
Social Interaction in Patients�Hospital Choice: Evidences from
Italy �

F. Mosconey

Brunel University
E. Tosettiz

University of Cambridge
G. Vittadinix

University of Milan, Bicocca

April, 2009

Abstract

In this paper we study the in�uence of social interaction on patients�hospital choice and its

relationship with quality delivered by hospitals, using Italian data. We explore the impact on

individual choices of a set of variables such as travel distance, individual- and hospital-speci�c

characteristics, as well as a variable capturing the e¤ect of the neighbourhood. The richness of

our data allows us to disentangle contextual e¤ects from the in�uence of information sharing on

patients�hospital choices. We then use this framework to assess how such interaction is related

to clinical hospital quality. Results show that network e¤ect plays an important role in hospital

choices, although it is less relevant for larger hospitals. Another empirical �nding is the existence

of a negative relationship between the degree of interaction among individuals and the quality

delivered by hospitals. The absence of a source of information on the quality of hospitals accessible

to all individuals, such as guidelines or star ratings, exacerbates the importance of information

gathered locally in hospital choices, which may result in a lower degree of competition among

hospitals and lower quality.
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1 Introduction

In this paper we empirically study the role that social interaction has on the demand for health

care in Italy. We investigate whether the choice of an hospital by patients with cardiac illness is

in�uenced by information shared with their peers. Our hypothesis is that individuals, before deciding

in which hospital to be treated, may seek advice by speaking with friends, relatives or trusted persons

experiencing similar health problems in what has been termed by Freidson (1960) as lay referral

network.

Empirical literature has supported the important role of social in�uences in explaining individual

choices regarding a large variety of economic, social, and health behaviours (see Brock and Durlauf

(2001) and Birke (2009) for a survey). For example, there is evidence that interaction among economic

agents has an impact on unemployment (Conley and Topa (2002)), criminality (Glaeser, Sacerdote,

and Scheinkman (1996)), the demand for addictive goods (Jones (1994)), or the adoption of tech-

nological standards (Skinner and Staiger (2005)). The study of how social interaction a¤ects health

services utilization has been �rst investigated by Freidson (1960). The author argued that a patient,

before seeking professional advice, usually consults an informal network made of, for example, family

and friends. A number of works, also by the means of interviews and surveys, have attempted at

identifying such network e¤ect1 on the choice of an health specialist, and its in�uence on individual�s

health status (e.g., see Schoenberg et al. (2003), and Chaix et al. (2008), Cornford and Cornford

(1999)). For example, Schoenberg et al. (2003), and Chaix et al. (2008) have provided evidence

of a relationship between lay referral patterns and medical care seeking for patients with myocardial

infarction, emphasising an increasing e¤ect of the neighbourhood on patients� survival probability.

Aizer and Currie (2004) showed that the use of public prenatal and delivery services in California

was correlated within groups de�ned by race, ethnicity and zip-code, though such correlation was not

found to be linked to information sharing. A recent study by Deri (2005) on Canadian data, has

detected strong interdependence in the decisions of neighbouring people to visit a GP or a dentist,

due in particular to norm, and transmission of information.

In the literature that studies the determinants of hospital choices, the role of social interaction has

not been explored yet. However, network e¤ects in patients�choices are likely to be strong, especially

in health care systems where there is no comparative information on the quality of hospitals available

to all citizens, like in the Italian case. If social in�uence in hospital choices is found to exist, one

important research question is whether using information from the network increases the likelihood of

choosing an high quality hospital. Thus, in this paper we will also investigate how the sensitiveness
1We use the terms social interaction, network e¤ects and peer in�uences as synonimous, to indicate what has been

called by Manski (1993) endogenous e¤ect.
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of patient�s choice to local information is associated with hospital quality indicators based on health

outcomes. Interacting and sharing information with neighbours does not necessary help to choose a

high quality hospital. For example, the reference group may give importance to attributes, such as

appearance, comfort, and convenience of hospitals (the so-called amenities, see Goldman and Romley

(2008) and Romano and Mutter (2004)), which are not necessarily related with clinical quality; in the

absence of comparative information on the quality of all hospitals, local GPs may involuntary direct

patients to poor quality institutions.

Studying the e¤ect of interaction among individuals on hospital choice, and its impact on the

quality delivered by hospitals has important policy implications. If such interaction is found to exist,

and is negatively related with quality then policy makers (e.g., the local authority) should put e¤orts

on implementing mechanisms of information di¤usion, for example, by making available to citizens

guidelines and comparative information on hospitals quality. In the case of a positive relation between

network e¤ects and hospital quality, although on average information sharing leads to better quality,

policy makers are called to intervene to reduce geographical inequality in the access to information.

As shown (at aggregate level) by a recent strand of literature in public economics (see, for example,

Revelli (2006)), interaction may be reduced over time by introducing, for example, publicly released

star rating indicators on the performance of hospitals.2

We use data on 144 Italian hospitals from the Lombardy region and on all patients being admitted

to these hospitals for a cardiac illness, in the years from 2004 to 2007. Focusing the analysis on this

region, rather than the entire nation, allows us to restrict the attention to a competitive health system,

as established by the 1997 regional health reform (see Section 2 for a description of this reform and

how it has introduced competition among hospitals). Another advantage of limiting the study to

Lombardy hospitals is that we reduce the heterogeneity that arises from di¤erent rules underlying the

health systems of other Italian regions.

We consider all patients whose source of admission was elective3 or the emergency room. We note

that �ows of patients admitted via the emergency room are governed by rules that are di¤erent from

those driving �ows of elective patients. An individual requiring emergency often cannot choose her

hospital, since her admission is mainly determined by external factors such as the availability of beds

and the ambulance service. Tay (2003), using data on patients admitted for AMI to US hospitals

in 1994, detected that one-half of heart attack patients arrive at the hospital via ambulance. Even

2 In particular, Revelli (2006) has provided evidences that interaction among municipalities in social care resources
distribution reduces over time after the publicly released star rating indicators for the performance of local authorities.

3We de�ne as elective all booked or planned admissions, where patients have been given a date or approximate date
at the time the decision to admit was made.
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in the case where these individuals are able to make a decision, it is very unlikely that they have

the opportunity to engage into social interaction before deciding the hospital where to be treated.

Therefore, it is reasonable to assume for these patients that they do not use information from the

network to make a choice. On the contrary, elective patients have the time to gather information,

consult other people with similar health problems before selecting their hospitals. For these individuals

it is plausible that the neighbourhood have some in�uence on their choices. In this paper we exploit

di¤erences between urgent and elective patients in terms of use of network information to identify

and measure the e¤ect of social interaction on hospital choices. Under the assumption that urgent

patients do not exploit the network to make a decision, we use information on these patients to identify

contextual (and correlated) factors in hospital choices (see Manski (1993)), and interpret the remaining

correlation within neighbourhood as the e¤ect of pure social interaction.

Another point to observe is that, since urgent patients need immediate care, typically at the closest

hospital with an emergency department, their choice set will be very limited and con�ned around

the place where they live. For this reason, the literature studying admissions of urgent patients

typically considers as potentially relevant market for each patient the set of hospitals within a short,

predetermined distance (for example, 10 miles) from the patient (Tay (2003), Romano and Mutter

(2004), and Volpp, William, Waldfogel, Silber, Schwartz, and Pauly (2003)). On the contrary, for

elective patients the set of choice will be wider and less constrained by geographical factors than

in the case of emergency care. For these people, all hospitals compete with each other, and their

potentially relevant geographical market is the entire region. Accordingly, in our model of hospital

choice, as it includes both types of patients, we will allow the choice set to vary across patients to

account for local and global choice behaviour.

The remainder of the paper is organized as follows. Section 2 brie�y describes the Lombardy health

system and the reform that has introduced competition among hospitals. Section 3 describes the data

set. Section 4 discusses the role of social interaction in the choice of the health provider. Accordingly,

it introduces a model for patients� choice that includes a measure of social interaction. Section 5

estimates the relationship of local interaction and a set of quality indicators. Section 6 comments on

the empirical �ndings. Section 7 concludes.

2 The health care pro-competition reform in Lombardy

The last decade has witnessed a deep institutional change in the Italian National Health Service

(NHS), which has gradually transferred the responsibilities of �nancing and managing health care
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services from the central system to the regions. This has lead to a marked heterogeneity in the supply

of health care services across Italian regions.

The Lombardy region has been the �rst to implement, through the 1997 regional health reform, an

innovative health care model that promotes competition among agents and increases patients�choice,

with the ultimate aim to improve the quality of health care services and reduce costs. The reform

has introduced a net distinction between the role of Local Health Authorities (ASL) and that of

hospitals within the health care system. While the ASL are responsible for programming, �nancing

and controlling the quality and quantity of NHS activities in their target area, hospitals provide health

care services purchased by the ASL. Such distinction between the purchaser (the ASL) and the provider

(the hospital) has lead the former to develop tools for monitoring the quality of providers, and the

latter to search for quality and technical e¢ ciency. The health reform has also introduced competition

between public and private hospitals, by allowing the latter to provide free health care. To enter

such competition, health providers are required to satisfy minimum technology and organisational

standards set by the region4. While patients are assigned to the ASL on the basis of their place of

residence, they have choice of receiving free heath care in any (accredited) hospital of the region. In

Section 6 we provide some statistics on migration �ows of patient between areas.

Since 1995, the Lombardy region has implemented the �nancing mechanism known as Prospective

Payment System (PPS). This is a �nancing system where a predetermined, �xed reimbursement is paid

to the hospital for each patient, on the basis of his/her Diagnosis Related Group (DRG), established

using clinical information reported in the Hospital Discharge Chart (HDC). The reimboursement for a

particular DRG does not vary if the length of stay falls within a threshold. The tari¤ and the threshold

rule paid for each DRG is set at a regional level5, and covers all health care services relative to hospital

admissions, as well as outpatients activity6. The tari¤ scheme is updated at irregular intervals, and

may change even more than once within a year.

A great proportion of resources for �nancing the Lombardy health care system is tax based,

although private resources, like insurances and out-of-pocket, are also signi�cant, accounting for circa

27 per cent of total spending. These funds are employed to cover inpatients and outpatients activities,

and are also linked with the variability of hospital functions, as well as hospital debts that need to be

compensated.

The changes introduced by the 1997 reform and discussed above have determined a signi�cant

transformation in the supply and demand for health care. First, the number of private health care

4Private hospitals satisfying such standards are indicated as accredited.
5Since it is set at a regional level, it does not vary across hospitals.
6Notice that also other Italian regions are in the process of adopting the PPS. However, to date, the Lombardy is the

only region that has de facto implemented it.
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facilities has increased, boosting the total number of providers from 181 to 193 in the years from 1995

to 2006. Public hospitals have reduced their number of beds for ordinary admission, while increasing

those for day hospital, and rehabilitation. Another e¤ect of this reform is that hospital attraction of

patients from other Italian regions has signi�cantly increased. In the years from 1995 to 2003, the

number of patients from other regions admitted to Lombardy hospitals has increased by 34 per cent.

For further details on the Lombardy reform we refer to Amigoni, Marchetti, Merlino, and Zangrandi

(1998) and Zangrandi (1998).

3 Data sources and sample construction

We gathered administrative data on all patients admitted to any hospitals in Lombardy, in the years

from 2004 to 2007, whose principal diagnosis is an ischemic heart disease.7 According to the Inter-

national Classi�cation of Diseases, 9h revision, Clinical Modi�cation (ICD-9-CM)8 published by the

World Health Organization, these can be subdivided into �ve categories: acute myocardial infarction

(AMI), other acute and subacute forms of ischemic heart disease, old myocardial infarction, angina

pectoris, and other forms of chronic ischemic heart disease. We removed from the data set any pa-

tient whose source of admission was other than the emergency room or elective (planned or ordinary

admission). As shown in Table 2, 60 to 80 per cent of AMI and other acute forms of ischemic hearth

disease admissions (i.e., for ICD-9-CM=410, 411) are an emergency. In contrast, only 15-24 per cent

of admissions for diseases belonging to the remaining ICD-9-CM categories are an emergency, the

rest being ordinary or planned. In this case patients have the time to gather information, perhaps

consulting other people, and plan their choice.

Data on patients have been extracted from the Hospital Discharge Chart (HDC) available for each

patient. These include socio-demographic characteristics such as age, gender, and place of residence

(the municipality); clinical information like principal diagnosis, severity of the illness, length of stay,

the type of admission (planned or via the emergency room) the ward of admission, type of discharge

(e.g. death); �nancial information such as the Diagnosis Related Group (DRG), and the HDC reim-

bursement. We also gathered information on zip-code of residence patients and their mortality from

the General Register O¢ ce. The characteristics of the hospital include its capacity expressed in num-

ber of beds, the number of doctors employed, its ownership (e.g. private or public), teaching status,

7These data have been kindly provided by the Region of Lombardy, in conformity to all privacy regulations.
8For further information, see http://icd9cm.chrisendres.com/icd9cm/.
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whether it is mono-specialist and if it has an catheterization laboratory9, and the ASL to which the

hospital belongs. We refer to Table 1 for a description of the variables used in our analysis.

We cleaned the data by eliminating records with missing entries on either the hospital or the

patient identi�er. Also, we only kept records for private hospitals that are accredited by the region

(see Section 2 on this). After this selection process, our data set contains around 230,600 patients

admitted in 144 hospitals.

4 Local interaction in patients�hospital choice

In health care systems with �xed prices and where patients have free choice of hospitals, the quality

delivered by hospitals is an important determinant of individuals�choices. However, quality di¤erences

among hospitals may be di¢ cult for people to observe. These constraints have raised concerns among

policy makers on whether hospital markets are competitive, and encouraged initiatives to di¤use

information about "true" hospital quality. Institutions such as the National Committee for Quality

Assurance in the US and the Care Quality Commission in the UK di¤use reports with comparative

information, or star-rating indicators, on the quality of hospitals in terms of rates of post-operative

mortality, hospital acquired infections, and readmission rates. We observe that the in�uence of quality

reports on individual choice of hospital is still controversial. A number of studies at individual level

have determined a low in�uence of these reports on the selection of the health provider (see, for

example, Schneider and Epstein (1996)). Other studies have found a positive relationship between

the published hospital quality and the market share of an hospital, showing that the demand reacts

especially when the published actual quality deviates signi�cantly from expected quality (see, for

example, Pope (2009) and Romano and Zhou (2004)).

Since true hospital quality is di¢ cult to observe, and choosing a low quality hospital could be

costly, individuals try to get as much information as possible when making a choice. Therefore, it may

be sensible to use information about the decisions of others with the same pathology, who have had

a comparable decision to make. Friends, relatives or trusted persons who have experienced a similar

health problem may act as �lters for the quality of hospitals, thus shaping preferences of individuals.

Individuals may also seek assurance as to whether their thinking is reasonable, by looking if people

with similar features have come to the same conclusion. These processes may be more relevant in

health care systems where there are no measures publicly available on the performance of hospitals,

like in the Italian case. We observe that in systems that provide star-rating indicators, information

9A catheterization laboratory is an examination room with diagnostic imaging equipment used to support catheteri-
zation procedures.
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gathered locally can reinforce or be in contrast with that provided at central level by the star ratings.

It is plausible that an individual admitted at a particular point in time may not observe choices

of people admitted in the same period but can easily gather information from the choices of patients

admitted in the past. Therefore, in this paper we assume as neighbours for a patient admitted at time

t all individuals sharing the same pathology, admitted (and discharged) to any hospital in the region

in the 11 months before time t, alive after the hospitalization and living in the same zip-code.

As suggested by Manski (1993) and Brock and Durlauf (2001), correlation between the behaviour

of a patient and that of her neighbourhood could re�ect not only social in�uences, but also the e¤ect of

other factors. In particular, such interdependence may arise because of contextual e¤ects, if individual

action varies with observed attributes that de�ne her group membership, or correlated e¤ects, if

individuals in the same group tend to behave similarly because they have similar characteristics or

they face similar opportunities and constraints. For example, the decision to refer patients for hospital

admission by the local general practitioner may induce contextual e¤ects in hospital choices. An

example of correlated e¤ects is the behaviour of hospitals towards certain categories of patients. Indeed,

some hospitals may encourage or discourage groups of individuals from presenting on the basis of

whether it is pro�table or not to treat them (the so-called cream-skimming e¤ect, see Berta et al.

(2009) on this). It is reasonable to assume that most contextual and correlated e¤ects in Italy are

the same regardless the type of admission of patients, i.e. whether it is elective or via the emergency

room.

Our strategy to disentangle between social interaction and contextual or correlated e¤ects is based

on estimating the correlation between the behaviour of a patient and that of her neighbourhood for

patients both on emergency and non-emergency care. Under the assumption that patients in emergency

care cannot engage in communication with other people when choosing their hospital, the additive

neighbourhood e¤ect of routine patients is likely to re�ect pure social interaction.

In the following section we introduce an econometric model for individuals�hospital choices, and

de�ne a measure of social interaction.

4.1 Modelling individual patient choices

Consider an individual i with cardiac illness from a population of N agents choosing from a set of

Hi hospitals, i.e. from f1; 2; :::;Hig, at time t. We assume that each individual is drawn randomly
from a set of neighbourhoods, and that within each neighbourhood, all individuals interact with each

other. Thus, membership to various neighbourhoods is not endogenously determined. Suppose that
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the observable choice of individual i of being admitted to hospital h at time t , yih;t, is related to

the expected utility of i choosing h, y�ih;t, according to yih;t = 1
h
y�ih;t > 0

i
, where 1 [:] is an indicator

function.

The literature on social interaction decomposes y�ih;t into three components, the private utility, the

social utility, and a random utility term (Brock and Durlauf (2003)). In this paper we hypothesise

that private utility of the ith patient from choosing hospital h at time t depends on her characteristics,

xit, the characteristics of hospital h, zht, and the distance of i from h relative to the distance from

her nearest hospital, dih;t. We further assume that social utility depends on �yih;t�1, the percentage

of people with identical disease category and living in the same zip-code who made the same choice

in the 11 months prior to the admission of the ith patient and that are alive after hospitalization.10

Accordingly, we model patient i�s expected utility at time t from choosing h out of a total of Hi
hospitals, y�ih;t, as

y�ih;t = �+ �h�yih;t�1 + �h (�yih;t�1 � electiveit) + �0hxit + 
 0zht + �dih;t + "ih;t; (1)

where �, �h, �h, �h, 
, and � are parameters to be estimated. Under the further hypothesis that each

individual makes the choice that maximizes her total utility, and the double exponential assumption for

the random utility term, the multinomial logit structure can be derived for the conditional probability

that i chooses h (see Brock and Durlauf (2003)).

In the above model, electiveit is an indicator variable taking value of 1 if individual ith�s source of

admission is elective and zero otherwise. The vector of individual-speci�c characteristics, xit, contains

demographic, health, and geographic attributes, such as gender, age, whether patient ith�s source of

admission is elective, the disease category (ICD09), and a dummy variable indicating the province

where the patient lives. We also include in the model interactions of �yih;t�1 with the distance patient-

to-hospital and with a dummy variable indicating whether the patient is old11, to see if the network is

more in�uential with certain categories of population. The vector of hospital-speci�c characteristics,

zht, contains the size, the ASL of the hospital, the number of doctors per number of beds, ownership

and teaching status, dummy variables indicating whether the hospital is mono-specialist, and if it

has a catheterization laboratory. We also add in the model the interaction of �yih;t�1 with a dummy

variable indicating whether the hospital is large, to check if network e¤ects are weaker or stronger

towards larger hospitals. We have incorporated dummies for the ASL in order to capture unobserved

heterogeneity in health policies at ASL level, and province dummies to account for contextual e¤ects,

including recommendations by the local general practitioner. The in�uence on patients choice of the

10See Brock and Durlauf (2001) for a discussion of the dependence of social utility on past society behaviour.
11 In this paper we de�ne old patients as patients older than 75 years of age. See Table 1 for de�nition of variables.
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specialist or the local GPs may also be captured by the hospital-speci�c characteristics (see Luft and

et al. (1990) on this).

As explained at the beginning of this section, the coe¢ cient �h attached to the variable (�yih;t�1 � electiveit)
measures the correlation between individual behaviour and the behaviour of her neighbours as e¤ect

of pure social interaction. We allow this parameter to vary across hospitals. We remark that estima-

tion of one coe¢ cient for each hospital is possible only if there exists some geographical variability

in patient �ows within hospitals that enables identi�cation of parameters. This is not a problem for

our analysis, as shown in our exploratory data analysis. It is also worth nothing that, since the above

model contains neighbours�lagged decisions, it does not entail any restriction on the size of the inter-

action e¤ects, �h and �h. The interpretation of �h plays a central role in our study. �̂h, obtained from

estimating equation (1), measures the average e¤ect of neighbourhood choices on the probability that

a patient chooses the hth hospital. A positive and signi�cant �̂h means that a subset of the popula-

tion, sharing information on the quality of the hth hospital, increases the conditional probability of

choosing it for each member of this subset. A negative and signi�cant �̂h implies that, ceteris paribus,

a patient on average will make a choice di¤erent from that of her neighbours, in relation to the hth

hospital. Namely, individuals choosing the hth hospital are surrounded by people that, on average,

have not been admitted to that hospital in the past. The key mechanism underlying a signi�cant �̂h,

either positive or negative, is the existence of clusters of information on the quality of the hth hospi-

tal. Such information shapes the preferences of individuals, ultimately in�uencing their decisions. An

insigni�cant �̂h means that patients do not use information from the network to choose that hospital,

and hence their choice is only driven by personal- and hospital-level characteristics.

Before concluding, we remark that in equation (1) we allow the choice set to vary across patients.

As pointed in Section 1, the potentially relevant geographical market di¤ers between patients admitted

via the emergency room and all other patients. Therefore, for patients in emergency care we restrict

the choice set to the hospitals within a distance of 15 kilometers from where they live. On the contrary,

for patients not under emergency we extend the choice set to include all hospitals in the region. This

allows us to distinguish in our choice model a more localised market where hospitals compete for

urgent patients, against a global market where all hospitals compete with each others for non-urgent

patients.

Whether there exists a relationship between �h and quality has important policy implications. In

the next section we will introduce a measure of quality and discuss its link with social interaction.
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5 Local interaction and the quality of health care

We estimate the relationship between social interaction and the quality of hospitals at individual level,

using a regression framework. As quality indicators, we consider the outcome variables readmission

and mortality within 30 days from the discharge, which are commonly used indicator in the literature.

We refer to Romano and Mutter (2004) for a review of quality indicators adopted in the literature.

If the correlation between �̂h (in absolute value) and quality12 is either insigni�cant or negative

and signi�cant13 then, on average, sharing information within the neighbourhood does not help to

select an hospital with better quality. In this case, social interaction does not help to choose a high

quality hospital. One possible reason behind such mismatch is, for instance, that the group identi�es

hospital quality not only with clinical quality, but also with amenities such as convenience, good food,

attentive sta¤, and pleasant surroundings (see Goldman and Romley (2008) on this). In the case of

positive and signi�cant correlation between
����̂h��� and the level of hospital quality14, local interaction is

related to higher quality. In this case, the reference group is able to identify and suggest high quality

hospitals.

We consider the following regression model for the latent continuous variable, r�ih;t, underlying our

quality indicators15

r�ih;t = �
0xit + 


0zh;t�1 + ��̂h + 'prit + �ih;t; (2)

where �; 
; � and ' are parameters to be estimated, xit indicates the individual-speci�c characteristics

- age, gender, disease category and a dummy variable indicating whether the patient�s source of

admission was elective; zht is the vector of hospital attributes, namely number of beds, number of

doctors per n. of beds, ASL dummies, ownership and teaching status, and whether the hospital is

mono-specialist. The variables n. of beds and n. the doctors per n. beds have been lagged at time

t� 1 to avoid potential endogeneity problems. Other hospital-speci�c characteristics, such as whether
the hospital is private, mono specialist or teaching-oriented can be considered as �xed attributes,

established well before the time period considered in this analysis. The variable prit is the regulated

(hence exogenous) price attached to the HDC of the ith individual. This variable is included in

the regression to control for the e¤ect of di¤erent reimboursments that are disease-speci�c, and for

variations in the DRG reimboursements that occur within a year. The coe¢ cient, �, attached to �̂h
12 In this paper we assume quality is inversely related to our quality indicators.
13Namely, if the correlation between

����̂j��� and our quality indicator - readmission within 30 days - is insigni�cant, or
positive and signi�cant.
14Namely, if the correlation between

����̂j��� and qij;t is negative and signi�cant.
15Also in this case we assume a logistic speci�cation for the conditional probability.
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indicates the sensitiveness of quality indicators to changes in social interaction.

6 Results

6.1 Exploratory data analysis

Table 3 shows some descriptive statistics that can be recovered from patients�HDC. As expected in

the case of heart diseases, the number of males in the data set is high, accounting for around 75 per

cent of the sample. The average age of patients is 68 years, and roughly 30 per cent of the sample

has more than 75 years. The length of stay of patients reduces over time, passing from 9.14 to 8.56

number of days on average. The bottom panel of Table 3 summarizes the variables used to capture

hospital quality in equation (2), namely readmission and mortality within 30 days from the date of

discharge. The readmission variable has been constructed by including all patients that have been

readmitted at least once in the period considered, also via the emergency room. Readmission within

a �xed length of time as quality indicator has been employed in various studies on hospital quality,

such as Kessler and McClellan (2000), and Ho and Hamilton (2000). The relatively high likelihood of

30-day readmission (around 9 per cent of the sample, see Table 3) suggests that this is an appropriate

measure of hospital quality. As for 30-day mortality, the other quality indicator used in our analysis,

Table 3 shows that this outcome concerns circa 5 per cent of our sample. Such small �gure can be

explained by the lower risk of dying of elective patients in our sample.

Table 4 summarizes the characteristics of hospitals in the data sets. We observe an increasing

pattern in the average number of total beds, passing from around 260 to 276, indicating that hospitals

tend to expand in size over time. Such trend is largely explained by the rise in number of ordinary

beds. The number of doctors per number of beds ranges between 0.53-0.55.

Table 5 reports some descriptive statistics on migration �ows of patients, as well as join-count

measures of spatial correlation. The upper panel shows that around one third of the sample moves to

an hospital based in a province di¤erent from that where they live. We observe that about 9 per cent

of the sample comes from outside the region, making the average distance patient-to-hospital around

55 kilometers. However, when restricting the sample only to those living in Lombardy, the average

distance patient-to-hospital drops to 12 kilometers. The central panel reports the average number of

people living in the same neighbourhood that choose the same hospital. It is interesting to note that

a large fraction of people living in the same zip-code and with similar disease (i.e., the same disease

category) make similar choices, and that these �gures tend to remain constant over time.

The lower panel of the table shows join-count statistics of spatial correlation. We adopt the
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following statistic

nH;t =
1

2

PH
h=1

0@ NX
i=1

NX
j=1;i6=j

sijcih;tcjh;t

1A ;
where cih;t = 1 if at time t individual i chooses hospital h, and zero otherwise, and sij = 1 when i and j

belong to the same zip-code, and zero otherwise. Under the null hypothesis of independence in hospital

choices of neighbouring individuals, this statistic has approximately mean zero. We refer to Epperson

(2003) for a detailed discussion on the theoretical moments and the distribution of this statistic. If the

null hypothesis of absence of spatial correlation is rejected and the statistic is signi�cantly larger than

its expected value, it indicates positive spatial autocorrelation, meaning that patients with similar

hospital choices are more spatially clustered than could be caused by chance. The estimated nH;t
statistic is positive and signi�cant in all years, although it shows a slight decrease over time.

6.2 Modelling local interaction in patients�hospital choice

We estimated model (1) by maximum likelihood for each year, from 2005 to 2007. In the estimation

of this model we only focused on patients living in the Lombardy region, to avoid potential hetero-

geneity in patients �ows from other provinces of Italy.16 We also dropped hospitals with less than 50

observations (i.e., patients) within a year, since estimation of one set of regression coe¢ cients for each

hospital requires enough observations for each hospital. As a robustness check, we also incorporated

unobserved heterogeneity in (1) by including individual �xed e¤ects, interacting individual-speci�c

characteristics with hospital dummies, and then estimating the model via a conditional likelihood

approach (see Greene (2008)). We further tried a speci�cation with homogeneous coe¢ cients and

hospital dummies to account for hospital-speci�c characteristics that may a¤ect individual choice and

that are unobserved. Results for the parameters of the key variable �yih;t�1 are very similar across

di¤erent speci�cations.

For descriptive purpouses, in Table 6 we report the output for the estimation of equation (1) for

the years 2005 to 2007, imposing that all regression coe¢ cients are homogeneous across hospitals. The

coe¢ cient of �yih;t�1 is positive and signi�cant. This coe¢ cient measures the correlation between the

behaviour of a patient and that of her neighbourhood, due to contextual or correlated factors. For

example, such correlation may arise if hospitals encourage (or discourage) certain categories of patients

from being admitted, because their disease (i.e., their DRG), or the treatment they need is lucrative

(or not) (Berta et al. (2009)). The coe¢ cient of the variable (�yih;t�1 � electiveit) captures the e¤ect
16When excluding patients living in provinces outside the Lombardy region, we dropped around 8 per cent of the

sample. See Table 5 on this.
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on hospital choices of the correlation within groups that is attributable to information sharing, since

relative only to elective patients. This is positive and signi�cant in all years, indicating that, after

controlling for contextual and correlated e¤ects, individuals try to access information on the quality

of hospitals by observing the choices of their neighbours with similar pathology admitted in the past.

Gender and age of patients do not seem to play a role in the choice of the hospital. As expected,

distance patient-to-hospital (relative to the distance from the nearest hospital) has a strong, negative

impact on choices, implying that longer distance to undertake decreases the probability of choosing

that hospital. The interaction term between �yih;t�1 and distance patient-to-hospital is also negative

and signi�cant, suggesting that network e¤ects are less important when the choice concerns hospitals

that are distant from the place of residence. This may be implied by the existence of a trade o¤

between imitating neighbours�decisions and bearing the cost of moving to a distant hospital.

Among the hospital-speci�c characteristics, the coe¢ cients of the variables n. of beds, n. doctors

per n. of beds and whether the hospital is mono-specialist are positive and signi�cant in all years

considered, while the ownership status does not have a clear e¤ect on the dependent variable. The

interaction term between �yih;t�1 and the dummy variable indicating whether the hospital is large (i.e.,

with at least 300 patients) negatively impact on hospital choices. This indicates that network e¤ects

for large hospitals are less important than those of small and medium size hospitals. This may be

explained by the fact that information on the quality of large hospitals is often more accessible to a

larger fraction of the population, for example through national and regional media.

Table 7 reports results for the estimation of (2) for the years 2005 to 2007. Notice that, unlike the

regression reported in Table 6, �̂h has been obtained by estimating (1) where parameters are allowed

to vary across hospitals.17

We �rst observe that, when using 30-day readmission as quality indicator, the coe¢ cient attached

to the variable �̂h is positive and signi�cant in all years. This result indicates that, ceteris paribus, a

higher sensitiveness of patient�s decision to local information decreases the probability of choosing a

high quality hospital. One explanation for this result is that network e¤ects, implied by asymmetric

information, are a signal of low competition in the market, which in turn decreases quality (Kessler

and McClellan (2000)). Another explanation for the negative relationship between network e¤ects

and quality of hospitals is that the reference group may give weight to hospital attributes, such as

convenience or single room accommodation, which are not related with clinical quality, as measured by

our health outcomes indicators. When adopting 30-day mortality as quality indicator, the coe¢ cient

attached to �̂h is statistically insigni�cant. Thus, on average, using network information does not

17We obtained that most estimated coe¢ cients �̂j ; for j = 1; :::; H are positive over time, with mean 1.89 and standard
deviation 2.84. Only three hospitals showed a negative signi�cant coe¢ cient.
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lead to select a higher (or lower) quality hospital, than if this was chosen without using network

information.

As for the remaining regressors, the (exogenous) price variable shows a negative impact on quality

indicators in all regressions, thus indicating that higher reimboursments lead to higher quality. The

coe¢ cient attached to n. of beds (lagged at time t � 1) has a positive and signi�cant e¤ect on the
30-day readmission variable in all years. This may be explained by the fact that the severity of illness

in larger hospitals is higher, thus inducing a higher readmission rates. However, this variable does not

seem to play a role in explaining 30-day mortality. The n. of doctors per n. of beds variable (lagged

at time t� 1) shows a positive and signi�cant e¤ect on readmission, at the beginning and at the end
of the sample period.

7 Concluding remarks

In this paper we have explored the e¤ect of social interaction on individuals�hospital choice for patients

with cardiac illness. To our knowledge, this is the �rst attempt at identifying, testing and modelling

social interaction in patients�decisions on the hospital where to be treated. Our �ndings support the

existence of strong correlation between an individual�s hospital choice and those of her neighbours.

The strategy that we have proposed in this paper allows us to conclude that part of this correlation is

due to social interaction among patients. Therefore, individuals rely also on information gathered from

neighbours when choosing their health provider. Our empirical �ndings also show that this network

e¤ect is less important when it concerns large hospitals. We have then investigated how such network

e¤ect is related to the quality of hospitals. When adopting mortality as a proxy of hospital quality, the

use of neighbourhood information does not seem to have any impact on the likelihood of choosing a

high quality of hospitals. However, it is interesting to observe that when we adopt 30-day readmission

as quality indicator, our results show that the higher the strength of interaction among individuals for

a particular hospital, the lower is likely to be its quality.

One important implication for these results is that policy makers should put e¤orts in implementing

central and local mechanisms of information di¤usion such as guidelines or star rating indicators,

that reduce geographical inequalities in the access to information. To be e¤ective, the strategy of

increasing the supply in the region of Lombardy to boost competition, as attempted with the last

regional reform, should be accompanied by central and local mechanisms of information di¤usion that

diminish territorial inequality in the access to information.
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Table 1: De�nition of variables
Variable Description

Patient characteristics:

Distanceih Distance of patient i to hospital h = distance of i to her nearest hospital
Oldi 1 if patient i is over 75 years of age
Malesi 1 if patient i is male
ICD-9-CM=410i 1 if patient i su¤ers from AMI

ICD-9-CM=411i 1 if patient i su¤ers from other acute and subacute forms of ischemic heart disease

ICD-9-CM=412i 1 if patient i su¤ers from old myocardial infarction

ICD-9-CM=413i 1 if patient i su¤ers from angina pectoris

ICD-9-CM=414i 1 if patient i su¤ers from other forms of chronic ischemic heart disease

Electivei 1 if patient i�s admission is booked or planned
Pricei Total expenditure for patient i

Hospital characteristics:

N. bedsh Total number of beds (ordinary + day hospital) in hospital h
N. doct./n. of bedsh Number of doctors in hospital h = n. of beds in hospital h

Teachingh
1 if hospital h is teaching (i.e., it provides clinical education and
training to doctors/nurses etc.)

Mono-specialisth 1 if hospital h is mono-specialist
Privateh 1 if hospital h is private
Technologyh 1 if hospital h has a catheterization laboratory
Largeh 1 if hospital h has more than 299 beds

Table 2: Number of observations and percentage of emergency cases by ICD9CM category
Total ICD-9-CM=410 ICD-9-CM=411 ICD-9-CM=412 ICD-9-CM=413 ICD-9-CM=414

N. N. % emerg. N. % emerg. N. % emerg. N. % emerg. N. % emerg.

2004 57,351 19,439 79.97 10,603 59.48 1,365 15.90 12,501 23.21 12,501 18.60

2005 58,291 21,067 80.91 10,864 58.71 1,095 17.99 11,273 23.16 13,992 19.63

2006 56,730 13,992 82.14 10,472 61.01 931 17.99 10,853 24.54 13,484 18.93

2007 58,230 21,232 83.60 10,346 63.05 852 21.24 10,688 23.41 15,112 18.79

Notes: See Table 1 for de�nition of variables.
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Table 3: Descriptive statistics of patients
2004 2005 2006 2007

% Males 68.98 69.07 69.86 69.42

Age (av. years) 67.83 68.28 68.43 68.43

% 65-74 years 29.51 29.44 29.28 29.15

% 75+ years 28.62 30.20 31.12 31.93

Length of stay (av. n. of days) 9.14 9.01 8.78 8.56

Expenditure per patient (av., in Euro)� 5,117.4 5,208.5 5,288.5 5,400.4

30-day readmission 9.54 9.00 8.71 8.13

30-day mortality 4.72 5.08 5.01 5.05

(�): The aggregate has been de�ated using the consumer price index (2005=100)

Table 4: Lombardy hospital characteristics
2004 2005 2006 2007

N. hospitals 128 132 129 127

Catheterization lab. 51 60 63 69

Teaching (n.) 10 10 10 10

Mono-specialist (n.) 10 10 8 6

Public (n.) 85 86 83 80

Patients (average n.) 448.7 441.5 439.7 458.5

Medium+ (%) 49.22 47.73 48.06 51.97

Large++ (%) 29.69 30.30 30.23 31.50

Beds (average n.) 259.8 262.53 267.4 275.7

ordinary 233.0 235.3 239.3 245.5

day-hospital 26.83 27.22 28.06 30.23

Doctors per n. beds 0.53 0.54 0.55 0.55
(+): Medium hospitals are those with a number of beds between 100 and 299.
(++): Large hospitals are those with more than 299 beds.
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Table 5: Migration �ows of patients and their concentration across territory

2004 2005 2006 2007

Migration characteristics

% Movers(+) 28.12 27.97 28.37 30.07

% Movers from outside Lombardy 9.03 8.67 8.73 8.83

Av. distance patient-to-hospital (Km) 56.99 54.83 54.12 53.70

Av. distance patient-to-hospital (Lombardy only) 12.37 12.26 12.37 12.61

Median distance patient-to-hospital (Km) 6.86 6.79 6.85 7.16

N. pat. in the neighbourhood with same choice 50.23 46.06 44.22 41.54

% pat. in the neighbourhood with same choice 38.40 37.59 37.96 37.04

nH;t 2.16� 2.03� 2.18� 2.13�

(+): By mover we mean a patient admitted in an hospital that is located in a province
di¤erent from the province of residence of the patient. (�): signi�cant at the 5% level.
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Table 6: The determinants of patient�s hospital choice (years 2005-2007)
2005 2006 2007

coe¤ Std.err. coe¤ Std.err. coe¤ Std.err.

Electivei -2.539� 0.032 -2.329� 0.033 -2.298� 0.033

�yih;t�1 6.994� 0.095 7.313� 0.096 6.499� 0.092

�yih;t�1*Electivei 2.380� 0.081 2.070� 0.086 2.002� 0.084

Agei 0.000 0.001 -0.001 0.001 -0.001 0.001

Malei -0.022 0.017 -0.013 0.017 -0.010 0.017

Distanceih -0.173� 0.006 -0.148� 0.006 -0.146� 0.005

ICD-9-CM=411i 0.039 0.024 0.045 0.024 0.104� 0.024

ICD-9-CM=412i 0.066 0.066 0.131� 0.069 0.111 0.069

ICD-9-CM=413i 0.112� 0.025 0.118� 0.026 0.114� 0.026

ICD-9-CM=414i 0.105� 0.025 0.108� 0.026 0.120� 0.026

�yih;t�1*agei 0.088 0.080 0.113 0.082 0.134 0.079

�yih;t�1*distanceih -0.023� 0.004 -0.028� 0.004 -0.010� 0.004

Catheterization lab.h -0.172� 0.026 -0.142� 0.030 -0.117� 0.034

N. bedsh/100 0.105� 0.002 0.102� 0.003 0.090� 0.003

�yih;t�1*Large hospitals
+
h -0.866� 0.088 -0.666� 0.087 -0.171� 0.082

N. doctors per n. of bedsh 0.968� 0.045 0.735� 0.051 1.039� 0.059

Teachingh 0.088� 0.021 -0.069� 0.023 -0.090� 0.023

Privateh 0.042� 0.017 -0.011 0.017 0.014 0.016

Mono-specialisth 1.086� 0.040 1.495� 0.050 1.571� 0.048

Intercept -4.256� 0.247 -4.358� 0.249 -4.591� 0.256

N 39,820 39,820 39,914

Log-likelihood -92,413.7 -87,496.483 -91,874.56

Notes: ASL and province dummies have been included. (+): hospitals with more than
299 beds. (�): signi�cant at the 5% level. See Table 1 for de�nition of variables.
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