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Abstract

We show that if performance measures in a stochastic scheduling problem satisfy a set of
so-calledpartial conservation lawgPCL), which extend previously studied generalized con-
servation laws (GCL), then the problem is solved optimally by a priority-index policy for an
appropriate range of linear performance objectives, where the optimal indices are computed by
a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to
investigate the indexability property of restless bandits introduced by Whittle, obtaining the fol-
lowing results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable;
membership in this class is tested through a single run of the adaptive-greedy algorithm, which
also computes the Whittle indices when the test is positive; this provides a tractable sufficient
condition for indexability; (2) we further identify the class of GCL-indexable bandits, which
includes classical bandits, having the property that they are indexable under any linear reward
objective. The analysis is based on the so-called achievable region method, as the results follow
from new linear programming formulations for the problems investigated.
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1 Introduction

The exact solution of stochastic scheduling problems, which involves designing a dynamic resource
allocation policy in order to optimize a performance objective, appears to be, in most relevant mod-
els, an unreachable goal. Yet the identification and study of restricted problem classes whose special
structure yields a tractable solution remains of prime research interest: not only such well-solved
problems are often of intrinsic interest, but their optimal solutions may provide building blocks for
constructing well-grounded heuristic solutions to more complex models. The latter situation is epito-
mized by Whittle's [14] pioneering approach to what is arguably the most promising extension to the
classical multiarmed bandit model: thestless bandit problem

Both bandit models, classical and restless, are concerned with designing an optimal sequential
resource allocation policy for a collection of stochastic projects, each of which is modeled as a finite
Markov decision chain (MDC) having two actions at each state, with associated rewaralstivan
action, which corresponds to engaging the project, goasaiveaction, which corresponds to letting
it go. These models are therefore paradigms of the fundamental conflict between taking actions that
yield high current reward, or taking instead actions that sacrifice current gains with the prospect of
reaping better returns in the future. In the classical model, a single resource is to be allocated, so that
at each time only one project is engaged, and passive projects do not change state. In the restless
model, a fixed number of resources (which may be larger than one) is to be allocated, so that at each
time a fixed number of projects is active, and passive projects can change state, in general through
a different transition rule. The performance objective to be maximized in both models may be the
time-discounted total expected reward, or the time-average reward rate.

While the classical model is well-known to be solved optimally by Gittingf&drity-index policy
(an index is computed for each project state; then a project with larger current index is engaged at
each time), its restless extension has been proven in [9] RAFACE-hardwhich most likely rules
out the possibility of describing explicitly an optimal policy.

Yet the rich modeling power of restless bandits makes the development and analysis of a sound
heuristic policy a problem of significant research importance: Whittle [14] proposed applications in
the areas of clinical trials, aircraft surveillance and worker scheduling. Other applications studied in

the literature include control of a make-to-stock queue [11], and behavior coordination in robotics



[5].

In his seminal paper on the subject, Whittle [14] presented a simple heuristic policy, together with
a related bound on the optimum problem value, both of which can be efficiently computed. Whittle's
policy, like Gittins', is a priority-index rule: an index is computed for each project state; one then
engages at each time the required number of projectsKsayt of the M available, with larger
indices. The heuristic is grounded on the tractable optimal solutionrétesed problem version,
whose optimum value gives the aforementioned bound: instead of requiring thrajects be active
at each timeit is required instead thdt projects be activen average

Whittle showed that such probleralaxationis solved optimally by a policy characterized by a set
of indices attached to project states, provided each project in isolation satisfies aioeieaability
property. For a given restless project (i.e., a finite-state two-action MDC), such property refers to
a parametric family of single-project subproblems, where all passive rewards (obtained when the
passive action is chosen) are subsidized by a constant amadhatproperty states that, as the passive
subsidyy grows, the set of states where it is optimal to take the passive action increases monotonically
from the empty set to the full state space. The priority indices in Whittle's heuristic for the states of
a project are precisely the corresponding breakpoints. The appealing properties of such rule include
(1) the fact that it extends the Gittins optimal policy for classical bandits; (2) the fact that Whittle's
indices, like Gittins', can be computed separately for each project; and (3) its asymptotic optimality,
under regularity conditions, whéfitandM tend to infinity in a constant ratio, as established by Weber
and Weiss in [12], [13].

Given a restless project, testing whether it is or is not indexable, and computing the Whittle in-
dices in the affirmative case, are tasks which can be efficiently accomplished through straightforward
application of the definition of indexability, combined with the well-known linear programming (LP)
formulations for MDC (see, e.g., [10]): they involveSimplex pivot steps, carried out on an LP
problem having 2 variables andh constraintsn being the number of states. Such purely numerical
procedure, however, does not provide any qualitative insight as to which projects are indexable. It
does not appear therefore suitable for attaining our main research goal, namely, to identify and an-
alyze relevant classes of indexable bandits, defined by conditions on their parameters. Whittle [14]

stated that



... .one would very much like to have simple sufficient conditions for indexability; at the

moment, none are known.

To the best of our knowledge, no further progress on the matter has been achieved prior to the
results we present in this paper.

Our approach to the study of the indexability property for restless bandits is basedamhite
able region methodcf. [4]): we shall show that the indexability property can be (partially) explained
through a corresponding structural property on the underlying polyhedraévable performance
regionof a restless bandit (spanned by performance measures under all admissible policies).

Specifically, our contribution in this paper is twofold. First, we present a general polyhedral
framework for investigating stochastic scheduling problems having the folloparntipl indexability
property: priority-index policies are optimal for an appropriately restricted range of linear perfor-
mance objectives. This framework extends that given in [1] for investigating scheduling problems
for which priority-index policies are optimal undany linear performance objectivagéneral in-
dexability). The framework in [1] was based on obtainingudl polyhedral characterization of the
system's achievable performance region from the satisfaction by performance measures of so-called
generalized conservation laW&CL). The extension we present here is based instead on exploiting a
partial polyhedral characterization of the achievable performance region, from the satisfaction of an
appropriate subset of the previous laws, which we paittial conservation law¢PCL). We show, in
particular, that if the performance measures of interest satisfy PCL, then (1) the problem is partially
indexable for an appropriate range of linear performance objectives, which is defined algorithmi-
cally; and (2) the optimal priority indices are computed by a one-pdsgtive-greedy algorithm
which extends that utilized in the GCL framework.

Second, we apply the PCL framework to investigate the indexability property in restless ban-
dits. In particular, we identify a class of restless band®SI(-indexabl® defined through checkable
conditions on their parameters, which are indexable for a range of reward coefficients. This range is
characterized algorithmically through a single run of the adaptive-greedy algorithm mentioned above.
We further characterize the subclass of PCL-indexable bandits that satisfy @GClL-ihdexablg
these bandits are indexable undery set of reward coefficients. The conditions defining this class,

of which classical bandits are the main example, provide qualitative insight on their nature.



The rest of the paper is structured as follows: in Section 2 we describe the restless bandit prob-
lem, and review Whittle's relaxation and index heuristic. In Section 3 we present the general PCL
framework. The framework is applied to the analysis of the indexability property in discounted rest-
less bandits in Section 4. The corresponding analysis under the time-average criterion is developed in
Section 5. Section 6 presents some examples where the previous results are applied. Finally, Section

7 ends the paper with some concluding remarks.

2 Whittle's relaxation and index heuristic

We review in this section the problem relaxation and heuristic index policy proposed by Whittle [14]
for the restless bandit problem. Consider the problem faced by a decision maker seeking to maximize
the average reward earned from a collectioVo$tochastic projects, of whichd K < M must be
engaged at each discrete time epoch0. Projectme M = {1,... ,M} is modeled as a Markov
decision chain (MDC) that evolves in a finite state spldgg and has two actionse {0, 1} available
at each statee N,. We shall assume, for convenience of notation, that the state spaces fdr the
projects are disjoint, and denote thaggregate state spadey N = Umlem- The active (a= 1)
and passiveactions & = 0) correspond, respectively, to engaging or not a project. Taking action
ac {0,1} on a project in statehas two effects: first, it yields an instant rew#dj then, it causes the
state to evolve in a Markovian fashion, moving at the next time into gtatith probability pﬁ We
write R® = (R?);en andP? = (pf); jen , fora=0,1. Both the time-discounted and the time-average
versions of the problem will be considered.

Under the discounted criterion, rewards are time-discounted by faetds €@ 1, and the problem
consists in finding acheduling policy 9°7, belonging in the spacd of stationarypolicies (which
base decisions on current project states), that maximizes the expected net present value of rewards
earned over an infinite horizon:

2B =~ ek [ti(a?é?+---+afmi?>Bt]~ ®

In formulation (1),Z°PT(B) denotes the optimum problem valug(t) andam(t) denote the state and

action corresponding to projectat timet, andE,[-] represents the expectation operator under policy



u. This expectation is conditional on initial project states, as given by a known \ecter(a;);cn »
where

1 ifaprojectisin statéattimet =0
aj =

0 otherwise.
Under the time-average criterion, we are concerned with finding a stationary scheduling policy
u®PT that maximizes the long-run time-average reward rate (which is well defined under suitable
regularity conditions):

1| &
Z°PT(1) = max lim T+ Eu Lz) <Rli1((tt)) +et RM(:)))] . 2

ueU T—o

Note that in formulation (2) we denote the optimal problem valug$8§7(1), thus identifying, for
notational convenience, the time-average criterion with the Valg€l. Using this convention will
allow us to discuss below the time-discounted and time-average cases in parallel.

Whittle's relaxation is based on consideration of a modified problem version: the requirement
thatK projects be activat each timds relaxedby requiring instead thd projects be activen av-
erage The optimum value of the relaxed problem is hence an upper bound for the original problem's
optimum value. Furthermore, this bound can be efficiently computed by solving a polynomial-size
linear program (cf. [2]). To see this, let us associafgedormance measumith each stationary

scheduling policy € U, project state € N , and actiora € {0, 1}, defined in the discounted case by

xia u) =Ey oolla ' ) 3
(B,u) [t;) (t)B] ®3)

and in the time-average case by

K1) = lim ZE, [ilf‘(t)] , @
t=



where

1 ifactionais taken at a project in stateat timet

0 otherwise.

Performance measusé(f3,u) (resp. x*(1,u)) represents the total expected discounted number of
times (resp. the long-run fraction of time) that actiis taken at a project in stateunder policy
u. Now, it follows directly from the standard LP formulations for discounted and time-average MDC

(see, e.g., [10]) that Whittle's relaxation can be formulated as the LP problem

Z"p) = max y Rixj+ Y R)X) (5)
jeN jeN
subject to

08, %) jeNy, € Pm(B), form=1,....M

S Xt =Ks(p). (6)

jeN

where

1/(1-P) fO<p<1

s(B) =
1 ifg=1,
Pm(B):{(X?aX:jL)jENmZO: Z X?_B z pﬁxla:(xja J ENm}, (7)
ac{0,1} ac{0,1}icNp

for 0 < B < 1, is the polytope defined by the standard LP constraints for the discounted MDC model-

ing projectm, and

Pr() = {0 X)) jen, 202 Y = 5 5 pj¥=0j€eNn and 5 5 =1} (8)
ac{0,1} ac{0,1}ieNp ac{0,1} jeNp,

is the corresponding polytope for the time-average case. In linear program (5), the vaﬁables

correspond to performance measurﬁ(sﬁ,u), and constraint (6) formulates the relaxed requirement



thatK projects be active on average. Note that this linear program has polynomial size on the prob-
lem's defining data, and is therefore known to be solvable in polynomial time by LP interior point
algorithms.

Whittle applied instead a Lagrangian approach to elucidate the structure of the relaxed problem's
optimal solution. By dualizing linking constraint (6) in linear program (5), denoting the corre-

sponding Lagrange multiplier, and using the implied constraint

one obtains the Lagrangian relaxation

LBY) = maxy Rixj+ Y (RI+Y)x)—(M-K)s(B)y ©)
jeN jeN
subject to

08,%) jeN,, € Pm(B), form=1,... .M.

We thus see that, as observed by Whittle, multip}iptays the economic role of a constantbsidy

for passivity Problem (9) can be decoupled into thesingle-project subproblems

LBy = max Y Rixj+ 5 (R+v)x (10)
j€Nm J€Nm
subject to

(% X) jeNey € Pm(B)

form=1,... M, so that

M
LB =3 LalBy)~ (M= K)S(B)Y

Note that subproblem (10) corresponds to a single MDC over projeathere passive rewards
(earned under the passive action) are subsidized by a constant ammdlote further that, for each
multiplier y, it holds thatL (8,y) > ZW(B). Furthermore, by the strong duality property of linear

programs, there exists a multipligr (which, in the discounted case, depends on initial state vagtor



such thatl (B,y*) = Z"(B). In the regular case wheg& # 0, LP complementary slackness ensures
that any optimal solution to Lagrangian relaxation (9) (wih= y*) must satisfy linking constraint
(6), and will therefore be optimal for the LP formulation of Whittle's relaxation in (5).

Whittle identified a key structural property that makes the solution to the parametric family of

single-project MDC subproblems formulated in (10) particularly simple.

Definition 1 (Whittle [14]) A project is said to béndexablefor a given discount factod < 3 < 1 if
the set of states where the passive action is optimal in the corresponding single-project subproblem
(10) increases monotonically from the empty set to the full set of states as the passive gubsidy

increases from-o to 4.

It follows from Definition 1 that, for an indexable project, there exist break-even vgl@@seach
statei, such that an optimal policy for the corresponding subproblem (10) can be given as follows:
take the active action in statésvith y; <y, and the passive action otherwise. Note thatyfer y;
both the active and the passive actions are optimal. If each project is indexablg,a0dit follows
from the above that an optimal policy for Whittle's relaxation is obtained by applying independently
to each project the single-project policy just described, letfirgy*.

Whittle used the above indices to define a priority-index heuristic for the original problem: acti-
vate at each tim& projects with larger indices. Note that it follows from the definition of Whittle's
indices that they reduce to Gittins' when applied to classical multiarmed bandits, and therefore the

heuristic is optimal in that special case.

3 Partial conservation laws

In this section we develop a general framework for investigatingottréal indexability property in
stochastic scheduling problems, outlined in Section 1. The framework extends that introduced in [1]
for studying thegeneral indexabilityproperty in stochastic scheduling.

Consider a general dynamic and stochastic service system catering to a filNte=sét,... ,n}
of job classes. Service resources (e.g., servers) are to be allocated over time to jobs vying for their
attention, on the basis ofstheduling policy pwhich belongs in a spadd of admissible policies

The performance of a policy € U over a job class € N is evaluated by @erformance measure

10



Xi(u) > 0, which we assume to be an expectation. We denotgiy= (x(u) )iy the corresponding
performance vector. We further assume the system admits a consistent notion of pgorite
among classes: to each permutatios: (14, ... ,T,) of the classes is associated a corresponaing
priority policy, which assigns higher priority to classover classt; if | < j, so that classy has top
priority. We refer to all such policies gwiority policies We further say that a policy gives priority
to classes in a subs&C N (S-jobg if it gives priority to any job class € S over any job class
jes=N\s

Consider now, for a givereward vectorR = (R;)icn € 0", theoptimal scheduling problem

ZT(R) =sup{ y Rx(u):ueU}, (11)
ieN
which involves finding a scheduling poliay’”T(R) maximizing the linear performance objective in
(11), and computing the corresponding optimum vat&T(R).

A wide variety of scheduling models fitting formulation (11), such as classical multiarmed ban-
dits, possess the following structural property, which we gateral indexability for any reward
vectorR € 0", problem (11) is solved optimally by a priority-index policy, i.e., a priority policy
where the optimal priorities are determined by a set of class-ranking indices (with higher priorities
corresponding to larger indices). A general framework providing a sufficient condition for prob-
lem (11) to be generally indexable was presented in [1]: satisfaction by performance x(@gtof
so-calledgeneralized conservation lawgGCL) implies general indexability; furthermore, in such
case the optimal priority indices can be efficiently computed by means wistepadaptive-greedy
algorithm due to Klimov [7].

In the context of certain models, however, general indexability appears as too strong a require-
ment: the relevant concern may be instead to establish the optimality of a restricted family of priority
policies under a limited range of linear performance objectives. We call such prqeetigl index-
ability. That is the case, e.g., in much studied models involving the control of arrivals into a single
gueue, where researchers typically aim to prove the optimality of threshold policies (shut off arrivals
only when the queue length exceeds a given threshold value) under strong structural assumptions on

linear reward/cost coefficients. See [8]. More generally, as we shall demonstrate in Sections 4 and 5,
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the problem of determining whether a given restless bandit is indexable may be formulated in terms
of checking the partial indexability of a problem of the form ( 11).

We present next an extension of the GCL presented in [1], with the goal of providing a framework
for investigating the partial indexability property. L&tbe a family of subsets d¥l, i.e.,S C 2N

havingN € S.

Definition 2 (Partial conservation laws (PCL)) Performance vectax(u) satisfiegartial conserva-
tion lawswith respect to class set family if there exist quantities ?\> 0, forie Sand & S, such

that, letting
b(S) = inf{ZAsxi(u) ueS}, forSes,
le

the following identities hold: for each &S,

Z,AiSXi (u) =h(9), for any policy ue U that gives priority to Sover S (12)
le
and, for S= N,
z AiN xi(u) =b(N), for any policy ue U. (13)
ieN

Note that the GCL in [1] correspond to the special case wBete2N . In words, a performance
vectorx(u) satisfies PCL with respect & C 2N if for each subseBe S of job classes, there exist
weightsA® > 0, fori € S such that the corresponding weighted performance objectivenisnized
by anypolicy that gives priority t&°-jobs, and is invariant under all admissible policies wBeaN .

The laws thus state that the family of priority policies that give priorit§tgobs, forSe S, optimizes
a certainfinite set of linear performance objectives. We shall show in this section that the laws
further imply the optimality of such policies for a larger family of linear objectives, where the optimal

priorities are determined by efficiently computed class-ranking indices.
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For a scheduling problem that satisfies the PCL in Definition 2, let us consider the LP problem

ZR) = maxy Rx (14)
ieN
subject to

A% 29, SeS\(N}
> Al'x=b(N)

ieN
x>0, ieN.

For any reward vectoR € (0", (14) represents abP relaxationof scheduling problem (11),
since satisfaction of the PCL above implies tFAF(R) > ZOPT(R). We next identify a family of
reward vectors for which, as we show below, (14) i®aactLP formulation of problem (11), namely
Z'P(R) = Z°PT(R). We thus define a subsBt(S) C 0" of reward vectors as théomainof the
adaptive-greedylgorithm AGS) described in Figure 1. Namely, as the set of reward ved&dier
which the algorithm returns an output haviRgIL = 0, when fed with inputR, (A%)icsscs,S). Note
thatR (2V) = 0O".

Definition 3 (PCL/GCL-indexability) Scheduling problem (11) is said to IBCL-indexable with
respect tdd C 2N if

(i) it satisfies PCL with respect ®; and

(i) ReR(S).

In the case where (i) holds with= 2\ we say the problem i§CL-indexable

The next result shows that PCL-indexable problems are indeed indexable. Let the output of
adaptive-greedy algorithm AS), when fed with input(R, (AP)icsscs,S), be given byy = (Vi)ien
¥, K, {SOE,, {GeE,, andFAIL).

Theorem 1 (Partial indexability under PCL) Assume problem (11) is PCL-indexable. Then, the
problem is solved optimally by any priority policy that gives higher priority to class i over class | if

Y >y, fori,jeN.

Proof

Since LP problem (14) is feasible and bounded, we know its dual problem has the same optimum

13



value. We can thus write

Z'’(R) = min gs b(S)y® (15)

subject to

Z Ay >R, ieN
Seo5:Sai

y5<0, SeS\{N}.

Now, it is easily checked that the vectpiproduced by adaptive-greedy algorithm @&3 is a

feasible solution to dual LP (15), which further satisfies

R= S A%y forieN,

1<k<K:&3i

Let x* be a performance vector achieved by a priority policy that gives higher priorities to classes
with larger indicesy;. Then, by the definition of PCL, it follows that is a primal feasible solution

for LP problem (14), which further satisfies the identities

'ZAE«&* =b(S), k=1,... K.

Therefore, it follows by LP complementary slackness ttfaandy are an optimal primal-dual pair
for linear programs (14) and (15). Since we assumxietb be achievable by a priority policy, this
fact combined with the inequalitg-"(R) > Z°PT(R) implies Z-P(R) = Z°PT(R), i.e., such priority
policy must be optimald

Note that in the special case whé&re= 2N | algorithm AG2N ) reduces to the standard adaptive-
greedy algorithm due to Klimov [7], and Theorem 1 yields the optimality of priority-index policies

under all reward vectors, as established in [1].

Index decomposition

It was shown in [1] that, in the GCL framework (which corresponds to the special case Svhez¥
in the PCL above), a strongéndex decompositioproperty holds under certain conditions. This

explains that in certain models, such as classical multiarmed bandits, the priority indices for a project
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Input: (R,A,S),
whereR = (R)icn » A = (AP)iesses, andS € 2N, with N € S.

Output: (v,Y,K,{SH 1. {Gk}1,FAIL),
wherey = (V)ien, 1<K <N,y = (373)Ses S, Gk C N, for 1<k <K, andFAIL € {0, 1}.

Initialization. § =N ; ¥ = max{R /A" :ie S };
Gi =arg max{Ri/AiN eSS}k
Vi =y, ieG k=1

Loop. while S # Gk and S\ Gk € S do
begin
K:=k+1; S = Sc1\ Gk-1;
¥ = max{[R — S{_1AT P 1/AT i € S
G = arg max{[R — Y\ A7 yS]/A% i € S):
Yi=31¥%,i€G
end

Final step. K=k;

for S€eS\{S,..., %}, ¥°=0;
if S # Gk then FAIL := 1 elseFAIL :=0.

Figure 1: Adaptive-greedy algorithm AS).

depend only on its defining parameters, and not on those of other projects. Assume the complete set of
job classedN is partitioned into subsefdy,... ,Ny € S. Job classes iN, are typically interpreted

as corresponding to@roject m form=1,... ,M. Let us define
Sm={SeS:SCNy}, form=1....M,

and assume that, 8¢ S, thenSNNpy € Sy, form=1,... ;M. Assume further that the weight$ > 0,
fori e S Se Sy, depend only on characteristics of job classedljn(i.e., on projectm's defining
parameters). A trivial extension to the argument given for Theorem 6 in [1] shows that, under the

condition
AS=ATNm - forie SANy, and SeSn, (16)
it holds that
v =V, fori e Np,

15



where they™s, fori € Ny, are the indices computed by running adaptive-greedy algorithf®AG

on input((R)ien,.» (AY)iessesn)-

Theorem 2 (Index decomposition)Under condition (16), the priority indices corresponding to job
classes inNy, depend only on characteristics of project m, and can be computed by running the

adaptive-greedy algorithmAG (Sm) on input((R)icn;., (AP)iessesn)-

4 PCL for restless bandits: the discounted case

In this section we apply the PCL framework developed in Section 3 to investigate Whittle's indexa-
bility property for restless bandits. We focus here on the discounted case, deferring discussion of the
undiscounted case to the next section.

We thus consider a single restless bandit, as described in Section 2: itis modeled as a discrete-time
MDC, having state spadé = {1,...,n}, transition probability matrice8? = (pf} ); jcn , and reward
vectorsR? = (R%);.\ , corresponding to the activa & 1) and passivea(= 0) actions, respectively.
Rewards are discounted in time by factoz® < 1. The initial state probabilities are given by vector
a = (aj)ien » Whereq; is the 0/1 indicator of the initial project state beingur concern is to identify
sufficient conditions on model parameters under which the bandit is indexable. From the definition of
indexability, we thus need to investigate the parametric family of single-project subproblems whose
LP formulation was given in (10), which we formulate here as

2°PT(y;R",R®) = maxE, [; S RHUMOB+ % S (R+)12) Bt] , (17)
t=0ieN t=0ieN
for each value of the passive subsily 0. In (17),13(t) represents the indicator corresponding to
taking actiona € {0,1} at timet, andU denotes the space of stationary policies. We note that the

standard LP formulation of problem (17) given in (10) can be rewritten, using vector notation, as

ZOPTy;RLRY) = x'R'+x°(R+y1) (18)
subject to

xHI—BPY +x° (1 -BP%) =a



Pho=1 pf1 pg, P3,

siielg
Rl \p/ R}

Figure 2: A single restless bandit seen as a multiclass service system.

wherex?® = (x%);cn , for a € {0,1}, anda are taken to be row vectors, afidienotes am-vector of

ones. Note further that the constraints of LP problem (18) imply that
XX =a(@-prY~t—x(1-pPYH (1 -pr)L.
A straightforward consequence of this observation and LP formulation (18) is the identity
Z%PT(yvRYL,RY) = a (I — P 1RO+ ZOPT(y; Rt — (1 — BPY) (1 — BPY) 1RO, 0). (19)

In light of (19), we shall focus our subsequent analysis on theR&se0, without loss of generality.

In order to apply the PCL framework to analyze problem (17), we shall reformulate it as an
equivalent scheduling problem over a service system with multiple job classes. The latter problem
involves the scheduling dfvo projectson a single server: to the original project we add an auxiliary
single-statecalibrating project which returns a reward gfwhen active, and no reward otherwise.

We thus identify a classjob with a project in statee No = {0} UN (where the label of the cal-
ibrating project's single state is denoted by 0). We consider, as before, that théJspbhadmissible
scheduling policies consists of all stationary policies, which base decisions on the current project
state. To each policy € U we associate performance measuidsl), for i € Ng anda € {0, 1},
as defined in (3). Note thaxg(u) represents the total expected discounted time the original project is
passive, or, equivalently, that the calibrating single-state project is active.

Figure 2 represents a simple example, where the original project has two Blate$1, 2}), and

is currently in state 1: that is, there is one job of class 0 and another of class 1.
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It will be convenient in what follows to use the following additional notation: given a vector
X = (%)ien, @ matrixP = (pjj); jen . and subset§ T C N, we shall writexs = (X)ics and
Pst = (pij)iesjer- Recall thats" =N \ S for SCN.

We next define certain project parameters, derived from model primitives, which will be required
in our analysis. We start by considering, for each class/state sBbs&t, a corresponding-active
policy. this takes the active action on the original project when its state li& @&md the passive
action otherwise. Let us further defi)dé, fori e N, as thetotal expected discounted time the project
state lies in S under the S-active policy, provided the initial statefisii a giverSC N, theV,>'s are

determined as the unigue solution to the system of linear equations

w5=:1+32;ﬁw% forieS
jeN
VS = B > prve, fories.
jeN

It will be convenient for our analysis to rewrite this system, using the matrix notation introduced

above, as

V§ = 1s+PPsVi+PBPssVs (20)

Vg = BPVe+PPEsVE, (21)

wherels denotes a vector of ones indexed by classes/staVig= (V;5)ics andV§ = (V}9)ics.

We next use th®'s as building blocks to define quantitias, fori € N andSC N, by

AT=14B S (B - PV @2)
jeN

Note that

A=AN =1 forieN.
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Furthermore, it is straightforward from (20)—(22) that

A = 1s+PBPL Vy — VE, (23)
A§ = V§-BE\VY, (24)
whereA2 = (A)ics andAS. = (Ad)ics. We further defined! S fori e {0} USandSC N, by
AS ifies

AI_{O}US _
1 ifi=0.

We complete the definitions by lettidg{ T ), for T C N, be given by

25 nyaiVE ifoeTandS=TNN £0
b(T): ) 2ieN QiV

0 otherwise

Our next result will play a central role in our analysis of the indexability property of restless
bandits via PCL. It formulates a family afecomposition lawswhere a linear combination of ac-
tive performance measures is shown to decompose, under any admissible policy, as the sum of a
policy-invariant term plus a linear combination of passive performance measures. We note that such
identities are analogous to tinork decomposition lawsatisfied by certain single-server multiclass
gueueing systems (cf. Theorem 5 in [3]): in the latter, a linear combination of mean queue lengths
corresponding to a class subset is decomposed as the sum of a policy-invariant term plus terms relating

to the mean workload when other classes are in service, or when the server is idle.

Lemma 3 (Decomposition laws)For any admissible policy u and for anycSN |,

xg(u) + ZA.S&-l(U) =b({0}US) + 5 APX’(u); (25)

i€

in particular, for S= N,
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Proof

To simplify notation, we shall write in what follows?(u) = x2, for a= 0,1, and consider the*'s to

be row vectors. We first note that the standard linear programming formulation for discounted MDC,
applied to the restless project under study, yields that performance vettfosa =0, 1, satisfy the

matrix equation
X2 (1 —BP°) +xH(1—pPYH =a. (26)
We now rewrite system (26), in terms of a given sul&etN , as

Is—BP3s —BPSs

Is—BPss —PBPgs [ ]
= log Ogl»
—BPgs Is— PPy

+ [xé xéc]
—BPss Is—BPss

0 0

or, equivalently,

X3(Is—BP3Y = as+PX3Pys+PxsPys—xs(Is—BPsg

xg (Is—BPsg) = dg+BxIPeg+BxsPEs —x& (Is— BPSs).
Solving forx in the first of the last two equations, and substituting for it in the second, yields

X [Is — BPss — P*Pys(Is— BP9 'Ps] = ag+PBas(ls—BPLY P
+Bx8 [Pis — (Is— BPEg (I — PPRY ' PLg]

—x§ [Is —BPgg — B Pys(Is— BPSY ™' Ps] .
Now, postmultiplying both sides of the above equationgl, and simplifying the resulting expres-
sion using (20)—(24), and the identity (which follows from the definitiom\éj

AS= 15+ [Pis — (Is— BP&9 (Is— BP9 ' Pes] VE,
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we obtain

x& lg = aVS +x§ [AZ— 1] —xZ AS.
Note further that the requirement that at each time one of the two projects be active implies that

1
1,1 1 1 1
+Xgls+ Xg 1 = X5+ P=
Xt Xsds Xz Ll =Xp iEEin 1-p

Combining the last two equations yields
1, ,1aS 1 S, 0 AS
XO+X5A == 1TB —GV +XS:AS:,
which is precisely (25). The cag&= N is immediate.O

Corollary 1 The following identities hold, for anySN :
(a) for any admissible policy u that gives priority to job classesio&er clas (i.e., that takes the

active action over G,

Xg(U) + ZA-%(u) =b({0}US); 27)

(b) for any admissible policy u that gives priority to job cladsver classes in S (i.e., that takes the

passive action over S),

;Afx-l(u) =0="D(9). (28)

Proof
(a) Note that, under any such policy, it holds tu) =0, fori € $°. This fact, together with Lemma
3, proves the result.

(b) The result follows by observing that, under any such pokgy) = 0, fori € S O
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Let us now consider the family* of class/state subsets defined by
S*={SCN :A°>0,iecS and A°>0,icS}, (29)
and let us then define
Sg=S*U{{0}USSeS*}.

Note that, as required in the PCL framework, we hilgec Sg. Note further that, sincA? = AiN =0,

we shall consider thdt € S.

Theorem 4 (PCL: discounted restless bandits)Performance vectofx!(u));cn, satisfies PCL with

respect td;. Namely, for any class subse£S* and policy ue U, the inequalities

Xg(U) + 2;\%@ > b({0}US), (30)

and

ZA-Sx-l(u) >b(S), (31)

hold, together with the identities

x5(u) + ESA,-Sx,-l(u) =b({0}US), ifugives priority to $ over0, (32)
ZA,Sx,-l(u) =b(S), ifugives priority to0 over S (33)

and
X5(u) + stil(u) = b(No). (34)

Furthermore, if there exissc N having A > Ofori € §, and € & with A? < 0, then, for any initial

state vectonr > 0 (componentwise), inequality (30) does not hold.
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Proof
First, it is easy to see that, due to the special structure of the two-project model at hand, the PCL in
Definition 2 can be equivalently formulated as (30)—(34). Note next that the requirement tha#gll the
coefficients arising in the partial conservation laws be positive is guaranteed to hold by our definition
of S*. The structure 0%*, together with the decomposition laws in Lemma 3, further yields directly
the inequalities (30)—(31). The required identities (32)—(34) were established in Corollary 1.

The last statement follows from decomposition identity (25) in Lemma 3 as it applies to Subset

any policyu taking the passive action in statand the active action in states §°\ {i} has

X5+ 3 APKH(U) =b({0}US) + AS(u) < b({0}US).
ieS

We next present an adaptation of Definition 3 to the specific restless bandit model under consid-
eration. Its equivalence with Definition 3 is apparent from Theorem 4. For®achN , let us define
R (S) C 0" as the set of active reward vectd®s such that, when algorithm AG) is fed with input

(RL, (AS)icsses, ), it returns an output havinBAIL = 0.

Definition 4 (PCL/GCL-indexable restless bandits) A restless bandit (normalized so tHaf = 0)
is said to bePCL-indexable with respect ®C 2N if the following two conditions hold:
()A>>0, icS and A >0, icS, forSes;

(i) Rte R (S).

If S = 2N | we say the bandit i6CL-indexable

Note that Theorem 4 implies th&t is the largest class set family with respect to which a bandit can
be PCL-indexable.

For a givenR! € R (S), lety = (y)ien be the index vector returned by algorithm 3 when
fed with input(RY, (AS)icsscs, S ).

Corollary 2 (Indexability conditions) The following indexability conditions hold:
(a) A bandit that is PCL-indexable with respect3aC 2V is indexable for any reward vect®! e
R (S), with indicesy;, fori e N ;

(b) A GCL-indexable bandit is indexable for any reward vector.
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Proof
The fact that, foR* € R (S), the subproblem discussed above is solved optimally by a priority-index
policy, where the optimal indices are computed by adaptive-greedy algorith(8)AG a straight-
forward consequence of combining Theorem 1 and Theorem 4. The result now follows by observing
that the index decomposition condition (16) holds, when applied to the natural decomposition of class
setNg into {0} andN , and therefore Theorem 2 applies. This yields that the priority index for aux-
iliary class/state 0 is simply, while the priority indices for the classes/statedNinare computed as
described abovel

Note that Corollary 2 provides an efficiemorithmic test for indexabilityf a restless bandit: the
test is based on checking whettiet € R (S), which involves a single run of adaptive-greedy algo-
rithm AG(S). We remark, however, that this test represents a sufficient, but not necessary, condition
for a bandit to be indexable.

We presented in (18) the standard LP formulation of problem (17), known from MDC theory. The
PCL framework provides a new, equivalent LP reformulation for PCL-indexable bandits, as shown

next.

Corollary 3 Suppose a bandit (normalized so tR&= 0) is PCL-indexable with respect foC 2\ .
Then, letting
So=SuU{{0}uS:SeS},

problem (17), can be formulated as the linear program

ZPT(y,RL,0) = maxyxg+ 5 R
ieN

subject to

Espfxl > b(S),Se So\ {No}
Z NO 1 )

ieNp
Xil >0,i € No.

In our next result we verify that projects corresponding to the classical bandits case,Rihere

are GCL-indexable.

24



Restless bandits

Indexable

PCL-indexable

GCL-indexable

Figure 3: Classification of restless bandits.
Corollary 4 Classical bandits are GCL-indexable.

Proof

In the classical case we have the identities Sar N,

VS = 1+[325pi1jvj3, forieS
G

VS = 0, forieS.

The inequalities in Definition 4(i) follow immediately
The next result is concerned with the role of the discount factor on indexability. It is a direct

consequence of the definition of GCL-indexability combined with Corollary 2.

Corollary 5 (GCL-indexability for small discounts) Any restless bandit is GCL-indexable as the

discount factof3 gets small enough.

Figure 3 illustrates the classification of restless bandits resulting from the introduction of the

classes of PCL and GCL-indexable bandits.
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Interpretation of GCL-indexability

We next consider the intuitive interpretation of GCL-indexability, we note that, forSaoyN , we
can write
Aisc: ViS_BZjeN pinVjS €S

1+BSjen PGVS-V® i€S.
Let us focus on a gives C N . Recall the interpretation OYiS as the total expected discounted
time the project is activeattive time for short) under thé&-active policy (which takes the active
action on states i, and the passive action otherwise), when starting in stathl . The condition
A,-Sc > 0, fori € §, states therefore that, by changing the initial action (in sfafeom passive to
active, and following th&s-active policy onwards, the project expected active time becomes larger.
Furthermore, the conditioA™ > 0, fori € S, states that, by changing the initial action (in sijfeom
active to passive, and following ttgactive policy onwards, the project expected active time does not
become larger. Note further from the above discussion that the coeffiéigntspresenactive time

differentialscorresponding to changing the initial action in statder theS-active policy.

5 PCL for restless bandits: the time-average case

In this section we outline how the results in Section 4 for the time-discounted case can be extended
to analyze restless bandits under the time-average criterion.
We shall thus consider a general restless bandit, as described in Section 4, on which we shall

impose the additional requirement stated next.

Assumption 1 (Ergodicity) For any subset & N of bandit states, the Markov chain oMdr having

transition probability matrix

B(S) = (35)

is ergodic.
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Note thatP(S), defined by (35), is the transition probability matrix for tBective policy con-
sidered in our study of the discounted case. Furthermore, as in the previous section, we need only
consider the case where passive reward vectB’is: 0, since the general case can be equivalently
reduced to it.

Our approach to the time-average case is based on studying the asymptotic behavior, as the dis-
count factor 1, of the quantities and results appearing in our analysis of the discounted case.
Hence, to avoid confusion, in what follows we shall make explicit the dependence on discount factor
B in the quantities defined in Section 4, writing, e\§>(B), A>(B) andx!(u, ).

To relate the discounted and the time-average cases we shall apply the result that, under Assump-

tion 1, for any bandit statec N and state subs&C N, we can expresg>(B) as follows:

S
VE(B) = 7 -+ O(—p) asp L (36)

In identity (36),VS represents thong-run time-average fraction of time the bandit is active under
the S-active policywhereas/® represents the correspondit@al expected active time differential
due to starting in state. iSubstituting for thé/>(B)'s in equations (20)—(21) using (36), and letting

B 1, we obtain the system of linear equations

VS VvP 1+ Zw pivy, fories (37)
j

€

VLW = prﬁvjs, fori € S° (38)
IE

Note that equations (37)—(38) determiwg for i € N, in terms ofVS. FurthermoreVS can be
computed as the sum of the equilibrium probabilities for stateS @orresponding to the ergodic
Markov chain having transition probability matiiXS).

We next apply (36)—(38) to study the asymptotics of the coefficiAf‘([S) appearing in the PCL
obtained in the discounted case. Substituting foMAEB)'s in equations (22) using (36), and letting

B 71, yields the result that ead¥(B) converges to a limi&>, given by
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AS—1+ Zw(pilj_pﬂ)v?, fori €N, SCN. (39)
IE

The performance measures of interest are now the time-average state-action frequencies: we
denote byx?(u) the time-average fraction of time that the project is in stadad actiona is taken
under policyu. We further writex?(u) = (x?(u));cn - It is well known that in the ergodic case under

discussion it holds that, for any stationary poligy

(W) = lim (1 B)x*(u.B). (40)

In order to investigate the indexability property under the time-average criterion we consider the
equivalent two-project restless bandits model discussed in Section 4, where an auziilargting
project having a single state 0 is introduced, yielding a reward ofhen active (or, equivalently,
when the original project is passive).

We further define, as in the discounted case, quanmfg}éjs, fori € {0}uSandSC N, by
A,-{O}US: AS ifies

1 ifi=0.

We complete the definitions by lettifgf T ), for T C {0} UN, be given by

1-VS if0eTandS=TNN #0
b(T) =

0 if T={0}orT CN.
With these definitions, all the results of the previous section carry over, in a verbatim fashion, to
the time-average case under discussion by taking appropriate linfits"ak.
6 Examples

In this section we analyze several special cases of restless bandits using the results developed above.
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6.1 Two-state restless bandits

We first consider the case of restless bandits having two states. The corresponding two-project restless
bandit problem discussed in Section 4 is precisely that represented in Figure 2. In the discounted case,

the relevanidS coefficients are readily calculated as follows:

AL 1+B-Bpn—BP
! 1+B_Bp21_8p%2
1+B8-Bph—BP,

Agl} - 0 1
1+B—Bpi—BPs,
A2 1+B—BP—BPy
1+B—Bpr—BP3
AEZ} _ 1+B—Bpii— B

1+B—PBp,—Bpi;

It follows that, for any discount factor@ 3 < 1, A,-{l},AI-{Z} >0, fori =1,2. Therefore, it follows that
discounted two-state restless projects are GCL-indexable, hence indexable under any reward vector.
By taking the limit ag3 1 the corresponding result is obtained for the time-average case, provided
the ergodicity requirement in Assumption 1 holds.

Furthermore, iﬂ?% > R% (we assume as before that passive rewards are 0), the Whittle indices

produced by the adaptive-greedy algorithm (88-2}) are
yi=Ri

and

R, — A" R,
AL
_1+B-Bp,—Bprn
1+B—Bpi;—Bps
B(pY,— Pi)Ri+(1+B—BpY,—Bpi) R
1+B—Bpi,—BpP3, '

Y2 = Ri+

(Ri—Rp)

As will be seen in the next example, three-state restless bandits need not be GCL-indexable.

29



6.2 An indexable three-state restless bandit which is not GCL-indexable

Consider a discounted restless bandit having state ddaee{1,2,3}, and transition probability

matrices given by

€ 0 1-¢ 0 1 0
Pl=1| 1/3 13 1/3 and P°=| 1/3 1/3 1/3 |,
1/3 1/3 1/3 e 0 1-¢

for0< e < 1. We have

3—(4—3g)B—(1—2¢)p?

3y _

AP = 1

A _ 3+(1-3¢)PB
3 S_B '

Therefore,Af},Ag?’} > 0, for any 0< 3, € < 1. Note, however, tha@\f} can be made negative for
any 0< € < 2/5 by choosing the discount fact@close enough to unity. Taking, e.g.= 1/9
andf = 3/4, we obtainAf’} =-1/12, Af} =1 andA§3} = 14/9, which we can substitute in the

decomposition identity (25) correspondingSe- {3}: for any admissible policy,

x(u) +AHd(U) = b({0,3}) +AHQ(u) + AP (u). (41)

Note thatS= {3} ¢ S (see 29), and, therefore, the bandit problem concerned with minimizing the

objective
3
x§(u) + AFHG ()

under stationary policieg is not GCL-indexable. Numerical investigation reveals that, however, the

bandit is indexable.
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6.3 Threshold optimality through PCL

We illustrate here through a small example how PCL provide an appropriate framework for investi-
gating the optimality of threshold policies in queueing systems. This issue is studied in general in [8].
Consider a discrete-time single-server queue which can hold at most 2 customers. The set of system
states, i.e., of possible number of customers in system (waiting or in service), il thu$0, 1, 2}.

At each time the system manager can choose to activate the arrival stream, if there are less than 2
customers in system, or to shut off arrivals. Corresponding state-dependent rewards are earned when
the arrival stream is active, which are discounted in time with factar@< 1. The objective is to

design an input control policy that maximizes the total expected discounted reward earned over an
infinite horizon. We model this problem as a three-state restless bandit, where the active and passive

transition probability matrices are given by

LA O 1.0 0
Pr=1p o A|. P°=|u A of,
O u A 0O n A

whereA, 1> 0, with A+ = 1. The state-dependent active rewardsRydR; andR,, respectively. To
avoid confusion, note that in this model O denotes a system state (empty queue), and not the auxiliary
state representing the idle action, as in our general analysis of restless bandits through PCL.

The optimality of threshold policies (i.e., shut off arrivals when the number in system exceeds a
given threshold value) will be deduced, under appropriate conditions on reward coefficients, from the

fact that the bandit satisfies PCL with respect to

S ={{2},{1,2},{0,1,2}}.

See Definition 4. FoB= {2}, we have

1—-B2A

{2} _

AT = 0

2 1-BA(1+Bu)
A “1-pau >0
AZ = 10
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ForS={1,2},

Al = 1-BA>0
B*Au
1-BA
Al = 10

A}l’Z} >0

ForS={0,1,2}, we have
A — 1 ie{0,1,2).

Therefore, the bandit satisfies PCL with respecbtoLet us now characterize the corresponding
reward subseR (S), as the domain of adaptive-greedy algorithm (8& The conditions defining
R (S) are easily seen to be as follows:

Rl_RO> R, —Ro

Ry > max(Ry, Ry) and o > 5T
A2 T Al

(42)

Therefore, under conditions (42) on reward coefficients, the bandit is PCL-indexable with respect
to S. The corresponding Whittle indices, as given by adaptive-greedy algorith(S Y&e
Ri—Ro

;2} Y2 =V1+R2—R0—Agl’2} (Y1 —Yo)-

yO:ROa yl:R0+ {
Al

7 Conclusions

We identified a class of restless bandits, called PCL-indexable, which are guaranteed to be indexable.
Membership of a given restless bandit in this class can be efficiently tested through a single run of an
adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive. Given
the rich modeling power of restless bandits, we believe the notion of PCL-indexability introduced in
this paper opens the way to analyze a variety of stochastic control models in, e.g., queueing systems,
within a unifying, polyhedral framework.

Our analysis further reveals the power of the achievable region method (cf. [4]) to analyze

stochastic optimization problems, as our analyses are based on new linear programming formula-
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tions of the problems investigated. A previous study (see [2]) also utilized the achievable region

approach to obtain a priority-index heuristic, different from Whittle's, and improved LP relaxations,

for general (possibly nonindexable) restless bandits.
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