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Abstract

Sequential randomized prediction of an arbitrary binary sequence is investi-

gated. No assumption is made on the mechanism of generating the bit sequence.

The goal of the predictor is to minimize its relative loss, i.e., to make (almost)

as few mistakes as the best \expert" in a �xed, possibly in�nite, set of experts.

We point out a surprising connection between this prediction problem and em-

pirical process theory. First, in the special case of static (memoryless) experts,

we completely characterize the minimax relative loss in terms of the maximum

of an associated Rademacher process. Then we show general upper and lower

bounds on the minimax relative loss in terms of the geometry of the class of

experts. As main examples, we determine the exact order of magnitude of the

minimax relative loss for the class of autoregressive linear predictors and for

the class of Markov experts.
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1 Introduction

Consider the problem of predicting sequentially an arbitrary binary sequence of length

n. At each time unit t = 1; : : : ; n, after making a guess, one observes the t-th bit

of the sequence. Predictions are allowed to depend on the outcome of biased coin

ips. The loss at time t is de�ned as the probability (with respect to the coin ip)

of predicting incorrectly the t-th bit of the sequence. The goal is to predict any

sequence almost as well as the best \expert" in a given set of experts. In this paper

we investigate the minimum number of excess mistakes, with respect to the mistakes

of the best expert, achievable in a worst-case sense; that is, when no assumptions are

made on the mechanism generating the binary sequence.

To formally de�ne the prediction problem, we introduce the notion of expert. An

expert F is a sequence of functions Ft : f0; 1gt�1 ! [0; 1], t � 1. Each expert

de�nes a prediction strategy in the following way: upon observing the �rst t� 1 bits

yt�1 = (y1; : : : ; yt�1) 2 f0; 1gt�1, expert F predicts that the next bit yt is 1 with

probability Ft(y
t�1).

We now describe the binary prediction problem as an iterated game between a

predictor and the environment (see also [27]). This game is parametrized by a positive

integer n (number of game rounds to play) and by a set F of experts (the expert class).

On each round t = 1; : : : ; n:

1. The predictor picks a number Pt 2 [0; 1].

2. The environment picks a bit yt 2 f0; 1g.

3. Each F 2 F incurs loss jFt(yt�1)� ytj and the predictor incurs loss jPt � ytj:

For each positive integer n, one may view an expert F as a probability distribution

over the set f0; 1gn of binary strings of length n such that, for each yt�1 2 f0; 1gt�1,
Ft(y

t�1) stands for the conditional probability of yt = 1 given the past yt�1. In

this respect, the loss jFt(yt�1) � ytj of expert F at time t may be intepreted as the

probability of error PfXt 6= ytg if the expert's guess Xt 2 f0; 1g were to be drawn

randomly according to the probability PfXt = 1g = Ft(y
t�1).

As our goal is to compare the loss of the predictor with the loss of the best expert

in F , we �nd it convenient to de�ne the strategy P of the predictor in the same way

as we de�ned experts. That is, P is a sequence of functions Pt : f0; 1gt�1 ! [0; 1],

t � 1, and P predicts that yt is 1 with probability Pt(y
t�1), where yt�1 is the sequence

of previously observed bits. Note that the predictor's strategy P may (and in general

will) be de�ned in terms of the given expert class F . Finally, as we did with experts,

for each n � 1 we may view the predictor's strategy as a distribution P over f0; 1gn
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and interpret the loss jPt(yt�1) � ytj as the error probability Pf bYt 6= ytg, where the
prediction bYt 2 f0; 1g is randomly drawn according to the probability Pf bYt = 1g =
Pt(y

t�1).

We now move on to de�ne some quantities characterizing the performance of a

strategy P in the prediction game. The cumulative loss of each expert F 2 F is

de�ned by

LF (y
n)

def
=

nX
t=1

jFt(yt�1)� ynj ;

and the cumulative loss of the predictor using strategy P is

LP (y
n)

def
=

nX
t=1

jPt(yt�1)� ynj :

The goal of the predictor P is to minimize its worst-case relative loss, de�ned by

Rn(P;F) def
= max

yn2f0;1gn

�
LP (y

n)� inf
F2F

LF (y
n)

�
:

Finally, we de�ne the minimax relative loss as the smallest worst-case relative loss

achievable by any predictor,

Vn(F) def
= min

P
Rn(P;F);

where the minimum is taken over the compact set of all distributions P over f0; 1gn.
In the rest of this work, we show that Vn(F) is characterized by metric properties of

the class F , and we give examples of this characterization for speci�c choices of F .
The �rst study of the quantity Vn(F), though for a very speci�c choice of the

expert class F , goes back to a 1965 paper by Cover [7]. He proves that Vn(F) = �(
p
n)

when F contains two experts: one always predicting 0 and the other always predicting

1. A remarkable extension was achieved by Feder, Merhav, and Gutman [10], who

considered the class of all �nite-state experts. In particular, they show that Vn(F) =
O
�p

2kn
�
when F contains all k-th order Markov experts (a subclass of all �nite-state

experts). Cesa-Bianchi et al. [3], building on results of Vovk [26] and Littlestone and

Warmuth [18], consider arbitrary �nite classes of experts and prove that the minimax

relative loss is bounded from above as

Vn(F) �
q
(n=2) ln jFj : (1)

This surprising result shows that there exists a prediction algorithm such that the

number of mistakes is only a constant times
p
n larger than the number of errors com-

mitted by the best expert, regardless of the outcome of the bit sequence. (Typically,

the number of mistakes made by the best expert grows linearly with n.) Moreover,

the constant is proportional to the logarithm of the size of the expert class.
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Since the bound shown in [3] has a slightly di�erent form, here we give a new short

proof. The algorithm is a simple version of a \weighted majority" method proposed

by Vovk [26] and Littlestone and Warmuth [18]. The proof technique is similar to

that used for proving [4, Theorem 5].

Theorem 1 For any �nite expert class F , de�ne the predictor strategy P by

Pt(y
t�1) def

=

P
F2F e

��LF (yt�1)Ft(y
t�1)P

F2F e��LF (y
t�1)

;

where � > 0 is a parameter. If � =
q
8 ln jFj=n then, for any yn 2 f0; 1gn,

LP (y
n)�min

F
LF (y

n) �
r
n

2
ln jFj :

Proof. Fix an arbitrary sequence yn 2 f0; 1gn. Let

Wt =
X
F2F

e��LF (y
t�1) :

Then

ln
Wn+1

W1

= ln

 X
F2F

e��LF (y
n)

!
� ln jFj

� ln

�
max
F2F

e��LF (y
n)

�
� ln jFj

= � �min
F2F

LF (y
n)� ln jFj : (2)

On the other hand, for each t = 1; : : : ; n

ln
Wt+1

Wt

= ln

P
F e

��jFt(yt�1)�ytje��LF (y
t�1)P

F e��LF (y
t�1)

(3)

= lnEF�Qt

h
e��jFt(y

t�1)�ytj
i

(4)

� ln

 
1� �EF�Qt

���[Ft(yt�1)� yt
���+ �2

8

!
(5)

= ln

 
1� �

���EF�Qt[Ft(y
t�1)]� yt

���+ �2

8

!
(6)

= ln

 
1� �

���Pt(yt�1)� yt
���+ �2

8

!
(7)

� ��
���Pt(yt�1)� yt

���+ �2

8
;

where in (4) we rewrite the right-hand side of (3) as an expectation with respect to a

distribution Qt on F which assigns a probability proportional to e��LF (y
t�1) to each
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F 2 F . Inequality (5) is Hoe�ding's bound [16] on the moment-generating function

of random variables taking values in [0; 1] (see also [8, Lemma 8.1]), equation (6)

holds because yt 2 f0; 1g, and (7) holds by de�nition of Pt.

Summing over t = 1; : : : ; n we get

ln
Wn+1

W1

� ��LP (yn) + �2

8
n :

Combining this with (2) and solving for LP (y
n) we �nd that

LP (y
n) � min

F
LF (y

n) +
ln jFj
�

+
�

8
n :

Finally, choosing � =
q
8 ln jFj=n yields the desired bound. 2

In [3] it is also shown that the upper bound (1) is asymptotically tight in a worst-

case sense. That is, for each N � 1 there exists an expert class FN of cardinality N

such that

lim inf
N!1

lim inf
n!1

Vn(FN)q
(n=2) lnN

= 1 :

The approach taken in this paper is di�erent. We treat F as a �xed class and try to

estimate the size of the minimax relative loss Vn(F) for this class. It turns out that
for a �xed class, the order of magnitude of Vn(F) may be signi�cantly smaller thanq
(n=2) ln jFj. (Just consider a class F of two experts such that the predictions of

the two experts are always the same except in the �rst time instant t = 1. In this

case it is easy to see that Vn(F) = 1=2.) In general, the value of Vn(F) depends on
the geometry of the expert class. As the above-mentioned examples of Cover and

Feder et al. show, even for in�nite classes of experts one may be able to determine

meaningful upper bounds. In fact, both of these bounds follow from the following

simple observation.

Theorem 2 Let F (1); : : : ; F (N) be arbitrary experts, and consider the class F of all

convex combinations of F (1); : : : ; F (N), that is,

F =

8<
:

NX
j=1

qjF
(j) : q1; : : : ; qN � 0;

NX
j=1

qj = 1

9=
; :

Then

Vn(F) �
q
(n=2) lnN:

Proof. The theorem immediately follows from Theorem 1 and the simple fact that

for any bit sequence yn 2 f0; 1gn and expert G =
PN

j=1 qjF
(j) 2 F there exists an
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expert among F (1); : : : ; F (N) whose loss on yn is not larger than that of G. To see

this note that

LG(y
n) =

nX
t=1

jGt(y
t�1)� ytj

=
nX
t=1

������
NX
j=1

qjF
(j)
t (yt�1)� yt

������
=

nX
t=1

NX
j=1

qj
���F (j)

t (yt�1)� yt
���

=
NX
j=1

qj

nX
t=1

���F (j)
t (yt�1)� yt

���

=
NX
j=1

qjLF (j)(yn)

� min
j=1;:::;N

LF (j)(yn) :

2

The rest of the paper is organized as follows: In Section 3 a special type of

experts is considered. These so-called static experts predict according to prespeci�ed

probabilities, independently of the past bits of the sequence. In this special case it

is possible to characterize the minimax relative loss Vn(F) by the maximum of a

Rademacher process, which highlights an intriguing connection to empirical process

theory. In Section 3 we use the insight provided by the example of static experts to

de�ne a general algorithm for prediction, and derive a general upper bound for Vn(F).
In Section 4 lower bounds for Vn(F) are derived. To demonstrate the tightness of

the upper and lower bounds, we consider two main examples: In Section 5 we derive

matching upper and lower bounds for the class of k-th order autoregressive linear

predictors. Finally, in Section 6 we take another look at the class of Markov experts

of Feder, Merhav, and Gutman.

2 Prediction with static experts

In this section we study the important special case when every F 2 F is such that

the prediction of F at time t depends only on t but not on the past yt�1. We use
�Ft 2 [0; 1] to denote the prediction at time t of a static expert F . Thus, Ft(y

t�1) = �Ft

for all t = 1; : : : ; n and all yt�1 2 f0; 1gt�1. Such experts are called static in [3].

When interpreting experts as probability distributions on f0; 1gn, this means that

every expert corresponds to a product distribution. Note that every static expert is

determined by a vector ( �F1; : : : ; �Fn), and F may be thought of as a subset of [0; 1]n.
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Next we derive a formula for the minimax relative loss of any (�nite or in�nite)

�xed class F of static experts. This enables us to derive sharp upper bounds, as well

as corresponding lower bounds, in terms of the geometry of F . We start by observing

that a previous characterization of the minimax relative loss, implicitely shown in [3],

corresponds to the expected supremum of a class of random variables.

Theorem 3 For any class F of static experts,

Vn(F) = E

"
sup
F2F

nX
t=1

�
1

2
� �Ft

�
(1� 2Yt)

#

where Y1; : : : ; Yn are independent Bernoulli (1=2) random variables.

Proof. From the statement of [3, Theorem 3.1.2, page 441], we have that if Y1; : : : ; Yn

are independent Bernoulli (1=2) random variables, then

Vn(F) =
n

2
�E

"
inf
F2F

nX
t=1

j �Ft � Ytj
#

= E

"
sup
F2F

nX
t=1

�
1

2
� j �Ft � Ytj

�#

= E

"
sup
F2F

nX
t=1

�
1

2
� �Ft

�
(1 � 2Yt)

#
:

2

With a more compact notation, Theorem 3 states

Vn(F) = 1

2
E

"
sup
F2F

nX
t=1

~FtZt

#
; (8)

where Z1; : : : ; Zn are independent Rademacher random variables (i.e., PfZt = �1g =
PfZt = +1g = 1=2) and each ~Ft is the constant 1 � 2 �Ft. Rademacher averages of

this type appear in the study of uniform deviations of averages from their means, and

they have been thoroughly studied in empirical process theory. (For excellent surveys

on empirical process theory we refer to Pollard [21] and Gin�e [13].)

Based on the characterization (8) of Vn(F) as a Rademacher average, we get the

following two results, which give useful upper and lower bounds for the minimax loss

in terms of certain covering numbers of the class of experts. These covering numbers

are de�ned as follows. For any class F of static experts, let N2(F ; r) be the minimum

cardinality of a set Fr of static experts (possibly not all belonging to F) such that

(8F 2 F) (9G 2 Fr)

vuut nX
t=1

�
�Ft � �Gt

�2
< r :
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Theorem 4 For any class F of static experts,

Vn(F) �
p
2
Z p

n

0

q
ln(N2(F ; r) + 1) dr :

Theorem 5 Let F be a class of static experts containing F and G such that �Ft = 0

and �Gt = 1 for all t = 1; : : : ; n. Then, for some universal constant K > 0,

Vn(F) � K sup
r
r
q
lnN2(F ; r) :

The upper bound (Theorem 4) is a version of Dudley's metric entropy bound and may

be proved by the technique of \chaining", as explained very nicely in Pollard [21].

Theorem 4 may be used to obtain bounds which are not achievable by earlier methods

(see examples below). The lower bound (Theorem 5) is a direct consequence of Corol-

lary 4.14 in Ledoux and Talagrand [17]. In most cases of static experts, Theorem 5

gives a lower bound matching (up to a constant factor) the upper bound obtained by

Theorem 4. (See Talagrand [24] for a detailed discussion about the tightness of such

bounds and possible improvements.) Now we describe two natural examples which

show how to use the above results in concrete situations. We start with the simplest

case.

Let F be the class of all experts F 2 F of the form Ft(y
t�1) = p regardless of t and

the past outcomes yt�1. The class contains all such experts with p 2 [0; 1]. Since

each expert in F is static, and N2(F ; r) �
p
n=r, we may use Theorem 4 to bound

the minimax value from above. After simple calculations we obtain

Vn(F) �
p
2n :

Note that in this case one may obtain a better bound by di�erent methods. For

example, it follows from Theorem 2 that

Vn(F) �
q
(n=2) ln 2 :

Thus the bound of Theorem 4 does not give optimal constants, but it almost always

gives bounds which have the correct order of magnitude. In this special case the

sharpest upper and lower bounds may be directly obtained from Theorem 3, since

Vn(F) = E

"
sup
p2[0;1]

nX
t=1

�
1

2
� p

�
(1� 2Yt)

#

= E

"
max

(
nX
t=1

�
1

2
� Yt

�
;

nX
t=1

�
Yt � 1

2

�)#

= E

�����
nX
t=1

�
1

2
� Yt

������ :

8



Now on the one hand, by the Cauchy-Schwarz inequality,

E

�����
nX
t=1

�
1

2
� Yt

������ �
vuutE

 
nX
t=1

�
1

2
� Yt

�!2

=

p
n

2
;

and on the other hand,

E

�����
nX
t=1

�
1

2
� Yt

������ �
r
n

8

by Khinchine's inequality (Szarek [23]). Summarizing the upper and lower bounds,

for every n, we have

0:3535 � Vn(F)p
n

� 0:5:

(For example, for n = 100, there exists a prediction strategy such that for any se-

quence y1; : : : ; y100 the number of mistakes is not more than that of the best expert

plus 5, but for any prediction strategy there exists a sequence y1; : : : ; y100 such that

the number of excess errors is at least 3.) Note that by the central limit theorem,

Vn(F)=
p
n ! 1=

p
2� � 0:3989 (this exact asymptotical value was originally shown

by Cover [7].) It is easy to see that Theorem 5 also gives a lower bound of the right

order of magnitude, though with a suboptimal constant.

We now show a case where Theorem 4 yields an upper bound signi�cantly better than

those obtainable with any of the previous techniques. Let F be the class of all static

experts which predict in a monotonic way, that is, for each F 2 F , either �Ft � �Ft+1

for all t � 1 or �Ft � �Ft+1 for all t � 1. In view of applying Theorem 4, we upper

bound the log of N2(F ; r) for any 0 < r <
p
n. Consider the class Fr of all monotone

static experts taking values in

n
(2k + 1)r=

p
n : k = 0; 1; : : : ;m

o

where m is the largest integer such that (2m + 1)r=
p
n � 1. Then m � bpn=(2r)c.

Let d = m + 1 be the cardinality of the range of the functions in Fr. Clearly,

N2(F ; r) � jFrj � 2
�
n+d

d

�
. Using

ln

 
n+ d

d

!
� d(ln(1 + n=d) + 1)

and n=d � 2r
p
n we get lnN2(F ; r) = O ((

p
n=r) ln(rn)). Hence, applying Theo-

rem 4, we obtain

Vn(F) = O

�q
n log n

�
:

Note that this is a large \nonparametric" class of experts, yet, we have been able to

derive a bound which is just slightly larger than those obtained for �nite classes.
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In the special case of static classes F such that �Ft 2 f0; 1g for each F 2 F , a
quantity which may be used to obtain good bounds on the covering numbers is the

Vapnik-Chervonenkis (VC) dimension [25]. If a class F has VC-dimension bounded

by a positive constant d, then, using a result of Haussler [15], one may show that

N2(F ; r) � e(d+ 1)

�
2en

r2

�d
:

For such classes, Theorem 4 gives Vn(F) = O
�p

dn
�
, which was not obtainable with

previous techniques. Note that this bound can not be improved in general. In fact,

Haussler [15] exhibits, for each positive integer d � 1 and for each n integer multiple

of d, a class Fd with VC-dimension d and such that

N2(Fd; r) �
 

n

2e(2r2 + d)

!d
:

Hence, the above discussion and Theorem 5 together yield Vn(Fd) = �
�p

dn
�
.

We close this section by recalling that Chung [6, Section 2.6.2] derived a prediction

algorithm, which, for any class of static experts F , achieves Vn(F), that is, it is

minimax optimal. Chung's algorithm is as follows: Suppose yn 2 f0; 1gn is the

sequence to predict. Then the prediction at each time t = 1; : : : ; n is computed as

follows:

Pt(y
t�1) =

1

2n�t
X

xn�t2f0;1gn�t

1 + infF LF (yt�10xn�t)� infF LF (yt�11xn�t)
2

:

Theorems 4 and 5 provide performance bounds for this algorithm.

3 Chaining: a general prediction algorithm

In this section we obtain general upper bounds for binary prediction without assuming

that the experts in F are static. Our aim is to extend the upper bound (1) to

arbitrary (i.e., not necessarily �nite) expert classes. The simplest way to do this is by

discretizing the expert class, that is, taking a �nite set of experts that approximately

represent the whole class, and use the algorithm described in Theorem 1 for the �nite

class. As we will shortly see, this leads to a simple but suboptimal upper bound. To

state this bound, we need to introduce a notion of covering numbers for a nonstatic

expert class: The r-covering number N1(F ; r) of a class F of experts is the minimum

cardinality of a set Fr of experts such that

(8F 2 F) (8yn 2 f0; 1gn) (9G 2 Fr)
nX
t=1

���Ft(yt�1)�Gt(y
t�1)

��� < r :

Then we have the following easy consequence of (1).
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Corollary 6 For any expert class F ,

Vn(F) � inf
r>0

0
@r +

s
n lnN1(F ; r)

2

1
A :

Proof. First note that for each r > 0, the r-covering Fr satis�es Vn(F) � r + Vn(Fr).

Applying (1) to bound Vn(Fr) yields the upper bound. 2

Note that for �nite classes this bound improves on (1) as, trivially,N1(F ; r) � jFj.
Corollary 6 provides a quite acceptable upper bound in many cases, though sometimes

it is way o�-mark. One such example is the class of \monotone" experts considered

in Section 2. For this class Theorem 4 implies Vn(F) = O(
p
n log n), while the best

bound one can get by Corollary 6 is of the order of n2=3.

To achieve the near-optimal upper bound of Theorem 4 in the case of static ex-

perts, a technique called \chaining" is used, a standard method in empirical process

theory. For non-static experts, however, unfortunately we do not have a characteri-

zation of the minimax relative loss by an empirical process. Still, the idea of chaining

turns out to be useful even in this case. Next we use this idea to de�ne a prediction

algorithm, and derive a performance bound, which, in turn, leads to a general upper

bound on Vn(F) of the same form as the upper bound stated in Theorem 4 for static

experts, albeit we use a somewhat stronger notion of covering numbers.

We start by de�ning the covering number used in the bound. For any class F of

experts, de�ne the metric � by

�(F;G)
def
= max

1�t�n

yn2f0;1gn

���Ft(yt�1)�Gt(y
t�1)

��� :

For any " > 0, an "-cover of F (with respect to the metric �) is a set F" of experts on

f0; 1gn such that for all F 2 F , there exists an expert G 2 F" such that �(F;G) < ".

The "-covering number N1(F ; ") is the cardinality of the smallest "-cover of F .
We now move on to the description of the predictor P . For any �xed class F of

experts and for all k � 1, let Gk be a 2�k-cover of F of cardinality Nk = N1
�
F ; 2�k

�
.

De�ne G0 = fF (0)g as the singleton class containing the static expert F (0) such that

�F
(0)
t = 1=2 for each t = 1; : : : ; n. For each k � 0 de�ne the mapping

hk : Gk+1 ! Gk

such that for each F 2 Gk+1, hk(F ) is an expert satisfying

hk(F ) = arg min
G2Gk

�(F;G) :

11



We will use bF to denote hk(F ) when there is no ambiguity on the cover Gk+1 to which

F belongs. For each k � 0, �x some ordering F (k;1); : : : ; F (k;Nk) of all experts in Gk.
De�ne the k-re�ned expert Q(k;i) by

Q
(k;i)
t

def
= 2k(F

(k;i)
t � bF (k;i)

t ) +
1

2
for i = 1; : : : ; Nk.

Note that jF (k;i)
t (yt�1) � bF (k;i)

t (yt�1)j � 2�k�1. This implies that 2kjF (k;i)
t (yt�1) �bF (k;i)

t (yt�1)j � 1=2, which in turn implies 0 � Q
(k;i)
t (yt�1) � 1. Therefore, each Q(k;i)

is indeed a bona �de expert. Now, for each k � 0 we choose a predictor P (k), for

example, the one de�ned in Theorem 1, such that its minimax relative loss with

respect to the �nite class Q(k;1); : : : ; Q(k;Nk) achieves the bound (1). Namely, for all

yn 2 f0; 1gn
LP (k)(yn)� min

1�i�Nk

LQ(k;i)(yn) �
r
n

2
lnNk : (9)

Finally, the predictor P is

Pt
def
=

1X
k=1

2�kP (k)
t : (10)

Theorem 7 For all classes F of experts and for the predictor P de�ned in (10)

LP (y
n)� inf

F2F
LF (y

n) �
p
2n
Z 1

0

q
lnN1(F ; �)d� :

Proof. We �x a sequence yn and, to simplify notation, we write Ft instead of

Ft(y
t�1). Let F � be an expert for which LF �(y

n) = infF2F LF (yn). (If no such F �

exists, for any small � > 0 wemay consider an F � such that LF �(yn) < infF2F LF (yn)+

� and the same proof works.) Consider the \chain"

F (0); F (1); : : :

such that, for each k � 0, F (k) 2 Gk, F (k) = hk(F
(k+1)), and

lim
k!1

�
�
F (k); F �� = 0 :

Note that such a chain exists. Now, for k = 1; 2 : : : and for t = 1; : : : ; n let Q
(k)
t =

2k(F
(k)
t � bF (k)

t ) + 1=2. Recall that bF (k) = hk�1(F (k)) = F (k�1) for all k � 1. Then

F �
t = lim

k!1
F

(k)
t

= F
(0)
t +

1X
k=1

�
F

(k)
t � F

(k�1)
t

�

=
1

2
+

1X
k=1

�
F

(k)
t � bF (k)

t

�

=
1X
k=1

2�kQ(k)
t :

12



Consequently, for all t = 1; : : : ; n,

jPt � ytj � jF �
t � ytj =

�����
1X
k=1

2�kP (k)
t � yt

������
�����
1X
k=1

2�kQ(k)
t � yt

�����
=

1X
k=1

2�k
h ���P (k)

t � yt
���� ���Q(k)

t � yt
��� i : (11)

Therefore, summing the above equality over t = 1; : : : ; n and applying (9) to each

predictor P (k), k � 1, we obtain

LP (y
n)� inf

F2F
LF (y

n) =
1X
k=1

2�k
�
LP (k)(yn)� LQ(k)(yn)

�

�
1X
k=1

2�k
�
LP (k)(yn)� min

1�i�Nk

LQ(k;i)(yn)

�

�
1X
k=1

2�k
r
n

2
lnNk

=
1X
k=1

2�k
r
n

2
lnN1 (F ; 2�k)

= 2

r
n

2

1X
k=1

2�k�1
q
lnN1 (F ; 2�k)

�
p
2n
Z 1

0

q
lnN1 (F ; �) d�

as desired. 2

The predictor (10) can be easily modi�ed so to avoid the in�nite sum. De�ne the

new predictor eP by

ePt def
=

t�1X
k=1

2�kP (k)
t +

1

2

1X
k=t

2�k : (12)

Here, only P (1); : : : ; P (n�1) are actually used to predict any sequence yn. More pre-

cisely, each P (k) is only used to predict the n� k bits yk+1; : : : ; yn. The performance

of eP is derived from (11) as follows

j ePt � ytj � jF �
t � ytj �

t�1X
k=1

2�k
h ���P (k)

t � yt
���� ���Q(k)

t � yt
��� i+ 1

2

1X
k=t

2�k : (13)

Note that
1

2

1X
k=t

2�k = 2�t :

Therefore, summing (13) over t = 1; : : : ; n, we get

LeP (yn)� inf
F2F

LF (y
n) �

nX
t=2

t�1X
k=1

2�k
h ���P (k)

t � yt
���� ���Q(k)

t � yt
��� i+ nX

t=1

2�t

�
n�1X
k=1

nX
t=k+1

2�k
h ���P (k)

t � yt
���� ���Q(k)

t � yt
��� i+ 1

13



=
n�1X
k=1

�
LP (k)(ynk+1)� LQ(k)(ynk+1)

�
+ 1

�
n�1X
k=1

�
LP (k)(ynk+1) � min

1�i�Nk

LQ(k;i)(ynk+1)

�
+ 1

�
n�1X
k=1

0
@
s
n� k

2
lnNk

1
A + 1 :

Hence, concluding the proof as we did in Theorem 7, we obtain the following.

Corollary 8 For all classes F of experts and for the predictor eP de�ned in (12),

LeP (yn)� inf
F2F

LF (y
n) �

p
2n
Z 1

0

q
lnN1(F ; �) d� + 1 :

4 Lower bounds

In this section we derive lower bounds for the minimax relative loss Vn(F) of general
classes of experts. Recall that in the case of static experts, by Theorem 3, we have

the following characterization:

Vn(F) = E

"
sup
F2F

nX
t=1

�
1

2
� �Ft

�
(1� 2Yt)

#
;

where the Yi's are independent Bernoulli (1=2) random variables. Unfortunately, this

equality is not true for general classes of experts. However, the right-hand side is

always a lower bound for Vn(F), and the following inequality is our starting point.

Theorem 9 For any expert class F ,

Vn(F) � E

"
sup
F2F

nX
t=1

�
1

2
� Ft(Y

t�1)
�
(1� 2Yt)

#
;

where Y1; : : : ; Yn are independent Bernoulli (1=2) random variables,

Proof. For any prediction strategy P , if Yt is a Bernoulli (1=2) random variable

then EjPt(yt�1)� Ytj = 1=2 for each yt�1. Hence

Vn(F) � Rn(P;F)
= max

yn2f0;1gn

�
LP (y

n)� inf
F2F

LF (y
n)

�

� E

�
LP (Y

n)� inf
F2F

LF (Y
n)

�

=
n

2
�E

�
inf
F2F

LF (Y
n)
�

= E

"
sup
F2F

nX
t=1

�
1

2
� Ft(Y

t�1)
�
(1 � 2Yt)

#
:
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2

Theorem 9 will be directly applied in Section 5 to the class of linear experts. Next,

we prove a di�erent lower bound on Vn(F) in terms of the packing number of F with

respect to a random metric. This result will be applied in Section 6. We make use of

the following notations.

For any class F of experts and for all yn 2 f0; 1gn, Fjyn is the class of static

experts F 0 such that �F 0
t = Ft(y

t�1).

For each expert F , for all t = 1; : : : ; n, and for all zt�1 = (z1; : : : ; zt�1) 2
f�1;+1gt�1, we de�ne ~Ft by ~Ft(z

t�1) = 1� 2Ft ((1� z1)=2; : : : ; (1� zt�1)=2).

As we did in the case of static experts, we write the inequality proven in Theorem 9

using the more compact notation

Vn(F) � 1

2
E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
; (14)

where Z1; : : : ; Zn are now independent Rademacher random variables.

Theorem 10 Let F be a class of experts containing two static experts F and G such

that �Ft = 0 and �Gt = 1 for all t. If there exists a positive constant c such that

E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Ut

#
� cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
(15)

where Z1; : : : ; Zn; U1; : : : ; Un are independent Rademacher random variables, then

Vn(F) � K

2c
E

�
sup
r
r
q
lnN2(FjY n; r)

�
;

where Y1; : : : ; Yn are independent Bernoulli (1=2) random variables and K is the uni-

versal constant appearing in Theorem 5. In particular, if in addition to the above, for

some r > 0, there exists a set Gr of experts such that with probability at least 1=2 it

is an r-packing with respect to the (random) metric

dY n(F;G) =

vuut nX
t=1

(Ft(Y t�1)�Gt(Y t�1))2 ;

then

Vn(F) � Kr

4c

q
ln jGrj :

Proof. For each �xed yn 2 f0; 1gn, we can apply Theorem 5 to the static class Fjyn
and prove

E

"
sup
F2F

nX
t=1

~Ft(z
t�1)Ut

#
� K sup

r
r
q
lnN2(Fjyn; r) ;
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where zt = 1� 2yt. Then, by averaging over yn, we get

Vn(F) � 1

2
E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
by inequality (14)

� 1

2c
E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Ut

#
by hypothesis

� K

2c
E

�
sup
r
r
q
lnN2(FjY n; r)

�

concluding the proof of the �rst statement. The second statement is a trivial conse-

quence. 2

5 Linear predictors

In this section we study the class Lk of k-th order autoregressive linear predictors,

where k � 2 is a �xed positive integer. Lk contains all experts F such that

Ft(y
t�1) =

kX
i=1

qiyt�i

for some q1; : : : ; qk � 0 with
Pk

i=1 qi = 1. In other words, an expert F predicts

according to a convex combination of the k most recent outcomes of the sequence.

Convexity of the coe�cients qi assures that Ft(y
t�1) 2 [0; 1]. The same class of experts

(without the convexity assumption) was considered also by Singer and Feder [22] who

studied a rather di�erent problem.

The main result of this section determines the exact order of magnitude of the

minimax relative loss for Lk.

Theorem 11 For any positive integers n and k � 2,

Vn(Lk) �
s
n ln k

2
� 0:707

p
n ln k

and for all k > 5

lim inf
n!1

Vn(Lk)p
n

�
�
1

4
� 1

4e

�p
ln k �

s
1

8�
� 0:158

p
ln k � 0:199 : (16)

Moreover,

lim inf
k!1

lim inf
n!1

Vn(Lk)p
n ln k

=
1p
2
� 0:707:
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Remarks. For small k, the lower bound (16) holds vacuously. However, for all k � 2,

one can prove that lim infn!1 Vn(Lk)=
p
n � 1=6. With more work is also possible

to obtain nonasymptotical lower bounds of the \right" order
p
n ln k by studying the

rate of convergence in the martingale central theorem used in the proof below. Such

nonasymptotical bounds will be derived for the class Markov experts in Section 6.

Finally note that the last statement implies that the upper bound cannot be improved:

the constant 1=
p
2 is optimal.

Proof. The �rst statement is a straighforward consequence of Theorem 2 if we

observe that Lk is the convex hull of the k experts F (1); : : : ; F (k) de�ned by

F
(i)
t (yt�1) = yt�i; i = 1; : : : ; k:

We prove the second statement by applying directly Theorem 9 in the compact

form (14),

Vn(Lk) � 1

2
E

"
sup
F2Lk

nX
t=1

~Ft(Z
t�1)Zt

#
=

1

2
E

"
max
1�i�k

nX
t=1

ZtZt�i

#

where Z�k+1; : : : ; Zn are independent Rademacher variables (the k random variables

Z�k+1; : : : ; Z0 are needed to uniquely de�ne the values ~Ft(Z
t�1) for t = 1; : : : ; k) and

the last step holds simply because a linear function over a convex polygon takes its

maximum in one of the vertices of the polygon.

Consider now the k-vector Xn = (Xn;1; : : : ;Xn;k) of components

Xn;i
def
=

1p
n

nX
t=1

ZtZt�i; i = 1; : : : ; k:

By the \Cram�er-Wold device" (see, e.g., Billingsley [2, p. 48]), the sequence of vectors

fXng converges in distribution to a vector random variable N = (N1; : : : ; Nk) if and

only if
Pk

i=1 aiXn;i converges in distribution to
Pk

i=1 aiNi for all possible choices of

the coe�cients a1; : : : ; ak. Thus, consider

kX
i=1

aiXn;i =
1p
n

nX
t=1

Zt

kX
i=1

aiZt�i:

It is easy to see that the sequence of these random variables forms a martingale with

respect to the sequence of �-algebras Gt generated by Z�k+1; : : : ; Zt. Furthermore,

by the martingale central limit theorem (see, e.g., Hall and Heyde [14, Theorem 3.2])Pk
i=1 aiXn;i converges in distribution, as n!1, to a zero-mean normal random vari-

able with variance
Pk

i=1 a
2
i . Then, by the Cram�er-Wold device, as n!1 the vector

Xn converges in distribution to N = (N1; : : : ; Nk), where N1; : : : ; Nk are independent

standard normal random variables.
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Convergence in distribution implies that for any bounded continuous function

 : Rk ! R,
lim
n!1E [ (Xn;1; : : : ;Xn;k)] = E [ (N1; : : : ; Nk)] : (17)

Consider, in particular, the function  (x1; : : : ; xk) = �L(maxi xi), where L > 0, and

�L is the \thresholding" function

�L(x) =

8>><
>>:
�L if x < �L
x if jxj � L

L if x > L.

Clearly, �L is bounded and continuous. Hence, by (17), we conclude

lim
n!1E

�
�L

�
max
1�i�k

Xn;i

��
= E

�
�L

�
max
1�i�k

Ni

��
:

Now note that for any L > 0,

E

�
max
1�i�k

Xn;i

�
� E

�
�L

�
max
1�i�k

Xn;i

��
+E

�
max
1�i�k

Xn;iIfmax1�i�k Xn;i<�Lg
�
;

where����E
�
max
1�i�k

Xn;iIfmax1�i�k Xn;i<�Lg
����� � E

�����max
1�i�k

Xn;i

���� Ifmax1�i�k Xn;i<�Lg
�

�
Z 1

L
P

�����max
1�i�k

Xn;i

���� > u

�
du

�
Z 1

L
k max
1�i�k

P fjXn;ij > ug du

� 2k
Z 1

L
e�u

2=2du

(by the Hoe�ding-Azuma inequality)

� 2k
Z 1

L

�
1 +

1

u2

�
e�u

2=2du

=
2k

L
e�L

2=2:

Therefore, we have that for any L > 0,

lim inf
n!1 E

�
max
1�i�k

Xn;i

�
� E

�
�L

�
max
1�i�k

Ni

��
� 2k

L
e�L

2=2 :

Letting L!1 on the right-hand side, we see that

lim inf
n!1 E

�
max
1�i�k

Xn;i

�
� E

�
max
1�i�k

Ni

�
:

(Note that one can similarly show that, in fact, E [max1�i�kXn;i]! E [max1�i�k Ni]

as n!1.) Using a standard estimate for the expected value of the maximum of k
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independent standard normal variables (see, e.g., [17, p. 80]), which holds for > 5, we

obtain

lim inf
n!1

Vn(Lk)p
n

� 1

2
E

�
max
1�i�k

Ni

�
�
�
1

4
� 1

4e

�p
ln k �

s
1

8�
:

The last statement now follows from the fact that

lim
k!1

E [max1�i�k Ni]p
ln k

=
p
2;

see, for example, Galambos [11], or Ledoux and Talagrand [17, p. 61]. 2

6 Markov experts

This section is devoted to an important family of examples (i.e., k-th order Markov

experts), another example of how the upper and lower bounds obtained in Sections 3

and 4 may be used in concrete situations. The same class of experts was also consid-

ered by Feder, Merhav, and Gutman [10], who derived an upper bound. The main

novelty of this section is a matching nonasymptotical lower bound, obtained via The-

orem 10, revealing the exact value (to within constant factors) of the minimax relative

loss for Markov experts.

For an arbitrary k � 1, we consider the classMk of experts that, when considered

as probability measures on f0; 1gn, represent all stationary k-th order Markov mea-

sures. The rigorous de�nition is as follows: As each prediction of a k-th order Markov

expert F 2 Mk is determined by the last k bits observed, we add a pre�x y�k+1; : : : ; y0

to the sequence yn to be predicted. We use yn�k+1 to denote the resulting sequence

of n + k bits and yqp to denote any subsequence (yp; : : : ; yq) for �k + 1 � p � q � n.

The class Mk is indexed by the set [0; 1]2
k

so that the index of any F 2 Mk is the

vector f = (f0; f1; : : : ; f2k�1) with fs 2 [0; 1] for 0 � s < 2k. If F has index f then

Ft(y
t�1
�k+1) = fs for all 1 � t � n and for all yt�1�k+1 2 f0; 1gt+k�1, where s has binary

expansion yt�k; : : : ; yt�1. (Note that, due to the need of adding a pre�x y�k+1; : : : ; y0

to the sequence to predict, the function Ft is now de�ned over the set f0; 1gt+k�1.)
As mentioned in Section 1, Feder et al. [10] showed that

Vn(Mk) � C
p
2kn ;

where C is a universal constant. Interestingly, both Theorem 2 and Theorem 7 imply

the same upper bound. The best constant C =
q
ln 2=2 is achieved by Theorem 2.

(To see why Theorem 7 implies a bound of the same order of magnitude, just observe

that N1(F ; �) � ��2
k

for all � 2 (0; 1).) We now complement this result by showing

a matching lower bound on Vn(Mk) that holds for all k � 1 and for all su�ciently

large n.
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Theorem 12 For all k � 1 and for all n � 78941k222k,

Vn(Mk) � K

690

p
2kn

where K is the universal constant appearing in Theorem 5.

We prove this theorem by applying the lower bound of Theorem 10. However, instead

of checking directly that Markov experts satisfy condition (15), we proceed as follows:

First, we de�ne two simple properties (symmetry and contraction) whose conjunction

is shown to imply condition (15). Second, we prove that Markov experts have both

of these properties.

De�nition 13 (Symmetry) An expert class F is symmetric if for each F 2 F and

for each yn 2 f0; 1gn there exists F 0 2 F such that F 0
t(y

t�1) = 1 � Ft(y
t�1) for each

t = 1; : : : ; n.

This condition is quite mild, and even if it is not satis�ed, one may easily \sym-

metrize" the expert class by adding to F a \symmetric" expert F 0 = 1 � F for each

F 2 F . This operation just slightly increases the size of F .
De�nition 14 (Contraction) Let c be a positive constant. An expert class F is

c-contractive if

E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)ZtYt

#
� cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#

where Z1; : : : ; Zn; Y1; : : : ; Yn are independent random variables such that each Zt is

Rademacher and each Yt is Bernoulli (1=2).

The next result shows that symmetry and c-contraction imply condition (15) with

constant 2c+ 1.

Lemma 15 If an expert class F is symmetric, c-contractive, and contains some static

expert F such that �Ft = 1 for all t, then

E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Ut

#
� (2c+ 1)E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#

where Z1; : : : ; Zn; U1; : : : ; Un are independent Rademacher random variables.

Proof. Consider the chain of inequalities

(2c+ 1)E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
� E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Ut

#

= 2cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
�
 
E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Ut

#
� E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#!

� 2cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
� E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)(Ut � Zt)

#
:
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Now pick independent Bernoulli (1=2) random variables Y1; : : : ; Yn. We further bound

as follows.

2cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
� E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)(Ut � Zt)

#

= 2cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
� 2E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)(�Zt)Yt

#
(18)

= 2cE

"
sup
F2F

nX
t=1

~Ft(Z
t�1)Zt

#
� 2E

"
sup
F2F

nX
t=1

~Ft(Z
t�1)ZtYt

#
(19)

� 0 : (20)

To show (18) �x any zn and notice that, for each t, the distribution of Ut � zt is

the same as the distribution of �2Ytzt. Finally, symmetry of F implies (19) and

contractiveness implies (20). 2

As Mk is clearly symmetric and contains some static expert F such that �Ft = 1

for all t, all we have to show, by Lemma 15, is that Mk is contractive, and then the

existence of a packing set Gr with the required property. These properties are stated

by the next two lemmas.

Lemma 16 For all k � 1 and all n � 78941k222k, Mk is
�
10
p
2
�
-contractive.

To prove this result we need some preliminary de�nitions and a few technical sub-

lemmas. Fix any k � 1. For each s 2 f�1; 1gk, for each z = zn�k+1 2 f�1; 1gn+k, and
for each t = 1; : : : ; n de�ne

at(s; z)
def
=

8>><
>>:

1 if zt�1t�k = s and zt = 1,

�1 if zt�1t�k = s and zt = �1,
0 otherwise.

Recall that, by de�nition of k-th order Markov expert, for any F 2 Mk the quantity
~Ft(z

t�1
�k+1) depends only on the subsequence zt�1t�k. Hence,

max
F2Mk

nX
t=1

~Ft(z
t�1
�k+1)zt =

X
s2f�1;1gk

�����
X
t

at(s; z)

����� :

So, showing that Mk is
�
10
p
2
�
-contractive amounts to showing that

X
s2f�1;1gk

E

�����
X
t

at(s; Z)Yt

����� �
�
10
p
2
� X
s2f�1;1gk

E

�����
X
t

at(s; Z)

����� (21)

where Z = (Z�k+1; : : : ; Zn) is a vector of n + k independent Rademacher random

variables. De�ne m(s; z) =
Pn

t=1 jat(s; z)j, so m(s; z) is just the number of times s

occurs in z. We now prove the following.
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Lemma 17 For all s 2 f�1; 1gk,

Var

�����
X
t

at(s; Z)

����� � E

2
4 X

t

at(s; Z)

!2
3
5 = E[m(s; Z)] ; (22)

E

�����
X
t

at(s; Z)Yt

����� �
s
E[m(s; Z)]

2
; (23)

E[m(s; Z)] =
n

2k
: (24)

Proof. We start with (22). Note that

E

2
4
 X

t

at(s; Z)

!2
3
5 = E

"X
t

at(s; Z)
2

#
+E

2
4X
t6=v

at(s; Z)av(s; Z)

3
5

= E[m(s; Z)] +
X
t6=v

E [at(s; Z)av(s; Z)] :

To investigate one term of the sum on the right-hand side, assume without loss of

generality that t > v and write

E [at(s; Z)av(s; Z)] = E
h
E
h
at(s; Z)av(s; Z) j Z t�1

�k+1

ii
= E

h
av(s; Z)E

h
at(s; Z) j Z t�1

�k+1

ii
(since av(s; Z) is determined by Z t�1

�k+1)

= 0

and this concludes the proof of (22). To prove (23) �x z 2 f�1; 1gn+k and consider

the chain of inequalities

E

�����
X
t

at(s; z)Yt

����� �
vuuutE

2
4 X

t

at(s; z)Yt

!2
3
5

=

vuuutE
"X

t

at(s; z)2Y 2
t

#
+E

2
4X
t6=v

at(s; z)av(s; z)YtYv

3
5

=

vuut1

2

X
t

at(s; z)2 +
1

4

X
t6=v

at(s; z)av(s; z)

=
1

2

vuut X
t

at(s; z)

!2

+m(s; z) :

Averaging both sides with respect to z 2 f�1; 1gn+k yields

E

�����
X
t

at(s; Z)Yt

����� � 1

2
E

vuut X
t

at(s; Z)

!2

+m(s; Z)
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� 1

2

vuuutE
2
4 X

t

at(s; Z)

!2
3
5+E[m(s; Z)]

=

s
E[m(s; Z)]

2
:

Finally, to prove (24) just observe

E[m(s; Z)] =
nX
t=1

P
n
Z t�1
t�k = s

o
= n=2k :

2

Lemma 18 For all n � 78941k222k and all s 2 f�1; 1gk,

P

8<
: j
Pn

t=1 at(s; Z)jq
E[m(s; Z)]

� 1

4

9=
; � 1

5
:

Proof. Fix any s 2 f�1; 1gk. For any z = zn�k+1 2 f�1; 1gn+k, de�ne the random
variables Ti so that Ti(z) = t i� zt�1t�k is the i-th occurrence of s in z; i.e., zt�1t�k = s and

z
p�1
p�k = s for exactly i� 1 distinct indices 1 � p < t. Then

nX
t=1

at(s; z) =
m(s;z)X
i=1

zTi(z) (25)

and Ti(z) is the index of the i-th nonzero term in the left-hand side of (25). Also, Ti(z)

is unde�ned for all i > m(s; z). To control the sum in (25), we use a technique due

to Doeblin and Ascombe (see, e.g., [5, Theorem 1, page 322]). The key observation is

that the random variables ZT1; : : : ; ZTm, m = m(s; Z), which are a random subset of

the independent Rademacher variables Z�k+1; : : : ; Zn, are independent. To see this,

assume by induction that ZT1; : : : ; ZTi�1
, with i > 1, are indeed independent. Now

Ti depends on ZT1; : : : ; ZTi�1
. However, since Ti(z) > Tj(z) for all i > j, ZTi is an

independent Rademacher variable even when conditioned on ZT1; : : : ; ZTi�1
. In other

words, for all choices of z1; : : : ; zi 2 f�1; 1g,

P
n
ZTi(Z) = zi j ZT1(Z) = z1; : : : ; ZTi�1(Z) = zi�1

o
= P

n
ZTi(Z) = zi

o
=

1

2

implying that ZT1; : : : ; ZTi are indeed independent.

Now de�ne Z 0 = (Z�k+1; : : : ; Zn; Zn+1; : : : ; Z2n), where Zn+1; : : : ; Z2n are indepen-

dent copies of Z1; : : : ; Zn. Clearly, for all z0 2 f�1; 1g2n+k and for z = (z0)n�k+1,

m(s; z0) =
Pn

t=1 jat(s; z0)j = m(s; z) (note that the upper index in the sum is n). For

all 1 � ` � m(s; z0), let

S`(z
0) def
=
X̀
i=1

z0Ti(z0) :
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For all m(s; z0) < ` � n, let

S`(z
0) def
=

m(s;z0)X
i=1

z0Ti(z0) + z0n+1; : : : ; z
0
n+`�m(s;z0) :

Clearly, Sm(s;z0)(z
0) = Sm(s;z)(z) =

Pn
t=1 at(s; z). Let kn = E[m(s; Z 0)] and, without

loss of generality, assume kn is an integer. Then

P

8<
: j
Pn

t=1 at(s; Z)jq
E[m(s; Z)]

� 1

4

9=
;

= P

8<
:
���Sm(s;Z0)(Z

0)
���p

kn
� 1

4

9=
; (26)

� P

(
jSkn(Z 0)j �

p
kn

2
and jSm(s;Z0)(Z

0)� Skn(Z
0)j �

p
kn

4

)
(27)

� P

(
jSkn(Z 0)j �

p
kn

2

)
� P

(
jSm(s;Z0)(Z

0)� Skn(Z
0)j �

p
kn

4

)
(28)

where (27) holds since

jSm(s;Z0)(Z
0)j � jSkn(Z 0)j � jSm(s;Z0)(Z

0)� Skn(Z
0)j

and (28) holds since PfA \ Bg � PfAg � PfBcg. Note that Skn(Z
0) =

Pkn
i=1 ZTi,

where kn is constant and ZT1 ; : : : ; ZTkn are independent Rademacher random vari-

ables. Hence, if IA is the indicator function of the event A,

P

(
jSkn(Z 0)j �

p
kn

2

)
� 2P

8<
:

knX
i=1

IfZTi=1g �
knX
i=1

IfZti=�1g +

p
kn

2

9=
;

= 2P

8<
:

knX
i=1

IfZTi=1g �
kn

2
+

p
kn

4

9=
;

� 2

 
1 ��(1=2) � 1p

kn

!
(29)

where the last inequality follows from the Berry-Ess�een theorem (see, e.g., Chow and

Teicher [5]) with � being the Normal distribution function. As 1 � �(1=2) > 3=10,

the quantity in (29) is at least 2=5 for kn � 100, that is for n � (100)2k . Now, for

any � > 0,

P

(
jSm(s;Z0)(Z

0)� Skn(Z
0)j �

p
kn

4

)

� P

(
jSm(s;Z0)(Z

0)� Skn(Z
0)j �

p
kn

4
and jm(s; Z 0)� knj � �kn

)
(30)

+P fjm(s; Z)� knj > �kng : (31)
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We start to bound (30) by establishing the following:

 
jSm(s;z0)(z

0)� Skn(z
0)j �

p
kn

4

!
^ (jm(s; z0)� knj � �kn)

implies

 
max

kn�j�(1+�)kn
jSj(z0)� Skn(z

0)j �
p
kn

4

!

_
 

max
(1��)kn�j�kn

jSj(z0)� Skn(z
0)j �

p
kn

4

!
:

Hence we have

P

(
jSm(s;Z0)(Z

0)� Skn(Z
0)j �

p
kn

4
^ jm(s; Z 0)� knj � �kng

� P

(
max

kn�j�(1+�)kn
jSj(Z 0)� Skn(Z

0)j �
p
kn

4

)

+P

(
max

(1��)kn�j�kn
jSj(Z 0)� Skn(Z

0)j �
p
kn

4

)
:

Note that jSj(Z 0)� Skn(Z
0)j is the absolute value of the sum of at most b�knc inde-

pendent Rademacher random variables. Hence, by Kolmogorov's inequality,

P

(
max

kn�j�(1+�)kn
jSj(Z 0)� Skn(Z

0)j �
p
kn

4

)

+P

(
max

(1��)kn�j�kn
jSj(Z 0)� Skn(Z

0)j �
p
kn

4

)

� 16

kn
E

��
Skn+b�knc(Z

0)� Skn(Z
0)
�2�

+
16

kn
E

��
Skn(Z

0)� Skn�b�knc(Z
0)
�2�

� 16� + 16� :

Now we bound (31). As m(s; z) can change by at most k by changing the value of zt

for at most one 1 � t � n, we can apply McDiarmid's inequality [19] (see also [8, p.

136]) and conclude, recalling that E[m(s; Z)] = 2k=n by (24) in Lemma 17,

P fjm(s; Z)�E[m(s; Z)]j > �E[m(s; Z)]g � 2 exp

 
� 2�2n

k222k

!
= � :

Hence,

P

8<
:j
Pn

t=1 at(s; Z)jq
E[m(s; Z)]

� 1

4

9=
; � 2

5
� 32� � �:
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By choosing � = 1=165 and n � 78941k222k, we get � � 1=165 implying 32�+� � 1=5.

2

Proof of Lemma 16. To prove the lemma, by (21) it su�ces to show that, for any

s 2 f�1; 1gk and for all n larger or equal than 78941k222k,

E

�����
nX
t=1

at(s; Z)Yt

����� �
�
10
p
2
�
E

�����
nX
t=1

at(s; Z)

����� :
Lemma 18 and Markov's inequality imply

1

5
� P

(�����
nX
t=1

at(s; Z)

����� � 1

4

q
E[m(s; Z)]

)
� 4E jPn

t=1 at(s; Z)jq
E[m(s; Z)]

:

Now, from (23) in Lemma 17,

E

�����
nX
t=1

at(s; Z)Yt

����� �
q
E[m(s; Z)]p

2
�
�
10
p
2
�
E

�����
nX
t=1

at(s; Z)

�����
as desired. 2

Lemma 19 If n � 2k+5, there exists a subset of Markov experts of cardinality 22
k=3

which, with probability at least 1=2, is an r =
q
n=8-packing of F with respect to the

random metric

dY n(F;G) =

vuut nX
t=1

(Ft(Y t�1)�Gt(Y t�1))2 :

Proof. The key tool is Gilbert's [12] packing bound which states that if A(`; r) is

the largest number of sequences of length ` in f0; 1g` such that the Hamming distance

(i.e., the number of disagreements) between any two of them is at least 2r + 1, then

A(`; r) � 2`P2r
i=1

�
`

i

� :
In particular,

A(`; `=8) � 2`P`=4
i=1

�
`

i

� � 2`�` h(1=4) � 2`=3; (32)

where h is the binary entropy function.

We need to prove the existence of a set

Gr = fF (1); : : : ; F (M)g � F

such that

P

8><
>:min

i;j�M

i6=j
dY n(F (i); F (j)) > r

9>=
>; �

1

2
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where M = 22
k=3 and r =

q
n=8. We choose the packing set Gr as follows. Let M0

k

contain all F 2 Mk such that Ft(y
t�1) 2 f0; 1g for all 1 � t � n and for all yt�1. By

the Gilbert lower bound (32), there exists a set Gr �M0
k of cardinalityM = 22

k=3 so

that any two distinct F (i); F (j) 2 Gr are indexed by vectors f (i); f (j) 2 f0; 1g2k that

disagree on at least 2k=4 components. Then,

E

��
dY n(F (i); F (j))

�2�
=

n

2k

2k�1X
s=0

�
f (i)s � f (j)s

�2

� n

2k
2k

4
=
n

4
;

and therefore

P

8><
>:min

i;j�M

i6=j
dY n(F (i); F (j)) � r

9>=
>; �

�
22

k=3
�2

max
i;j�M

P

(
nX
t=1

�
F

(i)
t (Y t�1

�k+1) � F
(j)
t (Y t�1

�k+1)
�2 � r2

)

� 22
k

max
i;j�M

P

(
nX
t=1

�
F

(i)
t (Y t�1

�k+1)� F
(j)
t (Y t�1

�k+1)
�2

� E

��
dY n(F (i); F (j))

�2� � r2 � n

4

�
(by the above inequality for the expected value)

= 22
k

max
i;j�M

P

(
nX
t=1

�
F

(i)
t (Y t�1

�k+1)� F
(j)
t (Y t�k

�k+1)
�2

� E

��
dY n(F (i); F (j))

�2� � �n
8

�
(choosing r2 = n=8)

� 22
k

e�n=32

where at the last step we used the Hoe�ding-Azuma inequality for sums of bounded

martingale di�erences [1, 16], (see also [8, Theorem 9.1]). This upper bound is less

than 1=2 whenever n � 2k+5, which is guaranteed by assumption. The proof is now

complete. 2

7 Conclusion, remarks

In this work we demonstrate that ideas and results from empirical process theory can

be successfully applied to the problem of predicting arbitrary binary sequences given

a �xed set of experts. For general expert classes, we prove upper and lower bounds

on the minimax relative loss in terms of the metric entropy of the expert class. In

the special case of static experts, the prediction problem turns out to be precisely

equivalent to a Rademacher process; hence we can prove tighter upper and lower
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bounds on the corresponding minimax relative loss. Furthemore, applications of our

results to the classes of autoregressive linear predictors, Markov experts, and (static)

monotone experts yield bounds that were not apparently obtainable with any of the

previous techniques.

Remark. As we noted before, the loss function considered here may be interpreted

as the expected loss j bYt� ytj of a randomized prediction strategy whose prediction at

time t is the binary random variable bYt, where bY1; : : : ; bYn are independent, and Pf bYt =
1g = 1�Pf bYt = 0g = Pt. Then an obvious question is how the actual (random) lossPn

t=1 j bYt � ytj relates to its expected value LP (y
n). Luckily, this di�erence may be

easily bounded by general concentration-of-measure inequalities. Since all prediction

algorithms considered in this paper calculate Pt by looking at the expected losses of

the experts up to time t�1, it is easy to see that changing the value of one bYt cannot
change the cumulative loss by more than one. Therefore, for example, McDiarmid's

inequality [19] (see also [8, p. 136]) implies that for any u > 0,

P

(�����
nX
t=1

j bYt � ytj � LP (y
n)

����� > u

)
� 2e�2u

2=n:

In other words, the random loss
Pn

t=1 j bYt � ytj with very large probability is at most

O(
p
n)-away from LP (y

n), regardless of the expert class. 2

The loss function considered here is by no means the only interesting one. The

most popular loss function considered in the literature is the so-called \log loss"

� log
�
Pt(y

t�1)Ifyt=1g + (1� Pt(y
t�1))Ifyt=0g

�
;

which has several interesting interpretations in coding theory, gambling, and stock-

market prediction. Instead of surveying the literature, we refer to the excellent recent

review paper of Feder and Merhav [9]. We merely mention here that for the log loss

with static experts, and under some additional conditions, Opper and Haussler [20]

bounded the minimax relative loss with an expression whose form is similar to The-

orem 7.
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