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A Structural Analysis of Disappointment Aversion in a
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We develop a novel computerized real effort task, based on moving sliders across a screen,
to test experimentally whether agents are disappointment averse when they compete in a
real effort sequential-move tournament. Our theory predicts that a disappointment averse
agent, who is loss averse around her endogenous expectations-based reference point,
responds negatively to her rival's effort. We find significant evidence for this discouragement
effect, and use the Method of Simulated Moments to estimate the strength of disappointment
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The sudden disappointment of a hope leaves a scar which the ultimate fulfillment of that hope
1

never entirely removes.

England fullback Delon Armitage is determined to put his misery at being overlooked by
the British € Irish Lions behind him when he runs out to face Argentina at Old Trafford on
Saturday ... The occasion will not be lost on Armitage, although he is struggling to get past
the disappointment of missing out on a Lions call after an excellent first Test season ... ‘I was

really, really disappointed about it,” he said. ‘I still need to get over it a little bit.” >

1 Introduction

Disappointment at doing worse than expected can be a powerful emotion. This emotion may
be particularly intense when the disappointed agent exerted effort in competing for a prize,
thus raising her expectation of winning. Furthermore, a rational agent who anticipates possible
disappointment will optimize taking into account the expected disappointment arising from her
choice.

In this paper we use a laboratory experiment to test whether agents are disappointment
averse when they compete in a real effort tournament. In particular, we test whether our
subjects are loss averse around reference points given by endogenous expectations. Pairs of
subjects complete a novel computerized real effort task, called the “slider task”, which involves
moving sliders across a screen. The First Mover completes the task, followed by the Second
Mover, who observes the First Mover’s effort before choosing how hard to work.? A money
prize is awarded to one of the pair members based on the pair’s relative work efforts and some
element of chance which we control. After each repetition, the subjects are re-paired. If agents
care only about money and the cost of effort then the Second Mover’s work effort should not
depend on the effort of the First Mover. However, as predicted by our theory of disappointment,
the experimental data show a discouragement effect: the Second Mover shies away from working
hard when she observes that the First Mover has worked hard, and tends to work relatively hard
when she observes that her competitor has put in low effort.

Our contribution is three-fold: methodological; theoretical; and empirical. From a method-
ological perspective, we develop a novel real effort task designed to facilitate robust statistical
inference. Early experiments implementing costly activities used a monetary cost function which
mimics effort by specifying output as a function of how much money subjects contribute (e.g.,
Bull et al., 1987, in a tournament context). Increasingly, laboratory experiments have featured
real effort tasks.? Real effort generates greater external validity, but makes precise quantification
difficult (Falk and Fehr, 2003). The main advantage of our slider task is that it allows a fine
and accurate measure of effort over a short time scale. Thus we interpret performance in the

task as effort exerted and we can use repeated observations of the same subjects to control for

!Thomas Hardy, as quoted by Gibson (1996, p. 74).

2ESPN Scrum, 4 June 2009, www.scrum.com/england /rugby /story/97635.html

3We use a sequential tournament to give clean identification, rather than because most competitive situations
involve sequential effort choices.

4See Section 2.1.2 for examples of different real effort tasks. Recently experiments involving real effort tour-
naments have become popular (e.g., van Dijk et al., 2001; Gneezy et al., 2003; Niederle and Vesterlund, 2007;
Carpenter et al., 2007; Charness and Villeval, 2009).



learning-by-doing and persistent unobserved heterogeneity. We believe that our task will prove
valuable to researchers in designing future experiments with real effort.

From a theoretical perspective, we extend disappointment aversion to situations in which
agents compete. Existing models of disappointment aversion (e.g., Bell, 1985; Loomes and
Sugden, 1986; Gul, 1991; Shalev, 2000; Delquié and Cillo, 2006a, 2006b; Koszegi and Rabin,
2006, 2007) build on the idea that agents are sensitive to deviations from what they expected to
receive. We model disappointment aversion as loss aversion around an agent’s expected payoff,
so losses relative to this expectation are more painful than equal-sized gains are pleasurable.’ In
our competitive framework, this expected payoff is determined endogenously by the agents’ effort
choices. Thus we model agents as holding reference-dependent preferences with an endogenous
reference point given by choice-acclimating (Ké&szegi and Rabin, 2007) expectations, and we
assume that agents anticipate the impact of effort on their reference point.

Our theory predicts an empirically testable discouragement effect whereby the Second Mover
responds negatively to the First Mover’s effort. Thus First and Second Movers’ efforts are
strategic substitutes. This discouragement effect becomes more powerful in the strength of
disappointment aversion, measured by the size of the kink in utility induced by loss aversion,
and in the value of the prize. A disappointment averse Second Mover becomes discouraged even
though we impose probabilities of winning the prize which are linear in the difference in the
agents’ efforts, so that, in the canonical tournament model with a separable cost of effort, the
First Mover’s effort has no effect on the Second Mover’s marginal incentives. Note that the
endogeneity of the reference point is crucial. Most of the literature on loss aversion assumes a
fixed reference point, but with such a reference point, even if given by a prior expectation, the
standard model predicts no discouragement effect.

From an empirical perspective, we offer evidence of disappointment aversion from a linear
random effects panel regression and from structural estimation using the Method of Simulated
Moments. We find significant evidence of disappointment aversion. The reduced form analysis
shows that subjects’ behavior in our experiment is inconsistent with the standard model, but
instead exhibits the discouragement effect predicted by our theory of disappointment. Addition-
ally, we use structural modeling to estimate the strength of disappointment aversion on average
and the heterogeneity in disappointment aversion across the population. Both estimation meth-
ods exploit identifying variation obtained from the properties of the slider task together with
our experimental design. Specifically, the value of the prize is drawn randomly each time a First
and Second Mover are paired, while the fineness of our measure of effort allows us to observe
precisely how Second Movers respond to the prize and the effort choice of the First Mover they
are paired with.

Our empirical results address two important open questions in the literature on reference-
dependent preferences: (i) what constitutes agents’ reference points?; and (ii) how quickly do
these reference points adjust to new circumstances? Our analysis provides evidence that when
agents compete they have reference points given by their expected monetary payoff and that an

agent’s reference point adjusts essentially instantaneously to her own effort choice and that of

®Loss aversion is a fundamental component of Kahneman and Tversky (1979)’s Prospect Theory. Kahneman
and Tversky (2000) collect a number of papers providing empirical support for loss aversion in numerous different
contexts, while DellaVigna (2009) surveys some more recent evidence.



others.

Our work is complementary to that of Abeler et al. (2009) and Crawford and Meng (2009)
who also find evidence for expectations-based reference-dependent preferences in the context of
effort provision. Abeler et al. run a laboratory experiment with a non-competitive design in
which subjects have a 50% chance of being paid piece-rate and a 50% chance of receiving a fixed
payment, and show that effort increases in the fixed payment. Abeler et al. do not estimate any
structural parameters, while we are able to estimate the strength of disappointment aversion.
Crawford and Meng use field data on taxi driver labor supply to estimate the strength of loss
aversion around rational expectations-based daily income and hours targets.® In contrast to
our model, the reference point is taken to be fixed when the agent chooses how hard to work.
Our paper is also related to the existing empirical literature on disappointment aversion in the
absence of effort provision. A number of papers test for disappointment aversion using choices
over, or bids for, lotteries. Loomes and Sugden (1987) provide an early example, while recent
instances include Choi et al. (2007) and Sonsino (2008).

Finally, the psychology literature also supports the thesis that agents’ emotional responses
to the outcomes of gambles include disappointment and elation, that agents anticipate these
emotions when choosing between gambles and that exerting effort, by increasing the likelihood
of a good outcome, intensifies disappointment (Mellers et al., 1999; van Dijk et al., 1999).

The rest of the paper is structured as follows. Section 2 describes the slider task and the
design of the experiment. Section 3 develops our theory of disappointment aversion when agents
compete. Section 4 presents the empirical analysis. Section 5 concludes. Appendix A derives
proofs not included in the main text. Appendix B provides further details about the structural
estimation method and the model’s goodness of fit. Finally, Appendix C lays out the instructions

provided to the experimental subjects.

2 Experimental Design

We ran 6 experimental sessions at the Nuffield Centre for Experimental Social Sciences (CESS)
in Oxford, all conducted on weekdays at the same time of day in late February and early
March 2009 and lasting approximately 90 minutes.” 20 student subjects (who did not report
Psychology or Economics as their main subject of study) participated in each session, with 120
participants in total. The subjects were drawn from the CESS subject pool which is managed
using the Online Recruitment System for Economic Experiments (ORSEE). The experimental
instructions (Appendix C) were provided to each subject in written form and were read aloud
to the subjects. Seating positions were randomized. To ensure subject-experimenter anonymity,
actions and payments were linked to randomly allocated Participant ID numbers. Each subject
was paid a show-up fee of £4 and earned an average of a further £10 during the experiment (all
payments were in Pounds sterling). At the end of the experiment, subjects were asked to report
their gender (but could withhold this information). Subjects were paid privately in cash by the

laboratory administrator. The experiment was programmed in z-Tree (Fischbacher, 2007).

SCamerer et al. (1997) and Doran (2009) also find evidence of taxi driver loss aversion.
"We also ran one pilot session without any monetary incentives whose results are not reported here.



2.1 The Slider Task

Before setting out the experimental procedure, we first describe the novel computerized real
effort task, which we call the “slider task”, that we designed for the purpose of this experiment

and explain its advantages in relation to the existing stock of real effort tasks.

2.1.1 Description of the Slider Task

The slider task consists of a single screen displaying a number of sliders. The number and position
of the sliders on the screen does not vary across experimental subjects or across repetitions of
the task. A schematic representation of a single slider is shown in Figure 1. When the screen
containing the effort task is first displayed to the subject all of the sliders are positioned at 0, as
shown for a single slider in Figure 1(a). By using the mouse, the subject can position each slider
at any integer location between 0 and 100 inclusive. Each slider can be adjusted and readjusted
an unlimited number of times and the current position of each slider is displayed to the right of
the slider. The subject’s “points score” in the task is the number of sliders positioned at 50 at
the end of the allotted time. As explained in Section 2.1.2, we interpret a subject’s point score as
effort exerted in the task. Figure 1(b) shows a correctly positioned slider. As the task proceeds,

the screen displays the subject’s current points score and the amount of time remaining.

I | 0 \ I | 50

(a) Initial position. (b) Positioned at 50.

Figure 1: Schematic representation of a slider.

The number of sliders and task length can be chosen by the experimenter. In this experiment
we used 48 sliders and an allotted time of 120 seconds. The sliders were displayed on 22 inch
widescreen monitors with a 1680 by 1050 pixel resolution. To move the sliders, the subjects
used 800 dpi USB mice with the scroll wheel disabled.® Figure 2 shows a screen of sliders as
shown to the subject in the laboratory. In this example, the subject has positioned three of the
sliders at 50 and a points score of 3 is shown at the top of the screen. A fourth slider is currently
positioned at 33 and this slider does not contribute to the subject’s points score as it is not
positioned correctly. To ensure that all the sliders are equally difficult to position correctly, the
48 sliders are arranged on the screen such that no two sliders are aligned exactly one under the
other. This prevents the subject being able to position the higher slider at 50 and then easily
position the lower slider by copying the position of the higher slider.

2.1.2 Advantages of the Slider Task

The slider task has a number of desirable attributes. First, the slider task is simple to commu-
nicate and to understand, and does not require or test pre-existing knowledge. Second, unlike

solving mathematical problems (Sutter and Weck-Hannemann, 2003), counting, decoding or

8The keyboards were also disabled to prevent the subjects using the arrow keys to position the sliders.
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Notes: The screen presented here is slightly squarer than the one seen by our subjects.

Figure 2: Screen showing 48 sliders.

entering strings of characters (Chow, 1983), solving word games (Burrows and Loomes, 1994),
answering general knowledge questions (Hoffman et al., 1994), negotiating mazes (Gneezy et al.,
2003) or performing numerical optimization (van Dijk et al., 2001), the slider task is identical
across repetitions. Third, the task allows a fine measure of performance and involves little ran-
domness, so the number of correctly positioned sliders corresponds closely to the effort exerted
by the subject. Thus we interpret a subject’s point score as effort exerted in the task. Fourth,
there is no scope for guessing, which complicates the design and interpretation of some existing
tasks such as those based on counting characters or numerical optimization.

These attributes are also shared by the envelope filling task (Konow, 2000), in which subjects
stuff real envelopes with letters. Crucially, however, the slider task allows a fine measure of effort
within a short time scale. Furthermore, because the task is computerized, it is easy to implement
and allows flexible real-time subject interactions. In Section 4 we see that with 48 sliders and
an allotted time of 120 seconds, measured effort varies from 0 to over 40. Thus substantial
variation in behavior can be observed, and by getting subjects to repeat the identical task many
times the experimenter can control for persistent unobserved heterogeneity using panel data
methods. This allows robust statistical inference. For example, we use repeated observations
of the same subjects to estimate the distribution of effort costs, enabling structural estimation
of the strength of disappointment aversion on average and the heterogeneity in disappointment

aversion across the population. Thus the task’s design overcomes the principal drawback of



using real effort up to now, namely that “Since the experimenter does not know the workers’
effort cost, it is not possible to derive precise quantitative predictions” (Falk and Fehr, 2003, p.
404).

2.2 Experimental Procedure

In every session 10 subjects were told that they would be a “First Mover” and the other 10 that
they would be a “Second Mover” for the duration of the session. Each session consisted of 2
practice rounds followed by 10 paying rounds.

In every paying round, each First Mover was paired anonymously with a Second Mover.
Each pair’s prize was chosen randomly from {.£0.10, £0.20, ..., £3.90} and revealed to the pair
members. The First and Second Movers then completed our slider task sequentially, with the
Second Mover discovering the points score of the First Mover she was paired with before starting
the task. As explained in Section 2.1.1, we used a slider task with 48 sliders and an allotted
time of 120 seconds. During the task, a number of pieces of information appeared at the top of
the subject’s screen: the round number; the time remaining; whether the subject was a First or
Second Mover; the prize for the round; and the subject’s points score in the task so far. If the
subject was a Second Mover, she also saw the points score of the First Mover. Figure 2 provides
an example of the screen visible to the Second Movers.

The probability of winning the prize for each pair member was 50 plus her own points score
minus the other pair member’s points score, all divided by 100. Thus, we imposed winning
probabilities linear in the difference of the points scores, with equal points scores giving equal
winning probabilities, while an increase of 1 in the difference raised the chance of winning by 1
percentage point for the pair member with the higher points score. The probability of winning
function was explained verbally and using Table 6. At the end of the round, the subjects saw
a summary screen showing their own points score, the other pair member’s points score, their
probability of winning the prize given the respective points scores, the prize for the round and
whether they were the winner or loser of the prize in that round.

After each paying round the subjects were re-paired according to Cooper et al. (1996)’s “no
contagion” matching algorithm (as used recently by, e.g., Dal Bé, 2005). This rotation-based
algorithm ensures that not only do the same subjects never meet each other more than once,
but that each round is truly one-shot in the sense that a given subject’s actions in one round
cannot influence, either directly or indirectly, the actions of other subjects that the subject is
paired with later on. The explanation to the subjects in the experimental instructions provides
further detail.

Before starting the paying rounds, the subjects played 2 practice rounds to gain familiarity
with the task and procedure and to give opportunities for questions. To prevent contamination
the subjects were made aware that during the practice rounds they were playing against au-
tomata who behaved randomly. At the end of each practice round, the subjects were informed
of what their probability of winning would have been given the respective points scores, but
were not told that they had won or lost in that round, and no prizes were awarded. We do not

include the practice rounds in the econometric analysis.



3 Theoretical Predictions

In this Section we provide a theoretical model of the behavior of a generic pair of First and
Second Movers competing for a prize v in a particular round. After describing the model, we
show that in the absence of disappointment aversion the Second Mover’s effort does not depend
on the First Mover’s effort, while a disappointment averse Second Mover will respond negatively
to the effort choice of the First Mover.

3.1 One-Shot Theory Model

Two agents compete to win a fixed prize of monetary value v > 0 in a rank-order tournament,
choosing their effort levels sequentially. The First Mover chooses her effort level e; from an
action space A C [0,€] which can be discrete or continuous. The Second Mover observes e;
before choosing her effort level eo from A. As noted in Section 2.1.2, we interpret a subject’s
points score in the slider task as effort exerted. Agent i’s probability of winning the prize
P;(ei, e;) increases linearly in the difference between her own effort, e;, and the other agent’s

effort, e;. Assuming symmetry of the probability of winning functions,

€ — € +7

Pi(ei ej) = 2

, (1)
with v > € to ensure that P; € [0,1]. Throughout we focus on the behavior of the Second

Mover conditional on the First Mover’s effort ej.

3.2 No Disappointment Aversion

Applying the canonical model in the tournament literature, the Second Mover’s utility Us is
separable into utility ug(y2) from her tournament payoff yo € {0,v}, which we call her material
utility, and her cost of effort Cs(ez),'” so

Ua(y2, e2) = uz(y2) — Ca(e2). (2)

The underlying assumption is that because the (non-monetary) effort cost is sunk before the
winner of the tournament is determined, the effort choice does not affect risk preferences over the
monetary payoff from the tournament. Separability implies that the Second Mover’s expected

utility is given by

EUg(eg, 61) = PQ(@Q, 61)U2(U> + (1 — Pg(ez, 61))U2(0) — 02(62)
€2 — e +7

— (ua(o) — us(0)) (27) T us(0) — Caes). 3)

As the winning probabilities are linear in the difference in efforts, the First Mover’s effort e; has

no effect on the marginal impact of the Second Mover’s effort e on her probability of winning.

9Che and Gale (2000) call this a piece-wise linear difference-form success function.
°Tn their related work, Abeler et al. (2009) and Crawford and Meng (2009) make equivalent separability
assumptions.



Thus the Second Mover’s marginal utility with respect to her own effort does not depend on ey,

giving the following result.

Proposition 1 In the absence of disappointment aversion the Second Mover’s optimal effort €3

or set of optimal efforts) does not depend on the First Mover’s effort eq.
P p

Note that we have not imposed any concavity or differentiability assumptions on ug(y2) (and
nor have we assumed anything about the shape of Cy(e2)). Thus the result continues to hold
if the Second Mover is loss averse around a fized reference point (Section 3.3 elaborates) or
exhibits any degree of risk aversion over her monetary payoff. The result also holds if ua(ys2)
incorporates an impact of winning or losing on the utility function in any later tournaments,

e.g., via changes in wealth or the reference point.

3.3 Disappointment Aversion

Models of disappointment aversion (e.g., Bell, 1985; Loomes and Sugden, 1986; Gul, 1991;
Shalev, 2000; Delquié and Cillo, 2006a, 2006b; Ké&szegi and Rabin, 2006, 2007) build on the
idea that agents are sensitive to deviations from their expectations, suffering a psychological
loss when they receive less than expected and experiencing elation when they receive more.
Furthermore, agents anticipate these losses and gains when deciding how to behave.

We follow most of the literature in embedding disappointment aversion in a loss aversion-
type framework.!! Suppose that the Second Mover compares her material utility ua(y2) to a
reference level of utility Rs, suffering losses when wa(y2) is less than this reference point and

enjoying gains when wuz(y2) exceeds the reference point. Specifically, total utility Us is given by

Us(y2, Ra, e2) = ua(Y2) + Luy(yy) >Ry G2(u2(y2) — R2) + Luy(yo)<ry Lo(u2(y2) — Ra) — Ca(ez), (4)

where the loss function La(x) < 0 for x < 0, the gain function Ga(x) > 0 for x > 0 and
G2(0) = Ly(0) = 0. The utility arising from the comparison of us(y2) to the reference point is
termed gain-loss utility. The Second Mover is said to be loss averse if losses due to downward
departures from the reference point are more painful than equal-sized upward departures are
pleasurable, i.e., Ga(x) < |La(—=x)| for all > 0. The Second Mover is first-order loss averse
if she is loss averse in the limit as the deviations from the reference point go to zero, i.e.,
limgpo L5(x) > limg o G5(x), assuming differentiability of gain-loss utility except at the kink
where z = 0.

By modeling each tournament as a one-shot interaction, we are assuming that our subjects
frame each tournament narrowly, i.e., they compare the outcome of each tournament to their
reference point in isolation. Models and tests of loss aversion generally incorporate narrow
framing, either implicitly or explicitly (DellaVigna, 2009). Barberis et al. (2006) provide evidence

that attitudes towards small gambles can only be explained by first-order loss aversion together

Hnstead, Gul (1991) uses probability weighting, while Loomes and Sugden (1986) insist on the differentiability
of utility. Kahneman and Tversky (1979)’s Prospect Theory incorporates a loss averse value function defined
only over losses and gains relative to the reference point, while we follow the disappointment aversion literature
in defining total utility over both material utility and gain-loss utility arising from the comparison of material
utility to the reference point.



with the narrow framing of individual gambles, while Read et al. (1999) survey the broader
evidence on narrow framing.

Starting with Kahneman and Tversky (1979), most models of loss aversion take the reference
point to be fixed exogenously, for example assuming it to be equal to the status quo. We noted
above that the utility formulation (2) is flexible enough to incorporate loss aversion around a
fixed reference point. Thus, an exogenous reference point does not introduce any interdependence
between the efforts of the First and Second Movers (to see that Proposition 1 continues to hold,
note that if ug(y2) in (2) is redefined to include gain-loss utility, the analysis proceeds as before).

Instead of holding an exogenous reference point, we assume that a disappointment averse
Second Mover is loss averse around an endogenous reference point equal to her expected material

utility given the effort levels that are actually chosen,'? so

R2 = E[UQ(y2)|€2,€ﬂ. (5)

Thus a Second Mover’s reference point will be sensitive to both the effort chosen by the First
Mover and her own effort, and when optimizing the Second Mover understands that her effort
choice affects her reference point. Notice that the endogeneity of the expectation is crucial. If
the Second Mover starts with a reference point equal to a prior expectation which is invariant
to the effort levels that are actually chosen, the reference point is fixed so, as explained above,
Proposition 1 still holds. Instead, our reference point adjusts to the agents’ choices: in the
terminology of Készegi and Rabin (2007) the reference point is choice-acclimating.'

To operationalize our model, we linearize material utility and gain-loss utility.!* We assume
that ug(y2) = y2, so material utility is linear in money and the Second Mover’s reference point

becomes her expected monetary payoff, i.e.,
R2 = UPQ(EQ, 61). (6)

Furthermore, we assume that the gain-loss utility arising from the comparison of us(y2) to the
reference point is piece-wise linear, with a constant slope of g9 in the gain domain and [ in the
loss domain. With piece-wise linearity, loss aversion implies that lo > g2, so losses are more
painful than same-sized gains are pleasurable.'® Thus we define disappointment aversion as

follows.

12T a single agent set-up, Bell (1985) and Loomes and Sugden (1986) also use a reference point equal to
expected material utility given the chosen action. Delquié and Cillo (2006a, 2006b) and K&szegi and Rabin (2006,
2007) argue that in a stochastic environment, the reference point itself should be taken to be a lottery, with an
agent comparing the outcome to all the possible outcomes in the reference lottery and weighting each comparison
by the probability of the relevant reference outcome. It is straightforward to show that in the linear environment
considered below the reference lottery approach collapses to our single reference point set-up.

BTechnically our game is psychological (Geanakoplos et al., 1989) as the Second Mover’s utility depends on
her beliefs about the chosen efforts via the reference point. In particular, our game falls under Battigalli and
Dufwenberg (2009)’s framework of a dynamic psychological game as utility depends on terminal node (ex post)
beliefs, which are pinned down by the chosen efforts, so beliefs can update during the course of the game. In
Kd&szegi and Rabin (2006), by contrast, utilities depend only on initial beliefs as the reference point is given by a
prior expectation which does not update in response to the chosen action (although an equilibrium consistency
requirement is imposed on the expectation).

14Given the experimental stakes are small, we believe this comes at a low cost.

15With piece-wise linearity, loss aversion and first-order loss aversion are equivalent. If lx = g2, gains and losses
relative to the reference point cancel out in expectation, so the agent acts as if she had standard preferences.



Definition 1 A disappointment averse Second Mower is loss averse around her expected mone-
tary payoff, so Ao = lo — go, which measures the strength of disappointment aversion, is strictly

positive.

We can then express a disappointment averse Second Mover’s expected utility as'®

EUQ(CQ, 61) = PQ(U + 92(’1} — ’UPQ)) + (1 — PQ)(O + ZQ(O — ’UPQ)) — 02(62)
= 'UPQ - )\QUPQ(l — PQ) — 02(62), (7)

and we let
A2(€2 - 61) = —)\QUPQ(l — PQ) (8)

represent the extra term introduced into expected utility by disappointment aversion. (Recall
from Section 3.2 that loss aversion around a fixed reference point, including one given by a prior
expectation, or risk aversion in the absence of an endogenous reference point do not introduce
a similar term.)

We call A; the Second Mover’s disappointment deficit as it is always negative for Ao > 0
(strictly negative for P; ¢ {0,1}): a disappointment averse Second Mover dislikes variance in
her monetary payoff as losses relative to her expected payoff loom larger than gains. (With
risk aversion, agents care only about their probability of winning as there are only two possible
outcomes.) The variance of the Second Mover’s two-point distribution of monetary payoffs is
given by vP(1 — P»), which is strictly concave in P, and maximized at P, = %, so given the
linearity of P» in e — ey the disappointment deficit is strictly convex in the difference in efforts
and at its most negative where the efforts are equal.

When efforts are such that the Second Mover has zero probability of winning, the Second
Mover has a reference point of zero and her realized payoff equals her reference point; she is
never disappointed and never receives more than expected. Hence her disappointment deficit is
zero. Starting at zero, a small increase in her probability of winning leads to a large increase in
the variance of her monetary payoff. Further increases in the probability of winning towards %
lead to further yet smaller increases in the variance. At P, = % the variance is at its highest so
the disappointment deficit is at its most negative - irrespective of whether she wins or loses the
Second Mover’s realized payoff is very different from her expected payoff. Starting at P, = %
increases in the probability of winning reduce the variance, initially by small amounts, and then
by larger amounts as the probability of winning approaches 1.

The convexity of the disappointment deficit is critical to understanding how the Second
Mover responds to the First Mover’s effort choice. For any value of the Second Mover’s effort,
an increase in the First Mover’s effort reduces the Second Mover’s probability of winning. This
puts the Second Mover at a point on her disappointment deficit curve with a lower slope (less
positive or more negative) so the Second Mover’s effort has a smaller (again less positive or

more negative) effect on the disappointment deficit, and hence the Second Mover has a lower

18Tn the context of desert preferences, whereby an agent’s expectation represents how much she feels she deserves
given how hard she was worked in comparison to her rival, Gill and Stone (2009) derive an equivalent formulation
which they use to analyze simultaneous effort choices in a purely theoretical framework. Gill and Stone permit
g2 < 0 to model agents who feel guilty about doing better than deserved. All of our theoretical and empirical
analysis continues to hold if we allow g2 < 0 here.
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marginal incentive to exert effort. We thus have a discouragement effect, which is crucial to our
identification strategy: a disappointment averse Second Mover responds negatively to the First
Mover’s effort, so the harder the First Mover works the more the Second Mover shies away from

exerting effort. Thus First and Second Mover efforts are strategic substitutes.!”

Proposition 2 When the Second Mover is disappointment averse, higher First Mover effort
discourages the Second Mover: the Second Mover’s optimal effort €5 is always (weakly) decreasing

i the First Mover’s effort e;.

Proof. See Appendix A.1. =

Up to now we have imposed no assumptions on the shape of the cost of effort function. In
order to derive an analytical expression for how the Second Mover responds to the First Mover’s
effort, and to see how the slope of the reaction function changes in the value of the prize and

the strength of disappointment aversion, we now assume a quadratic cost of effort function:

Colen) = bes + 2. (9)

With this cost function, the Second Mover’s objective function will be everywhere convex or
everywhere concave. With strict convexity, the Second Mover will always set effort at a corner.
Instead we focus here on the case of strict concavity, which allows interior optima, showing that
the discouragement effect becomes stronger as the Second Mover becomes more disappointment

averse or the value of the prize goes up.

Proposition 3 Suppose a disappointment averse Second Mover has a quadratic cost function
(given by (9)) and a strictly concave objective function, i.e., 2y*c — Aov > 0. When the action

space is continuous, the slope of the Second Mover’s reaction function in the interior is given by

des — —Xv

der  272%c— M\v

<0 (10)

which becomes strictly more negative in the strength of disappointment aversion Ao and the value
of the prize v. When the action space is discrete, the discrete analogue of the reaction function

behaves similarly.

Proof. See Appendix A.2. =

These effects are intuitive. Referring back to (8) we see that the disappointment deficit term
becomes more negative in the strength of disappointment aversion Ao and the value of the prize
v. The variance of the monetary payoff goes up in the size of the prize, and the stronger is

disappointment aversion, the greater the weight put on this variance.

171t is straightforward to extend the proof of Proposition 2 to show that if Az were negative, the Second Mover
would respond positively to the First Mover’s effort.
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4 Empirical Analysis

4.1 Overview and Sample Description

We use the data set collected from the laboratory experiment described in Section 2 to test our
theory of disappointment aversion. In Section 4.2 we show in a reduced form setting that, as pre-
dicted by our theory of disappointment aversion, Second Movers respond negatively to the effort
choice of the First Mover they are paired with and that the strength of this effect is increasing
in the value of the prize. In Section 4.3 we use structural modeling to estimate the strength
of disappointment aversion on average and the heterogeneity in disappointment aversion across
the population. As outlined in the Introduction, our estimation strategies exploit identifying
variation obtained from the properties of our slider task together with the experimental design.
In Section 4.4 we discuss how our results provide evidence for endogenous choice-acclimating
reference points and we relate our estimate of the disappointment aversion parameter to existing
estimates of loss aversion.

We analyze the behavior of Second Movers conditional on the effort choices of the First
Movers. This conditional analysis is sufficient for the purpose of identifying the presence and
strength of disappointment aversion. Moreover, solving for the optimal behavior of the First
Movers requires further assumptions concerning the First Movers’ beliefs about the unobserved
characteristics and behavior of the Second Movers. We avoid these issues, together with the as-
sociated computational complexities and potential sources of misspecification, when performing
a conditional analysis of the Second Mover effort choices.

As noted in Section 2.1.1, we interpret the number of sliders correctly positioned within the
allotted time, i.e., the points score, as the effort exerted by the subject. We comment here on
two features of this effort measure. First, as explained in Section 2.1.2, the design of our slider
task ensures that points scores correspond closely to effort exerted. Second, while the slider task
provides a fine measure of effort, effort is still discrete. We emphasize that this discreteness is
entirely unproblematic. Indeed, the above theoretical framework encompasses both discrete and
continuous effort choices, and the testable implications of our theory of disappointment aversion
apply irrespective of whether effort is discrete or continuous. In addition, as explained below,
discrete effort choices are easily accommodated in our structural model.

From the laboratory sessions we collected data on 60 First Movers and 60 Second Movers,
each observed for 10 paying rounds, with re-pairing between rounds as detailed in Section 2.2.
One Second Mover appears to have been unable to position any sliders at exactly 50 and this
subject is dropped from our preferred sample.'® However, we show that our results are robust
to our sample selection. Table 1 summarizes the behavior of the 59 Second Movers and the
corresponding First Movers in each round. Efforts range between 0 and 41 sliders for First
Movers and 0 and 40 sliders for Second Movers. Within each round, on average First and
Second Movers exert roughly the same effort, with average effort increasing from around 22

sliders to just under 27 sliders over the 10 rounds.

8The data show that this subject was moving sliders around throughout the session but failed to position any
sliders at exactly 50 in either the practice rounds or in the paying rounds. This subject also experienced problems
when entering his/her Participant ID number.
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Paying Minimum Maximum

Mean(e;) SD(e1)  Mean(es2) SD(e2)

Round el es e1 €9
1 22.034 5.991 21.763 6.101 1 0 33 34
2 22.627 6.708 23.458 4.836 0 11 33 33
3 24.763 6.075 24.831 4.875 0 12 37 38
4 24.627 5.956 25.203 4.502 0 16 35 36
5 24.966 6.800 25.119 5.660 0 0 36 35
6 24.729 7.508 24.898 7.039 1 37 39
7 25.881 5.855 25.763 6.109 9 0 37 37
8 26.831 5.858 26.169 5.133 9 14 41 35
9 25.593 8.550 26.254 6.702 0 0 38 40
10 26.322 6.781 26.729 5.988 1 0 40 39

Notes: SD denotes standard deviation and e; and ez denote, respectively, First and Second Mover effort.

Table 1: Summary of First and Second Mover efforts.

4.2 Reduced Form Analysis

We use a panel data regression to examine whether Second Movers respond to the effort choice
of the First Mover they are paired with. Exploiting Proposition 1, we hypothesize that if Second
Movers are not disappointment averse then the observed efforts of the Second Movers will not
depend on the corresponding First Mover efforts once controls for the prize and round effects
are included.' Alternatively, if subjects are disappointment averse then Proposition 2 implies a
negative dependence of observed Second Mover efforts on the corresponding First Mover efforts,
again conditional on controls for the prize and round effects.

To explore how Second Movers respond to First Mover effort we estimate the following linear

random effects panel data model:
€2 n,r = B1 +/32Un,r +B361,n,r+ﬂ461,n,r Xvn,r+dr +wnteny for n=1,...,N; r=1,...,10, (11)

where n and r index, respectively, Second Movers and paying rounds, and N denotes the total
number of Second Movers. eq ., is the effort of the First Mover paired with the n'™™ Second
Mover in the " round, and Upp is the prize draw for the n* Second Mover in the r*™ round.
The prize, the First Mover’s effort and the First Mover’s effort interacted with the prize are
included as explanatory variables. The inclusion of the interaction of the prize and the First
Mover’s effort is motivated by Proposition 3 which shows that in the case of a quadratic cost
of effort function the negative effect of the First Mover’s effort on the Second Mover’s optimal
effort is larger at higher prizes. Additionally, the equation includes a set of round dummies
denoted by d, for » = 1,...,10, with the first paying round providing the omitted category, to
capture systematic differences between rounds which are common across Second Movers, and

round invariant Second Mover specific effects denoted w,, forn = 1,..., N to capture systematic

19WWe note however that First and Second Mover efforts will not be unconditionally independent in the presence
of prize and round effects which impact on both pair members.
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differences between Second Movers. Lastly, €, , is an unobservable that varies over rounds and
over Second Movers and captures differences between rounds in a Second Mover’s effort choice

that cannot be attributed to the other terms in the model. w,, is assumed to be identically and
2

independently distributed over Second Movers with a variance o,

while €, , is assumed to be
2

identically and independently distributed over rounds and Second Movers with a variance o?.

Preferred Sample
59 Second Movers

Full Sample
60 Second Movers

Coeflicient z value

Coefficient  z value

(p value) (p value)
First Mover effort 0.044 0.898 0.047 0.963
(0.369) (0.336)
Prize 1.639*** 2.724 1.655%* 2.794
(0.006) (0.005)
Prize xFirst Mover effort —0.049** —2.083 —0.050** —2.179
(0.037) (0.029)
do 1.689** 2.381 1.655** 2.368
(0.017) (0.018)
ds 3.084*** 4.325 3.034*** 4.323
(0.000) (0.000)
dy 3.448*** 4.838 3.369*** 4.801
(0.000) (0.000)
ds 3.322%** 4.650 3.279*** 4.661
(0.000) (0.000)
dg 3.262*** 4.577 3.193*** 4.554
(0.000) (0.000)
dry 4.123%** 5.756 4.043*** 5.734
(0.000) (0.000)
dg 4.567** 6.341 4.487*** 6.330
(0.000) (0.000)
dy 4.709*** 6.582 4.632%** 6.579
(0.000) (0.000)
dig 5.180*** 7.148 5.066*** 7.115
(0.000) (0.000)
Intercept 19.777*** 14.126 19.392*** 13.400
(0.000) (0.000)
oL 4.288 5.342
Oe¢ 3.852 3.826
N xR 590 600
x? test for no significant 4.16 2.94
difference between men and women df =3,p=0.242 df =3,p=0.235
Hausman test for random 2.43 2.43

versus fixed effects df =12,p =0.998 df =12,p =0.998

Notes: *, ** and *** denote significance at the 10%, 5% and 1% levels. df denotes degrees of freedom.

Table 2: Random effects regressions for Second Mover effort.

Table 2 reports estimates of the parameters appearing in (11). The results for the preferred
sample show a negative effect of First Mover effort on Second Mover effort. In more detail, at low
prizes First Mover effort does not significantly affect Second Mover effort, while at high prizes
there is a large and significant discouragement effect as predicted by our theory of disappointment
aversion. Application of the Delta method reveals that the effect of First Mover effort on Second

Mover effort is not significant at the 5% level for prizes less than £2, is significant at the 5% level
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for prizes between £2 and £2.60, and is significant at the 1% level for prizes of £2.70 and above.
For the highest prize of £3.90 a 10 slider increase in First Mover effort decreases Second Mover
effort by approximately 1.5 sliders. Furthermore, there are large and significant positive prize
effects, and we find that the persistent unobserved individual characteristics explain more of the
variation in behavior than the transitory unobservables. The round dummies reveal significant
increases in effort over the 10 rounds which we interpret as a reduction in the marginal cost of
effort due to learning-by-doing.

Additional regressions, not reported, allow the coefficients on First Mover effort, the prize
and the interaction of these two variables to differ between men and women. No significant
gender differences were found. This suggests that Niederle and Vesterlund (2007)’s finding that
men have a stronger preference for competition compared to women cannot be explained by
differential levels of disappointment aversion across gender when agents compete.

We note that, although the parameters reported in Table 2 were estimated from a linear
random effects model, an alternative specification in which round invariant Second Mover specific
effects are treated as fixed effects yields almost indistinguishable results. This is because Second
Mover specific effects are uncorrelated with the prize and the First Mover efforts due to the
experimental design. Finally, Table 2 shows that including the 60" Second Mover does not
change conclusions concerning significance, and nor does this have substantial effects on the

coeflicient estimates.

4.3 Structural Modeling

Structural modeling seeks to fit the theoretical model with disappointment aversion presented
above in Section 3.3 to the experimental sample. In contrast to the reduced form analysis above,
structural modeling recovers estimates of the strength of disappointment aversion on average and
the population-level heterogeneity in disappointment aversion. Below we describe the empirical

specification, the estimation strategy, including a discussion of identification, and the results.

4.3.1 Empirical Specification

We use Aa,, to denote the disappointment aversion parameter of the n*™ Second Mover. In this
specification the strength of disappointment aversion may vary between subjects; however, for
a given subject the strength of disappointment is constant over rounds. We adopt the following
specification for Ag :

)\g,an(Xg,ai) for n=1,...,N, (12)

and further assume that A2, is independent over Second Movers. The parameter Xg represents
the strength of disappointment aversion on average, and O'i denotes the variance of the strength
of disappointment aversion in the population.

The cost of effort function is assumed to be quadratic, as in (9). The parameter b is assumed
to be constant over rounds and common to Second Movers, while unobserved cost differences
between Second Movers and learning effects enter the cost of effort function through the con-

vexity parameter c. c,, denotes the convexity parameter of the n*™ Second Mover in the rth
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round and takes the following form:
Cny =K+ 0p + fy + Ty for n=1,...,N; r=1,...,10. (13)

In the above x denotes the component of c,, which is common across Second Movers and
rounds. ¢, for r = 1,...,10 are round effects, with the first paying round providing the omitted
category. A cost of effort that is declining over rounds due to learning is therefore represented by
values of 4, which are negative and decreasing over rounds. u, denotes unobserved differences
in the cost of effort functions across Second Movers that are constant over rounds. For the
purpose of estimation u, is assumed to be independent over Second Movers and to have a
Weibull distribution with scale parameter ¢, and shape parameter ¢,. The final term in the
cost function is m,, which represents unobserved differences in Second Movers’ cost of effort
functions that vary over rounds as well as over Second Movers. m, , is assumed to be independent
over Second Movers and rounds and to have a Weibull distribution with scale parameter ¢, and
shape parameter ¢,. The Weibull distribution is a flexible two parameter distribution that has
positive support, thus allowing us to impose convex cost of effort functions on all Second Movers
when estimating the model.?°

Given this parameterization of the theoretical model, the structural model has 17 unknown
parameters, corresponding to the parameters describing disappointment aversion, Xz and oy, the
common cost parameters b and &, the 9 round effects d, for » = 2,...,10 and the 4 parameters
appearing in the distribution of the unobservables in the cost of effort function, namely, ¢,, ¢,

¢ and ;. These 17 structural parameters are collectively denoted by the vector 6.

4.3.2 Estimation Strategy and Identification

We estimate the 17 unknown parameters using the Method of Simulated Moments (MSM) (Mc-
Fadden, 1989; Pakes and Pollard, 1989). The analytic complexity of choice probabilities, due
to the multiple sources of unobserved heterogeneity, precludes the use of Maximum Likelihood
and Method of Moments estimation techniques. MSM, in contrast, uses easily computed fea-
tures of the sample as the basis for estimating the unknown parameters. Formally, the sample
observations are used to compute a k x 1 dimensional vector of moments, with k£ > 17, denoted
M. Critically, every moment included in M should depend at least in part on one or more
endogenous variables. The researcher has considerable discretion over the moments included in
M; however M typically includes period specific averages of endogenous variables, here the effort
choices of the Second Movers in each round, together with correlations between the endogenous
variables and the explanatory variables.

MSM proceeds by generating S simulated samples. Each simulated sample contains N
Second Movers each observed for 10 rounds. In each simulated sample the Second Movers face
the same prizes and First Mover efforts as observed in the actual sample. The behavior of the
Second Movers in the simulated samples is determined from the structural model using a trial
value, 0;, of the values of the unknown parameters, 6. In particular, unobservables are assigned

to Second Movers in accordance with the above described distributions. For each Second Mover

20Tn Section 4.3.3 we show that replacing the Weibull distribution with the normal distribution reduces the
model’s goodness of fit.
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and each round, the expected utility is calculated for each feasible Second Mover effort choice,
and the simulated effort choice is the action with the highest expected utility. Further details
concerning the construction of the simulated samples are provided in Appendix B.1.

The behavior of the Second Movers in the simulated samples is then compared to the behavior
of the actual experimental subjects. Specifically, for each of the S simulated samples the vector
of moments M(0;) is computed. These are the same k& moments as computed for the observed
sample. The simulated moments M, are a function of the parameters #; used to simulate the
behavior of the Second Movers as different values of the parameters imply different optimal
Second Mover effort choices. The average of M, over the S simulated samples, % Zle M (6y),
provides a summary of the behavior of Second Movers in the simulated samples. The process of
averaging over the S simulated samples reduces the effect of simulation noise on the simulated

moments. The following metric is then formed:

1 / 1S
J(0;) = (M -5 Zl Ms(et)> W (M -5 Zl MS(Gt)> : (14)

where Wy is a fixed k& x k dimensional positive semidefinite weighting matrix. The quantity
J(0:) provides a scalar measure of the distance between the observed behavior of the actual
experimental subjects and the behavior of the Second Movers in the simulated samples at the
trial parameter vector ;. The MSM estimator of 8, denoted 5, is the value of 8; that minimizes
J(0y): = argming, J(6;). Thus MSM estimates the structural parameters to be such that the
behavior of Second Movers simulated on the basis of the structural model is as similar as possible
to the behavior of the actual Second Movers as observed in sample.

Under the conditions of Pakes and Pollard (1989), the MSM estimator is consistent and
asymptotically normal for any consistent weight matrix Wy. We use bootstrap sampling of
Second Movers with replacement to estimate Wy . Efficiency is maximized by setting Wi to be
the inverse of NV times the covariance matrix of the sample moments, which yields an Optimally
Weighted Minimum Distance estimator (OWMD). However, it is well known that this choice
of Wy can introduce finite sample bias (see for example Altonji and Segal, 1996). Thus our
preferred estimator uses a weight matrix with diagonal elements equal to the inverse of N times
the variances of the sample moments and zeros elsewhere, which yields a Diagonally Weighted
Minimum Distance estimator (DWMD). Further details pertaining to the properties of the MSM
estimator and estimation routine are presented in Appendix B.2.

We use 38 moments to estimate the 17 structural parameters. The moments are described in
Table 4 in Appendix B.3. Correlations between Second Mover effort and First Mover effort and
between Second Mover effort and First Mover effort interacted with the prize provide identifying
information about Xg, the parameter describing the strength of disappointment aversion on av-
erage. Percentiles of Second Mover specific correlations provide information about the standard
deviation of disappointment aversion in the population, o). The correlation between Second
Mover effort and the prize helps to identify x, which measures the component of the convexity
of the cost of effort function common to Second Movers and rounds, while the associated per-
centiles help to identify the shape of the distributions of the unobserved cost differences between

Second Movers. Moments pertaining to the marginal distribution of Second Mover effort, such
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as round specific means and the standard deviation, provide further identifying information.

4.3.3 Results

Preferred Spec. Robustness Checks
DWMD OWMD DWMD DWMD
59 Second Movers 59 Second Movers 59 Second Movers 60 Second Movers
Weibull Costs Weibull Costs Weibull Costs

Normal Costs

Ao 1.724 1.497 1.199 1.409
(0.479)[0.000] (0.258)[0.000] (0.347)[0.001] (0.323)[0.000]
o 1.433 1.153 1.298 1.508
(0.492)[0.004] (0.154)[0.000] (0.308)[0.000] (0.455)[0.001]
b —0.532 —0.566 —0.522 —0.506
(0.033)[0.000] (0.013)[0.000] (0.017)[0.000] (0.017)[0.000]
K 1.868 2.069 2.568 1.808
(0.095)[0.000] (0.037)[0.000] (0.053)[0.000] (0.074)[0.000]
09 —0.162 —0.198 —0.163 —0.171
(0.043)[0.000] (0.033)[0.000] (0.034)[0.000] (0.056)[0.000]
03 —0.265 —0.313 —0.321 —0.301
(0.040)[0.000] (0.030)[0.000] (0.050)[0.000] (0.059)[0.000]
04 —0.314 —0.332 —0.344 —0.306
(0.051)[0.000] (0.032)[0.000] (0.031)[0.000] (0.074)[0.000]
05 —0.315 —0.394 —0.341 —0.285
(0.040)[0.000] (0.032)[0.000] (0.063)[0.000] (0.072)[0.000]
O —0.290 —0.379 —0.315 —0.276
(0.050)[0.000] (0.040)[0.000] (0.054)[0.000] (0.076)[0.000]
07 —0.363 —0.444 —0.394 —0.352
(0.049)[0.000] (0.031)[0.000] (0.048)[0.000] (0.067)[0.000]
s —0.411 —0.431 —0.431 —0.413
(0.046)[0.000] (0.029)[0.000] (0.043)[0.000] (0.063)[0.000]
09 —0.390 —0.465 —0.436 —0.379
(0.063)[0.000] (0.039)[0.000] (0.052)[0.000] (0.063)[0.000]
d10 —0.449 —0.548 —0.493 —0.435
(0.046)[0.000] (0.028)[0.000] (0.035)[0.000] (0.058)[0.000]
On 0.322 0.164 — 0.211
(0.064)[0.000] (0.015)[0.000] (0.048)[0.000]
du 0.436 0.529 — 0.504
(0.035)[0.000] (0.036)[0.000] (0.058)[0.000]
- 1.016 0.660 — 0.809
(0.118)[0.000] (0.034)[0.000] (0.069)[0.000]
Ou 0.918 1.163 - 0.948
(0.086)[0.000] (0.031)[0.000] (0.082)[0.000]
O 0.320 0.356 0.207 0.307
(0.050)[0.000] (0.034)[0.000] (0.021)[0.000] (0.067)[0.000]
ou 0.493 0.432 0.290 0.552

(0.048)[0.000]

(0.032)[0.000]

(0.019)[0.000]

(0.108)[0.000]

Notes: Standard errors in parentheses and p values in brackets. Standard deviations of the
transitory and persistent unobservables in the cost of effort function, o and o,, are estimated
directly in the specification using normally distributed unobservables and computed from the
other parameters for the specifications using the Weibull distribution. Estimates of k, ¢, for
r=2,...10, ¢ and ¢, have been multiplied by 100.

Table 3: MSM parameter estimates.
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The first column of Table 3 reports the parameter estimates for the preferred specification,
which is based on the sample of 59 Second Movers, assumes Weibull distributed unobservables
in the cost of effort function and relies on a diagonal weight matrix. Before discussing the results
we briefly consider the goodness of fit of this specification represented by the relevant moments
in Table 5 located in Appendix B.3. Table 5 shows that for this specification all simulated
moments correspond closely to the values observed in the sample: in particular the observed
and simulated moments never differ by more than 1.3 bootstrapped standard deviations.

Turning to the parameter estimates for the preferred specification in the first column of
Table 3, our estimate of the strength of disappointment aversion on average, Xg, is 1.724 and
this is significantly different from zero at all conventional significance levels. In Section 4.4.2
we place this estimate in the context of the related literature but we note here that a figure
of 1.724 is in line with previous studies which estimate the strength of loss aversion around a
fixed reference point. We find that o) is significantly greater than zero, thus providing evidence
for heterogeneity in disappointment aversion across individuals. Our parameter estimates imply
that \g,, is greater than 2.9 for 20% of individuals, and is less than 0.5 for 20%. For 11% of
individuals, Ao, is less than zero.

The results further show that the cost of effort function exhibits significant convexity, and
learning effects work to reduce the convexity of the cost of effort over rounds, leading to higher
average effort levels in later rounds. In addition there is significant transitory and permanent
variation over Second Movers in the cost of effort, with persistent unobserved differences being
more important than transitory differences. Our estimate of b, the linear component of the
cost of effort function, is negative, indicating that the cost of effort is declining at low effort
levels. This negative coefficient is required to fit accurately observed average Second Mover
effort. However, the linear component of the cost of effort function does not affect how Second
Movers respond to the First Movers’ efforts. Moreover, it is not surprising that the cost of
effort is at first declining as the experimental subjects have self-selected into participating in
the experiment and the outside option during the task is to do nothing for 120 seconds. Other
experiments have also found that subjects derive some utility from carrying out real effort tasks,
e.g., Briiggen and Strobel (2007).

Next we explore how the disappointment aversion impacts on the effort choices of the Second
Movers and in particular look at how Second Movers responds to First Mover effort. Figure 3(a)
shows the mean best response of Second Movers with the average value of Ay, to the effort

choice of the First Mover.2!

We see strong negative effects of First Mover effort on Second
Mover effort at prizes of £2 and £3.90 and essentially no effect at the lowest prize of £0.10.

Standard errors, not reported, show that the slope of the reaction function is significantly neg-

21Reaction functions were obtained using simulation methods. Specifically, we consider a large number of
hypothetical Second Movers, and for each hypothetical Second Mover made draws from the estimated distributions
of wn and 7y, for the preferred specification. Using the estimated parameters of the cost of effort function for
round 5, we simulated each hypothetical Second Mover’s optimal effort conditional on specific values of First
Mover effort and the prize, and computed the mean best response. Reaction functions were obtained by repeating
this exercise while varying First Mover effort but holding the prize fixed. Reaction functions are linear and this
is a consequence of the quadratic cost of effort function.
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ative (at the 1% level) at prizes of £2 and £3.90.22 Figure 3(b) meanwhile shows the extent
to which heterogeneity in disappointment aversion translates into differences in mean Second
Mover responses to First Mover effort, evaluated at the average prize of £2. Second Movers with
low values of Ag,, defined to be the 20th percentile of the distribution of A ,, do not respond
appreciably to changes in First Mover effort. In contrast, a discouragement effect is observed for
Second Movers with high values of g, defined to be the 80" percentile of the distribution of
A2.,. Standard errors, not reported, show that the slope of the reaction function is significantly

negative (at the 1% level) for Second Movers with high values of Az ,,.
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Figure 3: Reaction functions implied by the preferred specification of the structural model.

Columns 2-4 of Table 3 provide robustness checks for various features of our analysis. We
see that irrespective of the choice of sample, the method of weighting the moments and the
distributional assumptions imposed on the cost of effort function, our estimate of the strength of
disappointment aversion on average A is significantly different from zero. Also, all specifications
show significant variation across individuals in the strength of disappointment aversion. The
OWMD and DWMD estimators give similar parameter estimates: thus there is little evidence
that using the optimal weight matrix introduces finite sample bias. However we err on the side of
caution and do not nominate this as our preferred specification. We also estimate a specification
in which the unobservables appearing in the cost of effort function are normally distributed,
rather than being drawn from Weibull distributions. While reducing by 2 the number of unknown
parameters, the normal distribution is more restrictive than the Weibull, and leads to concave
cost of effort functions for subjects with low cost draws.?? Table 5 shows that using the DWMD
estimator with normally distributed unobservables in the cost of effort function fits less well
than the preferred specification: the individual moments reveal that the deterioration in fit
occurs as this specification does not fit as accurately the distribution of Second Mover efforts.

Specifically, the standard deviations of observed and simulated Second Mover efforts differ by

22The magnitudes of the estimated slopes are lower than the corresponding estimates implied by the reduced
form analysis in Section 4.2. This is because MSM seeks to fit simultaneously a variety of different moments. If
we arbitrarily put a higher weight on the moments identifying these slopes, the estimated magnitudes would be
larger.

Z3When estimating the specification with normally distributed unobservables in the cost of effort function we
replace ¢y, with max{cy,,0.0001}.
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2.3 bootstrapped standard deviations, while the proportions of very low and very high simulated
Second Mover efforts are, respectively, 2.8 and 1.8 bootstrapped standard deviations different
from the corresponding proportions observed in the sample. Increasing the sample size to 60
Second Movers also leads to a larger discrepancy between the standard deviations of observed

and simulated Second Mover efforts than that obtained from the preferred specification.

4.4 Endogenous Reference Points
4.4.1 Evidence

Given that we model disappointment aversion as loss aversion around an agent’s endogenous
expectation, our finding of significant disappointment aversion provides evidence of loss aversion
around choice-acclimating reference points when agents compete. With a fixed reference point,
including one given by a prior expectation, Proposition 1 shows that we should observe no
discouragement effect, and no disappointment deficit term appears in the expression for expected
utility.

Thus our results speak to the debate about the speed at which reference points adjust.
Ké&szegi and Rabin (2007) note that it is unclear how much time is needed between agents mak-
ing their choices and the outcome occurring for the reference point to become choice-acclimating.
Given the tiny temporal gap between the agents’ effort choices and the outcome of the tourna-
ment, our results indicate that, at least in our competitive framework, the adjustment process

is essentially instantaneous.

4.4.2 Relationship to Existing Estimates of Loss Aversion

The endogeneity of the reference point means that behavior in our model is driven by the
size of the kink in gain-loss utility Ao = ly — g2. Other models of choice-acclimating reference
points share the same feature. To see this, we introduce Készegi and Rabin (2006, 2007)’s
parameterization, which involves a weighting on gain-loss utility relative to material utility,
n > 0, and a coefficient of loss aversion for gain-loss utility, A, which measures the ratio of the
slopes of gain-loss utility alone in the loss and gain domains. We estimate the size of the kink in
gain-loss utility, scaled relative to material utility, and Ao = nA—n = n(A—1). In their model of
single-agent effort provision, Abeler et al. (2009)’s first-order conditions also depend on (A —1),
as do preferences over lotteries in the choice-acclimating version of Készegi and Rabin (2007)’s
model (see p. 1059 and Proposition 12(i)). Bell (1985)’s original disappointment aversion model
also builds on the size of the kink. We cannot estimate A directly, as this coefficient interacts
with the weight put on gain-loss utility to determine the size of the kink in gain-loss utility;
nonetheless, because we estimate that Xz > 0, it follows that n > 0 and \ > 1.%

Our measure of disappointment aversion is therefore not directly comparable to previous
measures of loss aversion around fixed reference points. Evidence from previous studies suggests
a coefficient of loss aversion of about 2 for Kahneman and Tversky (1979)’s value function
(Kahneman, 2003), i.e., the value function is about twice as steep in the loss domain as it is

in the gain domain. For example, from choices over lotteries Tversky and Kahneman (1992)

% Eyen though their reference point is fixed at the point of optimization, Crawford and Meng (2009) are also
unable to separately identify A and 7.
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estimate a coefficient of 2.25 for their median subject. Kahneman and Tversky (1979)’s value
function is defined only over gains and losses: if we consider this value function to include
implicitly any consumption value of losses and gains as well as psychological elation and pain
from deviating from the reference point, then the comparable figure in our setting to the usual
loss aversion coefficient is the ratio of the slopes of total utility in the loss and gain domains,
given by

1+1s A9

=1+ . 15
1+ g0 1+go (15)

Given an assumption about go, our estimate of X2 therefore implies an estimate of the average
value of (15) in the population. For example, if we assume that go € (0,1), so the elation
associated with receiving more than expected is positive but less important than the associated
material utility, then our estimate Ao = 1.724 implies that (15) € (1.862,2.724). This matches
previous estimates of the coefficient of loss aversion, and is broadly in line with Crawford and
Meng (2009)’s baseline estimate of the ratio of the slopes of total utility in the loss and gain
domains of 1.715 in the context of the loss aversion of taxi drivers around rational expectations-

based daily income and hours targets which are fixed at the point of optimization.

5 Conclusion

People compete all the time, e.g., for: promotions; bonuses; professional partnerships; elected
positions; social status; and sporting trophies. In these situations the competitors exert effort
to improve their prospects of success, and clear winners and losers emerge. Our results indicate
that winners are elated while losers are disappointed, and that disappointment is the stronger
emotion. In particular, we show that when our experimental subjects compete in a sequential-
move real effort competition, they are loss averse around an endogenous reference point given
by their expected payoff. A person’s reference point is conditioned on her own work effort and
that of her rival, and adjusts essentially instantaneously to the effort choices. Disappointment
aversion creates a discouragement effect, whereby a competitor slacks off when her rival works
hard.

We hope that our theoretical model and empirical findings will provide a useful building
block when predicting how people will behave in competitive situations. Furthermore, the
findings may be helpful to principals when designing competitive environments. For example,
employers will want to know how much they need to compensate employees for the expected
disappointment implicit in different types of compensation schemes. They will also be interested
in the degree to which a given compensation structure might impact on employees’ work efforts,
for example by creating asymmetries with some employees exerting a lot of effort and others
becoming discouraged.

Finally, we believe that the novel real effort slider task we developed for the purposes of
this study will prove valuable to researchers running real effort experiments in other settings in

which precise quantification of preference and cost parameters is important.
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Appendix

A Proofs

A.1 Proof of Proposition 2

Using (1) and (7),

_ + 2 _ _ 2
EUs(ez,e1) = v (W) — A (7(3261)> — Cy(e2). (16)

We use a proof by contradiction. Suppose that when e; increases from ej; to ejs > eqq, the
Second Mover’s optimal effort ej increases from e3, to e3, > e5,. By the optimality of the

Second Mover’s effort choices
[EUz(€51, e11) — EUz(e59, e11)] + [EUz2(e59, €12) — EUz(e5, €12)] > 0. (17)

Using (16), we get the following;:

_ * 2 * 2
EUs(e5,,e11) — EUs(e5, e12) = v <W> T Ao ((621 e) (€5, — e12) ) . (18)

27 4ry?
N . —ejg+e et, —e12)? — (et, —e11)?
EUs(e5y, e12) — EUs(€39,€11) = v (12211) + Agv <( 2= c12) 2( 2~ eu) > . (19)
Y 4ry
Thus
)‘ZU * * * * )‘2U * *
(17) = 2772(_621611 + e31e12 — ex9e12 + €39€11) = 2772(621 —ex)(e12 —e11) <0 (20)

given \o > 0 for a disappointment averse Second Mover, which contradicts (17) > 0 from above.
Note that if there are multiple optima, the proof extends naturally to show that the highest

optimal effort in response to ejo must lie weakly below the lowest in response to e;;. ®

A.2 Proof of Proposition 3

Using (9) and (16),

8EU2(62, 61) v )\2’0(62 — 61)
D LAtV A T i S B YR NP 21
Oes 2~y + 22 e (21)
2
)
0 U2(2€2,€1) _ )\2121 . (22)
Oes 27

We assume that 2y%c — A\gv > 0, so the objective function is strictly concave.

Suppose first that the action space A is continuous. The first-order condition gives the

23



following reaction function:

5.2 _
e if e < 7”“2”35] (btce)
* o ~yv—Xave; —2v2b JE yo+Agve—272 (b+ce) ~vv—242b
62(61) = W S [0, 6] if e € pYY) y 20 . (23)
. ~yu—272b
0 if eg > v

Given Ag > 0 and 27%¢c — A\yv > 0, in the interior % is clearly strictly negative and strictly
decreasing in Ao and v.

Suppose second that the action space A is discrete. Take any eo € A for which there exists
a higher effort which is a best response to some e; € [0,€] and a lower effort with the same
property. Let e; be the next highest effort in A and let e, be the next lowest effort in A. Using
(9) and (16), EUs(eq ,e1) — EUs(e2, 1)

_ ”<6;27_ °2) 4 apo <(eZT - 61)24;2(62 - 61)2> —blef —ea) — c((e;); —<) (24)
v — 2 €+ — € v — 2C v
_ (2'7 4'74;2( 2 2) + ()\2 4,7227 > ((6;)2 . %) (ii/g) 261(6; . 62) (25)

The cut-off e; at which EUg(e;, e1) = EUs(ea, €1) is given by

. 2yv — 492%b 272¢ — \ow el +eo
ea(ef o) = - (P s he), (26)

Given Ay > 0 and 2y2%c — Ayv > 0 by assumption, the cut-offs are strictly decreasing in the
Second Mover’s effort. From Proposition 2, best responses are (weakly) falling in e;. Thus if e;
was continuous but eo was discrete, the cut-offs would represent the points at which the Second
Mover’s reaction function jumped down. As both are discrete, the cut-offs define the Second
Mover’s reaction function in the interior: ey is a best response for the Second Mover for and

only for any e; € [é1(e5, e2),é1(e2,e5)] N.A. The range [¢1(e] , e2), &1(e2, e5 )] is of size

5 _ o 27%¢ — A\gv el —e;
bileney) — r(efea) = ( re— ) ( 2 2), (27)

)\211 2

which is strictly decreasing in Ao and v.

That the cut-offs are strictly decreasing in ey is the discrete case analogue of the reaction
function being strictly downward sloping in the continuous case. That the size of the ranges
between the cut-offs is strictly decreasing in Ao and v is the discrete case analogue of the reaction
function becoming strictly steeper in As and v in the continuous case. Note also the functional

+
= 3—62 =e9+ %, so the

form similarity: supposing that the permitted es’s increase in unit steps,
rate of change of él(e;, e2) with respect to eg is the inverse of the slope of the reaction function

in the continuous case. ®m
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B MSM: Further Details

B.1 Construction of Simulated Samples

The construction of each simulated sample is conditional on the First Mover efforts and prizes
observed in the actual sample. Additionally we make random draws which will later be used to
construct the unobservables appearing in the structural model. Specifically, for each simulated
sample s = 1,...,5 we construct matrices of dimensions N x 1, N x 1 and N x 10, denoted Q15,
@2, and Q3 respectively. Each element of Q1,, Q25 and @3, contains a random draw from
a standard uniform distribution. These matrices are held fixed throughout the estimation.??
Given a trial parameter vector @y, the effort choice of the n'" Second Mover in the 7** round of

the st sample is determined as follows:

1. The Second Mover is assigned values of the unobservables s ,, p, and m,, in accor-
dance with the distributional assumptions made in Section 4.3.1. Draws from the normal

distribution are found by transforming Q1 as follows:
>\2,n — 5\42 + O-A(D_I(le,n)a (28)

where ®~! denotes the inverse of the standard normal distribution function. Draws from

the Weibull distribution are obtained by transforming Q2; and Q35 as follows:

Hn = qbu(_ln(st,n))l/@H; (29)
Tnr = d)Tr(_ln(Q?)s,n,r))l/wﬂ- (30)

The values of the parameters Xg, O\, Pu> Pr, ¢u and ¢ are obtained by extracting the

relevant elements of 6;.

2. Given the assigned values of A2, 11, and 7, , and the remaining parameters of the cost of
effort function, b, x and 6, for r =2,...,10 as given by 6;, the expected utility associated

with each feasible Second Mover effort is computed using (7), (9) and (13).

3. The Second Mover is assigned the effort choice corresponding to the highest expected
utility.

Steps 1-3 are repeated for each of the 10 rounds, the N Second Movers and the S simulated sam-
ples. Note that by comparing the expected utilities associated with each of the 49 feasible effort
choices we fully account for the discreteness of effort. Additionally, the method of simulation

does not rely on the objective function being well behaved.

25Thus as the trial parameter vector 6; is adjusted the simulated samples vary only due to the change in 6; and
not due to variation in the underlying random draws. This is necessary to ensure convergence of the estimation
routine (Stern, 1997).
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B.2 Asymptotic Properties and Numerical Methods

Under the conditions in Pakes and Pollard (1989), § is consistent and asymptotically normal.
Specifically, with S fixed,

~ 1 _ -
VN@-0) L N (o, S% (D'WD) ™" D'WQWD (D'W D) 1> as N — oo, (31)
where Q = Ncov(M) is the covariance matrix of the sample moments normalized by the sample
size, W = plim(Wy) and

1N M (6))
D_S; (32)

a6,

0:=0

When implementing MSM, we use S = 30 simulated samples and therefore simulate 17700
pairings when using N = 59, and we estimate the weight matrix W using 5000 bootstrapped

samples each containing N Second Movers sampled with replacement from the original sample.

S
The term ¢ Y~ M,(6;) appearing in J(6;) in (14) is not a continuous function of the parameter
s=1
vector f; as small changes in #; may cause discrete changes in some Second Movers’ optimal
effort choices. Consequently gradient and Hessian based optimization methods are unsuitable
for minimizing J(6;). Instead we use Simulated Annealing in the form suggested by Goffe et al.

(1994) to solve for the MSM estimates.

B.3 Moments and Goodness of Fit
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C Experimental Instructions

Please open the brown envelope you have just collected. 1 am reading from the four page
instructions sheet which you will find in your brown envelope. [Open brown envelope]

Thank you for participating in this session. There will be a number of pauses for you to ask
questions. During such a pause, please raise your hand if you want to ask a question. Apart
from asking questions in this way, you must not communicate with anybody in this room. Please
now turn off mobile phones and any other electronic devices. These must remain turned off for
the duration of this session. Are there any questions?

You have been allocated to a computer booth according to the number on the card you
selected as you came in. You must not look into any of the other computer booths at any time
during this session. As you came in you also selected a white sealed envelope. Please now open
your white envelope. [Open white envelope]

Each white envelope contains a different four digit Participant ID number. To ensure
anonymity, your actions in this session are linked to this Participant ID number and at the
end of this session you will be paid by Participant ID number. You will be paid a show up fee
of £4 together with any money you accumulate during this session. The amount of money you
accumulate will depend partly on your actions, partly on the actions of others and partly on
chance. All payments will be made in cash in another room. Neither I nor any of the other
participants will see how much you have been paid. Please follow the instructions that will
appear shortly on your computer screen to enter your four digit Participant ID number. [Enter
four digit Participant ID number| Please now return your Participant ID number to its
envelope, and keep this safe as your Participant ID number will be required for payment at the
end.

This session consists of 2 practice rounds, for which you will not be paid, followed by 10
paying rounds with money prizes. In each round you will undertake an identical task lasting
120 seconds. The task will consist of a screen with 48 sliders. Each slider is initially positioned
at 0 and can be moved as far as 100. Each slider has a number to its right showing its current
position. You can use the mouse in any way you like to move each slider. You can readjust
the position of each slider as many times as you wish. Your “points score” in the task will be
the number of sliders positioned at exactly 50 at the end of the 120 seconds. Are there any
questions?

Before the first practice round, you will discover whether you are a “First Mover” or a
“Second Mover”. You will remain either a First Mover or a Second Mover for the entirety of
this session.

In each round, you will be paired. One pair member will be a First Mover and the other
will be a Second Mover. The First Mover will undertake the task first, and then the Second
Mover will undertake the task. The Second Mover will see the First Mover’s points score before
starting the task.

In each paying round, there will be a prize which one pair member will win. Each pair’s
prize will be chosen randomly at the beginning of the round and will be between £0.10 and
£3.90. The winner of the prize will depend on the difference between the First Mover’s and the

Second Mover’s points scores and some element of chance. If the points scores are the same,
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each pair member will have a 50% chance of winning the prize. If the points scores are not the
same, the chance of winning for the pair member with the higher points score increases by 1
percentage point for every increase of 1 in the difference between the points scores, while the
chance of winning for the pair member with the lower points score correspondingly decreases
by 1 percentage point. The table at the end of these instructions gives the chance of winning
for any points score difference. Please look at this table now. [Look at table] Are there any
questions?

During each task, a number of pieces of information will appear at the top of your screen,
including the time remaining, the round number, whether you are a First Mover or a Second
Mover, the prize for the round and your points score in the task so far. If you are a Second
Mover, you will also see the points score of the First Mover you are paired with.

After both pair members have completed the task, each pair member will see a summary
screen showing their own points score, the other pair member’s points score, their probability
of winning, the prize for the round and whether they were the winner or the loser of the round.

We will now start the first of the two practice rounds. In the practice rounds, you will be
paired with an automaton who behaves randomly. Before we start, are there any questions?
Please look at your screen now. [First practice round] Before we start the second practice
round, are there any questions? Please look at your screen now. [Second practice round]
Are there any questions?

The practice rounds are finished. We will now move on to the 10 paying rounds. In every
paying round, each First Mover will be paired with a Second Mover. The pairings will be changed
after every round and pairings will not depend on your previous actions. You will not be paired
with the same person twice. Furthermore, the pairings are done in such a way that the actions
you take in one round cannot affect the actions of the people you will be paired with in later
rounds. This also means that the actions of the person you are paired with in a given round
cannot be affected by your actions in earlier rounds. (If you are interested, this is because you
will not be paired with a person who was paired with someone who had been paired with you,
and you will not be paired with a person who was paired with someone who had been paired
with someone who had been paired with you, and so on.) Are there any questions?

We will now start the 10 paying rounds. There will be no pauses between the rounds.
Before we start the paying rounds, are there any remaining questions? There will be no further
opportunities to ask questions. Please look at your screen now. [10 paying rounds]

The session is now complete. Your total cash payment, including the show up fee, is displayed
on your screen. Please leave the room one by one when asked to do so to receive your payment.
Remember to bring the envelope containing your four digit Participant ID number with you but

please leave all other materials on your desk. Thank you for participating.
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Difference in
points scores

Chance of winning prize
for Mover with higher score

Chance of winning prize
for Mover with lower score

0 50% 50%
1 51% 49%
2 52% 48%
3 53% 47%
4 54% 46%
5 55% 45%
6 56% 44%
7 57% 43%
8 58% 42%
9 59% 41%
10 60% 40%
11 61% 39%
12 62% 38%
13 63% 37%
14 64% 36%
15 65% 35%
16 66% 34%
17 67% 33%
18 68% 32%
19 69% 31%
20 70% 30%
21 71% 29%
22 2% 28%
23 73% 27%
24 74% 26%
25 75% 25%
26 76% 24%
27 7% 23%
28 78% 22%
29 79% 21%
30 80% 20%
31 81% 19%
32 82% 18%
33 83% 17%
34 84% 16%
35 85% 15%
36 86% 14%
37 87% 13%
38 88% 12%
39 89% 11%
40 90% 10%
41 91% 9%
42 92% 8%
43 93% 7%
44 94% 6%
45 95% 5%
46 96% 4%
47 97% 3%
48 98% 2%
49 Not possible as there are only 48 sliders
50 Not possible as there are only 48 sliders

Table 6: Chance of winning in a given round.
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