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Abstract

We study model selection strategies based on penalized empirical
loss minimization. We point out a tight relationship between error
estimation and data-based complexity penalization: any good error
estimate may be converted into a data-based penalty function and
the performance of the estimate is governed by the quality of the er-
ror estimate. We consider several penalty functions, involving error
estimates on independent test data, empirical vC dimension, empirical
VC entropy, and margin-based quantities. We also consider the maxi-
mal difference between the error on the first half of the training data
and the second half, and the expected maximal discrepancy, a closely
related capacity estimate that can be calculated by Monte Carlo in-
tegration. Maximal discrepancy penalty functions are appealing for
pattern classification problems, since their computation is equivalent
to empirical risk minimization over the training data with some labels
flipped.



1 Introduction

We consider the following prediction problem. Based on a random observa-
tion X € X, one has to estimate Y € Y. A prediction rule is a measurable
function f : X — Y, with loss L(f) =El(f(X),Y), where £: Y x Y — [0, 1]
is a bounded loss function. The data

Dn = (Xla}/i)a SR (XnaYn)

consist of a sequence of independent, identically distributed samples with
the same distribution as (X,Y’) and D, is independent of (X,Y’). The goal
is to choose a prediction rule f,, from some restricted class F such that the
loss L(f,) = E¢(fn(X),Y)|D,] is as close as possible to the best possible
loss, L* = inf; L(f), where the infimum is taken over all prediction rules
f:X =)

Empirical risk minimization evaluates the performance of each prediction
rule f € F in terms of its empirical loss L,(f) = 2 3" £(f(X;),Y:). This

provides an estimate whose loss is close to the opti?nal loss L* if the class F
is (i) sufficiently large so that the loss of the best function in F is close to
L* and (ii) is sufficiently small so that finding the best candidate in F based
on the data is still possible. These two requirements are clearly in conflict.

The trade-off is best understood by writing

BL () - 2 = (200 - mL2(n)) + (g 20) - 7).

The first term is often called estimation error, while the second is the ap-
proxzimation error. Often F is large enough to minimize L(-) for all possible
distributions of (X,Y’), so that F is too large for empirical risk minimiza-
tion. In this case it is common to fix in advance a sequence of smaller model
classes Fi, Fa,... whose union is equal to . Given the data D,,, one wishes
to select a good model from one of these classes. This is the problem of
model selection.

Denote by fi a function in F; having minimal empirical risk. One hopes
to select a model class Fg such that the excess error EL(fx ) — L* is close to
minEL(fy) — L* = min [(EL(fk) flenjﬁkL(f)) + (flélafk L(f)—L )} :
The idea of structural risk minimization, (also known as complexity regular-
ization, is to add a complexity penalty to each of the En(ﬁc)’s to compen-
sate for the overfitting effect. This penalty is usually closely related to a
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distribution-free upper bound for sup 7, IZ.(f) — L(f)| so that the penalty
eliminates the effect of overfitting. Thus, structural risk minimization finds
the best trade-off between the approximation error and a distribution-free
upper bound on the estimation error. Unfortunately, distribution-free upper
bounds may be too conservative for specific distributions. This criticism has
led to the idea of using data-dependent penalties.

In the next section, we show that any approximate upper bound on error
(including a data-dependent bound) can be used to define a (possibly data-
dependent) complexity penalty C, (k) and a model selection algorithm for
which the excess error is close to

min []EC’n (k) + (flen}fk L(f)—L )] :

Section 3 gives several applications of the performance bounds of Section 2:
Section 3.1 considers the estimates provided by an independent test sample.
These have the disadvantage that they cost data. Section 3.2, considers a
distribution-free estimate based on the VC dimension and a data-dependent
estimate based on shatter coefficients. Unfortunately, these are difficult to
compute. Section 3.3 briefly considers margin-based error estimates, which
can be viewed as easily computed estimates of quantities analogous to shatter
coefficients. Section 3.4 looks at an estimate provided by maximizing the
discrepancy between the error on the first half of the sample and that on the
second half. For classification, this estimate can be conveniently computed,
simply by minimizing empirical risk with half of the labels flipped. Section 3.5
looks at a more complex estimate: the expected maximum discrepancy. This
estimate can be calculated by Monte Carlo integration, and can lead to better
performance bounds. In Section 4 we review some concentration inequalities
that are central to our proofs. Finally, in Section 5 we offer an experimental
comparison of some of the proposed methods.

For clarity, we include in Table 1 notation that we use throughout the
paper.

For work on complexity regularization, see Akaike [1], Barron [2],[3] Bar-
ron, Birgé, and Massart [4], Barron and Cover [5], Birgé and Massart [8],[9],
Buescher and Kumar [11],[12], Devroye, Gyorfi, and Lugosi, [14], Gallant
[16], Geman and Hwang [17], Kearns, Mansour, Ng, and Ron [20], Krzyzak
and Linder [23], Lugosi and Nobel [25] Lugosi and Zeger, [27], [26], Mallows
[28], Meir [33], Modha and Masry [34], Rissanen [35], Schwarz [37], Shawe-
Taylor, Bartlett, Williamson, and Anthony [38], Shen and Wong [39], Vapnik
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Fi,Fo, ...

Rn,k
C(k)

L*

prediction rule, f: X — Y

sets of prediction rules (model classes)

union of model classes F;

element of Fj, with minimal loss

element of F;, minimizing empirical loss

prediction rule from F minimizing in(ﬁ)

loss function, £: Y x Y — [0, 1]

loss, L(f) = EL(f(X),Y)

minimal loss of functions in Fy, Lj = infrex, L(f)
empirical loss

estimate (high confidence upper bound) of loss L(ﬁ)
complexity penalty for class Fj

complexity penalized loss estimate, L, (fx) = Ly (i) + Cn(k)

loss of optimal prediction rule

Table 1: Notation.




[42], Vapnik and Chervonenkis [46], Yang and Barron [50], [51].
Data-dependent penalties are studied in Bartlett [6], Freund [15], Koltchin-

skii [21], Koltchinskii and Panchenko [22], Lozano [24], Lugosi and Nobel [25],

Massart [30] and Shawe-Taylor, Bartlett, Williamson, and Anthony [38].

2 Penalization by error estimates

For each class Fy, let ﬁ denote the prediction rule that is selected from Fj
based on the data. Our goal is to select, among these rules, one which has
approximately minimal loss. The key assumption for our analysis is that the
true loss of fi can be estimated for all k.

Assumption 1 There are positive numbers ¢ and m such that for each k an
estimate Ry, on L(fy) is available which satisfies

P [L(fy) > Rup + e] < cemme (1)
for all €.

Now define the data-based complexity penalty by

~ log k
Culk) = R — Lu(fi) + 1/ o
m
The last term is required because of technical reasons that will become ap-

parent shortly. It is typically small. The difference R, — Zn( f) is simply

an estimate of the ‘right’ amount of penalization L(fy) — Zn( fx). Finally,
define the prediction rule:

-~

fn = arg min I’n(fk)a
k=1,2,...

where

Lu(F) = La(Fi) + Cu(k) = Ry + loffbk.

The following theorem summarizes the main performance bound for f,.



Theorem 1 Assume that the error estimates R, satisfy (1) for some pos-
itive constants ¢ and m. Then for all e > 0,

P [L(fn) — Lo(f,) > e} < 22

Moreover, if for all k, ﬁ minimizes the empirical loss in the model class Fy,
then

EL(f,) - L' < min [JEC (k) + ( inf L(f) - L)} + 1°§§ff).

The second part of Theorem 1 shows that the prediction rule minimizing
the penalized empirical loss achieves an almost optimal trade-off between the
approximation error and the expected complexity, provided that the estimate
R, on which the complexity is based is an approximate upper bound on the
loss. In particular, if we knew in advance which of the classes F; contained
the optimal prediction rule, we could use the error estimates 2, ; to obtain

an upper bound on EL( ﬁ) — L*, and this upper bound would not improve
on the bound of Theorem 1 by more than O (N/log k/m)

If the range of the loss function £ is an infinite set, the infimum of the
empirical loss might not be achieved. In this case, we could define f; as a
suitably good approximation to the infimum. However, for convenience, we
assume throughout that the minimum always exists. It suffices for this, and
for various proofs, to assume that for all n and (z1,v1),- .., (Zn, Yn), the set

{C(f(z1),91), -, €(f(21), 1)) : f € Fi}

is closed.

Proof. For brevity, introduce the notation

Ly = inf L(f).
k flenfk (f)

Then for any € > 0,

P[L) -~ Lah) > ] < P s (L)~ LalB) >

< YP|LE) - La(F) > €]
j=1
(by the union bound)
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- ZP[ Ryt ﬂ]
m

(by definition)

0 — 2

< Z C(me(eJr Vi) (by Assumption 1)
=1
JOO

< Z —2m e _|__g_y_

=1
< 206_2’”62 (since 3 72,7 2 < 2).

To prove the second inequality, for each k, we decompose L(f,) — L} as
L(f,) — L; = (L(fn) - i?ff/n(fj)> + (ir;ff/n(fj) - L,*;) i
The first term may be bounded, by standard integration of the tail inequal-

ity shown above (see, e.g., [14, page 208]), as E [L(fn) — inf; fjn(ﬁ)}

log(ce)/(2m). Choosing f; such that L(f;) = Lj, the second term may be
bounded directly by

Einf L(f;) — Ly < ELn(fi) -
J
= EL.(fi) — Lj + ECy (k)
(by the definition of L, (fx))

(since fr minimizes the empirical loss on Fy)

IN

where the last step follows from the fact that EL, ( f7) = L(ff). Summing
the obtained bounds for both terms yields that for each £,

EL(fn) < EC, (k) + Ly + v/1og(ce)/(2m),

which implies the second statement of the theorem. |

Sometimes bounds tighter than Assumption 1 are available, as in Assump-
tion 2 below. Such bounds may be exploited to decrease the term 4/logk/m
in the definition of the complexity penalty.
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Assumption 2 There are positive numbers ¢ and m such that for each k an
estimate Ry, of L(fx) is available which satisfies

P L(ﬁc) > Rup+e| <ce ™ (2)
for all €.

Define the modified penalty by

Cu(k) = Rup — Ln(fr) +

and define the prediction rule

~

?n = arg min fn(fk),
k=1,2,...

where
2logk

Zn(ﬁﬂ) = En(ﬁc) +6n(k) = Rn,k +

Then by a trivial modification of the proof of Theorem 1 we obtain the
following result.

Theorem 2 Assume that the error estimates R, satisfy Assumption 2 for
some positive constants ¢ and m. Then for all ¢ > 0,

P [L(fs) — Lu(fn) > €] < 2ce ™.

Moreover, if for all k, ﬁ minimizes the empirical loss in the model class Fy,
then

EL(f,) — L' < min [EUn(k) + ( inf L(f) — L)] . log(2ec)

fEF, m

So far we have only concentraded on the expected loss of the penalized
estimate. However, with an easy modification of the proof we obtain expo-
nential tail inequalities. We work out one such inequality in the scenario of
Theorem 1.



Theorem 3 Assume that the error estimates R, satisfy (1) for some pos-

itive constants ¢ and m, and that for all k, fi minimizes the empirical loss

in the model class

P [L(fn) > inf (L,’Z—i—C’n(k) + \/1°§k> +e

Proof. Note that

P [L(fn)

Fi. Then for all e > 0,

S 266—m62/2 + 26_n€2/2.

log k
>iIéf<LZ+Cn(k)+ Oi >+e

< P [L(fn) > inf Ly (f;) + 5]
j
_. = . . log k €
+P |inf L, (f;) > inf | Ly + Cp(k) +/ —— | + =
J k n 2
S 2067m62/2
=~ . log k €
+P |sup | Ln(fx) — L; — Cr(k) — > —
k n 2
(by the first inequality of Theorem 1)
S 266—77162/2
> € log k
P —Lp > -
by the union bound and the definition of L,,)
Cme? ~ A . € log k
< 2ce /2+;P[Ln(fk)—l;k>§+ - ]
(since f, minimizes the empirical loss on F})
< 2ce ™€ /2 4 Z e " (6/2+\/W)2
k=1
(by Hoeffding’s inequality)
< 2ce—m62/2 +2€_n62/2.

This concludes the proof. 1
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In the examples shown below we concentrate on the expected loss of penal-
ized empirical error minimizers. Tail probability estimates may be obtained
in all cases by a simple application of the theorem above.

3 Applications

3.1 Independent test sample

Assume that m independent sample pairs

(X1 ¥]), o, (XL V)

m) - m

are available. We can simply remove m samples from the training data. Of
course, this is not very attractive, but m may be small relative to n. In this
case we can estimate L(f) by

Rue = - 3 HR(XD. V7). )

We apply Hoeffding’s inequality to show that Assumption 1 is satisfied with
¢ = 1, notice that E[R, x|D,] = L(fx), and apply Theorem 1 to give the
following result.

Corollary 1 Assume that the model selection algorithm of Section 2 is per-
formed with the hold-out error estimate (3). Then

EL(f,)— L*

E [L(fk) . En(ﬁc)} + <inf L(f) - L*) +

JEFK

< min
k

m \V2m '

In other words, the estimate achieves a nearly optimal balance between the
approximation error, and the quantity

E[L(f) - La(F)]

log k 1
og]+

which may be regarded as the amount of overfitting.

With this inequality we recover the main result of Lugosi and Nobel [25],
but now with a much simpler estimate. In fact, the bound of the corollary
may substantially improve the main result of [25].
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The square roots in the bound of Corollary 1 can be removed by increasing
the penalty term by a small constant factor and using Bernstein’s inequality
in place of Hoeftfding’s as follows: Choose the modified estimate

Ry = 1_&[ Zm

where a < 1 is a positive constant. Then Bernstein’s inequality (see, e.g.,
[14]) yields

P [L(ﬁc) > Rn,k + 6] < e—3mea(1—a)/8 )

Thus, (2) is satisfied with m replaced by 3ma(1 — «)/8. Therefore, defining

_ — ~ 16logk
n,k — fink — L n o 71\
we obtain the performance bound
EL(f,) — L* < min |EC,(k) + | inf L(f) - L* +L
" ~ Tk " FEF 3ma(l —a)

3.2 Estimated complexity

In the remaining examples we consider error estimates R,, , which avoid split-
ting the data.

For simplicity, we concentrate in this section on the case of classification
(¥ = {0,1} and the 0-1 loss, defined by £(0,0) = £(1,1) = 0 and £(0,1) =
£(1,0) = 1), although similar arguments may be carried out for the general
case as well.

Recall the basic Vapnik-Chervonenkis inequality [45], [43],

P |sup (L) - 2a() > < mS, (X2, (@

fE€F

where Si(X7) is the empirical shatter coefficient of Fy, that is, the number
of different ways the n points X1, ..., X,, can be classified by elements of Fj.
It is easy to show that this inequality implies that the estimate

7 +\/log]ESk(Xj")+log4
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satisfies Assumption 1 with m = n/2. We need to estimate the quantity
log ES, (X2"). The simplest way is to use the fact that ES, (X2*) < (2n+1)%,
where Vj is the vC dimension of Fj. Substituting this into Theorem 1 gives

EL(fn) — L*
log(2 1) + log4 21
< min \/V;c og(2n + 1) + log —1—<inf L(f)—L*)-I— ogk]
k n feF, n
1
1 5
i ®)

This is the type of distribution-free result we mentioned in the introduction.
A more interesting result involves estimating ESy (X?") by Sy (X7).

Theorem 4 Assume that the model selection algorithm of Section 2 is used

with
~ A~ 121og Sk (XT) + log4
and m = n/80. Then
EL(f,) — L*
< min \/12E1°g Su(XT) +log4 <inf L(f) —L*) +8.95 logk]
k n fEF, n
L83
v

The key ingredient of the proof is a concentration inequality from [10] for
the random vc entropy, log, Sk(XT).

Proof. We need to check the validity of Assumption 1. It is shown in [10]
that f(x1,...,z,) = log, Sk(z7) satisfies the conditions of Theorem 10 below.
First note that ESy (X2") < E2S,(X"), and therefore

log ES, (X7™") < 2logESy(XT)
2
< ——FElog Si (X7
= og?2 og Sk(X7)

< 3Elog Sk(XT)

by the last inequality of Theorem 10. Therefore,
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~ 6+\/3]E10g5k(X{1)+10g4
n

<P [sup (L) = Lu(n)) > e+ \/ log B, (X/") + log 4 ] <o,

FEFy n
where we used the Vapnik-Chervonenkis inequality (4). It follows that
P[L(fi) > Roj + ¢

PO \/1210g5k(Xf)+10g4+€]

= P|L(fi) = La(fx) > -

IA
=
=
=
|
b‘
s
=

4 n

PPN >e+\/3]ElogSk(X{‘)+log4]

P [\/IQIOgSk(X{L) + log4 N 3e < \/SIElog Sk(XT) + log4 ]

n Z n

n

/16 | p [\/1210g5'k(Xf) +log4 N ?;f - \/3]E10g Sk(XT) + log4 ] .
n

The last term may be bounded using Theorem 10 as follows:

p [\/IQIOgSk(X{’) +log4 n 3e < \/3Elog Sk(XT) + log4 ]
n 4 n

3 3
< P [mg Sp(X7) < Elog Sp(X]) — 7 Elog Sp(X]) — 6—47%2}

n nEZ 2\
9 (Elog Sk(XT) + 1610g2)

< _Z
= P T Elog Si(X7) )
9 2
9 (]Elog Sk(XT) + 167112 2)
< exp | —5; .
32 Elog Sp(X]) + 2

16 log 2

< o Ine?
X e — .
= P T51210g2
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Summarizing, we have that

:[P L(ﬁ) > Rn,k + € S 6*7162/16 + e,9n€2/51210g2
< 26*71,62/40.

Therefore, Assumption 1 is satisfied with ¢ = 2 and m = n/80. Applying
Theorem 1 finishes the proof. |

3.3 Effective VC dimension and margin

In practice it may be difficult to compute the value of the random shatter
coefficients Si(X7"). An alternative way to assign complexities may be easily
obtained by observing that Si(X?) < (n + 1)P*, where Dy, is the empirical
v dimension of class Fj, that is, the vC dimension restricted to the points
Xy,...,X,. Now it is immediate that the estimate

~ -~ 12D, log(n + 1) + log4
Rn,k:Ln(fk)+\/ i g( ) 5 )

n

satisfies Assumption 1 in the same way as the estimate of Theorem 4. (In
fact, with a more careful analysis it is possible to get rid of the logn factor
at the price of an increased constant.)

Unfortunately, computing Dy in general is still very difficult. A lot of
effort has been devoted to obtain upper bounds for D, which are simple to
compute. These bounds are handy in our framework, since any upper bound
may immediately be converted into a complexity penalty. In particular,
the margins-based upper bounds on misclassification probability for neural
networks [6], support vector machines [38, 7, 44, 13], and convex combinations
of classifiers [36, 29] immediately give complexity penalties and, through
Theorem 1, performance bounds.

We recall here some facts which are at the basis of the theory of support
vector machines, see Bartlett and Shawe-Taylor [7], Cristianini and Shawe-
Taylor [13], Vapnik [44] and the references therein.

A model class F is called a class of (generalized) linear classifiers if there
exists a function ¢ : X — RP such that F is the class of linear classifiers in
RP, that is, the class of all prediction rules of the form

f(z) = { 1 if (x)Tw >0

0 otherwise,
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where w € RP is a weight vector satisfying ||w|| = 1.

Much of the theory of support vector machines builds on the fact that
the “effective” vC dimension of those generalized linear classifiers for which
the minimal distance of the correctly classified data points to the separating
hyperplane is larger than a certain “margin” may be bounded, independently
of the linear dimension p, by a function of the margin. If for some constant
v >0, (2Y; — 1)9(X;)"w > v then we say that the linear classifier correctly
classifies X; with margin y. We recall the following result:

Lemma 1 (BARTLETT AND SHAWE-TAYLOR [7]). Let f, be an arbitrary
(possibly data dependent) linear classifier of the form

_ U @) w, >0
fnl(z) = { 0 otherwise,
where w, € RP is a weight vector satisfying ||w,| = 1. Let R,y > 0 be
positive random variables and let K < n be a positive integer valued random
variable such that || (X;)|| < R for alli=1,...,n and f, correctly classifies
all but K of the n data points X; with margin vy, then for all 6 > 0,

< 4.

K 1 [(R? 4
P lL(fn) > —+ 27-18\/— (—2(10g2n + 84) +log —)
n n \ vy 0

Assume now that fminimizes the empirical loss in a class F of generalized
linear classifiers, such that it correctly classifies at least n — K data points
with margin v and ||¢(X;)|| < Rfor alli =1,...,n. Choosing m = nlog2/8
and § = 4e 2™ an application of the lemma shows that if we take

K 1 (R?
R, = +27.18\/ <R—2(log2n+84)>,
v

= — -
n n
then we obtain

P [L(f) > R, + e}

. K 1 (R, 1 4
=P [L(f) > + 27.18\/5 <?(log n+84)> + %logg ]

16



. 2
< ]P’[L(f) %27.18\/% (%(10g2n+84)+10g§)]

(using the inequality \/z +y < v/ + \/¥)

< 6 =4de 2,

This inequality shows that if all model classes F; are classes of generalized
linear classifiers and for all classes the error estimate R,  is defined as above,
then condition (1) is satisfied and Theorem 1 may be used. As a result, we
obtain the following performance bound:

Theorem 5

EL(f,) — L* < mkin E

n

K 1 (R2 ~

—* 49718/~ (—;“(log2 n+ 41)) — L(fx)
o\ Yk

3.72

vn'

where Ky, vk, and Ry are the random variables K,~, R defined above, corre-
sponding to the class Fy.

1
+ (inf L(f) —L*> 3.4,/ 208F
T€F n

The importance of this result lies in the fact that it gives a computation-
ally feasible way of assigning data-dependent penalties to linear classifiers.
On the other hand, the estimates R, , may be much inferior to the estimates
studied in the previous section.

3.4 Penalization by maximal discrepancy

In this section we propose an alternative way of computing the penalties with
improved performance guarantees. The new penalties may be still difficult to
compute efficiently, but there is a better chance to obtain good approximate
quantities as they are defined as solutions of an optimization problem.

Assume, for simplicity, that n is even, divide the data into two equal
halves, and define, for each predictor f, the empirical loss on the two parts
by

n/2

() = 2 3 (X))

&~

17



and

n
i=n/2+1

Using the notation of Section 2, define the error estimate R, by

~ o~

Roe = Lo(Ff) +max (Z0(5) - Z2(1)) (6)

TE€TF
If Y = {0, 1} and the loss function is the 0-1 loss (i.e., £(0,0) = 4(1,1) = 0 and
£(0,1) = £(1,0) = 1) then the maximum discrepancy max e r, (E(nl)(f) - (f))

may be computed using the following simple trick: first flip the labels of the
first half of the data, thus obtaining the modified data set D], = (X1,Y/),...,(X],Y))

with (XY/) = (X;,1=-Y;) for i <n/2 and (X,Y/) = (X;,Y;) for i > n/2.

AR AR

Next find f,” € F; which minimizes the empirical loss based on D),

>, Y))

n/2 n
1 1 1
- §_E§:e(f(xi),yi)+5 > Uf(X0),Y)
i=1 i=n/2+1

1-I9() + 2 ()
: .

Clearly, the function f, maximizes the discrepancy. Therefore, the same al-
gorithm that is used to compute the empirical loss minimizer ﬁc may be used
to find f, and compute the penalty based on maximum discrepancy. This
is appealing: although empirical loss minimization is often computationally
difficult, the same approximate optimization algorithm can be used for both
finding prediction rules and estimating appropriate penalties. In particular,
if the algorithm only approximately minimizes empirical loss over the class
Fi. because it minimizes over some proper subset of Fj, the theorem is still
applicable.

Vapnik et al. [47] considered a similar quantity for the case of pattern
classification. Motivated by bounds (similar to (5)) on EL(f,) — Ly (f), they
defined an effective VC dimension, which is obtained by choosing a value
of the VC dimension that gives the best fit of the bound to experimental
estimates of EL(f,) — L,(f). They showed that for linear classifiers in a
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fixed dimension with a variety of probability distributions, the fit was good.
This suggests a model selection strategy that estimates EL(f,) using these
bounds. The following theorem justifies a more direct approach (using dis-
crepancy on the training data directly, rather than using discrepancy over a
range of sample sizes to estimate effective VC dimension), and shows that
an independent test sample is not necessary.

A similar estimate was considered in [49], although the error bound pre-
sented in [49, Theorem 3.4] can only be nontrivial when the maximum dis-
crepancy is negative.

Theorem 6 If the penalties are defined using the mazimum-discrepancy er-
ror estimates (6), and m = n/21, then

EL(f,) — L*
< mi T (F) _ T@
< min [E;nfx (Z0(H - 12(n)
log k 4.70
inf L - L 4.59 .
* (flenfk (/) )+ n * Vn

Proof. Once again, we check Assumption 1 and apply Theorem 1. Introduce
the ghost sample (X],Y/), ..., (X],Y)), which is independent of the data and

has the same distribution. Denote the empirical loss based on this sample by
L (f) = >, £(f(X]),Y). The proof is based on the simple observation
that for each k,

Emax (1,(/) = Lu(f)

fE€F
n

= —Emax (C(f(X)), Y]) —€(f(Xi),Y5))

N
|
=
=
QO
"
—
)
—~~
s
—~
>
~—
3
I
)
—~~
s
—~
s
<
~
~
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- %E% (XD, YY) = 0(F(X3), V7))
= Emax (Z0(7) - I2(f). ™

McDiarmid’s inequality (see Theorem 9 below) implies

P

P |max (£4(1) ~ 2u(9) > Baax (L4(1) ~ () +¢

fEF, fEF,
< e (8)

[ (£ = B20) < By (B89 - E2) —
S e—n€2/2 (9)

and so for each k,

P [L(ﬁc) > Ry + e}

<

IN

IN

IN

P

P

P

P

P

L) - L) > max (E0(0) - T9() +

feF
2N_T (7 - - 7
[Li»(fk) = Ln(fi) > max (200 -T2 () + ﬂ
2| - ) >

L7 - Lol > max (200) - Z2(0) + 5

+ e 8/81  (by Hoeffding)

= - - 7
s (£407) ~ L(0) > ax (Z0() - Z2() + 7 |
+ 678n62/81
pax (L’n(f) - En(f)) > Emax (L;(f) — En(f)) + %]
= = - - 1
+P [;nf (E90) = Z2()) < Bmax (ZO(7) - ZO())) - ﬂ
+ e/ (where we used (7))
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< e/ eI Bl | 788 by (8) and (9))
< 367871.62/81'

Thus, Assumption 1 is satisfied with m = n/21 and ¢ = 3 and the proof is
finished. |1

3.5 A randomized complexity estimator

In this section we introduce an alternative way of estimating the quantity
Emaxer, (L( f) — La( f)) which may serve as an effective estimate of the

complexity of a model class F. The maximum discrepancy estimate of the
previous section does this by splitting the data into two halves. Here we offer
an alternative which allows us to derive improved performance bounds: we
consider the expectation, over a random split of the data into two sets, of
the maximal discrepancy. Koltchinskii [21] considers a very similar estimate
and proves a bound analogous to Theorem 7 below. We improve this bound
further in Theorem 8.

Let 04,...,0, be a sequence of i.i.d. random variables such that P{o; =
1} =P{o; = —1} = ; and the 0;’s are independent of the data D,,. Introduce
the quantity

2 n
M, =E|sup — ol f(X;),Y;
# =B | 3070, Y)

Dy, (10)

We use M, ;, to measure the amount of overfitting in class Fj. Note that M, s
is not known, but it may be computed with arbitrary precision by Monte-
Carlo simulation. In the case of pattern classification, each computation in
the integration involves minimizing empirical loss on a sample with randomly
flipped labels. We offer two different ways of using these estimates for model
selection. The first is based on Theorem 1 and the second, with a slight
modification, on Theorem 2. We start with the simpler version:

~

Theorem 7 Let m = n/9, and define the error estimates R, = En(fk) +
M, , and choose f, by minimizing the penalized error estimates

La(F) = Za(B) + Oalh) = R[22
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then

EL(f,)— L

< min
k

. log k 2,77
EM, ELU)=L7 ) +3\—— | + =
T (flenﬂ (f) ) + n ] + Vn

Proof. Introduce a ghost sample as in the proof of Theorem 6, and recall
that by a symmetrization trick of Giné and Zinn [18],

e [sup (L) ~ L.(1)]

fE€FK

- E [sup E[L'n(f) - Ln(f)‘D"H

JEFY

< E [sup (Ly,(f) - Ln(f))}

< gIE sup Zaig(f(Xi)aY:i)

fE€F,
1 = ! !
o ;éljgk ;m(f(f(Xi),Yi) —U(f(Xy), )

n

n _fE.'Fk i=1

- EM,,. (11)

The rest of the proof of Assumption 1 follows easily from concentration in-
equalities: for each £,

P [L(ﬁ) > Ry + e}

<

<

P

P

P

2(F) — Za(F) > Mo + ]

o (109~ .00) =
(1)) > B (1))
+P [Bsp (L)~ 2.(1)) > M+ 5
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< P [sup (L(f) - Zn(f)) > E sup (L(f) B Z"(f)) + g]

fEF, fEF:
9
+P []EMM > My + ﬂ (by (11))

—om 2
< % 2ne /9’

where at the last step we used McDiarmid’s inequality. (It is easy to verify
that M, ; and sup (L( f) = La( f)) satisfy the condition of Theorem 9 with

¢; = 2/n and ¢; = 1/n, respectively.) Thus, Assumption 1 holds with ¢ = 2
and m = n/9. Theorem 1 implies the result. |

The following theorem shows that we can get rid of the square root signs at
the expense of slightly increasing the complexity penalty. This improvement
is important when the class F; has EM, ; much smaller than n 2. The
key difference in the proof is the use of the refined concentration inequalities
from [10] instead of McDiarmid’s inequality.

Introduce the modified error estimate

~

Rn,lc = Ln(ﬁc) + M'fl,ka

where

256
sup —
fer, N

My =

>t

Note that Mn,k is basically a constant factor times M, . (The constants
have not been optimized.)

n] - (12)

Theorem 8 Let m = n/4096, and choose f, by minimizing the penalized
error estimates

then

EL(fn) = L* < min [EMM - (inf L(f) - L*) +

8192log k n 13096
fEFk .

n n

In the proof we use some auxiliary results. The first is called Khinchine’s
inequality:
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Lemma 2 (SzAREK [40]) Suppose o1, ..., 0, are symmetric i.i.d. sign vari-
ables, and let ay,...,a, be real numbers. Then

The next lemma concerns a simple property of [0, 1]-valued random vari-
ables:

Lemma 3 Forn i.i.d. random variables X; € [0,1] with EX; =p > 4/(n +
4), the sum Z = | X; satisfies

BVZ > Y

2
Proof.

BVZ = E(VZ- p)+ /b

> ip—E|VZ - /i

NG

(using |va — V| < |a—bl/\/a)

V)
V1P

_ /np(1—p)

np
- 1_p7

by Cauchy-Schwarz)

v
3

>

and the result follows.
Next we need a classical symmetrization inequality from empirical process
theory:

Lemma 4 (GINE AND ZINN [18]). Let F be a class of real-valued functions
defined on a set A, let X1,..., X, be i.i.d. random variables taking their value
in A, and let o4, ...,0, be symmetric i.i.d. sign variables. If

¥? = sup Var f(X1),
fEF
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then for all t > 3/8n,

n

P !?‘IEIJE Z(f(Xi) - Ef(Xi))

t
>t

>_

ZU’ 4

Finally, we show that the penalty term is sharply concentrated around
its mean.

< 4P |sup
feF

Lemma 5 Consider the following function Qn : (X X))

|

Then Q1 satisfies the conditions of Theorem 10 in Section 4

— [0, n):

n

> oil(f (i), )

i=1

def
Qn,k E

= sup
JEF

n ——

— M, .
256 ™k

Proof. Clearly, @, is nonnegative. To check condition (2) of Theorem 10
for every 7 < n introduce

Qs)k = E | max Zajﬁ(f(:v]) yj)] ) (13)
fE€F por
Clearly,
Qi = B | a2 st ) ) + Bl w) ]
S Mn,lc

(14)
and Q ; — QY

nx < 1. Finally, to check condition (3) of Theorem 10, for each
realization of (JJ)]QL, let f, be such that

ZUJ ), Y5)

maXx
JE€F

= aZUjg(fa(xj)’yj)
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where v = +1. Then

;(an—Q )

= Bl

— max

Za’ fEF ZOJ
< EZ a(zajz(fa(xj):yj)> _a<zajg(fa(xj):yj)

J#i

|
|

= E Z acil(fe(x:), ¥s)

=1

= Qn,k .

Proof of Theorem 8. We check Assumption 2 and apply Theorem 2. We
have

P [L(fk) > Rop + e]

< P[sup L(P) = L) >Mn,k+e]
fEF

< P|swp [£0) ~ Lu(1)| > 3B+ 2673
fEF 2

) S
+P [EJEMM > M, i+ 6/3:|

eI

To bound I, we note that by Lemma 4,

> oil(f(X),Y)

=1

1 €
> -EM, .+ =

1
I§41P’[sup— g , 5

fer 1

whenever

1 _— 2
—“EM,, \ + = \/g sup \/Var/ (f(X;),Y;).

2 3 fe]-'k
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But the condition is satisfied for all € > 3v/8/n, since if sup ;¢ 7, Varl (f(X;),Y;) <
4/n, then

2/3 > /32/n > \/7 sup \/Var/ (f(X;),Y).
N feF
On the other hand, if sup .z, Varf (f(X;),Y;) > 4/n, then E¢(f(X5), Y;)? >
4/n, and so

1
“EM,, = E

; sup - |3 0il(£ (X)), Y)

fer, M

sup E
fE€F

128
= — sup EE [

n fer,

128 S nb(F(X), Y)

n

Vv
|
)]

S
=
|
\'M
(9
=
s
=
N

(by Lemma 2)

> sup \/ El(f ) (by Lemma 3)
f€—7"k
8
> \/isup VVarl (f(X;),Ys).
€T,

Thus, we need to obtain a suitable upper bound for the probability on the
right-hand side of (15). To this end, write

n

1 1_— €

4P | sup — ol(f(X;),Y;)| > =EM,; + =

[Mn Zf (F(X0),Y3)| > SEM i+ ©
1— €
< sup — W > =My, + —
fe}r’k 6 ™ T 12

1
1 1
+ 4P [1—6Mn,k > “EM,; + i}

= [II+1V .
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We bound 711 by applying Theorem 11 in Section 4 to the random variable

n

sup
JE€F

Uif(f(Xi), YE)

i=1

conditionally, keeping D, fixed. This function is easily seen to satisfy the
conditions of Theorem 11, and therefore we obtain

1 n
III = 4P| sup — | o(f(X:),Y)
>E sup162n: 0(f(X5),Y5) ‘D + =
—_— o; i)y L1 n 19
jeFR | 12
= 4P | sup oil(f(X;),Ys)
n ne
> [E | sup 16 ol (f(X;),Ys) ‘Dn + 5
sup ; 12
E | sup 16 Zmﬁ(f(Xi),Y;) ‘Dn + 15
ne feFy i=1
< 4eXp - ﬂlog n 7
E | sup 8 Zaif(f(Xi),Y}) ‘Dn +4
FE€F% i=1 J

< dexp <_ ne;(;g 2)

whenever ¢ > 96/n. Finally, we need to bound the probabilities 77 and
1V. But this may be done by a straightforward application of Lemma 5 and
Theorem 10. We obtain

1 — -
IT+1V = P {ilEMn,k > Mo+ 6/3]

1— 1_—— €
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n — O n o _— ne
= ]P’[—Mn <« L EBM, . — —FEM,, - }
256~ ™F T 956 k519 k3,956
S n o _— n _— ne
4]?[ M, o> ——FEM, . + —EM, }
A g5 Mk > oM nk T gpg M nk + 70
ne 2
< 5exp< (512]EM"k+3256) )
B (512]EM"k + 3256)

< 56*ne/4096 -
Collecting bounds, we obtain that for all € > 96/n,
P [L(ﬁc) > Rop + g] < Qene/40%6

It is easy to modify the proof of Theorem 2 to accommodate this restriction
for € (provided 96/n < log(2c)/m), and straightforward calculation yields
the result. |

4 Concentration inequalities

Concentration-of-measure results are central to our analysis. These inequal-
ities guarantee that certain functions of independent random variables are
close to their mean. Here we recall the three inequalities we used in our
proofs.

Theorem 9 (McDI1ARMID [31]). Let Xy,...,X, be independent random
variables taking values in a set A, and assume that f : A™ — R satisfies

sup |f(z1,...,20) — f(@1, 0o Tis 1, Ty Ty 1,y - X)) | < G
L1y.-9Lmy
zi€A

for1 <t <mn. Then for allt >0
P{f(XlaaXn)ZEf(Xl,, )+t}<6_2t/2111

and
P{f(X1,. .., Xn) <Ef(X1,...,Xn) =t} < e 2/ Tiact

McDiarmid’s inequality is convenient when f() has variance (3 1, ¢7).
In other situations when the variance of f is much smaller, the following

inequality might be more appropriate.
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Theorem 10 (BOUCHERON, LuGosi, AND MASSART [10]) Suppose that
X1,..., X, are independent random variables taking values in a set A, and
that f : A™ — R is such that there exists a function g : A" ' — R such that
forallzy,...,0, € A

(‘Z) f(xlaaxn) EOJ

(2) 0< f(x1,- oy Tn)—g(X1, oo o, T, Tigty -y L) < 1 foralli =1,...,n;
(3) S f(ze, .o zn) —g(@1, o, i1, Tiga, - -, )] < f(21,. .0, 2).
Then for any t > 0,

2
Pf(Xis- s Xp) 2 Bf (X, ..., X)) +1] <exp [_QEf(Xl t X,) +2t/3] ’

and

t2
2]Ef(X1,...,Xn)} ’

P[f(Xl,aXn) SEf(XlaaXn)_t] Sexp [_

moreover,

Ef(Xl, R 7Xn) < ]0g2 E [Qf(X1,...,Xn)] <

Ef(Xy,...,X,).
_10g2 f( 1, ) )

Finally, we recall a concentration inequality of van der Vaart and Wellner
[48], obtained from one of Talagrand’s isoperimetric inequalities [41].

Theorem 11 (VAN DER VAART AND WELLNER [48]). Let A be a set,
and let fp, : A™ — [0,n] be a permutation symmetric function satisfying the
monotonicity and subadditive properties

fn(x) S fn—|—m(x, y)

and
fn-l—m(xay) S fn(l') + fm(y)

for all x € A™ and y € A™. Then if X4,..., X, are i.i.d. random variables
taking values in A, then for any t > 0,

Plfu(X1, ... Xo) > 1] < exp (_glog (Wﬁ)) |
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5 Experimental comparison of empirical pe-
nalization criteria

5.1 The learning problem

In this section we report experimental comparison of some of the proposed
model selection rules in the setup proposed by Kearns, Mansour, Ng, and Ron
[20]. In this toy problem, the X;’s are drawn from the uniform distribution
on the interval [0,1]. The class Fj is defined as the class of all functions
[0,1] — {0,1} such that for each f € Fj there exists a partition of [0,1]
into k£ + 1 intervals such that f is constant over all these intervals. It is
straightforward to check that the vc-dimension of Fj is k+ 1. Following [20],
we assume that the “target function” f* belongs to F; for some unknown
k and the label Y; of each example X; is obtained by flipping the value of
f*(X;) with probability n € [0,.5) where n denotes the noise level. Then
clearly, for any function g:

L(g) =n+ (1 -2n)P{f # g} -

What makes this simple learning problem especially convenient for exper-
imental study is the fact that the computation of the minima of the empirical
loss mingex, L, (f) for all £ < n can be performed in time O(nlogn) using
a dynamic programming algorithm described in [20]. Lozano [24] also re-
ports an experimental comparison of model selection methods for the same
problem.

In this paper we studied several penalized model selection techniques:
a holdout (or cross-validation) method based on independent test sample,
penalization based on the empirical vC entropy, a maximum discrepancy
estimator, and a randomized complexity estimator. For the investigated
learning problem it is easy to see that the empirical vC entropy log, Sx(X7")
of class Fj, is almost surely a constant and equals to

k
n—1
1+log22 ( ; >,
i=0

and therefore penalization based on the empirical VC entropy is essentially
equivalent to the Guaranteed Risk Minimization (GRM) procedure proposed
by Vapnik. Thus, we do not investigate empirically this method. Note
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that Lozano [24] compares the GRM procedure with a method based on
Rademacher penalties, very similar to our randomized complexity estima-
tor and finds that Rademacher penalties systematically outperform the GRM
procedure. In [20] GRM is compared to the Minimum Description Length
principle and the independent test sample technique which is regarded as a
simplified cross-validation technique. The main message of [20] is that pe-
nalization techniques that only take into account the empirical loss and some
structural properties of the models cannot compete with cross-validation for
all sample sizes. On the contrary, our conclusion based on experiments is
that data-based penalties perform favorably compared to penalties based on
independent test data.

In the figures shown below we report experiments for three methods:
(1) the Holdout method (HOLDOUT) bases its selection on m = n/10 extra
independent samples as described in Section 3.1; (2) the Maximum Discrep-
ancy (MD) method selects a model according to the method of Section 3.4
and (3) Rademacher penalization (RP) performs the randomized complexity
method proposed in Section 3.5. When using Maximum Discrepancy and
Rademacher penalization, it is important to scale correctly the penalty. We
found that multiplying the two penalties by 1/2 and 1 (rather than 512, a
constant suggested by our crude analysis) provides superior performance. For
reasons of comparison, the performance of “oracle selection” is also shown
on the pictures. This method selects a model by minimizing the true loss
L(fy) among the empirical loss minimizers f; of all classes Fy, k =1,2,....

The training error minimization algorithm described in [20] was imple-
mented using the templates for priority queues and doubly linked lists pro-
vided by the LEDA library [32].

5.2 Results

The results are illustrated by the figures below. As a general conclusion, we
may observe that the generalization error (i.e., true loss) obtained by methods
MDP and RP are favorable compared to HOLDOUT. Even for sample sizes
between 500 and 1000, the data-dependent penalization techniques perform
as well as HOLDOUT. The data dependent penalization techniques exhibit
less variance than HOLDOUT.

The main message of the paper is that good error estimation procedures
provide good model selection methods. On the other hand, except the HOLD-
ouT method, the data-dependent penalization methods do not try to esti-
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mate directly L(f) — Lo (fx), but rather supser, (L(f) — La(f))- The figures
show that this is accurate when noise level is high and becomes rather in-
accurate when noise level decreases. This is a strong incentive to explore
further data-dependent penalization techniques that take into account the
fact that not all parts of Fj are equally eligible for minimizing the empirical

loss.
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Figure 1: Note that the all model selection techniques tend to be indistin-
guishable from the oracle selection method for samples larger than 1000.
However contrarily to the GRM estimate the Rademacher and the Maximum
Discrepancy selection methods are not outperformed by the Holdout method
for sample sizes smaller than 1000.
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Figure 2: As noise level is increased, the three model selection methods
exhibit more variance and tend to be outperformed by the oracle for larger
samples. Holdout exhibits more variance than the two other penalization
methods.
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Figure 3: The oracle has now a clear edge on the model selection techniques
for sample sizes smaller than 1000.
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Figure 4: As noise becomes extremely important the three model selection
methods remain distinguishable from the oracle for all shown sample sizes.
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Figure 5: Each point represents the average complexity of the model selected
by a given method or oracle at a given sample size. Note that for sample
sizes between 500 and 1000, the oracle tends to overcode the sample. This
corroborates the fact that liberal penalization methods (like MDL as used in
[20]) tend to perform better than conservative methods (like GRM) for that
range of sample sizes. Note also that holdout selection exhibits more variance
that the two data-dependent penalty methods.
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Figure 8: With increasing noise level, the propensity of model selection tech-
niques to undercode and their increasing instability becomes more visible.
Note that holdout is more sensitive to noise than its two competitors.
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Figure 9: Here and on the next two figures the minimal penalized empirical
loss infy, INJH( fx) is shown in function of the sample size for different levels
of noise. At a low noise level both Rademacher and Maximum discrepancy
estimates overestimate the difference between the training and generalization
errors. This phenomenon is due to the fact that these estimates deal with
the maximum of the empirical process, which is only an upper bound on the
the difference between the training and generalization errors. On the other
hand, the holdout estimate remains optimistic for sample sizes smaller than

1000.
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Figure 10: As noise increases, the pessimistic bias of the Rademacher and
Maximum Discrepancy estimates becomes smaller.
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Figure 11: At high noise level, the Rademacher estimate becomes the most
accurate approximation to the oracle. The holdout estimate is unable to
catch the true value for samples smaller than 3000.
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