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Abstract

This paper explores the relationships between noncooperative bargaining games
and the consistent value for non-transferable utility (NTU) cooperative games. A
dynamic approach to the consistent value for NTU games is introduced: the con-
sistent vector field. The main contribution of the paper is to show that the con-
sistent field is intimately related to the concept of subgame perfection for finite
horizon noncooperative bargaining games, as the horizon goes to infinity and the
cost of delay goes to zero. The solutions of the dynamic system associated to the
consistent field characterize the subgame perfect equilibrium payoffs of the non-
cooperative bargaining games. We show that for transferable utility, hyperplane
and pure bargaining games, the dynamics of the consistent field converge globally
to the unique consistent value. However, in the general NTU case, the dynam-
ics of the consistent field can be complex. An example is constructed where the
consistent field has cyclic solutions; moreover, the finite horizon subgame perfect
equilibria do not approach the consistent value.
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1. Introduction

This paper belongs to a general research program which studies the relationships be-
tween equilibria oh-player noncooperative games and axiomatically generated solu-
tions for the cooperative game described in coalitional form. Here we carry out an
exploration based on the theory of differentiable dynamic systems.

For n-person situations of pure bargaining (where the cooperation of all players is
needed to achieve an outcome different from the threat values), the classical solution
concept proposed by axiomatic cooperative game theory Nalsg(1950)bargaining
solution. Interestingly, the Nash solution has also been arrived at as a limit — when
the cost of delay in agreement becomes small — of the subgame perfect equilibria of
models of bargaining in extensive form (in particular, of that6{11972) — Rubinstein
(1982) model of alternating offers; see Binmore (1987) and the book of Osborne and
Rubinstein (1990) for these and other models).

Similarly, for n-player games with transferable utility (TU), ti&hapley(1953)
valueis a central solution concept derived by axiomatic cooperative game theory.
Again, bargaining models in extensive form have been proposed, whose solutions co-
incide with, or converge to, the Shapley value (Harsanyi (1981), Gul (1989), Hart and
Moore (1990), Winter (1994), Hart and Mas-Colell (1996b)).

The theory is less settled for the general non-transferable utility (NTU) games in
coalitional form. In this paper we focus on thensistent (NTU-) valyean axiomatic
solution proposed by Maschler and Owen (1989, 1992), which generalizes both the
Nash solution for the pure bargaining case and the Shapley value for the TU case.
The point of departure for our current research is Hart and Mas-Colell (1996b), which
contains an analysis of an infinite horizon noncooperative bargaining game whose sta-
tionary subgame perfect equilibria are close, when the parameter that measures the cost
of delay in agreement is low, to the consistent values.

The present paper starts by developing a dynamic approach to the consistent value.



It generalizes to NTU games some dynamic processes put forward by Maschler, Owen
and Peleg (1988) for pure bargaining games and by Maschler and Owen (1989) for
hyperplane games (an extension of TU games), and which, in these cases, globally
converge to the unique consistent value. Motivated by the axiomatic concept of con-
sistency we introduce the conceptaansistent (vector) fieldRoughly speaking, the
consistent field is defined, for every payoff configuration at the Pareto frontier, as the
direction to move locally along the frontier in order to reduce the “inconsistency” of
the payoff. The singularities of the consistent field are the consistent values and the so-
lutions (or flows) of the dynamic system associated with the consistent field constitute
a natural way by which players starting from arbitrary payoffs could adjust.

The main contribution of the paper is to show that the consistent field is intimately
related to subgame perfection for finitely horizon noncooperative bargaining games,
providing thus an unexplored link between the cooperative and noncooperative theoret-
ical formulations. The specific noncooperative bargaining game we study figitiee
horizonversion of the bargaining game introduced by Hart and Mas-Colell (1996b).
Informally, this noncooperative game is a sequential game where the players have up to
T stages to reach an agreement. At each stage a player is selected at random to propose
a particular way to split the gains from cooperation, and will be ousted from the game
with a probability of 1— p if an unanimous agreement is not reached. The subgame
perfect Nash equilibrium (SPNE) of this game is easily obtained by backward induc-
tion, and the problem we address is to develop a characterization of the SPNE payoffs,
denotedn(p, T), for a low cost of delay factor X p and a large numbér of potential
rounds of negotiation.

We show that the limit ofw(p, T) depends on the relative rates at which p
converges to 0 and converges to infinity. A converges to 1 andl converges to
infinity, in such a manner that the probabilipy of all players remaining at the last
stage of the game converges to 1 — thus the convergengetofinfinity is much
slower than the convergence pfto 1 — the SPNE payoffsv(p,T) converge tor,

a well defined, efficient point; we callthe Raiffa point In the two-player case, this
result was obtained by &tiom (1991), the point being the Raiffa bargaining solution



(see Luce and Raiffa (195%6.7)).

Next, assume that the rate at whi€hconverges to infinity increases, so that the
probability of all players remaining at the last stage converges now to genie(i.e.,
pT — porT(1-p) — —Iny). We prove that in this case the SPNE payaeifp, T)
converge to the solution, at timte= —Inp € [0, ), of the dynamic system associated
with the consistent field and having the Raiffa pairgs its initial condition at = 0.

We also show that if this solution trajectory starting abnverges, asgoes to infinity,

to a (local) attractom of the consistent field, thea is the limit of any sequence of
SPNE payoff whemp' converges to zero (and, of courge;+ 1 andT — o). Finally,

we show that any point in the limit set of the trajectory of the consistent field solutions
through the Raiffa point can be reached as the limit of SPNE payoffs of an appropriate
sequence of finite horizon games with — 0 (andp — 1, T — ).

All these results indicate that we can attach significance to the dynamic proper-
ties of the consistent field both on cooperative and noncooperative theory grounds, and
therefore we conclude that it is a vector field well worth analyzing in more depth. In
that vein, we show that the global dynamics are convergent to the unique consistent
value in the pure bargaining and in the hyperplane games cases. For the general case
we analyze the local dynamics of the consistent field around a consistent value. We
show that this local dynamics is composed of a “game part”, which depends only on
the particular consistent value, and a “geometry part”, which depends only on the cur-
vature of the Pareto frontier at the consistent value. Exploiting this relationship we can
construct examples with a wide variety of local behaviors: sink, source, saddle point.
We can also, using Hopf bifurcation theory, construct an NTU game where the consis-
tent field has cyclical solutions, thus indicating that the limit of SPNE solutions of finite
horizon bargaining games could well be a point whichasa consistent value. This is
in contrast to the global convergence of the consistent field in the TU, hyperplane, and
pure bargaining cases. All this confirms once more the intuition that pure bargaining
games and TU (or, more generally, hyperplane) games are the most well behaved of
the NTU games, and thus the easier to analyze. The game theoretic behavior of general
NTU games is however considerably more complex than what one may be led to sus-



pect from an analysis of these two cases. We refer to Hart and Mas-Colell (1996a) for
further elaboration of this point.

The paper is organized as follows: Section 2 presents the basic model — the under-
lying cooperative game in coalitional form, and the noncooperative bargaining game
— followed by a preliminary analysis of the subgame perfect equilibria of the latter.
Section 3 recalls the definition of the consistent NTU-value, and introduces the consis-
tent field and its associated dynamics. The results connecting the SPNE payoffs with
the dynamics of the consistent field are stated in Section 4. A (local) analysis of the
consistent field is carried out in Section 5; we then provide various examples for the
behavior of the resulting dynamics (and thadprtiori, of the SPNE payoffs). Proofs
are relegated to the Appendix.

2. The Model

Let (N,V) be anon-transferable utility (NTU) n-person game in coalitional forfihe
set of players itN = {1,2,...,n} andV is the coalitional (characteristic) function. For
each coalitiorB C N, the seV (S) — a subset of1° — is the set of all allocations that
are feasible for the members &f

We make the following standard assumptiongNr\V):

(Al) For each coalitiors, the setV(S) is closed convexandcomprehensivé.e., if
x eV (S) andy < xtheny € V(S)). Moreover, 0= V(S).

(A2) For each coalitiorS, the boundary (or Pareto frontier) df(S), denoted by
oV (9), is C? (i.e., at each boundary point there is a single outward normal di-
rection, which varies in a continuously differentiable manner with the point) and
nonlevel(i.e., the outward normal vector at any pointd(S) is positive in all
coordinates).

(A3) Monotonicity If Z ¢ SthenV (Z) x {05?} c V(S) (i.e., completing a vector in
V(Z) with O’s for the coordinates i8\Z results in a vector iV (S)).



The noncooperative game we analyze is the finitely repeated version of the game
introduced by Hart and Mas-Colell (1996b). Tingoerson noncooperative bargaining
game(N,V,p,T), wherep € [0,1] andT is a positive integer, is described inductively
as follows:

The game is a perfect information game consisting of at Maosiunds of
negotiation. In each rourtcthere is a se€ C N of active players who can
reach an agreement, starting in the first rogng 1) with S= N. One
player inSis chosen randomly, with all players Biequally likely to be
selected. Say playethas been chosen. Theproposes a feasible payoff
vector inV (S) to the other players i They can either agree or not (they
are asked in some prespecified order). The game ends with the proposed
payoffs if all players inS agree, or with payoffs equal to O if it is the last
roundt =T and there is no agreement. Otherwise, the game moves to the
next round + 1, where with probabilityp the set of active players does not
change, and with probability 2 p it becomesS\i. In the latter case, the
payoff of the “dropped out” playaeris O.

The subgame perfect Nash equilibrium (SPNEEYhe above finite game with per-
fect information can be easily obtained by backward induction. Suppose that in the last
step of negotiationT, the players in the coalitio8 have “survived”. The equilibrium
strategies for these remaining players are as follows. If plage®is chosen to be the
proposer (which occurs with probability 1S)), theni’s strategy is to propose that vec-
tor egj € aV(S) such thatejSi = 0 for all j € S\i (efficiency then uniquely determines
the payoff of player). The strategy for eache S\i is to accept anys € V (S) such that
xjS > 0. The (expected) equilibrium payoff vector (before the selection of the proposer)
is thenes:= (1/]9)) Yicses;i (note that the convexity of (S) implies thates € V (S)).

At round T — 1 of the negotiation the SPNE strategies are as follows. Suppose
that S is the set of remaining players at this stage. If playerSis chosen to be
the proposer theis strategy is to propose that allocatiag; € oV (S) such thatajSi =



pej5+ (1- p)ejs\i forall j € S\i. The strategy for eache S\i is to accept anys € V(S)
such thaixjS > pe‘énL (1- p)ejs\i.

The strategy profile above is the unique subgame perfect equilibrium strategy for the
game starting at rountl— 1. To prove that, observe that with probabilityhe proposer
i will remain for the next and last stage, and the expected payoff of the rem&ning
players in the continuation game is, as seen abeyeWith probability 1— p player
i will drop out of the game, and the expected payoff of the remaining players in the
continuation game isg);. It follows that the most playej expects to get by rejecting
an offer of the proposeris pe‘s+ (1— p)e‘s\i, which implies that the strategy profile is
the unique SPNE of the game.

To formalize this, define payoff configuration (p.c.) 8 be a collection of payoff
vectors for all coalitions:a = (as)s-n With as € V(S) for all SC N. The backward
induction arguments are then captured by the following fundéonV — V, where
V=[], V(S is the set of all payoff configurations.

Definition 2.1. The backward induction functiof, : V — V maps each payoff con-
figurationa = (as)g-\ €V to a payoff configuratiofp(a) = (bs)s-n € V given by

(i) bl; = pak+ (1- p)ajs\i for all SC N and allj € S\i;
(i) bsj € oV (S) foralli € SC N;
(i) bs = 1§ Siesbs; for all SCN.

The backward induction function provides the expected paygffa) at any stage
of the game, given that the payoffs in the continuation game are specified by the config-
urationa = (as)s-n. The functionF, is well-defined because of the assumptions (A1)

- (A3) imposed on the gam@\, V).

The SPNE payoff configurationf the noncooperative gam@é,V,p,T) can be
conveniently represented as the payoff configuratgp, T) = (Ws(p, T))g-n Where
ws(p, T) is the|S§-dimensional vector representing the unique SPNE payoff vector of
the noncooperative gan(é5,V|S, p,T) restricted to the coalitio® C N.



We have just proven above that the continuation games of the noncooperative game
(N,V,p,T) starting at roundr andT — 1 have SPNE payoff configurations given by
w(p,1) = e andw(p,2) = F,(e), respectively. Now e = F,(0), where 0= (0%) -y
is the payoff configuration with all coalitional payoff vectors equal t@@dF,(e) =
Fo(Fo(0)) = FpZ(O) is the second iterate ¢, evaluated at OProceeding inductively
one obtains the strategy profile of the SPNE and its corresponding payoff configuration:
w(p,t) = Fo(w(p,t —1)) for all t. Therefore

Proposition 2.2. The SPNE payoff configuration of the noncooperative gé¥,p, T)
is given byw (p,T) = FpT (0), theT -th iterate of the functioft, evaluated at the payoff
configuratiorO, whereF,, the backward induction function, is given by Definition 2.1
above.

3. The Consistent Field

We now turn to the study of dynamics associated with the concept of the consistent
NTU-value, which was introduced by Maschler and Owen (1989, 1992) and analyzed
by Hart and Mas-Colell (1996b). In this section we develop the concept afdhe
sistent field This is a vector field defined over the Pareto frontier of the game that,
informally speaking, gives the direction that reduces the “inconsistency” in the payoff
configuration.

We start by recalling the definition of tlensistent valuef an NTU-gameN, V).
Similarly to the Shapley value, let be a permutation of tha players, and define
recursively the vector of marginal contributiothg (with 11(i)-th coordinatedlf(i)) by

™ = max{a"(l) raecV ({n(l)})} ,and fori > 1 by
LD max{a”(i) raeV({m(1),...n()}) anda™ = d for all j < i}.

So, for a given ordert, each playert(i) getsd,TT[(i), which is the highest possible given
that all the previous playens(j) (for j <i) got dg“). Consider now the vector of ex-
pected marginal contributiont (N,V) := (1/n!) S dr. SinceW (N,V) is an average

We thank Vincent Feltkamp for pointing out that the induction may be conveniently started at O
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of vectors on the boundadV (N) of the convex se¥ (N), it will not in general be
efficient. However, for dayperplane gaméwhere, for eacts C N, the setv(S) is a
half-space, and so its boundady (S) is a hyperplane), the expected marginal contri-
bution vector? (N,V) is efficient. It is theconsistent valuef the hyperplane game
(N,V). Further, for each coalitioB C N we haveW (SV) € dV (S); the efficient pay-
off configuration(W (S,V))g-y is called theconsistent value payoff configuration
the hyperplane gam@\,V).

For a general NTU-game, the construction of the consistent value is based on
the hyperplane case. For each efficient payoff configuradien (as)g-y € 0V =
Mscn 9V (S) with supporting normal vectods = Ag(ag) € DL to the boundaryV ()
atag, associate theupporting hyperplane gantdl,V;) defined by (S) := {c € 0S:Ag-c<Ag- as}
forall SC N. Letb=b(a) := (W (SV}))s-n be the consistent p.c. of the supporting
hyperplane gaméN,V;). If b= athena is aconsistent value payoff configuratiof
the NTU-gameN, V).

Following Hart and Mas-Colell (1996b, Proposition 4), a consistent value payoff
configurationa = (as)g-y for the gamgN,V) can be characterized by

(i) as€ aV(S) forall SC N;
(i) As-as=max{As-c:ceV(S)} forall SC N; and
(i) ¥ jesiAs(@s—aly ) =3 jes Ajs(a,g—aj&i) forall SC Nand each e S.

Conditions (i) and (ii) state that the payoff vects is on the Pareto frontier of
the coalitionSand thafAg is an outward normal vector to the boundarydf) there
The last condition (iii)) may be viewed as a “preservation of average differences” re-
guirement: the average contributionitivom the remaining players equals the average
contribution ofi to the remaining players. We refer to Hart and Mas-Colell (1996b) for
further details. In particular, under our assumptions, consistent value p.c.’s exist and
are always non-negative.

2In the special thafN,V) is a TU-game, this is the Shapley value.



Maschler, Owen and Peleg (1988) and Maschler and Owen (1989) have proposed
dynamic processes adapted to the consistent value for pure bargaining gatésr
hyperplane games. We proceed to do this here for the general NTU case.

The dynamic approach to the consistent value that we analyze is an explicit proce-
dure that, starting from an arbitrary efficient p.c., adjusts the payoffs in the direction
indicated by the above characterization of the consistent value. The adjustment process
can be described as follows. Given an efficient pac= (as)g-\ € 9V, the payoffs
for each coalitiorS are adjusted, assuming that the playerS already agree with the
payoffsaz for the smaller coalition& g S Considering the supporting hyperplane
game(S,V}) ata, and fixing the payoffs for the subcoalitions 8f then, in order to
bring about consistency for the coaliti§nthe payoffagswould need to be changed to a
payoffbs(a) in the hyperplan¥;(S) satisfying the preservation of average differences;
ie.,

As(as)-bs(a) = As(as)_'as, ar_1d |
.zs\.)\g(as)(bis(a)—ais\j) = .ZS\.)\‘S(aS)(b‘S(a)—ag\i). (3.1)
Jea\l Jes\i

The change in the payods is equal taCg(a) := bs(a) — as, and theconsistent fieldat

ais defined to b&€(a) = (Cg(a))s-n- Thus, theS-coordinateCs of the consistent field
vector gives the direction in which to move locally along the efficient fromefS) so
that the consistency of the payoffs for the players in coalias reduced, given that
the payoffs for the subcoalitions 8are unchanged. The explicit expression produced
by (3.1) is given in the following definition.

Definition 3.1. Theconsistent fieldor C-field) associated with the NTU-ganii,V)
is the vector fieldC(-) over the boundaryV, with C(a) = (Cs(a))s-n for anya € oV
defined by the expression

) = (e 3 (aed-ah) @) 62

3In the pure bargaining case, the consistent value coincides with the Nash bargaining solution.
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forallSC N andi € S, wherehg(a) is the unit normal vector to the boundaly(S) at
as.

It is a simple computation to verify the equivalence of (3.1) and (3.2); it is actually
useful to write this expression yet another way, namely

Cia) = ﬁ (As<a> a3 (Ai(@)al, —A's<a>ag\,-)) —d (33
Note thatAg(a) - Cg(a) = 0, thusC is indeed a vector field over the boundaky. The
singularities of the consistent field, i.e., the payoff configuratesisch thaC(a) = 0,
are precisely the consistent value p.c.’s of the g@n&/). Finally, note that whenever
a> 0 andal = 0 for somei and S, thenCk(a) > 0 (see (3.3) and usks(a) - as >
As(d) - (agj;0), which holds since(ag;,0) € V(S) by the monotonicity assumption
(A3)). Thus the consistent vector field “points inward” at boundary poin, of :=
ovn{a>0}.

Associated with the consistent figldover the boundargV is the dynamic system
da/dt = C(a). For anya in the non-negative part of the boundatyV, there is a
unique functiom\; (a) : [0,) — 8.V that satisfies

d/\ét(a) — C(A\(a)), and (3.4)

No(@) =

We will refer to/\; (a) as thesolution of the consistent fiektarting, at = 0, from the
non-negative efficient p.ca. Note that the solutions are defined on the intefOadb)
because, by the “pointing inwards” property of the field, every solution that starts in the
non-negative part of the boundary will remain there. tFereo, we defineA\.(a) as the
w-limit set of the solution, i.e., the set of all limit points &f(a) ast — oo.

Example 1: Pure Bargaining Games
An n-person pure bargaining game satis¥é$) N D:Q; = {0} for all S# N. For this
particular case, the consistent field has the same dynamics as the process introduced by
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Maschler, Owen and Peleg (1988). F® N we have(/\¢ (a))g = 0; so, the only
dynamics that matters is f&= N. For anya= ay € 0.V (N) with supporting normal
A(a) =An(a), (3.2) becomes

. 1 . . . .
C'(a) = — A(a)al —\'(a)d
@ =@ g, M@ @)
(we have dropped the subscriypthroughout for ease of reading). The dynamics of the
C-field is simple: the unique singularity of the C-field, which is the unique consistent
value and coincides with the Nash bargaining solution, is a global attractor for the
field. (This can be verified by showing that the functlo@) := [icn a' is a Lyapunov

function for the C-field; see Maschler, Owen and Peleg (1988)).

Example 2: Hyperplane Games

Let the hyperplane gam@é\,V) be given for each coalitio® by the unit normal
vectorAs and by the numbevs such thatv (S) = {as e 0S:A\g-as< vs}. The ex-
pression (3.3) for the C-field becomes

Ci(a) = ﬁ (vS—jezs\i@g Li- 'sa's\,-)) —a
First observe that the C-field is a linear functiona{sinceAs does not change

with ag) and that the unique singularity of the C-field is the unigque consistent value.

To characterize the dynamics of the C-field we simply need to determine the sign of

the real part of the eigenvaluesB€(a), the derivative of the field . The expres-

sion above foCi(a) immediately implies that the matriRC(a) is triangular and all

its diagonal entries are 1 (indeed:6Cis(a)/6ajZ = 0 if Z is not a subset 0§, more-

over,dCL(a)/dal = —1 anddCly(a) /dal = O for j # i). Therefore all the eigenvalues

of DC(a) are equal to-1, implying that the solution of the C-field converges exponen-

tially to the consistent value (e.g., see Palis and de Melo (1982)). Again, we conclude

that the dynamics is very simple: there is only one consistent value which is a global

attractor. A result similar to this has been obtained by Maschler and Owen (1989) for

the “correction function” they propose.
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4. From Subgame Perfect Equilibria to Consistent Field Solutions

We now address the problem of characterizing the SPNE solutions of the noncoopera-
tive game(N,V, p, T) as the probability of breakdown decreases to zero and the number
of periods of negotiation increaséhat is, we want to find the limit of the SPNE pay-

off configurationsw(p,T) asp — 1 andT — . Recall the result of Proposition 2.2
thatw(p,T) = F; (0).

This section will show that the solutions of the consistent field are intimately
related to the subgame perfect Nash equilibria of the finitely repeated noncooperative
bargaining game. We start by highlighting a basic relationship between the consistent
field C and the backward induction functidi. All the proofs are in the Appendix.

Proposition 4.1. The derivative oF,(a) with respect t@ at any poinac 0V satisfies

dFy(a) o
“dp |p:l_ C(a).

This result will be most useful because we are interested in the lirpitagverges
to 1 of the iterates of the functidf,. Observing that fop = 1 we haveF;(a) = a for
all a € 0V, the result roughly states that, for efficient payoffs gndose enough to
1, Fy(a) can be approximated y+ (1 —p)C(a). This suggests a natural relationship
between the limit onT asT — o andp — 1 and the solution of the dynamic system
associated with the consistent field.

We first consider the case where there is no breakdown, i.e. pvheh

Proposition 4.2. For any payoff configuratiom € V, the limit asT — o of F] (a)
exists and is an efficient payoff configuratidm _,. F (a) € aV.

In particular, this proposition implies that the limit &s— « of the SPNE payoffs,
i.e. limr_F[ (0), exists and is efficient (this was shown by&jm (1991) in the
two-player case). We call this point the Raiffa point (see Luce and Raiffa (3857)).

Definition 4.3. TheRaiffa payoff configuratiomfthe gaméN,V ), denoted =r(N,V),
is given byr 1= limt_ F{ (0).

13



Depending on the rates at whiph— 1 andT — o, the SPNE p.c. may converge to
different limits. Specifically, those turn out to depend on the limjp bfthe probability
that all players remain up to the last stage of the gdfqe— 1, T — o andp’ — 1,
meaning thal converges to infinity much slower thgnconverges to 1, then we will
see thatv(p, T) converges to the Raiffa p.c. As the relative rate at which converges
to infinity increases, so that the probabiliy of all players remaining at the last stage
converges to somp < 1, then we will see thaw(p, T) converges to an appropriate
point on the solution path of the consistent field starting &ormally,

Theorem 4.4. Letr be the Raiffa payoff configuration (given by Definition 4.3) and
let \; be the solution of the consistent field (given by (3.4)). Then:

() Ifp— 1T — o0 andp” — pe (0,1], thenw(p,T) converges te\_jn,(r).

(if) If N\(r) converges as— o to a local attractor (sinkg of the consistent field,
thenw(p, T) converges ta asp — 1, T — o andp’ — 0.

(iii) Any payoff configuration in\«(r), the w-limit set of the solution of the con-
sistent field through, can be obtained as the limit of py, T) for appropriate
sequencegy — 0 andT, — o with pI" — 0 (ask — ).

Note that whem = 1 we get\_j,,(r) = Ao(r) = r, thereforew(p, T) converges to
the Raiffa point asp — 1, T — 0 andp’ — 1. As for the second part of the theorem,
itincludes the two cases of pure bargaining and of hyperplane games, where, as we saw
in Examples 1 and 2 of Section 3, the unique consistent value is a global attractor.

5. Local Analysis of the Consistent Field

The results of Theorem 4.4 indicate that the dynamic properties of the consistent field
are of importance in describing the solutions of the noncooperative bargaining games.
We now proceed to analyze in more depth the dynamics of the consistent field.

The dynamics of the consistent field for a general NTU game can be significantly
more complicated than the dynamics for pure bargaining games and for hyperplane

14



games. For these two particular cases, as shown in Section 3, there is a unique consis-
tent value which is a global attractor for the C-field.

We propose to study the dynamic properties of the consistent field in a neighbor-
hood of a consistent value. As it is well known, the linear sysbé(a) (x—a) , where
DC is the derivative o€, can be used as an approximation of the consistentd@iéty
around the consistent val@e By a standard result in dynamic system (the Hartman-
Grobman Theorem, e.g., Palis and de Melo (1982)), the local dynamics of the C-field
and the dynamics of the linear system are equivalent if the consistent value is a hyper-
bolic equilibrium (i.e., if the eigenvalues BIC(a) have non-zero real part). Moreover,
these dynamics are determined by the eigenvalu&oh).

As afirst step we develop an expression for the derivative of the C-field at a consis-
tent value

Theorem 5.1. The derivative of the C-fiel®C(a) at a consistent value payoff config-
urationa = (as)g-y IS a block triangular matrix. For at C N, the diagonal block
matrix corresponding t8 is DCg(a) : Ta,0V (S) — TadV (S), whereT, 0V (S) is the
tangent plane to the boundady (S) atas. Moreover,DCs(a)vs for anyvs € Ta,0V (S)
can be expressed as

DCS(a)VS: Gs(a) DAs(as) Vg — Vg
—— N——

game pargeometry part

wherels(as) is the unit length outward normal &/ (S) atas andGg(a) = (Gg)i, jes
is the matrix given by

, 1 . :
5= Iohias) &, %) A
) (ab-ak,), fori .
|SiAg(as) !
The derivativeDCg(a) is thus naturally decomposed intgame part (g(a), which
depends only om andAg(as), and ageometry part DBs(as), which is the Gauss cur-
vature map of the boundady (S) atas. The theorem is proved in the Appendix.
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We now proceed to exhibit a family of NTU games with various dynamics for the
consistent field around a consistent value: repulsor (source), saddle point, and cycle.
(Recall that in the cases of pure bargaining and hyperplane games there is a unique
global attractor.)

Example 3: A family of consistent fields with varied local dynamics
There are 3 player$y = {1,2,3}. We begin by fixing the games in all but the grand
coalition:

V() = V(2) = ={ceO':c<0}
V(12 = {(c C) GDZ %ﬁ%gz}
V(@3 = {(c0 €0 %ﬁ%’gz}
V(13) = {(cl,c3)eD2 ﬂ+§§2}

Every subgame is therefore a hyperplane game, and, fSrggl{l, 2,3}, the con-
sistent solutiorasg of the subgaméS V) — which is uniqgue — coincides with the
Raiffa point (and the Nash bargaining solution). Specifically:

a = ap=az=0

a2 = (14)9,-)

a3 = (-,14,9) (5.1)
a;3 = (9,-,14)

We now come to the construction 9f(123), which will depend on a parameter
h = (hyg,h), where 0< hy, hy < 8. Consider first the family of ellipsoids

Ep = {x e 0%: z=MTxis such thatz;)% + v/3hy(2)? + v/3hy(z3)% = 3} :

whereM is the orthonormal matrix

1 0 2
V3 Ve
M=] + -+ _ L1
V3 V2 V6
16



This family is such thag;»3:= (10,10,10) belongs toE, and the unit normal té,

at (10,10,10) is (1/v/3,1/v/3,1/V/3), for all h. Moreover, ifVi,(123) equalsE, :=
En,+ 0%, the comprehensive hull &,, then it is immediate to check that the payoff
configurationa (given by (5.1) andy23 = (10,10, 10)) is a consistent value.

However, it is not possible to pM,(123) = E;;’, because the monotonicity of the
game would be violated. But this can be fixed. Note first that if we were to take
V(123 =W := {(c3,¢p,¢3) € O3: ¢y + o+ €3 < 30} — which has the same unit nor-
mal at(10,10,10) — then the game would be monotone. This implies that we can let
Vh(123) be a set that is close W, it coincides withE_" in an appropriately small
g-neighborhood 0{10,10,10), and is such that all our assumptions on the game are
satisfied.

Next, observe that W (123) =W then the grand coalition’s component of the Raiffa
pointis(10,10,10). Suppose we were to alter this set by modifications that affect only
neighborhoods of the intersectionswfwith the three axes. Thefi0,10,10) would
remain a consistent value, but the Raiffa point would move. Moreover, by suitable
such small modifications we can place the Raiffa point anywhere we want ig the
neighborhood 0f10, 10, 10) (for € sufficiently small). By continuity, all this remains
true for\},(123). Summarizing: in constructing,(123) we can also make sure that the
Raiffa point for the grand coalition is placed at a specific point — to be determined
later — in thee-neighborhood 0£10, 10, 10).

We are now ready to exhibit values of the parambtar which the local behavior
of the consistent field & is not attracting. A straightforward computation yields that
the two non-zero eigenvalues of the matdi€,,3(a) are

e
40

(o) — 1+ 75\ /2702 — 154uh, + 27

Therefore:

(i) Forhy = hy, =5, the two eigenvalues have positive real part. Hence the consistent
valuea s a repulsor (source).

(i) For hy = 1 andh, = 6, the two eigenvalues are real, one is positive and the other
is negative. Hence the consistent vadue a saddle point.
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(iii) For hy = 3 andh, = 40/3/9 — 3 ~ 4.698 the eigenvalues have zero real part
and non-zero imaginary part. Moreover,laanoves from below 3 to above 3 (ahg
is unchanged)the real part moves from negative to positive. Therefore, by the Hopf
Bifurcation Theorenf,there must be values bf close to 3 such that there is a cycle in
the e-neighborhood o#&. In particular, the Raiffa point for the grand coalition may be
located on the cycle (remember that we can place it anywhere igrtiegghborhood,
without affecting the local behavior of the consistent field in this neighborhood). In this
case, by Theorem 4.4, we get an example of a sequence of finite horizon bargaining
problems withp — 1,T — o andp’ — 0 and such that the subgame perfect Nash
equilibrium payoffs converge to a point (on the cycle) thatasa consistent value.

A. Appendix

This appendix contains the proofs not given in text.

Proof of Proposition 4.1. Define the functiorbs; (p, a) by

bjSi (p,a) = pajs+(1—p)a"$i,for all j € S\i
si(pa) = ts(pag'+(1-plasy)

whereag' denotes the vectas without thei-th coordinate, andi(cg') is defined as
thei-th coordinate of the point on the boundary(fS) with remainingS\i coordinates
equal tocgi. To simplify notation we will omit the argumentg, a) of the functionbs;.

By definition, (Fy(a)) s = (1//S)) Sicsbs;-

“Hopf (1942) Bifurcation Theorem: Led = F (x,a) be a one-parameter family of planar systems
with an equilibriumx (o) and eigenvalues(a) = p(a) +in (a). Suppose that, for some valoé of the
parameter, the equilibrium(a®) is non-hyperbolic with purely imaginary eigenvalues (igq°) = 0).
Moreover, asi crossest® in some directiony(a) changes from negative to positive ax@) changes
from sink to source. Then, for ai on the side o6°, and close enough to it, there is a periodic orbit sur-
rounding the equilibriunx (o) with radius of magnitudea — a® |¥/2. Also, if x (a®) is asymptotically
stable, then the closed orbit is stable and surrounds the unstable equilibrium. Otherwise, the closed orbit
is unstable and occurs for parameter values that make the equilibrium a sink.
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We first obtain the derivative dds; with respect tg:

—_ al_al i i
o ag—ag, forall j € S\i, and
bl . . _
Si [ —i —i
d Chg (pas + (1_p)aS\i) : (as _aS\i) .

Using the fact thatdh/da;) (ag') = —AL (as) /A (as) for a pointag € AV (S), we
obtain that the derivativébs;/dp evaluated ap = 1 is
9 jp=1
obk. 1 . o
_Si - A (a j Al
= = S . .
P o1 Ns(as) Ezs\i §(a9) (a- 2,

Substituting into the expression (f,(a)) ¢ yields:

2 (Fo(@)s ob; 1B
op |p=1 |S| jeS\i op |p=1 |S| op |p—l
- JezS\|< ~a) - |S|)\' as) | " M(es) (-2,
1

_ |S|)\iswjezs\i<7\'s(as)(ag 35\1) JS(aS)<ajS aJS\'))
= —Cs(a),

which proves the result.

= ajs—a"&i, forall j € S\i, and

|

Proof of Proposition 4.2.Letac V and put := F;(a). For eaciSC N and each € S,
letas > 0 be such thata+ak,a5') € 0V (S). Thenb = a5+ (1/3)0(5, wheres:= |S].
Similarly, letB5 > 0 be such thatbk +[35, e OV( S). Becausdyg' > ag', compre-
hensiveness implies the+ B < a5+ ok, or B < ak— (1/s)ak= (1-1/s)al; hence
max.sPBs < (1— 1/s) max.sak. Therefore each iteration & decreases maxsok by
the fixed factor - 1/s < 1, so it converges to.Ofogether withF; (a) > a, this implies
that the sequendg (a) converges to a point adV.
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We come now to the proof of Theorem 4.Zhis will be done by a sequence of
lemmas. The idea of the proof is as follows: Assuyme 1 andT — o with pT — L,
orT(1—p) — —Inp Split T into two parts,T; andTs. If T; converges teo relatively
slowly —in particular, ifo™ — 1 or Ty (1— p) — 0 — then we prove in Lemma A.1 that
a:= FpTl(O) — lim¢_ F{(0), which as seen in Proposition 4.2 exists and is the Raiffa
pointr. ThereforerT (0) = FpT2 (FpTl(O)) = FpTZ(a) will be close tonT?(r). Also, once
a is sufficiently close to the efficient boundady (recall thatr lies ondV), then all
its Fp iterateng,(a) will also be close t@V — this is Lemma A.4Next, Lemma A.6
shows that, foc on the boundaryk,(c) can be approximated by the solutidn_,(c)
of the C-fieldC(-). Iterating this implies thanTZ(r) is close to/Ar,(1_p)(r), which in
turn converges td_n,(r) sinceTy(1—p) — —Inp. This completes the proof, once all
approximations are made precise.

All constants appearing below (K, and so on) depend only on the gaihe V).
We use the Euclidean norm in ealdl¥, and for payoff configurations we take|| :=
maxs-n [|ag| -

The first lemma deals with the case whEwronverges to infinity slowly relative to
the convergence qf to 1; in this case, starting from O one gets the Raiffa poiktore
generally,

Lemma A.1. There exists a constant> 0 such that, ifp - 1, T — o andT <
—nin(1—p), thenF] (a) — limy_. F{(a) forallac V.

Proof.  The functionF(p,a) = Fy(a) is differentiable with continuous differential
over the compact séd, 1] x V;.. Hence

[Fo(a) — Fu(b)|| <K ((1—p) +[la—b]]),

whereK > max ||DF(p,a)||+ 1. This implies that
(p,@)€[0,1] xV4

|Fo(a) — Fi(@)|| <K(1-p),
and also that

|F2@ -~ Fi(@)|| = [Fo(Fo(@) ~ Fu(Fa(@)]| <K (1) +K(1-p)).
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By induction we then get

K(1-p)KT

HFpT(a)—FlT(a)H <KA-p)(+K -+ KT < =

(A.1)

Taken < 1/InK; then IN1-p)+TInK < (1-nInK)In(1—p) — —oo (since I(1—
p) — —oo). Therefore(1— p)KT — 0, implying that the right hand side of (A.1) con-
verges to OHenceF] (a) — lim7_, F' (a).

The next three lemmas show that fgterates of points close to the boundary
stay close to it, and moreover that the distance becomes of the orzlér-op) after no
more than—(n/2)In(1— p) iterations Recall the notatiots;(a,p) used in the proof
of Proposition 4.1 above.

Lemma A.2. There is a constamt such that|bsj(a,p) —ag|| < K(dist(as,dV () +
(1—p)) foralli € SC N, allaginV.(S) and allp € (0,1].

Proof. Letcse dV(S) be a closest point tason the boundary, sb:= dist(ag,dV(S)) =

|las— cs|. Denotebg; := pas+(1-p)(ag,;, 0). We hav%‘as— bs; H =(1-p) H (ag\i,0) — aSH <
M(1 - p), for an appropriate boun¥ (both (ag;,0) and as are inV.(S)). Thus
dist(bg;,0V (S)) < M(1-p)+d. LetAs be the unit supporting normal & (S) at Cs,

then the distance di; to 0V (S) along the'th coordinate is at mogM(1—p) +d)/As.

SOHbSi - bg; H < (M(1-p)+d)/A5 and altogethelfbs; —ag|| < M(1—p) + (M(1-

p) +d)/As. The non-levelness assumption implies that xheare all bounded away

from O, and the result follows

Lemma A.3. There is a constat such thatist(Fy(a),0V) < K(dist(a,dV) + (1 —
p))? for allac V, and allp € (0,1].

Proof. The boundaryV (S) is C?, therefore there i&; such that, for angs andcg

in 4,V (S) we have
0< hs: (es—8) <Ky Jos— e
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whereAsis the unit outward normal vector 80V (S) atcs. Let cs be one of the vectors
bs; = bs;j(a,p), and consider the hyperplane gaxtiavith V/(S) := {xs € 0%: Ag-Xs <
As-cs} DV(S). Then

dist((Fp(a)s, V(9) < diSt((Fp(a))s,aV'(S))ZdiSt(éngSivaV'(S))

— %ieg)\s- (CS_ b3|) < éi;Kl HCS_ bSi Hz
< K1 (2K (dist(as,aV (9) + (1 p)))?,

whereK; is the constant from Lemma A.2 (recall thaf is one of the vector§g;,
implying the inequalityl|cs — bs;|| < 2K, (dist(as, 0V (S)) + (1—p)) by Lemma A.2).

Lemma A.4. There exists a constad$ > 0 such that for everg > 0 there ispy(g) €
(0,1) with the property thadist(Fg(a),OV) <g(1—p) for all p € (po(€),1), allt >
—(n/2)In(1—p) and alla € V, with dist(a,dV) < do, wheren is given by Lemma
A.l

Proof. Letdy:=1/(4Ke*") andpg :=max{1—dg/e,1—dg,1—2¢/(K(e+2)?),1—
€/(2dp) } ,whereK is given by Lemma A.3. Taka with dist(a,dV) < dy. For every
t > 0, denotex, := dist(F}(a),dV). Lemma A.3 implies that; < f(x_1) forallt > 1,
where f(x) := K(x+ (1—p))2. For everyp € (pg,1) put& := (1 —p); we have: (i)
& < dp (since 1-p < dy/¢); (ii) f(do) < dp (indeed: 1-p < dy, implying thatf (dg) <
4Kd2 < do); and (iii) f(§/2) < &/2 (since 1-p < 2¢/(K(e+2)?)). Therefore the
equationf (x) = x has two real rootsg* < x**, that satisfy 0< x* < §/2 < dp < X**.
Nowx; —x* < f(x_1) — f(X*) = f' (%) (%_1—x*) for an appropriate intermediate point
Yt. The sequenca starts aky = dist(a, 0V ) < do, thus it never leaves the internjal dg|,
and soy; € [0,dg] too. Hence O< f/(0) < f/(y) < f/(dg) = 2K(dg+ 1 —p) < e ¥/M.
From this it follows that — x* < e #/1(x_1 — x*), implying x — x* < e~ */"dj. If

t > —(n/2)In(1—p) thene=*/Ndy < (1—p)%dy < £(1—p)/2=E/2 (since 1-p <
€/(2dp)), thereforex — x* < § — x* (recall thatx* < &/2), which finally yieldsx < & =
e(1-p).
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From Lemmas A.1 - A.4 we obtain the following

Corollary A.5. For everyp € (0,1) there is an integem(p) > 0 with n(p) — o and
n(p)(1—p) — 0 asp — 1, such that for everg > 0 there ispy(€) € (0,1) satisfying

distF5'® ™ (0),0v) < e(1—p)

Fg‘(p)(O)—rH < gand

for all p € (po(€),1) and allt > 0.

Proof.  Let n be the constant given by Lemma A.1, and digtand py be given
by Lemma A.4 Definem(p) := —(n/2)In(1— p) (rounded to the nearest integer) and
n(p) :=2m(p), thenn(p) — o andn(p)(1—p) — 0asp — 1 (since(1—p)In(1—p) —
0). Puta(p) := F"® (0) andb(p) := Fy® (0) = Fy"® (a(p)).
Applying Lemma A.1 withT = m(p) and also withT = n(p) gives limy_,; a(p) =
limg_,1b(p) = lim;_,e Ff (0) =T € 8V, so in particular digta(p),dV) < dgand||b(p) —r|| <
¢ for all p close enough to.Using Lemma A.4 (witlag = a(p)) then yields diitFFT(p)th (0),0V) =
dist(F"® " (a(p)),aV) < e(1—p) for allt > 0 and allp close enough to.1
The next lemma shows that, on the boundayy, applying theF, function is al-
most like moving 1 p along the solution path4; of the C-field.

Lemma A.6. For everye > 0 there ispo(€) € (0,1) such thaf|Fy(a) — A1_p(a)|| <
g(1—p) forallp € (po(€),1) and allac 0. V.

Proof.  The functionF : [0,1] x 0,V — 0.V has a compact domain and is of class
cl and (de(a)/dp)‘p:1 = —C(a) by Proposition 4.1. Then we have that, for every
€ > 0 there isp(g) with 0 < p(g) < 1 such that

Fo(a) — Fi(a)

1-p

By the same reasoning, sint@\1_, (a) /dp) |[p-1= —C(a), we can takep(¢) so that
we also have

Ni-p(@) —No(a)

1-p

-C(a)

<eforallpe(p(e),l) and allac 0, V. (A.2)

—C(a)|| <eforallpe (p(g),1) and allac 0, V. (A.3)
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But F;(a) = Ag (a) = a. Therefore

|Fo(@) — A1 p(a)|| < 2¢(1—p) forall p e (p(e),1) and alla€ 9., V.

The next two lemmas are standard.
Lemma A.7 (Gronwall). There exists a constalit> 0 such that

1At (b) — Ac(a)]| < € ||b—al| forallt >0 and alla,b € d..V.

Proof. Cis a vector field of clas€® defined over the compact stV (for a proof
of this well-known result see Palis and de Melo (1982)).

Lemma A.8. Assume thati € 0.V is a local attractor of the consistent field. Then
there exist constants> 0 andK > 0, and a nornj|-||" on[]s-n 0% such that

IAt(b) —al <e X|b—al forallt >0andallbcd, V with |[b—al’ <.

Proof. See Hirsch and Smale (1974, Theoreng9ril).

We can now proceed to
Proof of Theorem 4.4.

(i) Let p e (0,1], and consider a sequenggy, Tx) such thatpy — 1, Ty — o« and
pl" — W, or, equivalentlyT (1 — px) — —Inp. We have to prove that lign, FJf(O) =
/\—Inu(r)-

Fix € > 0O; letng := n(px) be given by Corollary A.5 and pu := Fg'k"(O). Then
lax—r|| < € and distF}, (ax),0V) < g(1—py) for allt > 0 and allk large enough (such
thatpy > po(€)), sayk > ko. From now on assumie> kg. Also, putT, := Ty — ny; then
T (1—px) = —Inp.

Denotebj := F{ (ax) € V;.. Then distb},0V) < &(1—py), and so there ig, € 9.,V
such that|b} — ¢ || < €(1—py). LetKy > 0 be such thatFy(a) — Fp(a') || <Ky [la— &/
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forall p € [0,1] and alla,& € V., and letK, > 0 be the constant given by the Gronwall
Lemma A.7. We claim that
Hctk—/\t(l,pk)(cfk’)H < (Ki+2)e(1— py) (1+eK2<1*pk> +.. +e(t*1>K2<1*Pk>) (A.4)

for all t > 0 and allk > kg. The proof is by induction on (for eachk), using the
following inequality (recall thab} = Fpk(btfl)):

o= Aapo (@) <k~ + [ Foubic ) Fad )|
+[|Fo(6h) = Arp (67 |
+ H/\lfpk G D) —Nip, (/\(t—l)(lfpk)(c(lz)) H :

The first term is bounded bg(1— px), the second by, ||c; 1 — bl || < Kyg(1-
pk) and the third bye(1— py) (by Lemma A.6). As for the fourth term, it is at most
eKa(1-p1) Hcffl_/\(tfl)(lfpk)(c(lz)H (by the Gronwall Lemma A.7), which is bounded
by the induction hypothesis by

(1P (K; 4 2)(1— py) (1+ - 4 4 e(t—Z)Kz(l—pk)) .

Adding the four terms yields the right hand side of (A.4).
As k — o we have

(1—ppekfeld-pd g Kalnp
eKZ(lfpk) -1 - K2 ’

(1—px) (1+ gl 1 4 e(Tk’fl)Kz(lfpk)) <

implying by (A.4) that
lim sup Hclk’ —A1-po () H < g(Ky+2)e K1 /K, —: eKs.
Now
Fak(0) = Fok (FRX(0)) = For(a) = by,
and we have

HFJE(O) =N inp(r) H < Hblkr _ CIk’

+ Hclkr —Ntr(1-py) (ck) H
* H/\Té(lfpk)(cg) a0t H

A0 (1) Ao |
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As k — oo, the first term converges to O (it is (1 — py)). The second i< €K3 in
the limit. For the third one, note thgey, —c?|| < &(1—px) and||ax—r|| < &, which
impliechE —r|| < 2e and thus, by the Gronwall Lemma A.7,

H/\Té(l—pk)(cck)) —A1y(1-py (1) H < 26621700, gge Kl gk

Finally, the fourth term converges to O singg1—py) — — In. Therefore limsup H FJ("(O

€(Kz+ Ky); sincege is arbitrary, this completes the proof th‘@E(O) — N_inp(r).

(if) For the second part, assume tlaats a local attractor and tha;(r) — a as
t — co. Consider a sequenggy, Tx) such thapy — 1, Ty — o« andp — 0, 0r T(1—
Pk) —+ 0, ask— co. Fix € > 0 and lefu > 0 be small enough so thg\ _ (1) — aH <&,
where||-||" is the norm given by Lemma A.8. By the result of part (i), if we Tgtbe
(the integer part ofj/ (1 — py) and putay := FpTlfl(O), then||a, — a||’ < 2¢ for all k large
enough, sak > k. Assume moreover tha > po(€) andn(py) < T < Ty for k > ko,
wherepg(€) andn(p) are given by Corollary A.5. From now on assukng k.

As in the proof of part (i) above, pid, := F} (a) and letc, € 8,V be such that
[b, — ¢k |" < &(1— py)- Let Ky > 0 be such tha\MFp ) —Fo(@) || < Ky ||la—&/| for all
p €[0,1] and alla,a € V,, and letK, > 0 be the constant given by Lemma A.8. Then

[ck—al|" < ||ck—by||" +||Foc (b Fpk ol
+ || Foe (6 ) = Arp,(C H +H/\1 0 (C )—aH' (A.5)
= (Ki+2)e(1-px) +H/\1*pk 1) —al|

for all t > 0 and allk > kg. We now use induction oh (for eachk). Assume that
et - aH' < 8/2, whered is given by Lemma A.8; this holds fdr= 0 if € is chosen

less thard/4, since||c) —a||" = [|a — al|’ < 2¢. Then||Ay_p, (1) — aH' < e Ke(l-p) ||t~

so (A.5) applied inductively yields

ld—al < (Kit+2)e(1—pi) (1+e ¥l P4 e DKall00)

5The||-||' norm is equivalent to the Euclidean nofj|, so there ik > 0 such that|x||" < K||x|| for
all x; one needs only to replaeeby £/K to get the same estimates fpf|’ .
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+e tKoll-P) || — aH’

< (Ki42)g(1—py) + 2eea(1-p0)

1— e Ko(1-pk)

Now K(1—py)/(1— e K2(1=Pu)) —5 1 ask — oo, hence the first term above is bounded
by 2¢(Ky +2) /K, for all klarge enough. Therefotgel — al|’ <& (2(Ky+2) /Ko +2) =
€K3, which in particular is< 8/2 if € was chosen appropriately small.

To complete the proof, note that

I 71 /
|Fk@—a = |Foi ™ (a T _a
11/ 71 /
< [l —Clk B[ o™ el < o2 po) + ek
(i) The third part of the proposition, which states that }im w(p,T) D

p—1pT—0
N (1), whereAs(r) denotes theo—limit of the solution of the consistent field through

r, can be proved using the result of part (i) already established.

Take any € A\« () , then there exists a sequenge- O such thayy =A_j,, (1) —
y. For eachk, by the result of part (i) there i$ large enough, say, > k, such that
HFTk ka < 1/k, wherepy is given by T (1 - py) = pk. HenceF,*(0) — y as

Proof of Theorem 5.1. We first note thaCs(a) depends only oz for Z C S (more
precisely: only forZ = SandZ = S\i for all i € S). ThereforeDC(a) is a block trian-
gular matrix. The diagonals @fC(a) are the matriceBCs: Ta0V (S) — TadV (S). To
evaluateDCg, expresCs(a) asbs(a) — as, where

bs(a) = ———— [ Ag(@)-as— § A(a)al. | + = -
: |S|A's<a>< %50 | g 2 %

We want to evaluat®Csvs = Dbsvs — Vs for any vectorvs € T,.0V (S). Represent,
by an abuse of notatiobg(a) asbs(As(a),As(a) - as) , where

bs(As,{s) = [SAL (Zs— > 7\1561]5\|>+§Za'3\1

jes\i
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Using the chain rule we get
Dbgvg = (D)\Sbs—l- Dzsbgag) DAgvs,

sinceDZs = D (afAs(a)) vs = alDAsvs+ AL vs = alDAsvs (recall thatvs € a0V (S),
and sovs L As). EvaluatingG = D) bs+ Dzsbsag yields fori # |

As fori = |, we get
) _|S<1AL~,)2 (Zs_je%fjs j ‘) -

Butais a consistent value, henge,g Ng(a5— a‘w) = jesi Aal— aj&i ), implying

G —

i1 i
G = —mjezs\i(as—as\j),

and the proof is thus complete.
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