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Abstract  

 

This paper provides a new model that disentangles firm effects from persistent (time-

invariant/long-term) and transient (time-varying/short-term) technical inefficiency. 
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1. Introduction 

 

In recent years there have been many contributions in estimating efficiency from 

panel data models that utilize the data in increasingly more efficient ways. Since the 

standard panel data models in Kumbhakar and Lovell (2000) and some other excellent 

surveys
1
, there has been increasing interest in the use of panel data for estimating 

technical efficiency more accurately, under less demanding assumptions and using 

more flexible models. Heterogeneous technologies have been the focus of fruitful 

research including random coefficient stochastic frontier models, latent class or 

mixture models and Markov switching models. Another important line of research has 

been the formulation and estimation of true fixed/random effect models proposed by 

Kumbhakar and associates and recently examined more thoroughly by Greene.  

In a standard panel data model, the focus is mostly on controlling firm effects 

(heterogeneity due to unobserved time-invariant factors). This notion is adapted from 

the earlier panel data models (Pitt and Lee 1981; Schmidt and Sickles 1984; 

Kumbhakar 1987) in which inefficiency is treated as time-invariant. The only 

innovation in the efficiency models was to make these firm effects one-sided so as to 

give them an inefficiency interpretation. Models were developed to treat these firm 

effects as fixed as well as random. Several models have been developed based on the 

assumption that all the time-invariant (fixed or random) effect is (persistent) 

inefficiency (e.g. Schmidt and Sickles 1984; Pitt and Lee 1981). This is in contrast to 

the ‘true’ random or fixed effect models by Greene (2005a, 2005b) in which firm-

specific effects are not parts of inefficiency. The models proposed by Kumbhakar 

(1991), Kumbhakar and Heshmati (1995), Kumbhakar and Hjalmarsson (1993, 1995) 

are in between. These models treat firm effects as persistent inefficiency and include 

another component to capture time-varying technical inefficiency. Since none of these 

assumptions outlined above may be wholly satisfactory, we introduce a new model 

that may overcome some of the limitations of earlier approaches. In this model we 

decompose the time-invariant firm effect as a firm effect and a persistent technical 

inefficiency effect. 

Among many panel data models the inefficiency specification used by Battese and 

Coelli (1995) is most frequently used in empirical studies. Their model allows 

inefficiency to depend on some exogenous variables so that one can investigate how 

exogenous factors influence inefficiency. Although this model is designed for cross-

sectional data, it can readily be used for panel models. The panel data model due to 

Battese and Coelli (1992) is somewhat restrictive because it only allows inefficiency 

to change over time exponentially.
2
 Furthermore, these models mix firm effects with 

inefficiency. Two other models, viz., the ‘true-fixed’ and ‘true-random’ effects 

frontier models for panel data (Greene 2005a, 2005b) have become popular in recent 

years. These models separate firm effects (fixed or random) from inefficiency, where 

inefficiency can either be iid or can be a function of exogenous variables.  

 

Some of the models that are widely used in the literature can be summarized in 

the following table (Kumbhakar et al. (2011)).  

                                                 
1
  See Greene (2004a, b, c) and Greene (1980a, b, 1999) for useful and excellent introductions to 

current problems and achievements in the literature. Greene (1993) provides an overview and excellent 

introduction. 
2
 Wang and Ho (2011) generalized the Battese-Coelli formulation in which the temporal pattern of 

inefficiency is made firm-specific by specifying it as a function of covariates that can change both 

temporally and cross-sectionally.  



 

 
Table 1: Main characteristics of some of the panel data models  

      Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

General firm effect  No No Fixed Random No Random 

Technical inefficiency       

 Persistent No No No No Yes Yes 

 Transient No No No No Yes Yes 

 Overall technical 

inefficiency 

      

 Time -inv.
1
 Time -inv. Time -inv. Zero trunc.

2
 Zero trunc. Zero trunc. 

 

Mean 

Variance Homo. Hetero. Hetero. Hetero. Homo. Homo. 

Symmetric error term       

   Variance Homo. Hetero.
3
 Hetero. Homo. Homo. Homo. 

 Notes: 
1.
 Time-inv. mean inefficiency models include determinants of inefficiency in the mean function. 

 

2.
 Zero truncation models assume inefficiency distribution to be half-normal. 

3.
 Hetero. (Homo.) refers to models in which variances are functions of covariates that are both firm-

specific and time-varying (constant).  

 

 

In this paper we consider a more general model of the following form (Model 

6 in Kumbhakar et al. (2011)) of the production function: 

it it i it it iy x v uβ α η+ +′= + + − −       (1a) 

where the dependent variable is output (in log) and the input variables are represented 

by the vector x. Note that the model in (1) has four error components. If we denote the 

composed error it i it it iv uε α η+ += + − −  where the superscript (+) indicates  nonnegative 

value of the corresponding error component, we can give a meaningful interpretation 

of each of the error component. First, random noise component is itv  which is similar 

to the noise component in a standard regression model. Second, the persistent (long-

run) technical inefficiency component is iη
+ . Third, short-run or transient technical 

inefficiency is allowed by itu+ . Fourth, the firm-specific random effect component (to 

capture heterogeneity) is given by the iα component.  

 If one uses a cost function formulation the formulation in (1) will be of the 

form 

it it i it it iy x v uβ α η+ +′= + + − −       (1b) 

where the dependent variable is cost (in log) and the regressors are input prices and 

outputs (in log). 

In terms of technical inefficiency, we decompose the overall inefficiency into 

a long-run or persistent component ( iη
+ ) and the short-run or transient component 

( itu+ ). This decomposition is desirable in panel data as indicated before (see also the 

arguments in Tsionas (2006)). The decomposition proposed here is more flexible and 

does not rest on parametric assumptions on the dynamics of i it itu Uη + ++ = . Moreover, 

we allow for firm-effects ( iα ) whose existence can be tested once we allow for a 

decomposition of technical inefficiency into permanent and transient or short-run 

components. 



It is clear that many of the models listed in Table 1 above can be derived as 

special cases from (1). Our objective in this paper is to estimate the most general 

formulation, i.e., Model 6 which is based on equation (1) above. We consider a 

Bayesian MCMC approach in estimating the model. Both simulation results and 

results from real data are provided. 

 

 

2. Econometric model 

 

We consider the model in (1b), i.e., 

 

it i it i it ity x v uα β η′= + + + + , 

 

where itx  is a vector of covariates (including an intercept), ( )2~ 0,i N ηη σ+ , 

( )2~ 0,it vv N σ , ( )2~ 0,it uu N σ+ , all are iid as well as independent of itx  and the usual 

random effect ( )2~ 0,i N αα σ , 1,..., it T= , and 1,...,i n= . Usually the firm-specific 

effects iα  are nuisances but cannot be ignored when the purpose is to separate 

permanent inefficiency, iη , from transient or short-run inefficiency, itu . 

We rewrite the model as  

 

( ) ( )it i i it it it i it ity x v u xα η β δ β ξ+ +′ ′= + + + + ≡ + + .                          (2) 

 

In this notation we seemingly have a standard panel data model with firm-

specific effects iδ , and an “overall” error term itξ . It is well known that we can 

separate the “overall” error term itξ  into noise and “technical inefficiency”. One 

relevant question in many empirical applications concerns the behavior of the 

“technical inefficiency” component itu+ . Without firm-specific effects 1iδ δ= , for all 

1,...,i n= ) it is clear that the component itu+  provides a measure of technical 

inefficiency. Since the model does not allow for firm-specific heterogeneity it is clear, 

nonetheless, that this “technical inefficiency” component includes aspects of both 

firm characteristics as well as “true” technical inefficiency. One possible variant of 

the model is to allow for firm-specific heterogeneity by assuming:  

 

( )it i it it ity x v uδ β +′= + + + .     (3) 

 

This variant ( )it i it it iy x v uδ β +′= + + +  would be Greene’s “true effects” model 

where firm-specific effects iδ  are separated from technical inefficiency itu+  or 

i iu η+ +≡ . By allowing for firm-specific technological heterogeneity, one hopes for 

better estimates of technical inefficiency per se. Greene showed that when the iδ s are 

fixed effects, the computational side of the incidental parameters problem can be 

addressed. A relatively simple Gauss–Newton iteration is required with respect to the 

fixed effects (with analytical first and second derivatives) in the log–likelihood 

function implied by the convolution of it itv u++  or it iv u++ .  



Apart from computational considerations, however, the impact of the 

incidental parameters problem on small-sample distributions of parameters and 

technical efficiency estimates is something that needs to be investigated. Although 

under a log–likelihood implied by the convolution of it iv u++  a relatively simple 

Gauss – Newton iteration with respect to the fixed effects is feasible, does not imply 

that small-sample properties of technical inefficiency are satisfactory. In fact the 

asymptotics with respect to T will be required to establish consistency and asymptotic 

normality, so in samples of length T=10 or 20 it is not clear what is the performance 

of these estimators. 

In fact, alternative estimators are possible. For example, if we rewrite the 

model as ( ) ( )it i it it i ity u x vη β α+ + ′= + + + + , one may consider the convolution of 

i itvα +  (a normal distribution under an assumption of random effects for iα  and 

maximize the likelihood using 
it i ituζ η+ + += +  as a parameter subject to the constraint 

0
it
ζ + ≥ . Although a simple Gauss – Newton iteration is no longer possible, solution of 

these nonlinear programming problems is possible.  

In Greene’s true effect model, however, it would not be possible to identify 

short-run inefficiency, that is any adjustment after i iuη + +=  has been accounted for. In 

the alternative nonlinear programming estimator above, one would encounter the 

same problem. In Greene’s true effect model where the likelihood is formed using a 

convolution of it itv u++  one could identify short-run inefficiency itu+  but long-run 

inefficiency would be merged with the overall fixed effect and would, thus, become 

unidentifiable. 

Given these shortcomings, the question is whether we can usefully employ a 

more general model of the form: 

 

( ) ( )it i i it it it i it ity x v u xα η β δ β ξ+ +′ ′= + + + + ≡ + + ,    (4) 

 

where long-run inefficiency ( iη
+ ) is separated from its short-run counterpart ( itu+ ) 

when we allow for noise ( itv ) and a firm-specific effect ( iα ) which is not related to 

time – invariant or persistent technical inefficiency. 

 Kumbhakar (1991) proposed a model of the form: 

 

it i t it it ity x v uα λ β +′= + + + + .     (5) 

 

This model (where all firm and time effects are random) is, essentially, Greene’s true 

effect model (when tλ =0). Kumbhakar’s (1991) model can be thought of as a random 

effect panel data specification with a convolution of it itv u++ . It is clear that a Gauss – 

Newton iteration would facilitate estimation in the context of a convoluted likelihood 

by treating both iα  and tλ  as fixed effects in the light of Greene’s analysis. But again, 

this model delivers only estimates of “overall” technical inefficiency itu+ . Its 

decomposition into permanent and transitory components is not possible unless one is 

willing to resort to relative concepts.  

 The decomposition of technical inefficiency into persistent and short-run 

components requires a specific assumption about the overall firm effects i i iδ α η += + , 



and such assumptions naturally require random effect specifications for both 

components. The same is true for it it itv uξ += + . 

 

 

3. Numerical inference procedures 

 

Given the model in (1) our random effect assumptions are as follows: 

 

( )2~ 0,it vv iidN σ , ( )2~ 0,it uu iidN σ+
+ , ( )2~ 0,i aiidNα σ , ( )2~ 0,iidNι ηη σ+ . 

 

All random components are mutually independent as well as independent of itx . For 

Bayes analysis what remains is to specify a prior ( ), , , ,v up η αβ σ σ σ σ . 

 

Implementing Gibbs sampling is straightforward but it will not have good mixing 

properties and will collapse under the most favorable conditions. 

 

So we need to consider other strategies, for example a reparametrization. We begin 

with the δ-parametrization. 

 

We consider i i iδ α η += +  whose distribution is well known:  

 

( ) 2
i

pδ
δ δ δ

δ λδ
δ ϕ

σ σ σ
   

= Φ   
   

, where 2 2 2

δ α ησ σ σ= + , and /η αλ σ σ= . (6) 

 

Suppose it it it itR y x uβ′= − − . Then for each i , the conditional posterior distribution of 

iδ  will be: 

 

( ) ( ) ( ) 2

2 2
| , , , exp

2

i i T i i T i i
i

v

R R
p Y X uδ

δ δ

δ ι δ ι δ λδ
δ

σ σ σ−

 ′− −   Θ ∝ − − Φ     

, where δ−Θ  denotes 

all parameters except the iδ s. The above may seem impossible to simulate but in fact 

it is log-concave so special rejection techniques can be used, requiring only the first 

and second derivative of this function, which are easy to find. The following strategy 

has been found extremely effective: Given the mode *

iδ  and an estimate, say 2s  from 

the inverse negative second derivative at the mode, we generate a random draw 

( )* 2~ ,i iN sδ δ . The draw is accepted with probability 

( ) ( )
( ) ( )

( )
( )

( )2* 2 *

2* * * 2 *

| , , , / | , | , , ,
exp

2| , , , / | , | , , ,

i N i i i ii

i N i i i

p Y X u f s p Y X u

sp Y X u f s p Y X u

δ δ

δ δ

δ δ δ δ δδ

δ δ δ δ
− −

− −

 Θ −Θ  = −
 Θ Θ
 

, where 

( )2| ,Nf x m s  denotes the density function of the normal distribution with mean m and 

variance 2s , evaluated at x . 

 



Obtaining a draw for 2

δσ  is easy: 2

2
~ ( )n

δ

δ δ
χ

σ
′

 given the δ s from previous step. 

 

Obtaining draws for β , and u  is also quite straightforward along with 2

uσ  and 2

vσ , as 

usual, conditional on the iδ s. Here, we don’t want to do more integrations with 

respect to itu . That would be easy, but it would destroy the simplicity of the Gibbs 

sampler.  

 

As we describe below, in an artificial example with n=100, T=5 and reasonable values 

for the parameters to obtain efficiency measures close to the true ones (75% 

correlation and parameters hitting precisely the true ones). 

 

Apparently we can get good estimates of “transient inefficiency” itu  in this way 

unconditional on any knowledge of parameters or the random effects (α and η + ). We 

can obtain δ  and its characteristics (as well as good estimates of δ ) we can readily 

obtain from the MCMC scheme. If one is interested only in short-runinefficiency then 

this completes the analysis. Under the assumption that firm-specific effects iα  are 

“small” when permanent inefficiency iη  is introduced, one can perhaps proceed under 

the assumption that i iη δ≈ . But this cannot always be the case so we next describe a 

computational scheme to complete the analysis. 

 

 

Now in another parametrization of the model (the ξ- parametrization ) we can write 

 

it i it i it it it i it ity x v u x uα β η β η ξ′ ′= + + + + = + + + ,    (7) 

where it i itvξ α= + . 

 

If we denote [ ]1,...,i i iTξ ξ ξ ′= , then ( )( )1
~ 0 ,i T T

Nξ × Σ  where 2 2

T v TJ Iασ σΣ = + , 

T T TJ ι ι′= . In this parametrization, the posterior conditional distribution of iη  is: 

 

( )2~ ,i iN mη ϕ+ , where ( ) 1
2 2 2 11 T Tη ηϕ σ σ ι ι

−−′= + Σ , 2 1

i T im Dϕ ι −′= Σ , i i i iD y X uβ= − − . 

 

From these draws we can, finally compute  

 

i i iα δ η= − ,  

 

as well as the following posterior conditional distributions: 

 

( )2

2
| , , ~y X nα

α

α α
χ

σ −

′
Θ , and  ( )2

2
| , , ~y X nη

η

η η
χ

σ −

′
Θ . 

 



The parameter 2

δσ , needed before when drawing the iδ s can be drawn easily as 

2 2 2

δ α ησ σ σ= + . It must be noted that the posterior conditional distribution of 2

δσ  is not 

chi–squared.  

 

 

4. Artificial examples and sampling performance of Bayes estimators 

 

4a. Artificial examples 

 

We consider an artificially generated data set with n=100, and T=5. We have a 

constant term and a covariate that was generated as independent standard normal, and 

0.1vσ = , 0.2uσ = , 0.2ασ =  and 0.5ησ = . The MCMC scheme was implemented 

using 15,000 iterations the first 5,000 of which are discarded to mitigate start-up 

effects while in the computation of all statistics we take every other tenth draw to 

mitigate autocorrelation. 

 

First, we present the marginal posterior distributions of the scale parameters in Figure 

1. The true parameter values are of course in the region of high posterior probability 

mass, as one would expect.  

 

Second, we are concerned with estimates of the efficiency measures say ˆ
itu  and ˆ

iη . 

Such estimates can be provided readily as ( )1

1

ˆ
S

s

i i

s

Sη η−

=

= ∑ , where 
( )s
iη  denotes the sth 

draw for iη  and S=1,000 in our case after the burn – in and skipping phases. Similarly 

we have ( )1

1

ˆ
S

s

it it

s

u S u−

=

= ∑ . These estimates are provided in Figure 2 where they are 

plotted against the true values that were generated according to the true values of the 

parameters.  

 

Specifically, the correlation coefficient between ˆ
iη  and its true values is 0.856, while 

the correlation between ˆ
itu  and its true value is 0.754. These are not the simple 

correlations between ˆ
iη  and iη  but posterior means of the correlation coefficient, say 

ηρ , or ( )| ,E y Xηρ . Specifically, for each draw s, we compute the correlation 

coefficient between η  and ( )sη , which we denote by 
( )s
ηρ . The correlation coefficient 

is ( ) ( )1

1

| ,
S

s

s

E y X Sη ηρ ρ−

=

= ∑  so it reflects fully parameter uncertainty. 



 

Figure 1. Marginal posterior distributions of scale parameters 
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Figure 2. Marginal posterior estimates of efficiencies versus true values 
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4b. Simulation experiment 

 

We consider a data generating process, where 1it it ity x ε= + + , itx  is generated from a 

standard normal distribution and it i i it itv uε α η= + + + . We use ασ = 0.2, ησ = 0.5, 

vσ = 0.1, uσ = 0.2 (for n=50) and ασ = 0.1, ησ = 0.5, vσ = 0.1, uσ = 0.5 for sample 

size n=100. In our Gibbs samplers we make use of 5,000 iterations the first 1,000 of 

which are discarded to mitigate the impact of start up effects. Bayesian inference is 

conducted for 1,000 data sets. 

 

For α, η, and u we compare their true values with posterior estimates. Specifically 

these random effects are compared in terms of mean, median and standard deviation. 

For the true values these statistics can be computed easily. For the estimated parts, we 

report means, medians and standard deviations of the sampling distributions of the 

Bayesian estimators.  

 

Table 1. Sampling behaviour of Bayes estimators 

 

           α            η            u 

n=50, T=5 mean   median   s.d mean   median   s.d mean  median  s.d 

true -0.014  -0.040    0.205 0.388   0.289  0.325 0.163  0.140 0.125 

estimated 0.014   -0.050   0.125 0.496   0.403  0.307 0.150  0.127  0.091 

    

n=50, T=10    

true -0.014  -0.040   0.205 0.388  0.290   0.325 0.160  0.137  0.123 

estimated -0.011  -0.025  0.190 0.417  0.327   0.337 0.110  0.111  0.149 

    

n=100, T=5    

true -0.015  -0.036   0.203 0.431  0.390  0.324 0.157  0.134  0.122 

estimated -0.019   -0.044   0.158 0.492  0.402  0.285 0.110  0.115  0.099 

    

n=100, T=10    

true -0.007  -0.018  0.102 0.431  0.390  0.324 0.399  0.345  0.301 

estimated -0.008    -0.022  0.105 0.425  0.331  0.257 0.387  0.327  0.289 

    

n=200, T=10    

true -0.007  -0.018   0.102 0.431  0.390  0.324 0.399  0.345  0.301 

estimated -0.007   -0.018   0.100 0.359  0.386  0.340 0.397  0.326  0.300 

 

Empirical application 

 

We apply the model to 123 UK manufacturing firms observed for 13 years. The data 

set is the same as in Nickell (1996) and Nickell et al (1997). The inputs are labor and 

capital and a translog production function is estimated along with firm effects, long 

run and short run inefficiency. Bayesian inference has been implemented using the 

Gibbs sampler with 150,000 iterations the first 50,000 of which are discarded to 

mitigate possible start up effects. We retain every other tenth draw in the computation 

of posterior moments of functions of interest, to mitigate the impact of 

autocorrelation. 



 

Posterior distributions of firm effects, long run and short run inefficiency are 

presented in the three panels of Figure 3. These posterior distributions are for all firms 

and all parameter draws of the MCMC scheme. Although posterior short run 

inefficiency appears to be small (exceeding 0.90) posterior distributions of firm – 

specific long run inefficiency in Figure 2 provide a different picture. In Figure 4 thirty 

different firms are provided. It is clear that firm – specific long run inefficiency varies 

between 0.20 and 0.95 (on the average) so in fact it can be substantial.  

 

In Figure 5 we provide median absolute autocorrelations of all parameters in the 

MCMC scheme. After discarding every other tenth draw autocorrelation is trivial so 

MCMC explores the parameter space in a satisfactory manner.  

 

In Figure 6 we present posterior distributions of firm – specific short run inefficiency 

for thirty randomly selected firms –the same as in the construction of Figure 4. 

Although the distributions are not the same across firms, it seems that short run 

efficiency well exceeds 0.90 with sizeable posterior probability. The temporal 

behavior of short efficiency for the thirty firms is presented in Figure 7. On the 

average, efficiency shows a declining trend but individual  short run efficiencies are 

between 95% and 98%. Finally, in Figure 8 we present the joint posterior distribution 

of firm effects and long run efficiency. The relation between the two is clearly 

negative, implying that there is a certain interplay between what we can classify as 

pure firm effect and as one-sided firm specific effect. Apparently the correlation is not 

so high as to be destructive in the sense that formal identification is not empirically 

possible. 
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Figure 3. Posterior distributions 
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Figure 7. 

 

 
Figure 8. Joint posterior distributions 

 

 
 

 


