly, let βi

S� 0 be such that(bi
S+βi

S;b
�i
S ) 2 ∂V(S): Becauseb�i

S � a�i
S ; compre-

hensiveness implies thatbi
S+βi

S� ai
S+αi

S; or βi
S� αi

S�(1=s)αi
S= (1�1=s)αi

S; hence

maxi2Sβi
S� (1�1=s)maxi2Sαi

S: Therefore each iteration ofF1 decreases maxi2Sαi
S by

the fixed factor 1�1=s< 1; so it converges to 0: Together withF1(a)� a; this implies

that the sequenceFT
1 (a) converges to a point on∂V:
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We come now to the proof of Theorem 4.4. This will be done by a sequence of

lemmas. The idea of the proof is as follows: Assumeρ ! 1 andT ! ∞ with ρT ! µ;

or T(1�ρ)!� lnµ: Split T into two parts,T1 andT2: If T1 converges to∞ relatively

slowly — in particular, ifρT1 ! 1 orT1(1�ρ)! 0 — then we prove in Lemma A.1 that

a := FT1
ρ (0)! limt!∞ Ft

1(0); which as seen in Proposition 4.2 exists and is the Raiffa

point r: ThereforeFT
ρ (0) = FT2

ρ

�
FT1

ρ (0)
�
= FT2

ρ (a) will be close toFT2
ρ (r): Also, once

a is sufficiently close to the efficient boundary∂V (recall thatr lies on∂V), then all

its Fρ iteratesFt
ρ(a) will also be close to∂V — this is Lemma A.4: Next, Lemma A.6

shows that, forc on the boundary,Fρ(c) can be approximated by the solutionΛ1�ρ(c)

of the C-fieldC(�): Iterating this implies thatFT2
ρ (r) is close toΛT2(1�ρ)(r); which in

turn converges toΛ� lnµ(r) sinceT2(1�ρ)!� lnµ: This completes the proof, once all

approximations are made precise.

All constants appearing below (η; K; and so on) depend only on the game(N;V).

We use the Euclidean norm in eachℜS; and for payoff configurations we takekak :=

maxS�NkaSk :
The first lemma deals with the case whenT converges to infinity slowly relative to

the convergence ofρ to 1; in this case, starting from 0 one gets the Raiffa pointr: More

generally,

Lemma A.1. There exists a constantη > 0 such that, ifρ ! 1; T ! ∞ and T �
�η ln(1�ρ); thenFT

ρ (a)! limt!∞ Ft
1(a) for all a2V:

Proof. The functionF(ρ;a) = Fρ(a) is differentiable with continuous differential

over the compact set[0;1]�V+: HenceFρ(a)�F1(b)
� K ((1�ρ)+ka�bk) ;

whereK > max
(ρ;a)2[0;1]�V+

kDF(ρ;a)k+1: This implies that

Fρ(a)�F1(a)
� K(1�ρ);

and also thatF2
ρ (a)�F2

1 (a)
= Fρ(Fρ(a))�F1(F1(a))

� K ((1�ρ)+K(1�ρ)):
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By induction we then get

FT
ρ (a)�FT

1 (a)
� K(1�ρ)(1+K+ � � �+KT�1)� K(1�ρ)KT

K�1
: (A.1)

Takeη < 1= lnK; then ln(1�ρ)+T lnK � (1�η lnK) ln(1�ρ)!�∞ (since ln(1�
ρ)!�∞): Therefore(1�ρ)KT ! 0; implying that the right hand side of (A.1) con-

verges to 0: HenceFT
ρ (a)! limT!∞ FT

1 (a).

The next three lemmas show that theFρ iterates of points close to the boundary∂+V

stay close to it, and moreover that the distance becomes of the order ofε(1�ρ) after no

more than�(η=2) ln(1�ρ) iterations: Recall the notationbS;i(a;ρ) used in the proof

of Proposition 4.1 above.

Lemma A.2. There is a constantK such that
bS;i(a;ρ)�aS

 � K(dist(aS;∂V(S))+

(1�ρ)) for all i 2 S� N; all aS in V+(S) and allρ 2 (0;1]:

Proof. LetcS2 ∂V(S) be a closest point toaSon the boundary, sod := dist(aS;∂V(S))=

kaS�cSk. Denoteb0S;i := ρaS+(1�ρ)(aSni;0):We have
aS�b0S;i

=(1�ρ)
(aSni;0)�aS

�
M(1� ρ); for an appropriate boundM (both (aSni;0) and aS are in V+(S)): Thus

dist(b0S;i;∂V(S))�M(1�ρ)+d: Let λS be the unit supporting normal to∂V(S) at cS;

then the distance ofb0S;i to ∂V(S) along thei’th coordinate is at most(M(1�ρ)+d)=λi
S:

So
bS;i�b0S;i

� (M(1�ρ)+d)=λi
S; and altogether

bS;i �aS
�M(1�ρ)+(M(1�

ρ)+ d)=λi
S: The non-levelness assumption implies that theλi

S are all bounded away

from 0; and the result follows:

Lemma A.3. There is a constantK such thatdist(Fρ(a);∂V) � K(dist(a;∂V)+ (1�
ρ))2 for all a2V+ and allρ 2 (0;1]:

Proof. The boundary∂V(S) is C2; therefore there isK1 such that, for anycS andc0S
in ∂+V(S) we have

0� λS� (cS�c0S)� K1
cS�c0S

2
;
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whereλS is the unit outward normal vector to∂+V(S) atcS: Let cS be one of the vectors

bS;i � bS;i(a;ρ); and consider the hyperplane gameV 0 with V 0(S) := fxS2ℜS : λS�xS�
λS�cSg �V(S): Then

dist((Fρ(a))S;∂V(S)) � dist((Fρ(a))S;∂V 0(S)) = dist(
1
jSj∑i2S

bS;i;∂V 0(S))

=
1
jSj∑i2S

λS� (cS�bS;i)�
1
jSj∑i2S

K1
cS�bS;i

2

� K1(2K2(dist(aS;∂V(S))+(1�ρ)))2 ;

whereK2 is the constant from Lemma A.2 (recall thatcS is one of the vectorsbS;i ,

implying the inequality
cS�bS;i

� 2K2(dist(aS;∂V(S))+(1�ρ)) by Lemma A.2).

Lemma A.4. There exists a constantd0 > 0 such that for everyε > 0 there isρ0(ε) 2
(0;1) with the property thatdist(Ft

ρ(a);∂V) � ε(1� ρ) for all ρ 2 (ρ0(ε);1); all t �
�(η=2) ln(1� ρ) and alla 2 V+ with dist(a;∂V) � d0; whereη is given by Lemma

A.1.

Proof. Letd0 := 1=(4Ke4=η) andρ0 :=maxf1�d0=ε;1�d0;1�2ε=(K(ε+2)2);1�
ε=(2d0)g;whereK is given by Lemma A.3. Takea with dist(a;∂V) � d0: For every

t � 0; denotext := dist(Ft
ρ(a);∂V): Lemma A.3 implies thatxt � f (xt�1) for all t � 1;

where f (x) := K(x+(1�ρ))2: For everyρ 2 (ρ0;1) put ξ := ε(1�ρ); we have: (i)

ξ < d0 (since 1�ρ < d0=ε); (ii) f (d0)< d0 (indeed: 1�ρ < d0; implying that f (d0)<

4Kd2
0 � d0); and (iii) f (ξ=2) < ξ=2 (since 1� ρ < 2ε=(K(ε+ 2)2)). Therefore the

equationf (x) = x has two real roots,x� < x��; that satisfy 0< x� < ξ=2< d0 < x��:

Now xt�x� � f (xt�1)� f (x�) = f 0(yt)(xt�1�x�) for an appropriate intermediate point

yt :The sequencext starts atx0= dist(a;∂V)� d0; thus it never leaves the interval[0;d0];

and soyt 2 [0;d0] too. Hence 0< f 0(0)� f 0(yt)� f 0(d0) = 2K(d0+1�ρ) < e�4=η:

From this it follows thatxt � x� � e�4=η(xt�1� x�); implying xt � x� � e�4t=ηd0: If

t � �(η=2) ln(1�ρ) thene�4t=ηd0 � (1�ρ)2d0 < ε(1�ρ)=2 = ξ=2 (since 1�ρ <

ε=(2d0)); thereforext�x� < ξ�x� (recall thatx� < ξ=2); which finally yieldsxt < ξ =

ε(1�ρ):
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From Lemmas A.1 - A.4 we obtain the following

Corollary A.5. For everyρ 2 (0;1) there is an integern(ρ) > 0 with n(ρ)! ∞ and

n(ρ)(1�ρ)! 0 asρ! 1; such that for everyε > 0 there isρ0(ε) 2 (0;1) satisfyingFn(ρ)
ρ (0)� r

 � ε and

dist(Fn(ρ)+t
ρ (0);∂V) � ε(1�ρ)

for all ρ 2 (ρ0(ε);1) and allt � 0:

Proof. Let η be the constant given by Lemma A.1, and letd0 and ρ0 be given

by Lemma A.4: Definem(ρ) :=�(η=2) ln(1�ρ) (rounded to the nearest integer) and

n(ρ) := 2m(ρ), thenn(ρ)!∞ andn(ρ)(1�ρ)! 0 asρ! 1 (since(1�ρ) ln(1�ρ)!
0): Puta(ρ) := Fm(ρ)

ρ (0) andb(ρ) := Fn(ρ)
ρ (0) = Fm(ρ)

ρ (a(ρ)):
Applying Lemma A.1 withT = m(ρ) and also withT = n(ρ) gives limρ!1a(ρ) =

limρ!1b(ρ)= limt!∞ Ft
1(0)= r 2 ∂V; so in particular dist(a(ρ);∂V)� d0 andkb(ρ)� rk�

ε for all ρ close enough to 1:Using Lemma A.4 (witha0= a(ρ)) then yields dist(Fn(ρ)+t
ρ (0);∂V)=

dist(Fm(ρ)+t
ρ (a(ρ));∂V)� ε(1�ρ) for all t � 0 and allρ close enough to 1:

The next lemma shows that, on the boundary∂+V; applying theFρ function is al-

most like moving 1�ρ along the solution pathsΛt of the C-field.

Lemma A.6. For everyε > 0 there isρ0(ε) 2 (0;1) such that
Fρ(a)�Λ1�ρ(a)

 �
ε(1�ρ) for all ρ 2 (ρ0(ε);1) and alla2 ∂+V:

Proof. The functionF : [0;1]� ∂+V ! ∂+V has a compact domain and is of class

C1; and
�
dFρ(a)=dρ

�
jρ=1 = �C(a) by Proposition 4.1. Then we have that, for every

ε > 0 there isρ(ε) with 0< ρ(ε)< 1 such thatFρ(a)�F1(a)

1�ρ
�C(a)

� ε for all ρ 2 (ρ(ε);1) and alla2 ∂+V: (A.2)

By the same reasoning, since(dΛ1�ρ (a)=dρ) jρ=1= �C(a) ; we can takeρ(ε) so that

we also haveΛ1�ρ(a)�Λ0(a)

1�ρ
�C(a)

� ε for all ρ 2 (ρ(ε);1) and alla2 ∂+V: (A.3)

23



But F1(a) = Λ0(a) = a: Therefore

Fρ(a)�Λ1�ρ(a)
� 2ε(1�ρ) for all ρ 2 (ρ(ε);1) and alla2 ∂+V:

The next two lemmas are standard.

Lemma A.7 (Gronwall). There exists a constantK > 0 such that

kΛt(b)�Λt(a)k � eKt kb�ak for all t � 0 and alla;b2 ∂+V:

Proof. C is a vector field of classC1 defined over the compact set∂+V (for a proof

of this well-known result see Palis and de Melo (1982)).

Lemma A.8. Assume thata 2 ∂+V is a local attractor of the consistent field. Then

there exist constantsδ > 0 andK > 0; and a normk�k0 on∏S�N ℜS such that

kΛt(b)�ak0 � e�Kt kb�ak0 for all t � 0 and allb2 ∂+V with kb�ak0 < δ:

Proof. See Hirsch and Smale (1974, Theorem inx9.1).

We can now proceed to

Proof of Theorem 4.4.

(i) Let µ2 (0;1]; and consider a sequence(ρk;Tk) such thatρk ! 1;Tk ! ∞ and

ρTk
k ! µ; or, equivalently,Tk(1�ρk)!� lnµ: We have to prove that limk!∞ FTk

ρk
(0) =

Λ� lnµ(r) :

Fix ε > 0; let nk := n(ρκ) be given by Corollary A.5 and putak := Fnk
ρk
(0): Then

kak� rk � ε and dist(Ft
ρk
(ak);∂V)� ε(1�ρk) for all t � 0 and allk large enough (such

thatρk > ρ0(ε)), sayk� k0: From now on assumek� k0: Also, putT 0
k := Tk�nk; then

T 0
k(1�ρk)!� lnµ.

Denotebt
k := Ft

ρk
(ak) 2V+: Then dist(bt

k;∂V)� ε(1�ρk), and so there isct
k 2 ∂+V

such that
bt

k�ct
k

� ε(1�ρk): LetK1> 0 be such that
Fρ(a)�Fρ(a0)

�K1ka�a0k
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for all ρ2 [0;1] and alla;a0 2V+; and letK2 > 0 be the constant given by the Gronwall

Lemma A.7. We claim thatct
k�Λt(1�ρk)

(c0
k)
� (K1+2)ε(1�ρk)

�
1+eK2(1�ρk)+ :::+e(t�1)K2(1�ρk)

�
(A.4)

for all t � 0 and allk � k0: The proof is by induction ont (for eachk), using the

following inequality (recall thatbt
k = Fρk(b

t�1
k )):ct

k�Λt(1�ρk)
(c0

k)
 �

ct
k�bt

k

+Fρk(b
t�1
k )�Fρk(c

t�1
k )


+
Fρk(c

t�1
k )�Λ1�ρk

(ct�1
k )


+
Λ1�ρk

(ct�1
k )�Λ1�ρk

(Λ(t�1)(1�ρk)
(c0

k))
 :

The first term is bounded byε(1� ρk); the second byK1
ct�1

k �bt�1
k

 � K1ε(1�
ρk) and the third byε(1�ρk) (by Lemma A.6). As for the fourth term, it is at most

eK2(1�ρk)
ct�1

k �Λ(t�1)(1�ρk)
(c0

k)
 (by the Gronwall Lemma A.7), which is bounded

by the induction hypothesis by

eK2(1�ρk)(K1+2)ε(1�ρk)
�

1+eK2(1�ρk)+ :::+e(t�2)K2(1�ρk)
�
:

Adding the four terms yields the right hand side of (A.4).

As k! ∞ we have

(1�ρk)
�

1+eK2(1�ρk)+ :::+e(T
0

k�1)K2(1�ρk)
�
� (1�ρk)eT 0kK2(1�ρk)

eK2(1�ρk)�1
! e�K2 lnµ

K2
;

implying by (A.4) that

lim sup
k!∞

c
T 0k
k �ΛT 0k(1�ρk)

(c0
k)
� ε(K1+2)e�K2 lnµ

=K2 =: εK3:

Now

FTk
ρk
(0) = F

T 0k
ρk

�
Fnk

ρk
(0)
�
= F

T 0k
ρk
(ak) = b

T 0k
k ;

and we haveFTk
ρk
(0)�Λ� lnµ(r)

 �
b

T 0k
k �c

T 0k
k

+c
T 0k
k �ΛT 0k(1�ρk)

(c0
k)


+
ΛT 0k(1�ρk)

(c0
k)�ΛT 0k(1�ρk)

(r)


+
ΛT 0k(1�ρk)

(r)�Λ� lnµ(r)
 :
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As k! ∞; the first term converges to 0 (it is� ε(1� ρk)). The second is� εK3 in

the limit. For the third one, note that
ak�c0

k

 � ε(1�ρk) andkak� rk � ε; which

implies
c0

k� r
� 2ε and thus, by the Gronwall Lemma A.7,ΛT 0k(1�ρk)

(c0
k)�ΛT 0k(1�ρk)

(r)
� 2εeK2T 0k(1�ρk) ! 2εe�K2 lnµ =: εK4

Finally, the fourth term converges to 0 sinceT 0
k(1�ρk)!� lnµ:Therefore limsupk!∞

FTk
ρk
(0)�Λ� lnµ(r)

�
ε(K3+K4); sinceε is arbitrary, this completes the proof thatFTk

ρk
(0)! Λ� lnµ(r):

(ii) For the second part, assume thata is a local attractor and thatΛt(r)! a as

t ! ∞: Consider a sequence(ρk;Tk) such thatρk ! 1; Tk ! ∞ andρTk
k ! 0; or Tk(1�

ρk)!∞; ask!∞: Fix ε> 0 and letµ> 0 be small enough so that
Λ� lnµ(r)�a

0� ε;
wherek�k0 is the norm given by Lemma A.8. By the result of part (i), if we letT1

k be

(the integer part of)µ=(1�ρk) and putak := F
T1

k
ρk

(0); thenkak�ak0 � 2ε for all k large

enough, sayk� k0. Assume moreover thatρk > ρ0(ε) andn(ρk)� T1
k � Tk for k� k0;

whereρ0(ε) andn(ρ) are given by Corollary A.5. From now on assumek� k0:

As in the proof of part (i) above, putbt
k := Ft

ρk
(ak) and letct

k 2 ∂+V be such that5bt
k�ct

k

0 � ε(1�ρk): Let K1 > 0 be such that
Fρ(a)�Fρ(a0)

0 �K1ka�a0k0 for all

ρ 2 [0;1] and alla;a0 2V+; and letK2 > 0 be the constant given by Lemma A.8. Then

ct
k�a

0 �
ct

k�bt
k

0+Fρk(b
t�1
k )�Fρk(c

t�1
k )

0
+
Fρk(c

t�1
k )�Λ1�ρk

(ct�1
k )

0+Λ1�ρk
(ct�1

k )�a
0 (A.5)

= (K1+2)ε(1�ρk)+
Λ1�ρk

(ct�1
k )�a

0 ;
for all t � 0 and allk � k0: We now use induction ont (for eachk): Assume thatct�1

k �a
0 � δ=2; whereδ is given by Lemma A.8; this holds fort = 0 if ε is chosen

less thanδ=4; since
c0

k�a
0= kak�ak0� 2ε:Then

Λ1�ρk
(ct�1

k )�a
0� e�K2(1�ρk)

ct�1
k �a

0 ;
so (A.5) applied inductively yields

ct
k�a

0 � (K1+2)ε(1�ρk)
�

1+e�K2(1�ρk)+ :::+e�(t�1)K2(1�ρk)
�

5Thek�k0 norm is equivalent to the Euclidean normk�k, so there isK > 0 such thatkxk0 � K kxk for
all x; one needs only to replaceε by ε=K to get the same estimates fork�k0

:
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+e�tK2(1�ρk)
c0

k�a
0

� (K1+2)ε(1�ρk)
1

1�e�K2(1�ρk)
+2εe�tK2(1�ρk):

Now K2(1�ρk)=(1�e�K2(1�ρk))! 1 ask!∞; hence the first term above is bounded

by 2ε(K1+2)=K2 for all k large enough. Therefore
ct

k�a
0� ε(2(K1+2)=K2+2)=:

εK3; which in particular is� δ=2 if ε was chosen appropriately small.

To complete the proof, note thatFTk
ρk
(0)�a

0 =
F

Tk�T1
k

ρk
(ak)�a

0 = b
Tk�T1

k
k �a

0
�

b
Tk�T1

k
k �c

Tk�T1
k

k

0+c
Tk�T1

k
k �a

0 � ε(1�ρk)+ εK3:

(iii) The third part of the proposition, which states that limT!∞
ρ!1 ρT!0

w(ρ;T) �
Λ∞ (r) ; whereΛ∞(r) denotes theω�limit of the solution of the consistent field through

r; can be proved using the result of part (i) already established.

Take anyy2Λ∞ (r) ; then there exists a sequenceµk! 0 such thatyk =Λ� lnµk
(r)!

y: For eachk; by the result of part (i) there isTk large enough, sayTk � k; such thatFTk
ρk
(0)�yk

 � 1=k; whereρk is given byTk (1�ρk) = µk: HenceFTk
ρk
(0) ! y as

k! ∞:

Proof of Theorem 5.1. We first note thatCS(a) depends only onaZ for Z � S (more

precisely: only forZ = SandZ = Sni for all i 2 S). ThereforeDC(a) is a block trian-

gular matrix. The diagonals ofDC(a) are the matricesDCS : TaS∂V(S)! TaS∂V(S). To

evaluateDCS; expressCS(a) asbS(a)�aS; where

bi
S(a) =

1
jSjλi

S(a)

 
λS(a) �aS� ∑

j2Sni
λ j

S(a)a
j
Sni

!
+

1
jSj ∑

j2Sni
ai

Sn j :

We want to evaluateDCSvS= DbSvS�vS for any vectorvS2 TaS∂V(S): Represent,

by an abuse of notation,bS(a) asbS(λS(a);λS(a) �aS) ; where

bi
S(λS;ζS) =

1
jSjλi

S

 
ζS� ∑

j2Sni
λ j

Saj
Sni

!
+

1
jSj ∑

j2Sni
ai

Sn j :
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Using the chain rule we get

DbSvS=
�
DλS

bS+DζS
bSaT

S

�
DλSvS;

sinceDζS= D
�
aT

SλS(a)
�

vS= aT
SDλSvS+λT

SvS= aT
SDλSvS (recall thatvS2 TaS∂V(S);

and sovS? λS). EvaluatingG= DλS
bS+DζS

bSaT
S yields for i 6= j

Gi j =
∂bi

S

∂λ j
S

+
∂bi

S

∂ζS
aj

S=
1

jSjλi
S

�
aj

S�aj
Sni

�
:

As for i = j; we get

Gii =
∂bi

S

∂λi
S

+
∂bi

S

∂ζS
ai

S

= � 1

jSj�λi
S

�2

 
ζS� ∑

j2Sni
λ j

Saj
Sni

!
+

1
jSjλi

S

ai
S

= � 1

jSj�λi
S

�2 ∑
j2Sni

λ j
S

�
aj

S�aj
Sni

�
:

But a is a consistent value, hence∑ j2Sni λi
S(a

i
S�ai

Sn j) = ∑ j2Sni λ
j
S(a

j
S�aj

Sni); implying

Gii =� 1
jSjλi

S
∑

j2Sni
(ai

S�ai
Sn j);

and the proof is thus complete.
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