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Abstract

In coalitional games with side payments, the core predicts which coalitions form and how benefits

are shared. The predictions however run into difficulties if the core is empty or if some coalitions

benefit from not blocking truthfully. These difficulties are analyzed in games in which an a priori

given collection of coalitions can form, as the collection of pairs of buyer-seller in an assignment game.

The incentive properties of the core and of its selections are investigated in function of the collection.

Furthermore the relationships with Vickrey-Clarke-Groves mechanisms are drawn.

Keywords : coalition formation, assignment, manipulability, substitutes, incremental value, Vickrey-
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1 Introduction

The idea of using the core as a model for assessing the stability of arrangements made within a society

has been proved quite fruitful in various contexts. In particular, the core is useful in the situations that

call for the society to split up into smaller self-sufficient groups, provided there are no externalities

across these groups. In these situations, the threat of blocking puts constraints not only on how

benefits are shared but also on which coalitions form. Shapley and Shubik (1971) were among the

first to use this insight in their analysis of the ”assignment game”. In a two-sided market in which

only pairs of buyer and seller are worth forming, possible outcomes specify which pairs end up making

a transaction and at what price. Stable outcomes always exist, supported by equilibrium prices.

The action of blocking is the driving force underlying the concept of the core. The predictions

given by the core may run into difficulties if some individuals or coalitions benefit from not blocking

”truthfully”. To define truthful blocking independently of any specific coalition formation process, a

solution is to consider the one-shot process that assigns the core to each possible configuration of indi-

vidual preferences and to study its manipulability. Since the core is not in general a singleton, several

definitions of manipulability are possible.1 For our purpose, the appropriate notion is the manipu-

lability by ”optimistic” individuals or coalitions as introduced in an earlier paper (Demange 1987).

Consider an individual who belongs to all coalitions blocking a given alternative. It may happen that

he prefers that alternative to each alternative in the core. If he indeed expects an outcome in the

core to obtain, why should he agree to block ? As explained in the paper, no such objection can be

raised if the core correspondence is not manipulable by an optimistic individual. Extending similar

considerations to coalitions leads to the concept of manipulability by optimistic coalitions.

Although quite surprising at first sight, the non manipulability of the core is not an innocuous

condition (we omit ‘optimistic’ from now). For example the core of an exchange economy can be

manipulable. Instead, the core of an assignment game is not manipulable by the essential coalitions,

that is neither by optimistic individuals nor by pairs of buyer-seller. This paper analyzes more general

coalitional games where, as in an assignment game, there is an a priori given collection of admissible

coalitions. Because of lack of communication or institutional reasons or organizational constraints for

instance, coalitions outside the collection are unable to form. Our first objective is to determine which

collections allow for the core to be non manipulable.

The analysis is conducted in the following setting. A finite number of individuals may organize

themselves into pairwise disjoint admissible coalitions (staying single is always admissible). Players

only care about the coalition they join and the amount of money they receive (or give), and utility

is transferable. Thus, an outcome specifies how the society splits up into admissible coalitions and

which transfers each coalition will implement within its members. As is well known, the core may

be empty, that is no stable outcome exists. Our first result states that both difficulties -emptiness

and manipulability of the core- are solved simultaneously. More precisely, consider a collection of
1These definitions depend on how preferences over outcomes are extended to preferences over subsets of outcomes.

Manipulability by an optimistic individual is obtained when a subset is evaluated through its most preferred element(s)

(see section 3).
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admissible coalitions for which a core outcome exists whatever the players preferences, as introduced

by Kaneko and Wooders (1982). Given such a collection, the (nonempty) core is non manipulable

in the optimistic sense by admissible coalitions (Theorem 1). Furthermore, the result is related with

Vickrey-Clarkes-Groves mechanisms (Vickrey 1961, Clarke 1971, and Groves 1973) : it holds because

an admissible coalition can achieve its incremental value over the remaining players at a core outcome.2

Aside assignment games, interesting examples are given by tree-hierarchical structures in which only

connected coalitions can be admissible (see Demange 2004 for a detailed analysis).

To address further the relevance of the core, the second objective of the paper is to analyze the

incentive properties of core selections. The first result is negative. No selection is strategy-proof for all

players. Even worse, manipulation is pervasive: an individual can manipulate whenever the selected

outcome is not one of his preferred core outcomes. A selection however may be strategy-proof for a

subset of players. As is well known in the assignment game, there is a generalization of Vickrey’s single

object auction that gives the incentives to all buyers to reveal their true valuations (Leonard 1983,

Demange et al 1986). It turns out that a simple property, the absence of a chain between players,

characterizes the collections of admissible coalitions that allow for a selection to be strategy-proof for

these players (Theorem 2). These collections ensure that the players are substitutes in the sense of

Shapley and Shubik (1971) independently of their preferences. In tree-hierarchical games for instance,

two players are substitutes only if no connected coalition containing both players is admissible.

The manipulability of core outcomes has been investigated in similar settings without money,

starting with marriage problems by Dubins and Freedman (1981), and housing markets by Roth

and Postlewaite (1977). Excluding side payments makes the analysis rather different. An outcome

is simply specified by a partition of the society. The core, necessarily discrete, is single valued for

some collections of admissible coalitions. Single valued cores allow the standard concept of strategy-

proofness to be used (Papai 2004). Also, in a generalized matching market, the existence of a strategy-

proof rule with desirable properties is closely related to single-valued cores (Sönmez 1999). With side

payments, a core is almost never single valued so that similar results are hopeless.

Stability and incentives issues are also the subject of a vast literature in another type of extension

of the assignment game. Keeping a two sided structure, buyers (firms) may want to buy several

objects (workers), as in a job market (Crawford and Knoer 1981) or in various allocation problems

such as spectrum bandwidth auctions (Cramton 1995). The existence of stable outcomes, the design

of auction mechanisms to reach them, and the relationships with Vickrey payoffs have been studied

(see e.g. Ausubel 2004). In particular, as in this paper, Bikhchandani and Ostroy (2002, 2006) show

the importance of the property of substitutes players and use linear programming technics. In contrast

however, restrictions on preferences, not on coalitions, are the keys to restore stable outcomes or to

state various properties.

Finally, our concern on justifying the blocking condition is related with the literature that recog-
2The importance of the notion of incremental value, also called marginal value or marginal product or (for a single

individual) Vickrey payoff, has been recognized in various contexts. Shapley and Shubik (1971) used it to introduce the

notion of substitute players. For a thorough analysis of the relationships between incremental values and competitive

behavior, see Makowski and Ostroy (1987).
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nizes that blocking should not been taken as granted when coalitions look ahead and try to figure

out the ultimate consequences of their moves. Based on this observation, various behaviors can be

justified so that only consistent sets of outcomes are predicted, as explained by Chwe (1994) in a

general context. For an application to coalition formation possibly with spill-overs across coalitions,

see for example Barbera and Gerber (2003) and Diamantoudi and Xue (2003).

The paper is organized as follows. Section 2 introduces the coalitional formation model, illustrates

it with some examples, and defines incremental values and stable payoffs. Section 3 discusses various

definitions of manipulability for the core correspondence and provides a justification for the manip-

ulability concept by optimistic coalitions. The non manipulability result on core correspondences is

given in Section 4. Section 5 is devoted to strategy-proof selections of the core, and the final section

presents conclusions.

2 The model and examples

It is worth recalling the basic features and properties of the two-sided market introduced by Shapley

and Shubik (1971). In the market, say a real estate market, there are two types of agents, prospective

purchasers, the ”buyers” and homeowners, the ”sellers”. Each buyer is interested in buying only one

house. The i-th seller values his own house at ci dollars while the j-th buyer values the same house at

hij dollars. The important data are the ”essential” coalitions, the pairs of buyer-seller, and the total

value they derive by forming, here hi,j − ci. The possible outcomes of the market specify which pairs

of buyer-seller end up making a transaction and at what price. One seeks a stable outcome, meaning

that no pair consisting of a buyer and a seller can make an arrangement that is more satisfactory to

both than the given one. Shapley and Shubik (1971) show that a stable outcome is supported by an

equilibrium price, and furthermore, that there is a minimum equilibrium price vector and a maximal

one. The strategic properties are the following ones:

(a) each buyer reaches his incremental value, or Vickrey payment, at a stable arrangement sup-

ported by the minimum equilibrium price vector. Hence, selecting the minimum equilibrium price

vector gives the incentives to all buyers to reveal their true valuations.3 Similar results hold for the

sellers by selecting the maximal price.

(b) no pair of buyer-seller can both obtain more than their incremental values by misrepresenting

their preferences (Demange 1987).

Our purpose is to explore the extent to which properties (a) and (b) hold true in a coalitional

formation model that extends the assignment game. We retain two main features: not all coalitions

can form and utility is transferable within a coalition.
3This property was shown by Leonard (1983) through linear programming and by Demange (1982) and Demange et

al (1986) through an algorithm in an appropriate graph, algorithm which can be interpreted as a multi-item Vickrey

auction. The existence of a stable outcome most favorable to buyers (or to sellers) and its incentive properties extend

to a setup with non transferable utility (Demange and Gale 1985).
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2.1 The coalitional formation model

A finite set of players, the ”society”, N = {1, ..., n}, may organize themselves into pairwise disjoint

coalitions, where as usual a coalition is a non empty subset of N .

A collection C describes the set of admissible coalitions : coalitions outside C cannot form. Through-

out the paper, singletons are admissible. The restrictions on coalition formation may stem from orga-

nizational or institutional reasons as illustrated in section 2.2. Our main interest is to relate collections

C and strategic properties such as stated in (a) and (b).

Players only care about the coalition they join and the amount of money they receive or give.

Player i’s preferences are represented by a utility function ui defined over the coalitions that include

i : ui(S) gives in term of money the utility for i to be a member of coalition S. One interpretation

is that i derives an ”intrinsic” utility for being a member of S. Another interpretation is that, once

formed, a coalition selects a given alternative independently of the preferences of its members. In that

case, ui(S) represents i’s indirect utility for the alternative chosen by S. Utility functions are not

necessarily increasing when an additional person is added to a coalition: an individual may dislike this

person, or may not enjoy large coalitions. Thus, I shall assume that any utility function is admissible.

The set of admissible i’s utility functions is denoted by U i. The n-tuple u = (ui)i∈N is a preferences

profile and U =
⊗

i=1,..,n Ui the set of admissible profiles.

A coalition S that forms can decide to implement transfers between its members, (ti)i∈S . Player

i receives ti (positive or negative), hence achieves a utility level or payoff of ui(S) + ti. Feasibility

requires total transfers within the coalition to be non-positive:
∑

i∈S ti ≤ 0. Thus, if S forms, any

payoff (xi)i∈S that satisfies
∑

i∈S xi ≤
∑

i∈S ui(S) can be achieved by S alone through adequate

transfers. This leads us to define the value of S by

Vu(S) =
∑
i∈S

ui(S). (1)

The society may split into several self-sufficient groups owing to individuals’ preferences - when

players dislike large coalitions for instance- or because of the constraints on coalitions as specified by

the set C -as in an assignment game in which only small coalitions can form. A coalition structure, as

defined by Aumann and Dreze (1974), describes how players organize themselves into coalitions that

are pairwise disjoint (hence membership to a coalition is exclusive) and self-sufficient (which excludes

transfers across coalitions). Since there are no spill-over effects across coalitions, the stability notion

based on the absence of blocking extends to coalition structures.

The following definitions of structures, blocking, and core are adapted so as to account for the set

of admissible coalitions.

C-partition A C-partition is a partition π = (S`)`=1,...,L made of elements in C: S` ∈ C for each

` = 1, . . . , L. ΠC(S) denotes the set of all C-partitions of coalition S.

C-structure A C-(coalition) structure of N is given by a = (π, t) where π is a C-partition of N and

t = (ti)i∈N specifies transfers that are balanced within each element in π:
∑

i∈S`
ti ≤ 0 for each S`

in π. The utility level reached by i, denoted by ũi(a), is ũi(a) = ui(S`(i))+ ti where S`(i) is the unique
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coalition of which i is a member.

The coalition structure a is said to be blocked by T if∑
i∈T

ũi(a) < Vu(T ). (2)

The blocking condition is justified as usual. Recall that coalition T can achieve to its members any

payoff that sums to Vu(T ). Thus, if (2) is met, each individual in T could be made better off than

under structure a.The stability notion follows.

C-stability and C-core Given a profile u, a C-stable structure a = (π, t) is a C-structure that is

not blocked by any coalition in C. The payoff vector (ũi(a))i=1,...,n of a C-stable structure is called

C-stable. The set of C-stable structures is called the C-core.

The collections for which a stable structure exists for any profile are of particular interest.

Guarantee of stability A collection C guarantees stability on the set of profiles U if for any u in U
the C-core is non empty.

The guarantee of stability imposes quite severe restrictions. To illustrate why, assume that col-

lection C contains a Condorcet triple, that is three coalitions Si, i = 1,2,3, which intersect each other

but whose overall intersection is empty : Si ∩ Sj 6= ∅ and S1 ∩ S2 ∩ S3 = ∅. No C-stable structure

exists at a profile for which the value of each Si is equal to 1 and the value of other coalitions are nil.

Thus, the absence of a Condorcet triple is necessary for a collection to guarantee stability. It is not

sufficient. Kaneko and Wooders (1982) provide a necessary and sufficient condition in terms of the

balanced families introduced by Shapley (1967). A family B of subsets of N is said to be balanced if

there are nonnegative weights (γS)S∈B such that
∑

S,i∈S γS = 1 for each i. A partition is a balanced

family (take weights equal to 1).

Partition property A collection C satisfies the partition property if any balanced family composed

with coalitions in C contains a partition.

Thanks to Scarf theorem (1967), the partition property is sufficient for C to guarantee stability

on any set of utility profiles. It is also necessary because the set U is rich enough to generate all

super-additive games. As expected, the partition property excludes Condorcet triples: A Condorcet

triple can be completed by singletons so as to obtain a balanced family that is not a partition.

2.2 Illustrative Examples

- 1 - The assignment game fits the framework by taking as admissible coalitions the singletons

and the pairs of buyer-seller. Observe that the game represents any situation in which the society is

divided into two types of agents who are constrained to interact through exclusive, bilateral contracts.

Stability is guaranteed because the partition property holds.4 When instead any pair in the society
4Existence of a stable outcome was shown through linear programming by Shapley and Shubik (1971) in the assign-

ment game and through the acceptance algorithm by Gale and Shapley (1962) in the marriage model (two-sided but with-

out side payment). Thanks to the partition property, existence is ensured with non transferable utility (Quinzii 1984).
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is admissible, as in a roommate problem, there are Condorcet triples and stability is not guaranteed.

Also, in the ”bridge game” in which only coalitions with four individuals are admissible, stability is

not guaranteed (Shubik 1971).

- 2 - The job market proposed by Crawford and Knoer (1981) generalizes the assignment game.

Entities are still divided into two subgroups, say firms and workers, with firms possibly interested

in hiring several workers (or buyers and sellers with buyers who may buy several objects). Here,

apart from singletons, a coalition is admissible if it contains a single firm. With at least two firms

and three workers, stability is not guaranteed : there are Condorcet triples such as {f1, w1, w2}
{f2, w2, w3}, {f1, w3, w1}. Some conditions on preferences are needed to ensure the existence of a

stable structure. If for example the firm’s preferences satisfy the gross substitutes assumption of

Kelso and Crawford (1982) the core is non empty (this assumption differs from that of substitute

players, see footnote 11). Interpreting entities as buyers and sellers, the package assignment model is

obtained in which buyers are possibly interested in several objects (Bikhchandani and Ostroy 2002).

- 3 - Networks games. Individuals are linked through a network and only the connected coalitions

can form (see Kalai et al. 1979 for an earlier analysis of stability in an exchange economy.) When

the network is a simple path, a consecutive game is obtained in which individuals are ordered and

admissible coalitions are intervals as in Greenberg and Weber (1993). More generally, when the

network is a tree, individuals are partially ordered as in a hierarchical structure (Demange 2004).

Stability is guaranteed for a tree (or disjoint trees), and fails when the network contains a cycle since

a Condorcet triple of connected coalitions exists.

Before introducing our last example, it is worth noting some simple properties about sub-collections

of a collection C. First, if C satisfies the partition property, all its sub-collections satisfy it: their cores

are non empty. Second, dropping some coalitions from a collection C has two effects. On one hand

less coalitions can block. On the other hand less coalitions can form, hence less structures are feasible.

As a result, the cores associated with nested collections cannot be compared. This remark applies to

the collection of connected sets in a tree : dropping some connected sets generates truly different (non

empty) cores. This is illustrated in the last example and in Section 5.

- 4 - Collection of single-lapping coalitions5 (Papai 2004). In the absence of transfers the core

associated with single-lapping coalitions is single valued and strategy-proof. Such result does not

extend to the side payments case. To see this, suppose N to be admissible for instance. The single

lapping property requires that only singletons are also admissible. Hence only two structures are

feasible: N or the partition of singletons. Given a profile, the unique stable structure is N if it Pareto

dominates the partition of singletons, and is the partition otherwise. Allowing transfers dramatically

enlarges the set of stable payoffs: it coincides with all individually rational payoffs summing to Vu(N)

when N is worth forming, that is when Vu(N) >
∑

i ui(i).

More generally, in a game with side payments, a non empty core is typically multi-valued. Two
5The conditions on admissible coalitions are (1) no pair have more than one element in common, and (2) any cycle

of intersecting coalitions have the same (single) element in common. Surely, there is a tree for which all admissible

coalitions are connected.
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routes are open: to study the strategy-proofness of selections of the core or to extend strategy-proofness

to correspondences. They will be investigated in Section 3.

2.3 Incremental values and C-stable payoffs

A coalitional game as described by Vu and C may not be a transferable utility (TU) game owing to

the restriction on transfers across coalitions. In order to define players’ incremental values, which will

play a crucial role, we consider an auxiliary TU super-additive game V u, called the super-additive

cover. Allow each coalition S to split up into elements of C and to implement transfers across these

elements. By choosing to partition into π, S can achieve to its members any payoff that sum to∑
T∈π Vu(T ), the sum of the values of the elements in the partition. Hence define the value of π by

Vu(π) =
∑

T∈π Vu(T ). The value V u(S) is obtained by a C-partition of S whose value is maximal:

V u(S) = maxπ∈ΠC(S)Vu(π).

A partition that achieves V u(S) is called optimal for S (typically it is unique). V u is clearly a

super-additive characteristic function.

Observe that, in order to reach all shares of V u(S), coalition S needs to implement transfers across

the distinct elements of an optimal partition (if any). This is why the characteristic function V u does

not exactly describe the coalitional game under consideration.

Incremental values An important payment for a coalition, in particular for a player, is the incre-

mental value to the set of all remaining players, that is the incremental contribution that the coalition

adds to total value. The incremental value of coalition T (to the set of all remaining players) is defined

by

V u(N)− V u(N − T ). (3)

The incremental value of T gives an upper bound on the sum of the payoffs that players in T can

achieve at a stable payoff: if T gets more, the sum of the payoffs to N − T is strictly less than

V u(N − T ) by feasibility, hence an admissible subset of N − T blocks.

More generally, the incremental value of a coalition T to a coalition S disjoint of T is defined as

the difference V u(S ∪ T )− V u(S).

C-stable payoffs As shown by Kaneko and Wooders (1982) the set of C-stable payoffs is described

by the set of inequalities ∑
i∈N

xi ≤ V u(N) and (4)∑
i∈S

xi ≥ Vu(S), S ∈ C. (5)

Inequality (4) states that the payoff vector x can be achieved through a partition of N , possibly by

implementing transfers across coalitions. Inequalities (5) are the no blocking conditions. Hence a

C-stable payoff surely satisfies (4) and (5). Conversely, it suffices to show that a payoff x that satisfies

(4) and (5) can be achieved by a partition without transfers across coalitions. Let π be an optimal
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partition for N . Since any coalition S in π is admissible, Vu(S) ≤
∑

i∈S xi by (5). Summing over the

elements in the partition π and using the feasibility condition (4) give

Vu(π) =
∑

S/S∈π

Vu(S) ≤
∑

S/S∈π

∑
i∈S

xi =
∑
i∈N

xi ≤ V u(N).

By optimality of π, Vu(π) is equal to V u(N). Hence all inequalities Vu(S) ≤
∑

i∈S xi for S in π are

binding : x can be achieved by partition π without cross-transfers.6

Thanks to the description of stable payoffs, the partition property is used as follows. The maximal

payoff that a coalition T can achieve at a C-stable structure is the value of the linear program in

which the sum of the payoffs to T is maximized under the feasibility and no blocking conditions. Up

to a transformation, the feasible set of the dual program is composed of the weight vectors supporting

some balanced families. Following Shapley (1967), the extreme points of the feasible set correspond

to minimal balanced families. This is how the partition property comes into play : minimal balanced

families are partitions. For T admissible, this will allow us to compute the value of the dual and to

recover the incremental values.

To simplify notation, {, } is dropped when there is no possible confusion. For example S−i denotes

S − {i}. Also S + i denotes the set S ∪ {i}.

3 Defining manipulability

In this section, no restriction is made on the collection C. The core, if non empty, is typically

multi-valued. Therefore, when a player contemplates misrepresenting his preferences he compares

two subsets of coalition structures. Various notions of manipulability are possible, depending on how

preferences over coalition structures are extended over subsets. Before discussing several possibilities,

it is worth noting that, whatever the collection C, no selection of the C-core is strategy proof for all

players.

3.1 Manipulability of selections

Given a collection C, let S(u) be the C-core at profile u. Let f be a function that assigns to each

profile u in U a C-structure. Function f is said to be a selection of S if it assigns a C-stable structure

at each profile for which it is possible :

f(u) ∈ S(u) for each u such that S(u) 6= ∅.

As usual, given a profile u, (vi, uN−i) denotes the profile with functions vi for i and uj for other

individuals. The following definitions are standard.

6The set of C-stable payoffs also coincides with the core of the game V u, which is described by (4) and the stronger

no blocking conditions
P

i∈S xi ≥ V u(S), any S: if the payoffs to S are less than V u(S), then at least one admissible

T subset of S does not get Vu(T ) and blocks.
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Individual i can manipulate f at u if for some vi in Ui ũi(f(vi, uN−i)} > ũi(f(u)). Function f is

strategy-proof for individual i if i cannot manipulate f at any profile.

Proposition 1 Let f be a selection of S and u a profile with a non empty core S(u). If i’s payoff at

f(u) is strictly smaller than his maximum stable payoff, then i can manipulate f at u. Consequently,

if the C-stable payoffs are not all equal, then at least one individual can manipulate f at u.

The proof is in the appendix. It relies on the following property: when the maximum stable payoff

of individual i is strictly larger than the minimal one, i is never single at a stable structure. This is

surely the case if i does not reach his maximum stable payoff Mi at f(u). Then, by increasing i’s

utility for standing alone to some value vi(i) larger than ũi(f(u)) but smaller than Mi, the stable

structures are simply reduced to those in which i ’s true payoff is at least vi(i). Thus i is surely better

off at f(vi, uN−i).

3.2 Manipulability of the core

Let us consider now the manipulation of the whole correspondence S, starting with a single indi-

vidual. When player i contemplates announcing vi instead of his true preferences ui he compares

the set S(vi, uN−i) with the set S(u). If i evaluates each set on the basis of its preferred elements,

the associated manipulability concept may be qualified as ”optimistic”. This is the concept I shall

use. There are various arguments for this choice, not necessarily based on an optimistic behavior as

explained below. Let us first discuss the alternative notion that obtains with individuals considering

the worst element of a set.

Pessimistic individuals Pessimistic individual i can manipulate S at u with S(u) 6= ∅ if for some

vi in Ui

min{ũi(b), b ∈ S(vi, uN−i)} > min{ũi(a), a ∈ S(u)}.

In other words, a pessimistic individual can manipulate if misrepresenting his preferences allows him

to improve upon strictly the minimum utility level he achieves at a C-stable structure.

This concept leads to an impossibility result in our setup: S is manipulable by at least one pes-

simistic individual at any profile for which the nonempty set S(u) contains distinct payoffs. Consider

a selection of S that picks out a worst C-stable structure for player i at any profile with a non empty

core. Let u be a profile with S(u) 6= ∅. If pessimistic i cannot manipulate S at u, then the selection

is non manipulable by i at this profile. It follows from Proposition 1 that i’s worst and best C-stable

payoffs coincide. Thus, S is not manipulable by pessimistic individuals at u only if all stable payoffs

are equal.

Optimistic individuals Optimistic individual i can manipulate S at u with S(u) 6= ∅ if for some vi

in Ui

max{ũi(b), b ∈ S(vi, uN−i)} > max{ũi(a), a ∈ S(u)}.

Thus, an optimistic individual can manipulate if misrepresenting his preferences allows him to get

some structure C-stable for the ”false” profile that he strictly prefers to any C-stable structure for u.
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This concept is worth studying. A main interest is that a process based on truthful or “myopic”

blocking is justified only if optimistic individuals cannot manipulate. The argument does not rely on

how individuals evaluate a set of structures, in particular does not assume individuals to be optimistic.

To clarify this point, consider a process in which feasible structures are proposed and can be refused

by any admissible coalition. Let individuals indeed believe in the ”theory” that a coalition forms

to refuse a proposal if and only if it can block the proposal (in the sense of (2)). Thus the C-core

describes the possible outcomes of the coalition formation process.7 Let i be able to manipulate at u

and b a preferred structure in S(vi, uN−i). Suppose that b is proposed at some point in time. Note

that surely b is blocked at u and that i is a member of any blocking coalition (because otherwise b

would not be stable at (vi, uN−i)). Thus if i participates in a blocking coalition, he anticipates that

the process will settle at a final outcome in S(u). Instead, by not participating, i anticipates that b is

not refused at all because b is not blocked by coalitions of which he is not a member. Since he is better

off under the latter alternative, he does not join any tentative refusal, contradicting the assumption

of myopic blocking. Therefore the C-core yields a consistent prediction of a myopic blocking process

only if it is non manipulable by optimistic individuals.

Optimistic manipulability is also interesting because it is a rather weak requirement. As a result,

the correspondences that are not manipulable by optimistic individuals, as we shall display in next

section, are a fortiori not manipulable for more stringent notion. In particular optimistic manipula-

bility is easier than ”unambiguous” manipulability as introduced by Nehring (2000) : An individual

can manipulate without ambiguity if he strictly prefers any structure obtained by misrepresenting his

preferences to any one under truthful revelation. Unambiguous manipulation implies both pessimistic

and optimistic manipulation.

Example 1 : A manipulable core. Is the core manipulable in the optimistic sense ? Given that

the absence of blocking is a strong condition, the question is worth raising. Let us give an example of

a manipulable core with four individuals.8 Consider player 1 in the following game:

Vu(2, 3) = Vu(2, 4) = c, Vu(1, 3, 4) = d, Vu(1, 2, 3, 4) = 1, and all other values are nil.

Assume c ≤ 1 and d ≤ 1 so that {1, 2, 3, 4} is the efficient structure. The incremental value of

player 1 is (1− c). It is an upper bound on 1’s stable payoffs. The only possible stable payoff at which

it can be achieved is (1− c, c, 0, 0): {2, 4} must receive c (otherwise it blocks), which leaves 0 to player

3; similarly {2, 3} must receive c, which leaves 0 to player 4. However payoff (1 − c, c, 0, 0) is stable

7This raises the question of whether a decentralized process of myopic blocking eventually converges to a stable

structure. For a well chosen sequence of blocking coalitions, convergence has been proved in specific contexts, by Roth

and Vande Vate (1990) in two-sided matchings without money, by Diamantoudi et al. (2004) in the roommate problem,

by Sengupta and Sengupta (1996) in TU games, and more recently, by Koczy and Lauwers (2001) for coalitional games

with transfers as those in this paper. Note that with a finite set of outcomes, convergence of a specific sequence implies

convergence under an assumption of random blocking.
8With three individuals, each individual reaches his incremental value at a stable payoff if the core is non empty,

which ensures its non manipulability, as stated in next proposition 3. Normalize the game by setting V u(N) = 1

and 0 to singletons. Let individual 1 get his incremental payoff x1 = 1 − V u(2, 3), which leaves exactly V u(2, 3) for

{2, 3}. The non blocking conditions x3 ≤ 1− V u(1, 2) (for {1, 2}) and x2 ≤ 1− V u(1, 3) (for {1, 3}) can be satisfied if

V u(2, 3) ≤ 2− (V u(1, 2) + V u(1, 3)), which holds under the non-emptiness of the core.
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only if c + d ≤ 1: For c + d > 1, it is blocked by {1, 3, 4} and 1’s maximum stable payoff is reached at

the extreme point (2− 2c− d, 1− d, c + d− 1, c + d− 1) in which each coalition {1, 3, 4}, {2, 3}, and

{2, 4} exactly gets its value.

Assume c + d > 1. By lowering his utility for {1, 3, 4}, player 1 decreases the value of coalition

(1, 3, 4) to some d′. His maximal payoff is increased to 2 − 2c − d′, or even to his incremental value

(1− c) if c + d′ ≤ 1.

The definition of optimistic manipulability extends to coalitions as follows. Let (vT , uN−T ) denote

the profile with functions ui for individuals not in T and vi for those in T .

Coalition manipulability Optimistic T can manipulate S at u if there is vT and b in S(vT , uN−T )

for which

ũi(b) > ũi(a),∀ a ∈ S(u),∀i ∈ T. (6)

Thus, the members of T can manipulate if, by misrepresenting their preferences, a structure b that

they all prefer to each C-stable structure becomes stable. As for an individual, the members of a

manipulating coalition are essential for blocking the preferred structure, as stated in the following

proposition.

Proposition 2 Assume that optimistic coalition T can manipulate S at u and prefers structure b as

given by (6). Then b is blocked at u and any coalition that blocks b intersects T .

Proof. The proof is straightforward. Let b be blocked by S. If S does not intersect T , then S also

blocks b at (vT , uN−T ). But then b cannot be C-stable for (vT , uN−T ).

Arguing as for a single individual, it follows from Proposition 2 that a process of myopic blocking

is justified only if no coalition T can manipulate the core in the optimistic sense. Otherwise, assuming

other coalitions to block truthfully, members of T facing preferred structure b can prevent b to be

refused and are surely better off in doing so.

3.3 Incremental values and non manipulability

The link between strategy-proofness and incremental values is known since the work of Vickrey (1961).

The argument extends to correspondences and coalitions under optimistic manipulability.

Proposition 3 A coalition that achieves its incremental value at a stable structure for profile u cannot

optimistically manipulate S at that profile.

Proof. Let coalition T achieve its incremental value at a stable payoff for u. Assume by contradiction

that T can optimistically manipulate at u. Surely the payoffs to T at the preferred structure b (under

the ”true” preferences u) are larger than its incremental value. Thus, denoting by x = ũ(b) the

payoff vector, one has
∑

i∈T xi > V u(N) − V u(N − T ), and by feasibility of x,
∑

i∈N xi ≤ V u(N).

These inequalities imply
∑

i∈N−T xi < V u(N − T ), in contradiction with the stability of b at profile

(vT , uN−T ).
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4 On the non manipulability of the set of stable structures

From now on, the paper considers collections C that satisfy the partition property. Hence, the non

emptiness of the set S(u) is guaranteed. Our first main result relies on Proposition 3.

Theorem 1 Let collection C satisfy the partition property. Then, at each profile, for each coalition

T in C there is a C-stable structure at which that coalition reaches its incremental value. Therefore,

no admissible coalition can optimistically manipulate the C-core.

Applying the proposition to singletons gives the following corollary.

Corollary Let collection C satisfy the partition property. Then, for each individual, there is a most

favorable C-stable structure at which that individual reaches his incremental value. Therefore, no

optimistic individual can manipulate the C-core.

Note that without restrictions on coalitions, the maximum level that a player can achieve at a stable

payoff may be strictly smaller than his incremental value, as in example 1.

Proof of Theorem 1. Index u is dropped. The maximum that members of coalition T can reach

at a C-stable structure is the maximum of
∑

i∈T xi over the set of C-stable payoffs. Recall that this

set is described by the feasibility constraint (4) and the no-blocking constraints (5). Furthermore, it

is non empty under the partition property. Hence, the maximum payoff to T at a C-stable structure

solves the linear program :

maxx

∑
i∈T xi under

∑
i∈N xi ≤ V (N) (4) and

∑
i∈S xi ≥ V (S), S ∈ C (5)

Furthermore the value of the program is finite, reached, and equals the value of the dual by standard

linear programming results (see e.g. Gale 1960). Denote by λ and by δS the multipliers associated

respectively to (4) and the no-blocking condition (5) for coalition S. The dual9 writes as

min
λ,δ≥0

λV (N)−
∑
S

δSV (S) subject to (7)


δS ≥ 0 for S ∈ C, and δS = 0 for S /∈ C
1 +

∑
S,i∈S δS = λ, i ∈ T∑

S,i∈S δS = λ, i /∈ T.

(8)

We shall use the following lemma proved in the appendix.

Lemma 1 Given a balanced family B included in C with weights vector (γS), there is µ= (µπ, π ∈
ΠC(N)) a vector of weights on C-partitions that satisfies:

µπ ≥ 0,
∑

π

µπ = 1 and
∑

π,S∈π

µπ = γS ∀S ∈ B. (9)

9Write the Lagrangean
P

i∈T xi + λ(V (N)−
P

i∈N xi) +
P

S∈C δS(
P

i∈S xi − V (S)), asX
i∈T

xi(1− λ +
X

S,i∈S

δS) +
X
i/∈T

xi(−λ +
X

S,i∈S

δS) + λV (N)−
X
S∈C

δSV (S),
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Lemma 1 allows us to rewrite the dual program in terms of the vector µ in a form that is straight-

forward to solve. Let (λ, δ) satisfy (8). Consider the family of coalitions formed with T and the S that

have a positive weight δS . All these coalitions belong to C because T is admissible by assumption.

Also the family is balanced: the vector γ identical to δ except for T where γT = δT + 1 satisfies∑
S,i∈S γS = λ for each i with λ > 0 from (8). Thus, applying Lemma 1 to γ/λ there is a non negative

vector µ that satisfies:∑
µπ = λ,

∑
π,T∈π

µπ = δT + 1 and
∑

π,S∈π

µπ = δS ,∀S 6= T. (10)

Furthermore, thanks to the relationships (10) :∑
S

δSV (S) + V (T ) =
∑

π

µπV (π).

Conversely, starting from any nonnegative µ = (µπ, π ∈ ΠC(N)) that satisfies
∑

π,T∈π µπ ≥ 1, one

can associate λ and a nonnegative vector δ by (10) so as to satisfy the constraints (8) of the dual.

This allows us to write the dual in the variable µ = (µπ, π ∈ ΠC(N)) as:{
minµ

∑
π∈πC(N) µπ[V (N)− V (π)] + V (T )

µπ ≥ 0,
∑

π,T∈π µπ ≥ 1.
(11)

Since by definition V (N) ≥ V (π), the minimum is reached by choosing µπ = 0 for any π that does

not contain T . For a partition π that contains T , V (π) ≤ V (T ) + V (N − T ). Thus the minimum is

reached by choosing µπ = 1 for π that contains T and an optimal partition of N − T . This gives that

the value of the dual is V (N)− V (N − T ).

Can a non admissible coalition manipulate ? In the assignment game, the answer is positive for

a coalition of buyers (or of sellers) that can implement side payments.10 Let be one seller and two

identical buyers. Buyers value the object at s + 1, where s is the seller’s value for the object. At any

stable outcome, buyers’ payoffs are null. Both are made better off by announcing each one a valuation

for the object equal to s and deciding on a money transfer from the winner of the object to the loser.

In network games, a non admissible coalition can make all its members strictly better off even without

implementing transfers across its members, as illustrated now.

Example 2. Manipulation by non admissible coalitions. There are three individuals on a line

with 1 in between and C is the collection of all connected sets (thus only {2, 3} is not admissible).

Function Vu is Vu(1, 2, 3) = 1, Vu(i) = 0, and Vu(1, i) = ci, i = 2, 3, where ci, is between 0 and 1. The

incremental values are 1, 1− c3, and 1− c2 respectively for players 1, 2, and 3.
10In Demange (1987), I gave a sufficient condition for the core not to be manipulable by any coalition, and showed it

holds in assignment games. The condition requires the set of stable payoffs to satisfy a weak version of Von Neumann

and Morgenstern external stability (1944) : For any payoff y that is blocked, there is a coalition T blocking y that can

be made at least as well off at a stable payoff x′ : yi ≤ x′i for any i in T (but T does not necessarily block y via x′).

Under this condition, a coalition, whether admissible or not, cannot manipulate if it is unable to implement transfers

among its members. The condition is not necessarily satisfied in our coalitional games, as shown by example 2.
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Assume c2 + c3 > 1 and consider players 2 and 3. Each one achieves his incremental value at

the same (extreme) stable payoff (c2 + c3 − 1, 1 − c3, 1 − c2}. As for the non admissible coalition

{2, 3}, its incremental value is equal to 1. It is not reached at a stable payoff : subtracting the

no-blocking conditions, x1 + xi ≥ ci, i = 2, 3 to the feasibility constraint 2(x1 + x2 + x3) ≤ 2 gives

x2 + x3 ≤ 2 − (c2 + c3) < 1. Players 2 and 3 can be better off by falsifying their preferences as

follows: 2 announces a lower utility for {1, 2}, thereby lowering the value of {1, 2} hence increasing

the incremental payoff of player 3, and similarly 3 makes 2 better off by lowering her utility for {1, 3}.

5 Strategy-proof selections

A selection of the core may be strategy-proof for a given subset of players, although not for all. For

instance, under the partition property, selecting a core structure at which a given player achieves his

incremental value is strategy-proof for that player (Theorem 1). More interesting, in an assignment

game, selecting the minimum equilibrium price gives to all buyers the incentives to tell the truth

because they simultaneously reach their incremental values. This section provides conditions on the

collection C under which a selection of the C-core is strategy-proof for a given subset of players. As

a preliminary, next proposition states that such a selection must give to each of these players his

incremental value.

Proposition 4 Let collection C satisfy the partition property. Given a coalition T (not necessarily

admissible) a selection of S is strategy-proof for each player in T if and only if each one reaches his

incremental value at any profile.

Proof. The if part follows from the standard argument. Conversely, a selection is strategy-proof for

each player i in T only if each one achieves his maximal stable payoff, by Proposition 1. Under the

partition property, this maximal payoff is i’s incremental value by the Corollary of Theorem 1.

Given a profile u, whether players indeed reach simultaneously their incremental values at a stable

payoff is characterized in terms of the value V u in the following lemma.

Lemma 2 Let collection C satisfy the partition property. Given profile u, players in T simultaneously

reach their incremental values at a stable outcome if and only if∑
α∈S

(
V u(N)− V u(N − α)

)
≤ V u(N)− V u(N − S) for any S subset of T . (12)

Of course, condition (12) is always satisfied for S singleton. That the condition is necessary for S non

singleton is easy to understand because the incremental value of S, the right hand side, is an upper

bound on the payoffs to S at a stable structure. The converse is proved in the appendix. Note that if

S is admissible, the reverse inequality of (12) surely holds: since the incremental value of S is reached

at a stable structure it cannot be larger than the sum of the maximum each player gets, which is

the sum of the incremental values under the partition property. This suggests that no strategy-proof

selection exists for an admissible and non singleton T , as will be confirmed by our next results.
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In view of obtaining a core selection that is strategy-proof for T , our objective is to characterize

the collections C for which conditions (12) are satisfied at all profiles.

5.1 Substitute players and chains

This section considers two players, α and β. Condition (12) applies only to S = T = {α, β}, and can

be rewriten as

V u(N)− V u(N − α) ≤ V u(N − β)− V u(N − αβ) (13)

where to simplify N −αβ denotes the set N −{α, β}. Inequality (13) says that the incremental value

of player α to N − αβ, the right hand side, is negatively affected by the arrival of player β joining

N − αβ, the left hand side. This is a weaker version of the substitutes property defined in Shapley

and Shubik (1971).

Substitutes Two players are substitutes11 at u if

V u(S + αβ)− V u(S + β) ≤ V u(S + α)− V u(S) all S, α /∈ S, β /∈ S (14)

Players are substitutes if the incremental value of one of the players to a coalition is not positively

affected by the arrival of the other player in the coalition. Although a priori weaker, requiring condition

(13) to be satisfied at any profile implies that the two players are substitutes at any profile. To see this,

given profile u and coalition S, change the values of u into 0 for all coalitions that are not included in

S + αβ. Then (13) applied to this new profile gives that (14) holds for u and coalition S.

Collections for which two players are substitutes at any profile will be stated in terms of chains

that we introduce now.

Chain A chain between α and β is defined by two families of admissible coalitions, (Sk, k = 1, .., `+1)

and (Tk, k = 1, .., ` ) with ` ≥ 0, each formed with disjoint elements, that satisfy

α belongs to S1 and β to S`+1, no Tk contains α or β

Tk intersects Sk and Sk+1, k = 1, .., `.

For ` = 0, a chain is simply an admissible coalition that contains both α and β. For ` = 1, a chain is

given by two disjoint coalitions, S1 and S2, one that contains α, the other β, and a third coalition T1

that intersects both S1 and S2 but contains neither α nor β. Figure 1 represents a chain of length 2.

11 In the package assignment model with one seller, Bikhchandani and Ostroy (2002) relate the substitutes property

with the possibility for the Vickrey payoffs to be reached at a price equilibrium. Note that the gross substitutes condition

introduced by Kelso and Crawford (1982) in a job market model (section 2.2) differs. It bears on how preferences of a

firm i over sets of hired workers vary with this set, that is, keeping our notation, on how ui(S + i) varies as workers α

or β (distinct from i) are added to the set of S of hired workers.
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It is easy to understand that two players who are linked through a chain are not always substitutes.

With a chain of length 2 for instance consider the game Vu that assigns 1 to each element in the chain

S1, S2, S3, T1 and T2, and 0 otherwise. One has V u(N) = 3, V u(N−αβ) = V u(N−α) = V u(N−β) =

2, hence (13) does not hold. The incremental value of each single player is 1, equal to the incremental

value of coalition {α, β} : each player cannot reach his incremental value at the same stable payoff.

The argument extends to a chain of arbitrary length.12

To summarize, we have characterized the existence of a core selection strategy-proof for two players

in terms of the substitute property or of condition (13) to be satisfied at any profile. Furthermore

these properties imply the absence of a chain between the two players. The important new point in

next theorem is the converse implication.

Theorem 2 Let collection C satisfy the partition property. Consider two players α and β. The

following properties are equivalent:

1. there is a selection of S that is strategy-proof for α and β

2. condition (13) is met for α and β at any profile

3. players α and β are substitutes at any profile

4. there is no chain between α and β.

Before giving the proof, let us illustrate the chain condition in two examples. In the first example,

an assignment game, it is already known that two players on the same side are substitutes and

we simply check that there is no chain between them. The second example is new and describes

the absence of a chain between two players in a tree game (-3- in Section 2.2). Observe first that

no coalition in a chain is a singleton (because Tk intersects two disjoint sets, and similarly for Sk,

k = 2, .., `; S1 intersects T1 at a different player than α, similarly for S` + 1).

In an assignment game, consider two sellers for instance, s and s′. No coalition contains both

sellers, thus there is no chain of length 0. For a chain of positive length, it must be that S1 ∩ T1 is a

buyer b1, since seller s does not belong to T1. Hence T1 ∩S2 is a seller s1 (because otherwise it would

be b1, who would belong to the disjoint sets S1 and S2). Thus S2 ∩ T2 is a buyer (because otherwise

12Given a chain of length `, let Vu assign to each element Sk or Tk in the chain, and 0 otherwise. Then V u(N) = `+1,

V u(N − αβ) = V u(N − α) = V u(N − β) = `, hence (13) does not hold at S = N .
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it would be s1, who would belong to both T1 and T2). Continuing this way, T` ∩ S`+1 is a seller, who

can only be s′. But then T` contains s′, in contradiction with a chain.

Example 3. Substitute players in a tree. In a tree game let two players α and β be linked

through player 1 as in Figure 2. Players α and β are substitutes if C is the set of all connected

coalitions except those that contain both α and β.

Before showing this, let us interpret the collection. Let Nα the set of individuals who are connected

to 1 through α: they are in the subtree Gα containing α but not 1 (see Figure 2) and similarly Nβ

for β. In a feasible partition, if a coalition is formed with 1 and one of the players, say β, then Nα is

”left” alone and forms a partition. Thus, players α and β can be interpreted as substitutes vis a vis

player 1 who chooses which subtree is left alone.

By contradiction, consider a chain between α and β. Since no admissible coalition contains both

α and β, the chain is of positive length `. We show that both S1 and S`+1 contains 1, in contradiction

with the fact that they must be disjoint in a chain of positive length. Suppose that S1 does not contain

1: S1 is a subset of Nα. Then by definition T1 intersects Nα (since it intersects S1), is connected and

does not contain α : it is included in Nα. The same argument inductively shows that all sets in the

chain are included in Nα, hence do not contain 1. Thus no set in the chain contains β, a contradiction:

S1 contains 1. That S`+1 contains 1 follows from a similar argument.

In general, two players are connected through a path, say (α, 1, ..,m, β). We leave the reader to

check that α and β are substitutes under an additional condition: In the subtree obtained by deleting

Gα and Gβ there must be no chain between 1 and m.
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Proof of Theorem 2. That 1 is equivalent to 2 follows from Proposition 4 and Lemma 2, and that

2 ⇒ 3 ⇒ 4 has been shown in the text.

It remains to prove that 4 implies 2. Let π be a partition for N and π∗ be a partition for N −αβ.

We prove that, in the absence of a chain between α and β, all the elements of π and π∗ can be assigned

so as to get two partitions, one of N −α and one of N − β. This implies that (13) holds for any value

Vu on C by choosing for π and π∗ an optimal partition for N and N − αβ respectively.

Starting from πα = πβ = ∅, the following algorithm assigns alternatively elements of π and π∗ to

πα and πβ so as to end up with partitions of N − β and N − α. Let Sγ be the element of π that

18

ha
ls

hs
-0

05
90

29
0,

 v
er

si
on

 1
 - 

3 
M

ay
 2

01
1



contains γ for γ = α, β. Sα and Sβ are distinct since there is no admissible coalition containing both

α and β (no chain of length 0). Also if either one is a singleton the result is trivial. If Sα = {α} for

example, dropping {α} from π and adding it to π∗ give two partitions of N−α and N−β respectively.

Step 1

(i) assign Sα to πα and Sβ to πβ .

(ii) assign all elements of π∗ that intersect Sβ to πα (there are some since Sβ is not reduced to

{β}), and those that intersect Sα to πβ .

Note that no element is assigned twice: otherwise there is T in π∗ that intersects both Sβ and

Sα. Since T does not contain α nor β (π∗ is a partition of N − αβ), this gives a chain of length 1, a

contradiction.

Let T 1
γ be the union of all T assigned to γ, γ = α, β. By construction,

T 1
α ⊃ Sβ − β and T 1

β ⊃ Sα − α. (15)

If both inclusions are equalities, we are done. πa is a partition of Sα ∪ Sβ − β, πb a partition of

Sα ∪ Sβ − α and the remaining (i.e. not yet assigned) elements of π form a partition of N − Sα ∪ Sβ

and similarly for π∗. Completing πα with the remaining elements of π and πβ with the remaining

elements of π∗ (or the converse) give two partitions, one of N − β the other for N − α. If not, go to

step 2.

Step 2

(i-α) if T 1
β 6= Sα − α, assign to πα any remaining S of π that intersects a T assigned to πβ in step

1. For such S, there is a sequence (Sα, T in πβ , S) where T intersects the adjacent sets.

(i-β) if T 1
α 6= Sβ − β, do similarly for β.

Since by assumption one inclusion in (15) is strict, surely (i-α) or (i-β) holds, so that at least a

new set is assigned. Furthermore no S is assigned twice: otherwise, the two sequences (Sα, T in πβ ,

S) and (Sβ , T ′ in πα, S) would give (Sα, T , S, T ′, Sβ), a chain of length 2 (T and T ′ are surely

distinct).

Let S2
γ be the union of all S assigned to πγ at step 1 or 2 for γ = α, β. By construction

S2
α − α ⊃ T 1

β and S2
β − β ⊃ T 1

α. (16)

If all inclusions are equalities, we are done, arguing as above. If not, go to step (ii-α) or (ii-β) or both.

(ii-α) if S2
β − β 6= T 1

α assign to πα all the remaining elements of π∗ that intersect S2
β (those that

intersect S2
β and that have been assigned at step 1 have been also assigned to πα). Thus for any such

T there is a sequence (Sβ , T1 in πα, S in πβ , T ) in which the new assigned set T intersects S and is

disjoint from T1.

(ii-β) if S2
α − α 6= T 1

β do similarly for β.

Observe that at least a new set of π or of π∗ is assigned since (ii-α) or (ii-β) holds by assumption.

Also, no new set T is assigned twice: otherwise, the two sequences starting from Sβ and from Sα

leading to T would give a chain of order 3.

Continuing this way, the process surely stops since at each step there is at least a new set of π or

of π∗ assigned.
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5.2 Extension to more than two players

A core selection that is strategy-proof for a subset T is strategy-proof for each pair in the subset.

Hence each pair of players in the subset must be substitutes. It turns out that it is sufficient.

Proposition 5 Let collection C satisfy the partition property and T be a coalition. There is a

selection of the C-core that is strategy-proof for each member of T if and only each pair of players in

T are substitutes at any profile, or equivalently if and only if there is no chain between any pair of

players in T .

Observe that no subset of T is in C because two players who belong to the same admissible coalition are

not substitutes. To illustrate, consider a tree game (example 3 in the previous section). Let coalition

T be formed with players who are directly linked to the same player 1 (α, β, and γ for instance in

Figure 2). Take C to be a collection of connected coalitions in which no one contains more than one

member of T . Then every pair of players are substitutes.

Proof. From Theorem 2 applied to pairs we know that any two players in T must be substitutes. To

show the converse, assume each pair of players in T be substitutes. From Lemma 2, we have to prove

that for every non singleton S included in T inequality∑
α∈S

(
V u(N)− V u(N − α)

)
≤ V u(N)− V u(N − S) (12)

holds. The proof is by induction on the cardinality of T . It is known to hold for T of cardinality 2

(Theorem 2). Assuming it to be true for any coalition with strictly less than p elements, consider T

with cardinality p. W.l.o.g. T = {1, ..., p}. By the induction assumption, (12) is satisfied for any S

strict subset of T . Let us prove it for S = T . Since p and i are substitutes for i = 1, .., p − 1, the

incremental value of p over a set containing i is not decreased when i is subtracted from the set. In

particular the incremental value of p over N − {p} is not larger than over N − {p − 1, p}, which in

turn is not larger than the incremental value of p over N −{p− 2, p− 1, p} and so on. Iterating these

inequalities from i = p− 1 down to to i = 1 gives that the incremental value of p over N − {p} is not

larger than over N − {1, ..., p}:

V u(N)− V u(N − {p}) ≤ V u(N − {1, .., p− 1})− V u(N − {1, ..., p}).

The induction assumption applied to {1, ..., p− 1} gives∑
α=1,..,p−1

(
V u(N)− V u(N − α)

)
≤ V u(N)− V u(N − {1, .., p− 1}).

Adding the two above inequalities gives that (12) is satisfied for T , the desired result.

6 Discussion and concluding remarks

The core of an assignment game enjoys nice strategic properties. This paper has shown how these

properties extend to some coalitional games. In particular, we have displayed conditions on the set
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of admissible coalitions under which it is justified to use the predictions of coalition formation given

by the (properly extended) core. The incentive properties of social choice correspondences depend on

how manipulability is defined, that is how preferences over alternatives are extended to preferences

over sets of alternatives. As a result, the literature has obtained impossibility results that extend

Gibbard-Satterthwaite theorem as well as a few possibility results. In the setting of this paper, the

“optimistic” extension plays a crucial role. We have shown that in some sense it is this weaker

notion that allows for possibility results. Furthermore, it helped us to understand better the incentive

properties of selections of the core. In particular, the existence of a selection that is strategy-proof for

a subset of players has been characterized in terms of the collection of admissible coalitions. Albeit

limited, these results make more precise the links between the structure of collaboration and strategic

behavior.
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Appendix

Proof of Proposition 1 Assume that f(u) is a stable structure but not one preferred by i. Let

[mi,Mi] be the non empty interval of i’s payoffs at stable structures. Surely mi ≤ ũi(f(u)) < Mi. To

show that i can manipulate, change ui into vi only by increasing the utility for standing alone, ui(i),

to some value vi(i) larger than ui(f(u)) and smaller than Mi. Denote v = (vi, u−i). We show that

S(v) is the subset of S(u) obtained by eliminating all the structures in which i’s payoff is strictly less

than vi(i). Thus i is surely better off at f(v) in S(v) by announcing vi: i can manipulate.

Let a = (π, t). Observe that the blocking conditions for u and v only differ at the singleton {i}. If

the partition π contains {i}, a is stable for v iff it is stable for u. If π does not contain {i}, a is stable

for v if and only if ũi(a) = ui(S`(i)) + ti is not less than vi(i).

It follows that if i is never single in an optimal partition for u, at each a in S(v) : ũi(a)) ≥
vi(i) > ũi(f(u)) : S(v) is the subset of S(u) composed of the structures in which i’s payoff is at

least vi(i), as desired. It remains to show that the inequality mi < Mi implies that i is never

single at a stable structure. By contradiction, if i is single, one has mi = ui(i) (by feasibility) and

ui(i) + V u(N − i) = V u(N) (by optimality of the partition). Hence ui(i) is exactly equal to i’s

incremental value, which is an upper bound of i’s stable payoffs: this implies Mi ≤ ui(i) = mi, the
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desired contradiction.

Proof of Lemma 1. Given a balanced family B, let ∆ be the set of its weight vectors. ∆ is convex

and compact, hence is the convex envelope of its extreme points. As shown by Shapley (1967), an

extreme point of ∆ is associated with a balanced family included in B that is minimal, meaning that

it contains no other balanced family. Under the partition property, a minimal balanced family is a

partition, Hence the extreme points of ∆ are δπ (δπ
S = 1 for S element of π and 0 otherwise) where π

is a partition included in B. Thus for any γ in ∆ there are non negative µπ summing to 1 such that

γS =
∑

π µπδπ
S for each S in B, which gives (9).

Proof of Lemma 2. Drop index u in Vu. Consider the program of maximizing the sum of the payoffs

to T over the stable payoffs, as in the proof of Theorem 1. At a stable structure, a payoff to a player

is at most equal to his incremental value. Therefore it suffices to show that under (12) the value of

the program is the sum of the individuals’ incremental values. Given a vector (λ, δ) that satisfies the

constraints of the dual{
δS ≥ 0 for S ∈ C, and δS = 0 for S /∈ C
1 +

∑
S,i∈S δS = λ, i ∈ T and

∑
S,i∈S δS = λ, i /∈ T.

Let B be the family of coalitions formed with all singletons {α}, α in T , and the coalitions S that

have a positive weight δS . B is made of elements of C and balanced. Using Lemma 1, the dual is

equivalent to

minimize
∑

π∈ΠC

µπ[V (N)− V (π)] +
∑
α∈S

V (α)

over µ ≥ 0
∑

π,{α}∈π

µπ ≥ 1, α ∈ T (17)

Since V (N) ≥ V (π), the minimum is reached by choosing µπ = 0 for any π that contains no singleton

{α} for α in T . Now let a partition π with positive weight µπ that contains several singletons {α} for

α in a subset S of T , S of cardinality greater than 1. Surely V (π) ≤ V (N − S) +
∑

α∈S V (α). By

(12) this implies that

[V (N)− V (π)] ≥
∑
α∈S

[V (N)− V (N − α)− V (α)].

Note that V (N −α) + V (α) is the value of a partition πα that contains {α} and an optimal partition

for N − α. Replace the partition π by these partitions πα for α in S and assign to each the weight

µπ: the constraints (17) are still satisfied and the objective function can only decrease. It follows that

the minimum of the dual is reached by partitions πα, α in T , each one with a weight equal to 1.

Therefore the value of the program is
∑

α∈T [V (N)−V (N−α)], the sum of the individual incremental

values.
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