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Abstract

This paper presents a general equilibrium model of money demand

where the velocity of money changes in response to endogenous uc-

tuations in the interest rate. The parameter space can be divided into

two subsets: one where velocity is constant and equal to one as in

cash-in-advance models, and another one where velocity uctuates as

in Baumol (1952). Despite its simplicity, in terms of parameters to

calibrate, the model performs surprisingly well. In particular, it ap-

proximates the variability of money velocity observed in the U.S. for

the post-war period. The model is then used to analyze the welfare

costs of ination under uncertainty. This application calculates the

errors derived from computing the costs of ination with determinis-

tic models. It turns out that the size of this di�erence is small, at

least for the levels of uncertainty estimated for the U.S. economy.
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1 Introduction

This paper presents a general equilibrium version of the models in Baumol

[2] or Tobin [30] where the velocity of money is determined endogenously and

changes in response to uctuations in the interest rate. The cash-in-advance

(CIA) models of Lucas [18] and Svensson [29] appear as particular cases for

a subset of the parameter space.

General equilibrium models of the transaction demand for money have

been generated in di�erent ways in the literature. Jovanovic [17] presents

a deterministic economy where agents have access to a productive storage

technology for capital. Agents want to consume continuously but capital can

only be consumed if transferred to the market at a �xed cost. Since capital

perishes once removed from storage, money is used to �nance consumption

between the dates when capital is liquidated. Another route has been taken
by the so-called \shopping-time" models of money demand, such as the ones
in Den Haan [6], Guidotti [14], and Guidotti and V�egh [15]. In these models,
agents value consumption of goods as well as leisure, but transacting goods is
a time-consuming activity. However, increases in real money holdings reduce

the time needed for transactions. Feenstra [10] and Marshall [23] use the same
idea but the cost involves goods instead of time. Finally, in liquidity models
like Rotemberg [25], Grossman and Weiss [13] and Alvarez and Atkenson [1],
agents decide on the composition of their portfolios between cash, needed for
transactions, and bonds bearing an interest rate. However, the number of

trips to the bank per period is �xed exogenously in these models.
CIAmodels can also be seen as general equilibriumversions of the Baumol-

Tobin model of money demand with the following transactions technology:
the �rst trip to the bank is free and the subsequent ones are prohibitively
expensive. Thus, the agent only goes to the bank once. This transaction
technology is the basis for the unitary money velocity prediction of the sim-

plest versions of CIA models. Two extensions have been developed in the

literature to overcome this unrealistic feature. One is the introduction of a
precautionary motive to hold currency as in Lucas [19] and Svensson [29]
by changing the information structure of the model. With this new setup,

information about the current state of the economy is revealed only after the

agents make their decisions on money holdings. Once uncertainty is resolved
there will be states of the world where all cash balances are not spent and

the velocity of money can vary. The second extension involves the introduc-
tion of a second good whose consumption does not need to be paid for with
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cash as in Lucas and Stokey [21]. In these models, money velocity changes

because the relative proportions of consumption in cash goods (goods whose

consumption has to be paid for with cash) and in credit goods (goods whose

consumption does not need to be purchased with cash) change over time

depending on the economic fundamentals.1 However, as it is shown in Ho-

drick et al. [16], neither interpretation can explain the variability of money

velocity observed in the data.

The model developed here extends conventional CIA models in one di-

mension; it allows agents to economize on their cash holdings by changing the

number of trips to the bank in response to changes in the interest rate. As

in conventional CIA models, markets open sequentially. In the simplest ver-

sion of the model, an asset market opens �rst at the beginning of the period

once the state of the economy is realized. In this market the agent deposits

his initial wealth in an illiquid bond and contracts successive withdrawals of

money that he will use to �nance consumption during that period. There
is a �xed transaction cost per withdrawal (except for the �rst one which is
free) equal to a proportion k of current nominal output. Interest rates are
determined at the beginning of the period and are paid at the end of the
period on average bond holdings. During the second subperiod, a product

market opens and the agent �nances consumption with the successive money
withdrawals. For values of the parameter k that are small enough, the Bau-
mol's inventory-theoretic considerations that are responsible for variations in
money velocity in response to endogenous changes in the interest rate will
appear here too.

The timing conventions in Svensson [29] which give rise to a precautionary
demand for money can also be included. In this case, the asset market opens
at the end of each period. In this market, households decide on bond holdings
and size of withdrawals to be used for consumption next period. When
money holdings are decided for the next period, the velocity of circulation of

money is regarded as a random variable which depends on the state of the

economy to be realized the following period. This will imply a precautionary
demand for money. At the beginning of the following period the state of the
economy is realized and the product market opens. The household �nances

his current consumption with the withdrawals whose sizes were contracted

the period before. At the time the asset market opens again, interest rates

1Schreft [26] develops an overlapping generations model with a physical setup similar to
the one presented here where the mix of cash and credit goods is determined endogenously.
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on average bond holdings and brokerage fees are paid and the process starts

over.

Two applications of these models will be pursued here. The �rst one

deals with approximating the sample moments of money velocity, ination,

and nominal interest rate estimated from U.S. data. Despite its simplic-

ity, in terms of the number of parameters to calibrate, the model performs

surprisingly well.

The second exercise consists of analyzing the welfare cost of ination

under uncertainty. Papers like Lucas [20] have estimated these costs using

deterministic models.2 A question which naturally arises is how large of an

error is one making for not including uncertainty. It turns out that computa-

tions derived from deterministic models are very close to those derived from

stochastic ones even for high rates of money growth. Therefore, it seems that

uncertainty does not play a large role as an element of the welfare cost of

ination.3

The next two sections describe the models. Section 2 deals with the trans-
actions demand for money. Timing will be as in Lucas [18]. Precautionary
motives to hold currency are introduced in section 3. There, the sequence of
markets is as in Svensson [29]. Section 4 presents the empirical applications

and section 5 concludes and addresses future applications of the model.

2 A Transaction Demand for Money

The setup of this economy is similar to Lucas [18]. Henceforth, I will refer to
the following model as Lucas Model. Time is discrete. Uncertainty, namely
the output to be produced and the injection of new money, is resolved at the
beginning of the period, before any decision is taken. There is a continuum
of in�nitely lived households indexed by h, h 2 H = [0; 1]. Every day, a
good is produced in J di�erent varieties or colors indexed by j = (1; : : : ; J),

with items of each color produced and sold in spatially separated factories-
stores. These �rms are distributed evenly around a circle of length one in

J locations or villages. Contemporaneous preferences of the h-th household

2Dotsey and Ireland [9] also use a deterministic model, similar to the one in Schreft
[26], where the costs of ination arise from distortions in agents' decisions.

3A similar result was obtained in Den Haan [6] where it is shown that although reducing
the money supply on average at the rate of time preference is not optimal in the presence
of uncertainty, it is very close to the optimal policy.
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over all possible varieties of the good are summarized by the function

V
�
ch1t; : : : ; c

h
Jt

�
= u

2
4 JY
j=1

 
chjt

�j

!�j
3
5 ;

with chjt being consumption of household h of variety j during period t. The

function u : R+ ! R is continuous, twice di�erentiable, strictly increasing

and strictly concave. Also
PJ

j=1 �j = 1 and �j > 0 all j. De�ne cht =
PJ

j=1 c
h
jt.

Since in equilibrium relative prices will be one across colors, it turns out that

chjt
cht

= �j;

so that
V
�
ch1t; : : : ; c

h
Jt

�
= u

�
cht

�
:

Each household is composed of a worker-shopper pair. The couple lives
next to the location where the worker goes to work. This means that a
proportion �j of the households lives in location j. They own the �rm in
that location. The worker is endowed with a unit of labor which yields yt
units of any color at the factory. The shopper, on the other hand, dedicates
his time to visit all the shops around the circle to buy the other varieties of
the good. It is assumed that he can move clockwise only. If, as in Lucas
[18], there is limited communication among the stores so it is costly for them
to verify each shopper's credit history, there is an incentive in this economy

to use currency as a means to save on information costs. In Lucas [18],
at the beginning of the period the shopper is issued claims to yt units of
consumption that he uses to buy goods. These claims are redistributed to
the workers at the end of the period and the process starts all over again.
I am going to modify this monetary arrangement in order to motivate a

transaction technology �a la Baumol within each period.
The introduction of money in this model is as follows. Assume that

in order to distribute money to the households, a bank is created in each

location. Firms and households have accounts at the bank in their home
location. The period begins with shoppers at the bank in their respective
villages. Household h starts with initial nominal wealth W h

t . Then an asset

market opens where the shopper decides on an initial deposit in the bank plus

the number and sizes of money withdrawals that he will make while going
around the circle and will use to �nance his consumption in that period.
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These withdrawals are charged to the initial bond holdings. Each withdrawal

(except for the �rst one, which is free) costs a fee fKt to be speci�ed below.

These fees are paid to the bank at the end of the period. The shopper keeps

visiting �rms around the circle and buying the consumption goods until he

runs out of money in some store. Then he visits the bank in that location

and claims the next withdrawal. After withdrawing the money the shopper

returns to the product market to buy goods. He will continue to do this the

number of times contracted previously. As the agents buy the goods, the

�rms take the money back to the bank and deposit it there. Interest is paid

at the end of the period on average deposits.

The nature of the fee is explained as follows. When an agent wants to

make a withdrawal other than the �rst one, he will do it in a bank where

he does not have an account. In that case, his bank will need to hire a

proportion ek of workers from the shopper's location. These workers will do

all the necessary bookkeeping for that transaction. Since banks know from
the beginning of the period how many withdrawals the shoppers from their
villages are going to make, they can also hire these workers at the beginning
of the period. This is the origin of the fee which serves to pay the wages of the
workers at the bank. At the end of the period shoppers pay the fees to banks,

banks pay interest on average deposits to �rms and households and wages to
workers, and �rms pay wages to workers and dividends to households. New
money enters the system through a monetary transfer Ht+1 which is given
to households at the beginning of the next period, and the process starts all
over again.

2.1 The Household's Problem

Each period, household h has to choose how much to consume and how to
�nance this consumption, that is, how many times to go to the bank and

how much money to withdraw in each trip. Assume the shopper spends at a
constant rate around the circle. Let Nh

t be the contracted number of trips to

the bank within period t. Denote by Mh
t (s) the size of the s-th withdrawal

with s = 1; : : : ; Nh
t . Also let �ts be the length of the time interval between

trips s and s+ 1. The total size of withdrawals in period t is equal to

cMh
t =

Nh
tX

s=1

Mh
t (s):
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If Bh
t denotes initial bond holdings, it must be the case that

Bh
t +Mh

t (1) � W h
t ;

while average account balances equal

B
h

t = Bh
t �

Nh
tX

s=2

"
�ts

sX
r=2

Mh
t (r)

#
:

In the product market the agent uses the money obtained from the trips to

the bank to �nance consumption of that period, that is,

Ptc
h
t �

cMh
t :

Finally, wealth evolves as

W h
t+1 = W h

t +Hh
t+1 + Sh

t +Dh
t + itB

h

t � Ptc
h
t � (Nh

t � 1)fKt; (1)

whereHh
t+1 is the exogenous money transfer, Sh

t are the wages received either
from �rms or banks, and Dh

t is equal to dividend earnings. The next propo-

sition ensures that trips to the bank will be evenly spaced so that the size of
withdrawals within each period are equal. This is because of the assumption
that the household spends at a constant rate throughout the period. Thus,
once the number of trips to the bank for that period has been determined, the
opportunity cost of holding money is minimized only when the withdrawals

are evenly spaced within the period.

Proposition 1. For a given Nh
t , it is optimal to setMh

t (r) =Mh
t so thatcMh

t = Nh
t M

h
t .

Proof. See Appendix A.2.

Then, given the processes for fPt; it;H
h
t+1; S

h
t ;D

h
t ;
fKtg

1

t=0 and initial wealth

W0, the household h chooses sequences fcht ;M
h
t ; B

h
t ; N

h
t g

1

t=0 to maximize ex-

pected lifetime utility

E0

"
1X
t=0

�tu
�
cht

�#
; (2)

where 0 < � < 1 is a discount factor, subject to a generalized cash-in-advance

(GCIA) constraint,
Ptc

h
t � Nh

t M
h
t ; (3)
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a wealth constraint,

Bh
t +Mh

t �W h
t ; (4)

nonnegativity constraints,

cht � 0; Mh
t � 0; (5)

and the constraint that they visit the bank at least once each period,4

Nh
t � 1: (6)

Finally, wealth evolves as (1) where average account balances, B
h

t , are equal

to

B
h

t = Bh
t �

Mh
t

Nh
t

Nh
t �1X
j=1

j = Bh
t �

Nh
t � 1

2
Mh

t :

2.2 The Bank's Problem

The bank in location j makes interest payments on average deposits by the
�rm in that location, Bj

t , and by households, Bh
t , h 2 A

j where

Aj =

2
4j�1X
k=0

�k;
jX

k=0

�k

3
5

is the mass of people living in location j (j = 1; : : : ; J), with �0 = 0. The
bank also receives fees from shoppers and pays wages to workers. Although

there is one bank per location, it is assumed that potential entrants drive
existing banks' pro�ts to zero. Therefore, for bank j it must be the case that

fKt

Z
Aj

(Nh
t � 1)dh = it

Z
Aj

B
h

t dh + itB
j

t +
ek Z
Aj

Sh
t (N

h
t � 1)dh: (7)

The left side of expression (7) represents the fees collected from households.

The right side starts with the total interest paid to households, followed by

interest paid to �rm j on average deposits and �nally, the third term refers

to total wages to bank workers.

4For tractability the integer constraint on Nh

t
is ignored throughout the paper.
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2.3 The Firm's Problem

The problem faced by each �rm is as follows. They just produce a color of

the good, receive the interest on average deposits from banks, and pay wages

to workers and dividends to households living in their location. They also

have to decide when to go to the bank to deposit the money they receive

from shoppers. It is assumed that in doing so they also have to dedicate a

fraction ek of the labor force to cash management duties.5 For a competitive

�rm in location j, zero pro�ts imply:

itB
j

t + Ptyt

Z
Aj

h
1 � (N j

t � 1)ek � (Nh
t � 1)eki dh =

Z
Aj

Dh
t dh+

Z
Aj

Sh
t

h
1 � (Nh

t � 1)eki dh;
where N j

t is the number of �rm's deposits in the bank, and

B
j

t =
M j

t

N
j
t

N
j
tX

s=2

s =
N j

t � 1

2
M

j
t

is the �rm's average account balance. The second term on the left side
represents total production after labor has been hired by banks as well as

used for the �rm's cash management.

Under the assumption that all agents are identical, it is possible to look
at the representative agent version of this economy. This is done in the next
subsection. It is easy to see that the fee will be equal to the value of labor
services, or fKt = ekPtyt. Then �rms' decisions about when to deposit money
in the bank are symmetric to households' decisions about when to withdraw

it so that they will make the same number of trips. Also, in the representative
agent economy, wages and dividends will be equal to

St +Dt = Ptyt + it

JX
j=1

B
j

t � (Nt � 1)ekPtyt = Ptyt + itB
a

t � (Nt � 1)ekPtyt
where yt =

PJ
j=1 y

j
t , and B

a

t is the �rms' aggregate average account balances.

These are taken as given by the agents when making their decisions. Notice

5From the previous proposition, the �rm will also space the deposits evenly within the
period.
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that in the aggregate, average account balances in the bank are zero since

deposits by �rms correspond with withdrawals by agents. However, at the

individual level, there are incentives to go several times to the bank in order

to save on foregone interest earnings.

2.4 The Representative Agent Economy

There are two sources of uncertainty in this endowment economy. Real out-

put (yt) grows at an exogenous, stochastic rate t. Money supply (Mt) is

also exogenous and growing stochastically at a rate �t. Then

yt = tyt�1; and Mt = �tMt�1:

The rates t and �t are known at the beginning of period t.
Let (�;Z) be a measurable space. Uncertainty will be characterized

by the shock �t = [t; �t]
0

2 �. The set � is assumed to be compact.
This shock follows a �rst-order Markov process with transition probability
function Q : � �Z ! [0; 1]. Several assumptions are made throughout the

paper:

Assumption 1. The transition function Q has the Feller property, that
is, for any bounded continuous function f : �! R, the function

(Tf)(�) =
Z
�

f(�0)Q (�; d�)

is bounded and continuous. The process de�ned by Q has a stationary dis-

tribution �.

Assumption 2. The utility function u : R+ ! R is given by

u(c) = log(c):

In order to have a �nite value function assume

Assumption 3.

�1 < �
Z
�

log (0)Q (�; d�0) <1; for all � 2 �:

Also, a su�cient assumption to have a monetary equilibrium is
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Assumption 4.

0 < �

Z
�

(1=�0)Q (�; d�0) < 1; for all � 2 �:

As it was explained above, given the processes fPt; it;Ht+1; yt; B
a

t ;Ktg
1

t=0,

the agent's problem is to choose sequences fct;M
d
t ; B

d
t ; Ntg

1

t=0 so as to max-

imize

E0

"
1X
t=0

�tu (ct)

#
; (8)

subject to the constraints

Ptct � NtM
d
t ; (9)

Nt � 1; (10)

Bd
t +Md

t �Wt; (11)

Wt+1 =Wt+ it

�
Bd
t �

Nt � 1

2
Md

t

�
+Ht+1+ itB

a

t +Ptyt�Ptct� (Nt� 1)Kt;

(12)
and the nonnegativity constraints

ct � 0, Md
t � 0, (13)

where
Ht+1 = (�t+1 � 1)Mt:

From the discussion in Section 2, it is assumed that each trip to the bank
(except for the �rst one, which is free) costs a �xed proportion k � 2ek � 0
of current income Ptyt.

6 Therefore Kt = kPtyt.

The market-clearing conditions for t = 0; 1; : : : are:

ct + (Nt � 1)kyt = yt; (14)

Md
t =Mt: (15)

Lemma 1. Under Assumptions 1, 2, and 3 for any feasible consumption

sequence fctg
1

t=0,

E0

"
1X
t=0

�tu (ct)

#
� u <1:

6In this representative agent economy, each trip to the bank implies two trips in the
economy of the previous section: one by the household and one by the �rm.
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Proof. See Appendix A.1.

In order to have stationary endogenous variables, normalize nominal vari-

ables by Mt and de�ne,

pt =
Pt

Mt

; bt =
Bd
t

Mt

; mt =
Md

t

Mt

; b
a

t =
B

a

t

Mt

; wt =
Wt

Mt

:

Assuming it > 0, the GCIA constraint (9) will be binding. Then, using (9)

and normalizing variables, the agent's problem becomes

max E0

"
1X
t=0

�tu (ct)

#
;

subject to
ptct

mt

� 1; (16)

bt +mt � wt; (17)

plus the nonnegativity constraint (13), with

�t+1wt+1 = (1 + it) bt +

�
1 +

it

2

�
mt �

�
1 +

it

2

�
ptct + �t+1 � 1 + itb

a

t

+ptyt �
�
ptct

mt

� 1
�
kptyt:

2.4.1 De�nition of Equilibrium

Given the recursive structure of this problem, equilibrium prices will be ex-
pressed as �xed functions of the state of the economy which is summarized
by the current levels of output, yt, initial wealth, wt, and shocks, �t. Then

pt = p(yt; wt; �t) and it = i(yt; wt; �t):

Later it will be shown that these functions take the form

pt = p(yt; �t) and it = i(�t); (18)

where p(yt; �t)yt is independent of yt.
De�ne v(y;w; �) as the agent's lifetime expected utility, given output y,

initial wealth w, and the shock �. By Lemma 1, this is well de�ned and �nite.
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Given the price functions p(�) and i(�), the value function for the consumer's

problem satis�es:

v(y;w; �) = max

�
u (c) + �

Z
�

v (y0; w0; �0)Q (�; d�0)

�
; (19)

subject to
pc

m
� 1; (20)

b+m � w; (21)

m � 0; c � 0; (22)

where

w0 =
1

�0

�
(1 + i) b+

�
1 +

i

2

�
m�

�
1 +

i

2

�
pc+ �0 � 1 + ib

a
(23)

+py �

�
pc

m
� 1

�
kpy

�
:

LetW = [0; w] with 0 < w <1 so that wt 2 W all t. Let S � R+�W��
with s being a generic element of S. The following de�nition describes the
concept of equilibrium used here.

De�nition 1. A recursive competitive equilibrium is a set of price func-
tions p : S ! R++ and i : S ! R++, allocation functions c : S ! R+,

b : S ! R, and m : S ! R+ and a value function v : S ! R such that, for
all s 2 S

1. given p(s) and i(s), v(s) solves the consumer's problem, and

2. markets clear, that is,

y = c(s) +

"
p(s)c(s)

m(s)
� 1

#
ky;

m(s) = 1;

b(s) = 0;

where c(s), m(s) and b(s) attain v(s).
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2.4.2 Existence of Equilibrium

In equilibrium bt = 0, and mt = 1. Then de�ne B = [�b; b] with 0 < b <1,

and M = [0;m] with m > 1, such that bt 2 B, mt 2 M all t. Also in

equilibrium 0 � ct � yt. Let the operator T be

(Tv) (s) = max

�
u (c) + �

Z
�

v (s0)Q (�; d�0)

�
;

over c, m, and b subject to (20), (21), (23), and

m 2 M b 2 B 0 � c � y: (24)

De�ne V(S) as the space of functions f : S ! R that are jointly continuous

and bounded in the sup norm.

Proposition 2. Under Assumptions 1, 2, and 3, and given the functions
p(s) and i(s) there exists a unique solution v� : S ! R to the consumer's

problem.
Proof. See Appendix A.3.

The next proposition characterizes the value function v�(s).

Proposition 3. Under Assumptions 1, 2, and 3, v�(s) is an increasing,
concave, continuously di�erentiable function of w for each (y; �).

Proof. See Appendix A.4.

The �rst order conditions (FOCs) of this problem are (assuming it > 0)

u0 (c)

p
+
�

m
= �

"
1 +

i

2
+
kpy

m

# Z
�

 
1

�0

!
vw (s

0)Q (�; d�0) ; (25)

� +
�pc

m2
= �

�
1 +

pc

m2
kpy +

i

2

� Z
�

 
1

�0

!
vw (s

0)Q (�; d�0) ; (26)

� = � (1 + i)
Z
�

 
1

�0

!
vw (s

0)Q (�; d�0) ; (27)

�
pc

m
� 1

�
� = 0 ; � � 0; (28)

plus the constraints (21) and (23) where � and � are the Lagrange multipliers
associated with (20) and (21), respectively. For notational simplicity, explicit

reference to the dependence on s of the pricing and allocation functions
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has been suppressed. These conditions have the usual interpretations. For

example, the left-hand side of (25) is the total marginal utility derived from

an increase in consumption measured in scaled currency units. The �rst

element is the direct increase in the utility function. Also, an increase in

consumption relaxes constraint (20). The second element refers to the value

of this e�ect. The right-hand side includes the marginal costs associated with

increasing consumption. Since money has to be used to consume, these costs

include the foregone interest from the reduction of the average bond holdings

plus the transaction costs of new trips to the bank. The rest of conditions

have similar interpretations. Additionally, expressions (25) and (26) yield

u0 (c)

p
= � + �

kpy

m

�
1�Nh

� Z
�

 
1

�0

!
vw (s

0)Q (�; d�0) :

When the constraint (20) is binding and Nh
t = 1, the model behaves as a

standard CIA model and the marginal utility of consumption is equal to the

marginal utility of wealth. However, when that constraint is not binding
and Nh

t > 1, the marginal utility of consumption is larger than the marginal
utility of wealth. This is because in this case not all increases in income
can be transferred to increases in consumption since a proportion is lost in
transaction costs.

Remark. For the case where N > 1 (so that � = 0), the Baumol's
square-root formula

Md

P
=

s
2cky

i
(29)

can be obtained from (26) and (27).

The envelope condition is

vw (s) = �(s): (30)

The market clearing conditions are

m(s) = 1 (31)

and7

y = c(s) +

"
p(s)c(s)

m(s)
� 1

#
ky: (32)

7Walras's Law implies that the third market clearing condition is also satis�ed.

15



Conditions (25) to (32) plus constraints (21) and (23) form a system of

nine equations in nine unknown functions of s. These unknown functions

are two prices, p and i, three allocations, c, b, and m, two multipliers, � and

�, next period's wealth, w0, and the value function, vw. Furthermore, for a

given function p(s), the condition for equilibrium in the product market may

be rewritten as

c(s) =
(1 + k)y

1 + kp(s)y
� c[p(s); y]: (33)

Assumption 2 plus (33) and (28) imply that (25) and (26) take the form

1 + kp(s)y

(1 + k)p(s)y
= �

"
1 + kp(s)y + k

(1 + k)p(s)2y2

1 + kp(s)y

# Z
�

 
�(s0)

�0

!
Q (�; d�0)�2�(s)

and

�(s) = �

"
1 + 2k

(1 + k)p(s)2y2

1 + kp(s)y

# Z
�

 
�(s0)

�0

!
Q (�; d�0)� 2�(s);

respectively. From (26),

i(s) = 2

"
k
(1 + k)p(s)2y2

1 + kp(s)y
�

�(s)

�
R
� (�(s

0)=�0)Q (�; d�0)

#
: (34)

At the same time, for condition (20) to be satis�ed it must be the case
that p(s)c[p(s); y] � 1, or, by using (33), p(s)y � 1. Notice that all these
conditions depend on p(s) through the product p(s)y, which can be inter-
preted as the income velocity of money. Also notice that the only variable

from the state vector s that appears in these expressions is �, which means
that the equilibrium functions will only depend on this variable. Therefore,
de�ning �(�) � p(�)y, the equilibrium conditions may be rewritten as the
following system

	 [�(�)] = �
 [�(�)]
Z
�

 
�(�0)

�0

!
Q (�; d�0)� 2�(�); (35)

�(�0) = �� [�(�)]
Z
�

 
�(�0)

�0

!
Q (�; d�0)� 2�(�); (36)

and

[�(�)� 1]�(�) = 0 ; �(�) � 0; (37)
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with

	(x) =
1 + kx

(1 + k)x
;


(x) = 1 + kx+ k
(1 + k)x2

1 + kx
;

and

�(x) = 1 + 2k
(1 + k)x2

1 + kx
;

where

lim
x!0

	(x) = +1; lim
x!1

	(x) = �k; 	(1) = 1; 	0(x) < 0;

with

�k =
k

1 + k
> 0; for k > 0 (38)

lim
x!0


(x) = 1; lim
x!1


(x) = +1; 
(1) = 1 + 2k; 
0(x) > 0;

and

lim
x!0

�(x) = 1; lim
x!1

�(x) = +1; �(1) = 1 + 2k; �0(x) > 0:

The solution of this system of equations (35)-(37) is characterized by three
functions of �,

� : �! D 2 R+;

� : �! P 2 R+;

� : �! L 2 R+:

These results con�rm the conjecture made in (18) about the supports for the
price functions p (�) and i (�).

In order to prove existence and uniqueness of a competitive equilibrium I
will use a reformulation of Proposition 17.5 in Stokey and Lucas [28]. A key

step in applying this theorem is the construction of suitable sets D, P and

L. For a given function �(�) de�ne

L [� (�) ; �] �
Z
�

 
�(�0)

�0

!
Q (�; d�0) :

17



Then (35) and (37) determine uniquely values for � and � as a function of

�(�) and � in the following way. De�ne b� [� (�) ; �] as the value of � such that
	(b�) = �
(b�)L [� (�) ; �] : (39)

Because of the properties of the functions 	 (�) and 
 (�), there exists only

one value of � that satis�es (39). Also de�ne b� as

b� = f� 2 � : b� [� (�) ; �] � 1g ;

or, from (35),

b� = f� 2 � : 1 � � (1 + 2k)L [� (�) ; �]g : (40)

Then de�ne the functions � [� (�) ; �] and � [� (�) ; �] as

� [� (�) ; �] =

8><
>:
b� [� (�) ; �] for � 2 b�
1 for � 2 b�c

(41)

and

� [� (�) ; �] =

8>>><
>>>:

0 for � 2 b�
1

2
f� (1 + 2k)L [� (�) ; �]� 1g for � 2 b�c

(42)

The function � (�) is then determined from (36)

� (�) = �� [� (� (�) ; �)]L [� (�) ; �]� � [� (�) ; �] : (43)

It is clear that if � (�) is a continuous function of � so will � [� (�) ; �] and
� [� (�) ; �] be. From (41) and (42),

P = [1;+1)

L = [0;+1) :

On the other hand, from (43) it is easy to prove that

D = [�k; 1] (44)
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with  k de�ned in (38)

�k =
k

1 + k
:

This is done in Appendix B.

Let F be the space of continuous functions

f : �! [�k; 1] :

An equilibrium can be found as a �xed point of the operator T : F ! F

de�ned as

(Tf) (�) =
Z
�

G [�; �0; f(�0)]Q (�; d�0) ; (45)

where

G [�; �0; f(�0)] = �� [�(f(�); �)]
f (�0)

�0
� 2�(f(�); �):

The formal expression of this statement is included in Proposition 4.

Proposition 4. Under Assumptions 1, 2, 3, and 4, there exists a unique
recursive competitive equilibrium to the Lucas Model for all �nite k > 0.

Proof. See Appendix A.5.

2.4.3 Discussion of the Equilibrium

Let ��(�) be the �xed point associated with (45). Also de�ne

��(�) � � [�� (�) ; �] and ��(�) � � [�� (�) ; �] :

An immediate result is that the CIA model in Lucas [18] appears as a limiting
case of this model.

Proposition 5. There exists a �nite k > 0 such that for all k � k and

� 2 �
�� (�) = 1:

Proof. See Appendix A.6.

This result shows that the CIA model is a limiting case of this model

since for a k that is high enough the agent will go to the bank just once. It

is often said that we can look at CIA models as economies with the follow-
ing transaction technology. The �rst trip to the bank is free and the next

ones are prohibitively expensive which is what makes the agent go only once
to the bank. Proposition 6 states in an objective way what \prohibitively

expensive" means.
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3 A Precautionary Demand for Money

A precautionary demand for money can be introduced by adopting the timing

in Svensson [29]. Throughout the rest of the paper the following model will

be referred to as Svensson Model. The physical setup is identical to the

one in the previous subsection. The only di�erence appears in the order in

which markets open within the period. It is assumed that the product market

opens at the beginning of the period while the asset market opens at the end.

When the asset market opens, the shopper is at the bank in his location. He

enters this market with wealth W h
t . At the bank, the agent decides on an

initial deposit in his account and on the size of the withdrawals to be made

the following period. It is assumed that he can only adjust the size of his

withdrawals at his bank. Since consumption is only known after the money

decision is made, once next period's state is realized, the number of trips
to the bank needed to �nance the agent's consumption stream is a random
variable when money holdings are decided. This will imply a precautionary
demand for money. Once the state of the economy is realized at the beginning
of the following period, the product market opens and the agent consumes.

At the closing of the product market, interest rates on average bond holdings
and brokerage fees are paid, the asset market opens again, and the process
starts all over.

3.1 The Representative Agent Economy

The same type of arguments used in the previous subsection can be used here
to get to the following representative agent economy. Given the processes
fPt; it;Ht+1; yt; B

a

t g
1

t=0, the agent will choose sequences fct;M
d
t+1; Bt+1; Ntg

1

t=0

so as to maximize

E0

"
1X
t=0

�tu (ct)

#
; (46)

subject to the constraints

Ptct � NtM
d
t ; (47)

Nt � 1; (48)

Bd
t+1 +Md

t+1 �Wt; (49)

Wt+1 = Bd
t+1 +Md

t+1 + it

�
Bd
t+1 �

Nt+1 � 1

2
Md

t+1

�
+Ht+1 + itB

a

t+1

+Pt+1yt+1 � Pt+1ct+1 � (Nt � 1)kPt+1yt+1; (50)
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and the nonnegativity constraints

ct � 0, Md
t+1 � 0, (51)

where

Ht+1 = (�t � 1)Mt:

The market-clearing conditions for t = 0; 1; : : : are, again:

ct + (Nt � 1)kyt = yt; (52)

Md
t =Mt: (53)

Lemma 1 still applies, and after normalizing nominal variables byMt, the

agent's problem becomes maximizing the objective function

E0

"
1X
t=0

�tu (ct)

#
;

over fmt+1; bt+1; ct; Ntg
1

t=0
subject to the constraints

ptct � Ntmt; (54)

Nt � 1; (55)

�tbt+1 + �tmt+1 � wt; (56)

plus the nonnegativity constraint (51), with

wt+1 = bt+1 +mt+1 + it

�
bt+1 �

Nt+1 � 1

2
mt+1

�
+ �t � 1 + itb

a

t+1

+pt+1yt+1 � pt+1ct+1 � (Nt+1 � 1)kpt+1yt+1;

Notice that the constraint (54) does not need to bind for some states as in
Svensson [29]. In that case, the number of trips to the bank is one although
not all money holdings are spent, i.e.

Nt = 1;

ptct < Ntmt:

For other states of the world the agent spends all cash but goes only once to

the bank, i.e.
Nt = 1;
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ptct = Ntmt:

Finally, there will be cases where the agent will decide to withdraw money

several times. If the interest rate is positive it is clear that he will exhaust

all cash holdings, i.e.

Nt > 1;

ptct = Ntmt:

3.1.1 De�nition of Equilibrium

As before, the price functions take the form

pt = p(yt; �t) and it = i(�t); (57)

where p(yt; �t)yt is independent of yt.
De�ne v(y;w; �) as the agent's lifetime expected utility before the asset

market opens and after interest rates and brokerage fees are paid for the
current period , given output y, wealth w, and the shock �. By Lemma 1,
this is well de�ned and �nite. Given the price functions p(�) and i(�), the
value function for the consumer's problem satis�es:

v(y;w; �) = max

�
u (c) + �

Z
�

v (y0; w0; �0)Q (�; d�0)

�
; (58)

over m0, b0, c and N , subject to

pc � Nm; (59)

N � 1; (60)

�b0 + �m0 � w; (61)

plus the nonnegativity constraint (51), with

w0 = b0 +m0 + i

 
b0 �

N 0 � 1

2
m0

!
+ �� 1 + ib

a0
+ p0y0

�p0c0 � (N 0 � 1)kp0y0: (62)

Then De�nition 1 still represents the equilibrium concept used for this model

where the value function is given by (58).
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3.1.2 Existence of Equilibrium

It is easy to show that Propositions 1 and 2 still apply. The �rst order

conditions (FOCs) of this problem are (assuming it > 0)

u0 (c)

p
= � + ; (63)

m+ � = �

�
m
io

2
+ kpy

�
(64)

� =
�

�

Z
�

0N 0Q (�; d�0) +
�

�

Z
�

vw (s
0)

 
1�

N 0 � 1

2
i

!
Q (�; d�0) ; (65)

� =
�

�
(1 + i)

Z
�

vw (s
0)Q (�; d�0) ; (66)

(pc �Nm)  = 0 ;  � 0; (67)

(n� 1) � = 0 ; � � 0; (68)

plus the constraints (61) and (62) where , � and � are the Lagrange mul-
tipliers associated with (59), (60) and (62), respectively and io refers to the
interest rate determined the previous period. For notational simplicity, ex-
plicit reference to the dependence on s of the pricing and allocation functions
has been suppressed.

The envelope condition is

vw (s) = �(s): (69)

The market clearing conditions are

m(s) = 1 (70)

and

y = c(s) + [N(s) � 1] ky: (71)

As before, conditions (63) to (71) plus constraints (61) and (62) form a

system of eleven equations in eleven unknown functions of �. These unknown
functions are two prices, p and i, three allocations, c, b0, and m0, velocity of

money N , three multipliers, , � and �, next period's wealth, w0, and the
value function, vw. Furthermore, for a given function N(�), the condition for

equilibrium in the product market may be rewritten as

c(�) = [1 � (N (�)� 1)] y � c[N(�); y]: (72)
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Also, conditions (64), (65) and (66) can be used to get a demand for

money with a Baumol avor to it. Assuming that p (�0) c (�0) = N (�0)m (�0),

so that � (�0) = 0, for all �0 2 �, (64), (65) and (66) yield

i (�)

2

Z
�

� (�0)Q (�; d�0) =
p (�0) c (�0)

m (�0)
2
kp (�0) y (�0) � (�0)Q (�; d�0) (73)

or, Z
�

 
i (�)

2
�
p (�0) c (�0)

m (�0)
2
kp (�0) y (�0)

!
� (�0)Q (�; d�0) = 0:

This expression determines a precautionary demand for money. The agent

would like to balance, in every state of nature, the marginal opportunity

cost of demanding an additional unit of currency, equal to the left side of

(73), with its marginal transaction cost, equal to the right side of (73). Since
this is not possible when the asset market opens, the agent will determine
money holdings to balance the expected costs using the marginal utility of
wealth, � (�0), as weights for each state of nature. In general the problem
will be more complicated since the agent will also consider the possibility of

states of nature where p (�0) c (�0) < N (�0)m (�0). The type of arguments in
Baumol [2] or Tobin [30] does not appear in those cases, however.

Using (72), and Assumption 2 and de�ning � (�) � p (�) y (�) the problem
reduces to

1

[1� (N (�)� 1)] � (�)
= �(�) + (�) (74)

 (�) + � (�) = � (�)

"
k� (�) +

i (�o)

2

#
(75)

[(1� (N (�)� 1)) � (�)�N (�)]  (�) = 0 ;  (�) � 0; (76)

[N (�)� 1]� (�) = 0 ; � (�) � 0; (77)

i(�) = 2

R
� [k� (�

0) � (�0)N (�0)� � (�0)]Q (�; d�0)R
� �(�

0)Q (�; d�0)
: (78)

and

� (�) =
�

�

Z
�

[� (�0) (1 + 2k� (�0)N (�0))� 2� (�0)]Q (�; d�0) ; (79)

For a given function �(�), conditions (74)-(78) give unique functions

� (�) � � [�(�); �], N (�) � N [�(�); �], i (�) � i [�(�); �],  (�) �  [�(�); �],

and � (�) � � [�(�); �]. In order to prove existence and uniqueness of equilib-

rium I need to show only that there exists a unique solution �(�) to (79). This
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is done in the next proposition which is just a reformulation of Proposition

4.

Proposition 6. Under Assumptions 1, 2, 3, and 4, there exists a unique

recursive competitive equilibrium to the Svensson Model for all �nite k > 0.

Proof. See Appendix A.7.

3.1.3 Discussion of the Equilibrium

As in Svensson [29] the state space � can be divided into two subsets. In the

�rst one the constraint (54) is not binding. Denote this subset as �1. For all

� 2 �1, then

� (�) > 0; N (�) = 1;

so p (�) c (�) = � (�), and

 (�) = 0; p (�) c (�) < N (�) :

In the other region the constraint (54) is binding. However, in the present
model there are two possibilities depending on whether the constraint (55)
binds or not. Then, as in Svensson [29], there will be a subset, call it �2,

where the constraint (55) is binding, i.e.

� (�) > 0; N (�) = 1

so still p (�) c (�) = � (�), and

 (�) > 0; p (�) c (�) = N (�) ,

but also another one, �3, where constraint (55) is not binding, i.e.

� (�) = 0; N (�) > 1;

so p (�) c (�) < � (�), and

 (�) > 0; p (�) c (�) = N (�) .

Let ��(�) be the �xed point associated with (79). Also de�ne

N�(�) � N [�� (�) ; �] :

The next proposition shows that the CIA model in Svensson [29] appears as

a limiting case of this model.

Proposition 7. There exists a �nite k > 0 such that for all k � k and
� 2 �

N� (�) = 1:

Proof. See Appendix A.8.
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4 Empirical Results

4.1 Data

For the empirical application of the models quarterly and annual data from

1959 to 1996 on income, ination, interest rates and money stock from the

Citibase database were used. The de�nition of money used here is M2.

The reason for this choice will be explained later. Appendix C includes

information about these series.

First, the stationarity of the variables of interest is tested. These variables

are output and money growth (t and �t, respectively), income velocity of

money (�t), ination (�t) and nominal interest rate (it).
8 It has been argued

elsewhere9 that some of these series may display time trends. In particular,

Marshall [23] �nds that time trends are statistically signi�cant for the money
growth rate, money velocity, nominal interest rate and ination when using
quarterly data and M1 as the de�nition of money. In order to test for the

existence of time trends as well as unit roots, the following equation is �tted
by maximum likelihood to each series:

xt = �0 + �1t+ �2xt�1 + ut (80)

for xt = t, �t, �t, �t and it. Tables 1 and 2 show Augmented Dickey-Fuller
tests based on the t-statistic on the hypothesis �2 = 1 against the alternative
�2 6= 1 for annual and quarterly data, respectively. The Wald-F test on the
joint hypothesis �1 = 0 and �2 = 1 against the alternative HA : �1 6= 0 or

�2 6= 1 is also included.
As Tables 1 and 2 show, both hypotheses are rejected for the growth rate

of real output at a 5% signi�cance level. The same conclusions are reached
for the growth rate of money at a 10% signi�cance level for annual data
and 5% level for quarterly data. The null hypothesis that the series follow

a stationary process around a linear trend is also rejected on the basis of

8Income velocity of money is de�ned as the money stock divided by nominal income.
Also, from the models, ination at time t is equal to

�t �
Pt

Pt�1

=
�t

t

�t

�t�1
:

Because of the assumed stationarity of the processes f�t; tg
1

t=0
, the process f�tg

1

t=0
should

be stationary as well.
9See Marshall [23] and Stock and Watson [27].
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the t-statistics on the coe�cient �1.
10 Thus, it seems that the growth rates

of real output and of the money stock follow stationary processes. This is

important because these are the state variables in the model and are assumed

to be stationary. However, although the model also predicts the rest of the

variables to be stationary, this does not show in the data since the tests

cannot reject the presence of unit roots in the time series. It is interesting

though that, unlike the papers mentioned above, the Augmented Dickey-

Fuller test rejects the existence of time trends for all series but the velocity

of money.

For the empirical applications of the model, I will maintain the model's

result that all variables are stationary, even though the test statistics do not

indicate so for some of them. One possibility is to think that they follow

stationary processes but the small sample implies that the statistics do not

have enough power to reject the null hypothesis of nonstationarity when it

is not true. Of course, this assumption is not very appealing for the case
of the interest rates but it does not seem too unrealistic for the rest of the
variables.

It is for this reason that M2 is the de�nition of money used in this paper.
Besides having a very small upward trend, M2 has been more stable than M1

which has had a pronounced upward trend until the early 80s. M2, therefore,
seems closer to the assumption of stationarity.

4.2 Solution Method

Although neither of these models can be solved analytically, their solution
can be approximated by using the Parameterized Expectations Algorithm
(PEA) explained in Marcet [22]. The way the PEA solution method works
is by approximating the integrals in (36) and (79) with a particular function
� (�; �) where � is a certain vector of parameters. For the Lucas Model this

function takes the form,

L [�� (�) ; �] =
Z
�

 
��(�0)

�0

!
Q (�; d�0) ' �(�; a)

= a1 exp
h
a2 ln(�) + a3 ln() + a4 ln(�)

2 + a5 ln()
2

+a6 ln(�) ln()] : (81)

10In addition, the hypothesis of a unit root is rejected in the constrained model with
�1 = 0 for both of the series at a 5% signi�cance level.
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For the Svensson model, the integral was decomposed in two terms

S [�� (�) ; �] =
Z
�

[� (�0) (1 + 2k� (�0)N (�0))� 2� (�0)]Q (�; d�0)

= S1 [�� (�) ; �] + 2S2 [�� (�) ; �] ;

and then approximated with two functions

S1 [�� (�) ; �] =
Z
�

� (�0)Q (�; d�0) ' �(�; b1) = b11

h
exp b12 ln(�)

+b13 ln() + b14 ln(�)
2 + b15 ln()

2 + b16 ln(�) ln()
i
; (82)

and,

S2 [�� (�) ; �] =
Z
�

[� (�0) k� (�0)N (�0)� � (�0)]Q (�; d�0) ' �(�; b2)

= b21

h
exp b22 ln(�) + b23 ln() + b24 ln(�)

2 + b25 ln()
2

+b26 ln(�) ln()
i
: (83)

In order to use the PEA solution method, �rst a time series is simulated for
the exogenous process f�tg. Then, with an initial value for the parameter
vector �, say �0, the model can be solved and a time series for the endogenous
processes can be generated. For any given value of �0, a new value �1 can be

found by running a nonlinear regression either of

�t+1

�t+1
;

or
�t+1 [1 + 2k�t+1Nt+1]� 2�t+1;

on the space of functions generated by �(�t; �). The standard implementation

of the PEA �nds the best approximation �(�; ��) by iterating on this process.
In order to simulate the exogenous process f�tg, a VAR(1) is �tted to

data on real output and money growth rates. The results of this estimation

appear in Tables 3 and 4. Also, likelihood ratio tests on the degree of the
VAR were conducted. These tests accept, at a 5% signi�cance level, the
VAR(1) over other speci�cations.

Tables 5 and 6 contain the estimated values for the vectors a, b1 and

b2. All the simulations were done for � = 0:99 and k = 0:0116 with annual

data and for � = 0:9975 and k = 0:0028 with quarterly data. These values
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were chosen to get a reasonable approximation to the sample moments in

the following subsection. The transaction cost parameter is in accordance

with other estimations for the U.S. economy.11 Since this solution procedure

is just an approximation of the true rational expectations equilibrium, the

accuracy test described in Den Haan and Marcet [7] is used to check on how

close this approximation is to the solution of the model. This procedure

tests the hypothesis of the errors from the Euler equation (36) or (79) being

orthogonal to the current information set. The results of this test are included

in Tables 7 and 8. Since the percentages of times the test statistic is in the

critical regions are very close to the theoretical 5%, the approximation seems

accurate.

4.3 The Volatility of Money Velocity

As it is shown in Propositions 5 and 7, conventional CIA models may be
considered particular cases of these models when the parameter k, the pro-
portional cost of going to the bank, is large enough. If this is the case, it
would be prohibitively expensive to make more than one withdrawal. For
small, and more realistic, values of k, the Baumol's inventory-theoretic con-

siderations that are responsible for variations in money velocity in response
to endogenous changes in the interest rate will appear here too. Therefore,
these models have the potential to explain some of the volatility that other
models cannot account for. The experiment to be performed in this section
is to see whether the models in this paper can generate statistics consistent

with sample moments computed from U.S. data.
Tables 9 to 12 report the statistics included in this paper for both annual

and quarterly data. These statistics are, the means and standard devia-
tions (Tables 9 and 11) as well as the correlation coe�cients (Tables 10 and
12) of t, �t, �t, �t and it. The column labelled Lucas includes the simu-

lation for the Lucas Model while the column labelled Svensson shows the

simulation for the Svensson Model. Despite the simplicity of the models,
they perform surprisingly well. With only two parameters to calibrate, the
preference parameter, �, and the transaction cost parameter, k, the Lucas

Model presented here can approximate 9 out of the 15 moments considered

for the estimations of endogenous variables computed with annual data. The

Svensson Model can replicate 8 moments. The tables also show that those

11See Chang [4].
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moments are approximated very closely. For the Svensson model, 7 moments

were simulated within one standard deviation of the sample value. The Lu-

cas Model could generate 6 moments within one standard deviation of the

sample value. In particular, the model generates a fair amount of variability

in the velocity of money, very close to the sample value for the Svensson

Model. It also recovers the mean values for money velocity, ination and the

nominal interest rate. Additionally, the model seems to capture some of the

correlation structure found in the data. In particular, it simulates very well

the correlations associated with the growth rate of output and the ination

rate. The results for quarterly data are not as good as the results with annual

data, though. The Lucas Model can approximate only 4 moments while the

Svensson Model simulates 5 correctly.

This exercise is interesting because it also shows where the model does

not behave as the data. An example of this behavior is the strong positive

correlation between the velocity of money and the nominal interest rate.
This result of the model does not show in the data. This could be due to
several reasons. First, the de�nition of money used here could be one cause.
With M2, the link between interest rate and money demand derived from
the model is somewhat lost since part of this de�nition of money generates

interest. A second reason could be attributed to the assumed stationarity of
the series. The intuition behind this prediction of the models is clear. An
unexpected increase in the growth rate of money increases the expectation
of ination tomorrow. This drives the nominal interest rate up which leads
to an increase in the velocity of money.

4.4 The Welfare Costs of Ination under Uncertainty

In this section the Lucas Model will be used to compute the welfare cost of
ination under uncertainty. In particular, this exercise tries to analyze the
contribution of uncertainty in the calculations of the welfare cost of ination.
In the model, this cost, as a percentage of nominal output, is the following

function of �:

w(�t) =
K�(�t)

P �(�t)yt
= [N�(�t)� 1] k =

"
(1 + k)��(�t)

1 + k��(�t)
� 1

#
k

First, the model is solved under certainty using annual data. The value
for the growth rate of real output used is the average over the sample period

which equals 1.0205. Several values for the growth rate of money are used.
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They are shown in the �rst column of Tables 13 to 15. The welfare cost of

ination for those rates of growth computed from a deterministic setting are

included in the second column of Table 13, labelled `No uncertainty'. To do

the computations under uncertainty the estimated VAR for t and �t is used.

In this case, the constant in the money growth equation is changed to make

the average growth rate of money equal to the �gures in the �rst column of

Table 13. The results are included in the last column of Table 13, labelled

`Uncertainty'.

From Tables 13 to 15 one can see the similarity of the results when the

two environments are compared. This is true even for large values of average

money growth. It seems, therefore, that uncertainty, at least in the amount

observed in the data, does not add too much to the welfare costs of ination.

In fact, the model systematically predicts a lower value for these costs under

uncertainty. As Table 14 shows, this is because people go less to the bank on

average.12 The reason for this result is as follows. Because of the logarithmic
utility, uncertainty in the money growth rate raises the expected marginal
utility of next's period consumption. Thus, agents will be more willing to
exchange consumption today for consumption tomorrow. This drives down
interest rates as Table 15 shows. As nominal interest rates go down, the

opportunity cost of holding money decreases and agents compensate for this
change by increasing their money holdings and reducing the number of trips
to the bank.

5 Conclusions

This paper develops a simple general equilibrium model of money demand
where the velocity of money responds to endogenous changes in the interest
rate as in Baumol [2] or Tobin [30]. Also, it is shown that versions of this
model nest di�erent cash-in-advance models as particular cases for a subset

of the parameter space.
A data-matching exercise reveals that despite the simplicity of the model

it can perform surprisingly well especially when approximating the moments

associated with the growth rate of real output and the ination rate. The

12This does not happen at very low values for the average growth rate of money. In that
case, nominal interest rates are driven to zero together with the money velocity. Since the
�rst trip to the bank is free and Nt is constrained to be larger than one, the model cannot
capture the costs of ination for low values of E(�).
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model is then used to analyze the welfare costs of ination under uncertainty.

In particular, this application addresses the issue of the size of the error

generated when computing the costs of ination with deterministic models.

It turns out that the size of this error is small, at least for the levels of

uncertainty estimated for the U.S. economy. In fact, for the form of the

utility function used in this paper, uncertainty reduces the welfare costs of

ination.

The model can be used to look at issues in international economics. One

application is the analysis of the e�ciency gains derived from a monetary

union and, in particular, the model may be used to predict what gains could

result from the process of monetary union in Europe. Most of the recent

literature on the topic points out two main direct bene�ts: the elimination of

transaction costs associated with exchanging currency and the suppression

of exchange rate uncertainty.13 However, there is currently no theoretical

framework that allows all of these gains to be analyzed together.
The transaction costs of a multi-currency exchange system are measured

in terms of the otherwise productive resources that households and �rms
need to devote to foreign exchange management. I have analyzed these costs
in Rodr��guez Mendiz�abal [24] where a liquidity cost model of money demand

like the ones in Baumol [2] and Tobin [30] is generalized to include several
currencies and uncertainty. When calibrated to �t European data, the ex-
pected savings associated with reductions of transaction costs derived from
the European Monetary Union are estimated to be approximately 0.6% of
Community GDP (or $US 55 billion for 1996).

The volatility of exchange rates also generates costs within the countries
belonging to the European Union. First, exchange rate variability increases
uncertainty of payments and implies larger transaction costs in exchanging
currencies. Second, �rms and households spend resources in order to hedge
against adverse movements of exchange rates. Finally, uncertainty in the

exchange rate may have negative e�ects on trade and investment, although

there is no consensus on this point in the literature. The partial equilib-
rium model in Rodr��guez Mendiz�abal [24] cannot deal with issues regarding
endogenous determination of price volatility, so a general equilibrium model

is needed. The model presented in this paper integrates CIA models with

13For evaluations of the main bene�ts and costs see, among others, Commission of
the European Communities [5], De Grauwe [8], Fratiani and von Hagen [11], Gross and
Thygesen [12], and Vi~nals [31].
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liquidity cost models. Thus, while it preserves the simple structure of CIA

models, it explicitly includes a Baumol-type transaction technology. On the

other hand, it explicitly includes a Baumol-type transaction technology which

will allow me to carry over some of the conclusions derived from the partial-

equilibrium approach in Rodr��guez Mendiz�abal [24] to this model.
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A Proof of Propositions in the Paper

A.1 Proof of Lemma 1

Feasible consumption sequences satisfy

0 � ct � yt [1 + (1�Nt) k] � yt

since Nt � 1 and 0 < k < 1. Then

E0

"
1X
t=0

�tu (ct)

#
� E0

"
1X
t=0

�tu (yt)

#
= E0

"
1X
t=0

�t log (yt)

#

= E0

2
4log(y0) 1X

t=1

�t +
1X
t=1

�t

0
@ tX
j=1

log(j)

1
A
3
5

� log(y0)
1

1 � �
+

1X
t=1

�tE0

0
@ tX
j=1

log(j)

1
A :

But

E0

2
4 tX
j=1

log(j)

3
5 = E0 [log(1) + E1 (log(2)) + � � �+ Et�1 (log(t))] � t�

where

� = sup
�
�
Z
�

log (0)Q (�; d�0)
�
:

By Assumption 3 � <1. Then

E0

"
1X
t=0

�tu (ct)

#
� u <1

with

u =
log(y0)

1� �
+ �

1X
t=1

t�t

being the �nite upper bound. Q.E.D.
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A.2 Proof of Proposition 1

For a given value ofNh
t , the agent will choose intervals between trips and sizes

of withdrawals so as to minimize the opportunity cost of holding currency,

that is,

OCh
t = (1 + it)

2
4W h

t �

Nh
tX

s=1

 
�ts

sX
r=1

Mh
t (r)

!35 :
Given the constant ow of expenditures within each period, �ts will satisfy

�ts =
Mh

t (s)cMh
t

so that

Nh
tX

s=1

�ts = 1;

so OCh
t may be written as

OCh
t = (1 + it)

2
4W h

t �
cMh
t

Nh
tX

s=1

 
�ts

sX
r=1

�tr

!35 :
The �rst order condition for a minimum with respect to an arbitrary

interval �ts takes the form

�ts +

Nh
t �1X
n=1

�tn � 1 = 0

or,

�ts = 1�
Nh
t �1X
n=1

�tn:

Since the right side of this expression does not depend on s it turns out that
�ts = �tr all s, r or,

�ts =
1

Nh
t

so that cMh
t = Nh

t M
h
t :

Q.E.D.
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A.3 Proof of Proposition 2

First, it is possible to prove that T : V(S)! V(S). From (24), the constraint

set is compact. By Assumption 2, u is continuous in c. Also, since v 2 V(S),

E [v (s0) j�] is continuous by Assumption 1. Then Tv involves maximizing a

continuous function over a compact set so that a maximum exists and, by

the Theorem of the Maximum, it is continuous. Since u(c) is bounded in the

constraint set and v 2 V(S), Tv is also bounded. Thus, T maps V(S) into

itself.

Next, it is straightforward to show that T satis�es Blackwell's su�cient

conditions for a contraction. Given any two functions f; g 2 V(S), such that

f � g it is easy to see that Tf � Tg, so that T is monotone. To verify

discounting, for any constant a > 0,

T (v+ a)(s) = max

�
u (c) + �

Z
�

[v (s0) + a]Q (�; d�0)

�

= max
�
u (c) + �

Z
�

[v (s0)]Q (�; d�0)
�
+ �a

= Tv(s) + �a:

Hence, T satis�es Blackwell's conditions for a contraction and since V(S) is
a complete, normed, linear space, by the Contraction Mapping Theorem T

has a unique �xed point. Q.E.D.

A.4 Proof of Proposition 3

To show that v is an increasing and concave function of w, let C(S) be the

space of continuous, bounded, increasing, and concave functions f : S ! R+

with the sup norm. Notice that C(S) is a closed subset of V(S). Then for
any increasing function of w, f , Tf is also an increasing function of w.

To show that T preserves concavity, let w� = �w1 + (1� �)w2, � 2 [0; 1].
Let (md

j ; cj; bj) attain (Tv)(wj; �), (j = 1; 2). Also de�ne correspondingly

md
�, c�, and b�. It is clear that (m

d
�; c�; b�) satis�es

b� +md
� � w�

pc�

md
�

� 1

and

md
� 2 M b� 2 B 0 � c� � y
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so this allocation is feasible at (y;w�; �), although it may not be optimal.

Let (md
�
; c�; b�) attain (Tv)(w�; �) and de�ne

w0j = w0(md
j ; cj; bj) = 1 +

1

�0

�
(1 + i) bj +

�
1 +

i

2

�
md

j �

�
1 +

i

2

�
pcj

+ib
a
+ py �

 
pcj

md
j

� 1

!
kpy

for j = 1; 2; �; �. Then for any concave function v,

(Tv) (y;w�; �) = u (c�) + �E [v (y0; w0
�
; �0) j�] � u (c�) + �E [v (y0; w0�; �

0) j�]

� u (c�) + �E [v (y0; �w01 + (1 � �)w02; �
0) j�]

� �u (c1) + (1� �)u (c2) + ��E [v (y0; w01; �
0) j�]

+(1 � �)�E [v (y0; w02; �
0) j�]

� � (Tv) (y;w1; �) + (1 � �) (Tv) (y;w2; �):

The second inequality appears both from the fact that w0 is a concave func-
tion of (md

�; c�; b�) and v is an increasing function of w. Since C(S) is a closed
subset of V(S), and T is a contraction, then v� 2 C(S) so it is increasing
and concave.14

Finally, this problem satis�es the assumptions of the Theorem of Ben-

veniste and Scheinkman [3], so v� is continuously di�erentiable with respect
to w. Q.E.D.

A.5 Proof of Proposition 4

Proposition 4 is a particular case of Proposition 17.5 in Stokey and Lucas
[28] which is stated next.

Proposition 8. Let � be a bounded set; let V (�) be the space of

bounded continuous functions on �, with the sup norm; and let F � V (�)

be closed and bounded. Assume that the operator T : F ! F is continuous
and monotone and that T (F ) is an equicontinuous family. If for f0 (�) = �k
and g0 (�) = 1 all � 2 �, it turns out that

lim
n!1

T nf0 = f = g = limn!1T ng0

then this function is the unique �xed point of T .

14See Stokey and Lucas [28], Corollary 1 pg. 52.
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De�ne the operator T as

(Tf) (�) =
Z
�

G [�; �0; f(�0)]Q (�; d�0) ;

with

G [�; �0; f(�0)] = �� [�(f(�); �)]
f (�0)

�0
� 2�(f(�); �):

where �(f(�); �) and �(f(�); �) were de�ned in (41) and (42), respectively.

In order to apply Proposition 17.5 in Stokey and Lucas [28] a space of

functions F 2 V (�) has to be chosen. Let F be the space of continuous

functions

f : �! [�k; 1] :

Clearly, F is nonempty, closed, bounded, and convex.

Next, I need to show that the operator T maps F into itself. Pick any
continuous function f 2 F . Then for � 2 b�c, so that � [f(�); �] = 1,

(Tf) (�) = � [1 + 2k]
Z
�

 
f (�0)

�0

!
Q (�; d�0)� 2� [f(�); �] = 1:

On the other hand, for � 2 b�, so that � [f(�); �] > 1, and � [f(�); �] = 0,

(Tf) (�) = �� [�(f(�); �)]
Z
�

 
f (�0)

�0

!
Q (�; d�0)

� �
 [�(f(�); �)]
Z
�

 
f (�0)

�0

!
Q (�; d�0) � 	 [�(f(�); �)]

�
k

1 + k
= �k

and

(Tf) (�) = �� [�(f(�); �)]
Z
�

 
f (�0)

�0

!
Q (�; d�0)

= � [�(f(�); �)] 	 [�(f(�); �)] 
 [�(f(�); �)]�1 < 1:

Also, since Q has the Feller property and f is continuous, � [f(�); �] is con-
tinuous and so is Tf . Then T : F ! F .

Next, I need to prove that the operator T is continuous and monotone and

that T (F ) is an equicontinuous family. The operator T forms an equicontinu-
ous family since D is nonempty, closed, bounded and convex, G is continuous
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and uniformly continuous in its �rst argument. T is also continuous as an

operator since G is uniformly continuous in its third argument. Finally, T

is monotone since it is linear in f .

The last step in the proof is to show

lim
n!1

T nf0 = f = g = lim
n!1

T ng0:

For f0 (�) = �k,

(Tf0) (�) = �� [�(f(�); �)]
Z
�

 
f (�0)

�0

!
Q (�; d�0) �k � 2� [f(�); �]

with �(f(�); �) satisfying

	 [�(f(�); �)] = �� [�(f(�); �)]
Z
�

 
f (�0)

�0

!
Q (�; d�0) �k � 2� [f(�); �] :

On the other hand, for g0 (�) = 1,

(Tg0) (�) = �� [�(f(�); �)]
Z
�

 
1

�0

!
Q (�; d�0) � 2� [f(�); �]

with �(f(�); �) satisfying

	 [�(f(�); �)] = �� [�(f(�); �)]
Z
�

 
1

�0

!
Q (�; d�0)� 2� [f(�); �] :

It is easy to see that (Tf0) (�) = (Tg0) (�) for all � 2 �. Then, by
induction

lim
n!1

T nf0 = f = g = lim
n!1

T ng0;

so that there exists a unique �xed point of T .

Call ��(�) the �xed point associated with T . De�ne

��(�) � � [�� (�) ; �] and ��(�) � � [�� (�) ; �] :

From (84) de�ne the function i� (�) as

i�(�) = 2

"
k
(1 + k)��(�)2

1 + k��(s)
�

��(�)

�L(��(�); �)

#
: (84)
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Assumption 4 ensures that i (�) > 0, for all � 2 �. For � 2 b�c,

i� (�) = 2

"
k �

� (1 + 2k)L(��(�); �)� 1

2�L(��(�); �)

#
=

1

�L(��(�); �)
[1� �L(��(�); �)] :

Since �� (�) 2 [0; 1],

1 > �

Z
�

 
1

�0

!
Q (�; d�0)

is a su�cient condition for i� (�) > 0. For � 2 b�,
i� (�) = 2k

(1 + k)��(�)2

1 + k��(�)
> 0:

Q.E.D.

A.6 Proof of Proposition 5

The value k is equal to

k =
1

2

"
1

�L
� 1

#
(85)

where

L = min

(Z
�

 
��(�0)

�0

!
Q (�; d�0)

)
:

To prove this proposition it is su�cient to show that the functions �� (�) =
1, �� (�) = 1, and

�� (�) =
1

2

"
� (1 + 2k)

Z
�

1

�0
Q (�; d�0)� 1

#

form a solution to the system of equations (35)-(37). Given the function
�� (�) = 1, for any k � k expression (40) implies that b� = � and b�c = �.

Then for all � 2 �, �� (�) = 1 so that the constraint N � 1 is binding. This
corroborates the initial assumption �� (�) = 1 all � 2 �. The value for �� (�)
is determined by (36). Q.E.D.

40



A.7 Proof of Proposition 6

De�ne the operator T as

(Tf) (�) =
Z
�

G [�; �0; f(�0)]Q (�; d�0) ;

where

G [�; �0; f(�0)] =
�

�
f (�0) [1 + 2k�(f(�0); �0)N(f(�0); �0)]� 2

�

�
�(f(�0); �0)

=
�

�
f (�0)

"
1 +

i(f(�); �)

2
+ k�(f(�0); �0)N(f(�0); �0)

#

�2
�

�
�(f(�0); �0)

where �(f(�); �), N(f(�); �), i(f(�); �), and �(f(�); �) are de�ned implicitly
by the system (74)-(78). It is easy to show that for �0 2 �1,

G [�; �0; f(�0)] =
�

�
f (�0) :

For �0 2 �2,

G [�; �0; f(�0)] =
�

�
:

Furthermore, for �0 2 �3,

G [�; �0; f(�0)] =
�

�
f (�0)

"
1 + 2k

(1 + k) �(f(�0); �0)2

1 + k�(f(�0); �0)

#
:

The same steps used to prove Proposition 5 can be used here. The only
di�erence appears from the new subset �1. As in Svensson [29], a problem

may arise when � is small enough. In order to ensure that an equilibrium
exists it is necessary to assume a strictly positive lower bound " to the growth
rate of money. Q.E.D.

A.8 Proof of Proposition 7

This proof shows that there exists such a k. For every pair (�0; �), there is

always a k (�0; �) such that

1 < �(�)

"
1 + k

�
�0; �

�
+
i (�o)

2

#
:

Choose then k = maxfk (�0; �)g. Q.E.D.
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B Computation of Expression (44)

In this Appendix it is shown that D = [�k; 1] with

�k =
k

1 + k
:

For � 2 b�c, � = 1. For � 2 b� we have the two equations

	 (�) = �
(�)
Z
�

� (�0)

�0
Q (�; d�0)

and

� = ��(�)
Z
�

� (�0)

�0
Q (�; d�0)

or,

	 (�) = 
 (�)
�

�(�)
:

From this expression it is possible to write � as a function of �

� = h (�) =
	 (�) � (�)


 (�)
:

After some algebra it is easy to prove that

dh (�)

d�
< 0:

Then, the lower bound for � appears from

lim
�!1

h (�) =
2k

1 + 2k
>

k

1 + k
= �k:

Q.E.D.

C Description of the series

The data source is the Citibase database. The data for each year is the last

observation of that year. The series cover from 1959 to 1996. The variables
are (Citibase acronyms in parenthesis)
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� Real income: Gross Domestic Product in 1987 dollars (GDPQ)

� Nominal income: Gross Domestic Product in current dollars (GDP)

� Prices: Gross Domestic Product, implicit price deator (GDPD)

� Money: either M1 money stock (FM1) or M2 money stock (FM2)

� Nominal interest rates: US Treasury Bills, 1 year (FYGMYR)

Velocity of money is computed as nominal income divided by a de�nition

of money stock.
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Table 1

Augmented Dickey-Fuller (ADF ) Tests: Annual Data, 1959-96

Dependent
variable �0 �1 �2 ADF a Wald� F b

t 0.93249 -0.00068 0.09953 -5.50 15.30

(0.16877) (0.00039) (0.16359)

�t 0.53174 -0.00086 0.51369 -3.42 6.16
(0.15408) (0.00044) (0.14221)

�t 0.27837 0.00242 0.81776 -1.63 2.48

(0.17824) (0.00109) (0.11181)

�t 0.01026 -0.00025 0.86926 -1.44 1.92
(0.00579) (0.00021) (0.09086)

it 0.01511 -0.00004 0.78526 -2.02 2.42

(0.00723) (0.00025) (0.10616)

Table 2

Augmented Dickey-Fuller (ADF ) Tests: Quarterly Data, 1959-96

Dependent
variable �0 �1 �2 ADF a Wald� F b

t 0.74897 -0.00002 0.25661 -9.12 41.58
(0.08113) (0.00002) (0.08053)

�t 0.31551 -0.00002 0.69086 -5.30 14.18
(0.15408) (0.00044) (0.14221)

�t 0.07801 0.00015 0.94936 -2.28 4.46
(0.03500) (0.00005) (0.02220)

�t 0.00129 -0.00001 0.91561 -1.87 2.22
(0.00070) (0.00001) (0.04509)

it 0.00110 0.00001 0.92299 -2.91 4.52
(0.00042) (0.00001) (0.02646)

Notes to tables: Standard errors in parenthesis.
a The critical values for the ADF test are -3.56 (5%) and -3.22 (10%).
c The critical values for the F test are 7.04 (5%) and 5.79 (10%).
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Table 3

Estimated VAR(1) for (�t; t): Annual Data 1959-96

Dependent
Variable Constant �t�1 t�1 R2 � ��

�t 0.792 0.739 -0.504 0.491 0.023 0.153

(0.181) (0.128) (0.169)

t 0.689 0.267 0.048 0.146 0.022
(0.172) (0.120) (0.163)

Table 4

Estimated VAR(1) for (�t; t): Quarterly Data 1959-96

Dependent

Variable Constant �t�1 t�1 R2 � ��
�t 0.358 0.744 -0.097 0.541 0.006 0.024

(0.070) (0.057) (0.053)

t 0.529 0.249 0.223 0.125 0.009
(0.105) (0.085) (0.079)

Notes to tables: Standard errors in parenthesis.
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Table 5

Estimated Coe�cients in PEA: Annual data, 1959-96a

Value Value Value

a1 0.5895 b11 0.5809 b21 1.5583

a2 -1.2917 b12 -1.2917 b22 1.1256
a3 1.0613 b13 1.0613 b23 -0.9289

a4 -0.8398 b14 -0.8378 b24 0.5398

a5 -0.0764 b15 0.0758 b25 -0.1334

a6 1.4630 b16 1.4602 b26 -0.8514

Table 6

Estimated Coe�cients in PEA: Quarterly data, 1959-96a

Value Value Value

a1 0.5886 b11 0.5850 b21 1.6671
a2 -2.3441 b12 -2.3432 b22 2.2545

a3 0.3737 b13 0.3736 b23 -0.3612
a4 2.0137 b14 2.0159 b24 -1.9648

a5 2.3303 b15 2.3292 b25 -2.2477

a6 -2.0562 b16 -2.0557 b26 2.0223

Table 7
Accuracy tests: Annual data, 1959-96b

Lower 5% Upper 5%

Lucas Model 3.5% 6.5%

Svensson Model 2.0% 8.0%

Table 8
Accuracy tests: Quarterly data, 1959-96b

Lower 5% Upper 5%

Lucas Model 4.5% 3.0%

Svensson Model 5.5% 4.5%

Notes to tables: Standard errors in parenthesis.
a Sample size: 5000 observations
c Tests computed using 200 samples of 1000 observations
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Table 9

Models Results vs. Sample Values: Annual Data, 1959-96

Means and Standard Deviations

Moment U.S. data Lucas Svensson

E [t] 1.020 (0.004) 1.021�� 1.021��

� [t] 0.024 (0.002) 0.024�� 0.024��

E [�t] 1.060 (0.008) 1.060�� 1.060��

� [�t] 0.033 (0.004) 0.034�� 0.034��

E [vt] 1.730 (0.029) 1.733�� 1.746��

� [vt] 0.111 (0.024) 0.070� 0.113��

E [�t] 0.043 (0.006) 0.041�� 0.042��

� [�t] 0.026 (0.004) 0.065 0.084
E [it] 0.063 (0.006) 0.069�� 0.069��

� [it] 0.024 (0.004) 0.006 0.006

Table 10
Models Results vs. Sample Values: Annual Data, 1959-96

Correlations

Moment U.S. data Lucas Svensson

� [t; �t] 0.336 (0.112) 0.332 0.332

� [vt; t] -0.317 (0.085) -0.285�� -0.014
� [vt; �t] -0.618 (0.107) 0.808 0.937
� [vt; �t] -0.030 (0.241) 0.817 0.697

� [vt; it] 0.224 (0.186) 0.999 0.961
� [�t; t] -0.335 (0.147) -0.573� -0.451��

� [�t; �t] 0.329 (0.109) 0.452� 0.487�

� [�t; it] 0.714 (0.126) 0.816�� 0.775��

� [it; t] -0.171 (0.168) -0.285�� -0.284��

� [it; �t] 0.194 (0.149) 0.807 0.807

Notes to tables: Standard erros in parenthesis.  is output growth rate,

� is money growth rate, v is money velocity, � is ination and i is nominal

interest rate.
�� Within one standard error of the sample value.
� Within two standard errors of the sample value.
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Table 11

Models Results vs. Sample Values: Quarterly Data, 1959-96

Means and Standard Deviations

Moment U.S. data Lucas Svensson

E [t] 1.005 (0.001) 1.005�� 1.005��

� [t] 0.010 (0.001) 0.010�� 0.010��

E [�t] 1.015 (0.001) 1.015�� 1.015��

� [�t] 0.009 (0.001) 0.009�� 0.009��

E [vt] 1.735 (0.014) 1.738�� 1.747��

� [vt] 0.098 (0.013) 0.034 0.048
E [�t] 0.011 (0.001) 0.010�� 0.010��

� [�t] 0.006 (0.001) 0.023 0.029
E [it] 0.015 (0.001) 0.017� 0.017�

� [it] 0.006 (0.001) 0.001 0.001

Table 12
Models Results vs. Sample Values: Quarterly Data, 1959-96

Correlations

Moment U.S. data Lucas Svensson

� [t; �t] 0.204 (0.065) 0.216�� 0.216��

� [vt; t] -0.182 (0.060) 0.041 0.095
� [vt; �t] -0.474 (0.080) 0.984 0.992
� [vt; �t] 0.006 (0.124) 0.614 0.564

� [vt; it] 0.241 (0.125) 1.000 0.998
� [�t; t] -0.235 (0.110) -0.513 -0.435�

� [�t; �t] 0.232 (0.076) 0.510 0.494
� [�t; it] 0.639 (0.067) 0.614�� 0.584��

� [it; t] -0.196 (0.103) 0.042 0.042

� [it; �t] 0.128 (0.086) 0.984 0.984

Notes to tables: Standard erros in parenthesis.  is output growth rate,

� is money growth rate, v is money velocity, � is ination and i is nominal

interest rate.
�� Within one standard error of the sample value.
� Within two standard errors of the sample value.
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Table 13

Expected Welfare Cost of Ination

E (�) No uncertainty Uncertainty

� 0.000 0.008 (.018)

1.00 0.000 0.019 (.028)
1.03 0.391 0.322 (.076)

1.06 0.865 0.817 (.092)

1.10 1.354 1.320 (.103)

1.20 2.271 2.251 (.110)

1.30 2.979 2.965 (.108)

1.40 3.575 3.564 (.103)

Table 14

Expected Money Velocity

E (�) No uncertainty Uncertainty

� 1.000 1.008 (.016)
1.00 1.000 1.017 (.026)

1.03 1.364 1.300 (.071)
1.06 1.809 1.764 (.087)
1.10 2.273 2.241 (.098)
1.20 3.155 3.136 (.107)

1.30 3.848 3.834 (.106)
1.40 4.439 4.426 (.103)

Table 15
Expected Nominal Interest Rate

E (�) No uncertainty Uncertainty

� 0.000 0.000 (-)
1.00 0.010 0.008 (-)

1.03 0.040 0.037 (.004)

1.06 0.070 0.067 (.007)

1.10 0.111 0.108 (.009)

1.20 0.212 0.210 (.014)

1.30 0.313 0.311 (.017)
1.40 0.414 0.412 (.019)

Notes to tables: Standard erros in parenthesis.
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