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Accounting for respondent uncertainty to improve willingness-to-pay estimates  
 
ABSTRACT 
 
In this paper we develop an econometric model of willingness to pay that integrates data 
on respondent uncertainty regarding their own willingness to pay.  The integration is 
utility consistent and does not involve calibrating the contingent responses to actual 
payment data, and so the approach can “stand alone”.  In an application to a valuation 
study related to whooping crane restoration, we find that this model generates a 
statistically lower expected WTP than the standard CV model. Moreover, the WTP 
function estimated with this model is not statistically different from that estimated using 
actual payment data, suggesting that when properly analyzed using data on respondent 
uncertainty, contingent valuation decisions can simulate actual payment decisions.  This 
method allows for more reliable estimates of WTP that incorporates respondent 
uncertainty without the need for collecting comparable actual payment data.  
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1.  Introduction 

Despite sometimes intense controversy, contingent valuation (CV) remains the 

most commonly applied nonmarket valuation technique worldwide (Bishop 2003).  At 

the same time, research on the validity of CV continues.  Many studies have sought to 

compare value estimates from CV with values from actual cash transactions.  Many, 

though not all1 such studies have found that responses to CV questions generate higher 

willingness to pay (WTP) estimates than more or less comparable cash commitments, a 

phenomenon that has come to be known as “hypothetical bias.”   

Several approaches to reduce or eliminate hypothetical bias have been proposed.  

In this paper we build on the work of Champ et al. (1997), Champ and Bishop (2001), 

and Champ et al. (2002), who have now conducted separate studies involving three 

environmental goods: road removal in Grand Canyon National Park, wind power in 

Wisconsin, and a whooping crane reintroduction project.  In each case they collected 

actual donations toward the environmental good using a dichotomous choice question 

(referred to here as the AD treatments) to serve as a benchmark.  With separate samples, 

they also conducted CV surveys using a hypothetical dichotomous choice donation 

question (the CV treatment).  Results from all three studies were consistent with 

hypothetical bias: estimated mean donations from CV respondents were statistically 

larger than estimated mean donations from the AD treatments.  

                                                 
1 See, for example, Johnston (2006). 
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Champ et al. reasoned that hypothetical bias might stem, at least in part, from 

respondents’ uncertainty about whether they would actually pay.  Champ et al. attempted 

to capture the uncertainty of subjects who said “Yes” to the donation in the CV treatment 

by asking them to indicate on a 10-point scale how certain they were that they would 

actually donate.   The authors then calibrated CV values to the AD values using a 

recoding scheme.  That is, for the CV treatment, “Yes” responses for subjects whose 

level of certainty fell below some specified threshold were recoded to “No” and the 

analysis was repeated.  Not surprisingly, this brought the CV values down; more “No” 

responses in the data mean lower values.  More importantly, in all three studies the 

characteristics and attitudes of the recoded “Yes” CV respondents were quite similar to 

the characteristics and attitudes of those who sent in a donation in the AD treatment.   

These results are consistent with the hypothesis that hypothetical bias stems in part from 

respondent uncertainty about their behavior in an analogous actual cash transaction. 

 The recoding method used by Champ et al. has been incorporated in many other 

CV studies, including studies that do not include actual payment data with which to 

calibrate the recoding.  In such cases an arbitrary certainty level, such as 7 or 10 on a 

scale of 10, is imposed by the analyst as the cutoff for recoding.  While the recoding 

method will obviously produce smaller willingness to pay estimates, as some “Yes” 

responses are turned into “No” responses, it is problematic on both theoretical and 

empirical grounds.  It presents a theoretical contradiction because while the recoding 

explicitly accounts for respondent uncertainty, it then applies this recoded data in a 

traditional random utility model in which respondents are presumed to be certain of their 
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behavior.  Perhaps most importantly from the practitioner’s perspective, in the absence of 

actual payment data for calibration, the choice of the recoding cutoff value is completely 

arbitrary.  In fact, when actual payment data is available, it is unclear why the analyst 

would need contingent valuation data in the first place. 

We argue that when the analyst has data expressing respondent uncertainty, the 

appropriate analytical response is to incorporate the uncertainty data in the econometric 

model in a utility-consistent fashion.  We do this using the uncertainty scale of Champ et 

al.  The advantage of our approach is that it addresses hypothetical bias without the need 

for actual payment data.   We compare this model (the CV/uncertainty model) to the 

conventional CV model (CV model), the recoded CV model (CV/recoded model) and an 

actual donation model (AD model) using donation data for a whooping crane 

reintroduction project, the same data used in the third of the Champ et al. studies (2002).   

The results support the hypothesis that respondent uncertainty leads to hypothetical bias 

and that utility-consistent treatment of uncertainty can reduce this bias substantially. 

2.  Respondent Uncertainty in Contingent Valuation 

There are many reasons why an individual might be uncertain about her response 

to a CV question (Jorgensen et al 2006), and methods for measuring and eliciting 

respondent uncertainty have been developed and compared in several recent studies.  

While many of these studies do not include the data necessary to investigate hypothetical 

bias, they provide the motivation for developing a utility-based theoretical model of an 

uncertain respondent’s decision.  
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The first paper to attempt to provide an empirical model of uncertainty based on a 

conventional CV model was Li and Mattsson (1995), which treats respondent uncertainty 

as one source of measurement error.  In their model, respondents’ uncertainty of their 

own valuation for a good might lead them to give a “wrong” answer to the CV question 

and the magnitude of their uncertainty reflects the likelihood of such an error.   One 

major limitation of the Li and Mattsson paper, as well as many of the more recent studies 

of uncertainty and hypothetical bias, is the lack of data from actual market transactions to 

compare to the CV results.  Without such a comparison, the authors are unable to 

empirically judge the extent to which their alternative model reduces this bias. 

Berrens et al (2002) identify two general methods of identifying respondent 

uncertainty in CV studies: directly, through the CV response, or indirectly, with a post-

CV follow-up question.  The direct approach typically presents the respondent with a 

polychotomous response format.  Instead of a simple “Yes” or “No”, response options 

might be “Definitely No”, “Probably No”, “Not Sure”, “Probably Yes”, or “Definitely 

Yes”, where the two extreme responses indicate complete certainty.  Typically, many 

respondents express uncertainty over at least some of their responses (Alberini et al 2003; 

Evans et al 2003; Welsh and Poe 1998).  However, instead of directly incorporating this 

uncertainty into the estimation of WTP, previous studies using this approach recoded the 

categories into “Yes/No” responses.   

The other general method for identifying respondent uncertainty is to use a 

follow-up question to a standard dichotomous choice CV question, as done in the Champ 

et al. studies.  The follow-up question asks respondents how certain they are of the 
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answers they provided to the CV question.  The possible responses could be verbal 

categories (as in “Probably Sure” or “Definitely Sure” (Blumenschein et al 1998), 

numerical categories (such as the common 10-point scale (Champ et al 1997, 2002; 

Champ and Bishop 2001; Loomis and Ekstrand 1998), or probabilities (Li and Mattsson 

1995).  All of these methods have shown that at least some respondents who respond 

“Yes” to the CV express uncertainty about their response.  In some cases, the reported 

uncertainty is quite significant.  All three of the Champ et al. studies found that less than 

50% of the respondents who responded “Yes” to the hypothetical dichotomous choice 

donation question were certain of their answer (10 out of 10 on the certainty scale).  Li 

and Mattsson (1995) found that almost 14% of the “Yes” respondents indicated a 

confidence level of less than 50%.   

A few studies have attempted to compare the different approaches for 

incorporating respondent uncertainty into CV studies.  Ready et al. (2001) found that 

dichotomous choice questions generated higher WTP values than polychotomous 

responses, and that with the polychotomous choice format respondents were more certain 

of their answers.  Samnaliev et al (2006) compared the effects of a 10-point follow up 

certainty question with the inclusion of a “Not Sure” option within the CV question and 

found the two methods produced different WTP estimates possibly due to the differences 

in type of uncertainty captured with each approach.  Using two different CV data sets, 

Shaik et al (2007) compared five empirical methods for incorporating uncertainty into the 

estimation of WTP.  They, too, found that different empirical methods had different 

impacts on estimated WTP.  For example, methods similar to those used in Li and 
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Mattson and Champ et al. decreased WTP estimates, whereas a method similar to that 

used by Loomis and Ekstrand (1998) increased estimated WTP.  Vossler et al (2003) 

compared direct elicitation of uncertainty in the CV question to elicitation with a follow-

up question in an analysis of participation in a green electricity program.  They found that 

while both approaches result in program participation rates that resembled actual 

participation rates, the approaches generated very different estimates of how quickly the 

probability of a “yes” response decreased as the offer amount increased. In summary, 

previous studies provide substantial empirical evidence that respondents can be, and 

frequently are, uncertain about their responses to CV questions.  In addition, they suggest 

that how this uncertainty is measured and used in the estimation can have a significant 

impact on WTP estimates.  The majority of existing studies rely on ad hoc methods of 

recoding the data to fit into the standard RUM model and many of the studies that do 

compare different empirical approaches for addressing respondent uncertainty do not 

benchmark the comparison with actual cash transactions data. On the other hand, very 

few studies compare actual payments/donations to CV responses supplemented by 

uncertainty responses, and those that do, such as Champ et al. (2002) and the recent study 

by Blumenschein et al (2008), do not integrate the uncertainty responses in a manner that 

is theoretically defensible in applications without such data.  This gap in the literature 

motivates the analysis presented below. 

3.  The uncertain respondent model 

The conventional random utility approach (CV model) 
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The conventional random utility model of choice behavior first applied to CV data 

by Hanemann (1984) typically assumes a linear functional form, with the utility 

associated with choice i stated as, 

i i iu yα β ε= + + ,   (1) 

where iα  denotes the choice-specific contribution to utility, y is the individual’s income 

and εj is known by the individual but unobserved and treated as stochastic by the analyst.2  

An individual faced with a dichotomous choice CV question, such as, “Would you be 

willing to pay $D in order to have…?”, will answer “Yes” if the utility of doing so is 

greater than the utility resulting from a “No” response.  Because it is assumed the 

individual knows with certainty the utility she would receive from both answers (i.e., she 

knows the value of all elements of her utility function), her individual decision is 

completely deterministic.  If we denote the unsubscripted u as the difference in utility 

resulting from “Yes” and “No” responses, she will answer “Yes” if 

  

( )( ) ( )
( ) ( )

0

yes no yes yes no no

yes no yes no

u u u y D y

D

D

α β ε α β ε

α α β ε ε

α β ε

= − = + − + − + +

= − − + −

= − + >

  . (2) 

The respondent knows the value of ε, but the analyst does not.  Instead, the analyst knows 

the distribution of ε across the population, usually assumed to be i.i.d. logistic with mean 

μ and scale parameter 1σ = .  From the analyst’s perspective, the probability of 

observing a “Yes” response for offer amount D is then, 

                                                 
2 Importantly, iα  may be conditioned by observable variables. 
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Pr( " " | ) Pr( 0)

11
1 D

CV Yes D D

eα β μ

α β ε

− +

= = − + ≥

= −
+

  .   (3) 

As an empirical matter, α  and μ  cannot be separately identified, and so μ  is assumed 

to be equal to zero.  Hanemann (1984) shows that if WTP is restricted to be non-negative 

(as is reasonable for our application to whooping crane protection), E{WTP} can be 

calculated as 

( )
0 0

1{ } Pr 1
1 D

D

E WTP WTP D dD dD
eα β

∞ ∞

−
=

⎛ ⎞= > = −⎜ ⎟+⎝ ⎠∫ ∫   .  (4) 

 

Modeling respondent uncertainty  

 The empirical analysis of section 5 is based on a survey framework in which 

respondents answering “Yes” to a dichotomous choice CV question are queried about 

how certain they are that in an actual payment/donation setting they would make the 

indicated payment/donation.  This is the framework used in the Champ et al. studies.  In 

practice it takes the following form in a survey:  

Question 1.  Would you be willing to pay $D in order to have…?  
1 No  
2 Yes       

 
Question 2.  If you answered YES to question 1, on a scale of 1 to 10, where 1 means “very 
uncertain” and 10 means “very certain,” how certain are you that you would pay $D if you had an 
opportunity to actually do so? 

  1 2 3 4 5 6 7 8 9 10 
very         very 

  uncertain        certain 
  

 Let cj denote the number from 1 to 10 circled in the follow-up certainty question.  

When the respondent is uncertain of her CV response, the conventional modeling 
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approach is not appropriate.  Typically some respondents admit uncertainty (cj <10) about 

what their behavior would be in an actual payment scenario, which directly contradicts 

the assumption of the conventional model that from the perspective of the respondent 

utility is deterministic.  The recoding technique uses responses on the certainty scale to 

recode the “Yes” and “No” responses according to a Yes/No cutoff value on the certainty 

scale, c , so that only a “Yes” respondent with jc c>  would be considered a “true ‘Yes’” 

respondent.  When properly implemented, c  is determined by comparing contingent 

valuation data to actual payment data in a calibration exercise.  Previous studies have 

found this cutoff value to range from 7 to 10.  In the absence of actual data for 

comparison, the value of c chosen by the analyst is completely arbitrary.   

We submit that rather that using the uncertainty scale to “fix” the data, the analyst 

should use the scale to alter the econometric model to reflect respondent uncertainty.  

One way to do this in the context of a random utility model is to relax the assumption that 

the respondent knows with certainty her actual payment decision—that is, that she knows 

jε .  Instead, she knows the distribution of εj.  Put another way, she knows the probability 

that she would actually pay $D were the opportunity to arise, and uses this information to 

answer both the CV question and the uncertainty question. Assuming εj is distributed 

logistically with mean jμ and scale σ=1, the probability that individual j will make an 

actual payment of D dollars, is given by  

1( , , ) 1
1 j jj j j Dp D

eα β μμ σ − += −
+

  .                                                  (5) 
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A respondent faces the dichotomous choice CV question with this payment probability in 

mind.  She will answer “Yes” if her payment probability is sufficiently large, and “No” 

otherwise.  The right-hand side of this formulation looks like that in (3) except that, 

unlike in(3), the expected value of jε , jμ , is now indexed by the respondent.  This 

seemingly small notational change embodies a substantial conceptual change with 

significant econometric implications.  In the decision problem giving rise to (3), the value 

of jε  is known by the respondent, but not by the analyst, implying that, were the 

hypothesized situation to actually arise, the respondent knows exactly what she would do, 

but the analyst does not.  From the perspective of the analyst the respondent’s behavior is 

probabilistic, and this probability is known by the analyst.  In the decision problem giving 

rise to (5) the respondent is not sure how she would behave were the actual payment 

scenario to arise, and so she treats her own behavior as probabilistic.  She knows the 

probability of her choice behavior because she knows the distribution of jε , in particular 

the mean jμ .  In a sense, her information set is the same as that of the analyst in the 

conventional choice problem.  By contrast, in this choice problem the analyst has far less 

information than in the conventional choice problem, because from his perspective there 

is no longer a single distribution with known mean μ =0 , but rather a distribution of 

jμ ’s, and so from his perspective the respondent’s choice probability is itself a random 

variable.  In this light, the purpose of the uncertainty scale is to aid the analyst in 

identifying the distribution of jμ  by identifying the distribution of jp ; for instance, a 
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“low” value on the certainty scale implies a low value of jp , which in turn implies a low 

value of jμ .   

 

Formalizing the relationship between respondent uncertainty and the CV question 

 We now formalize the relationship between this new model of the respondent and 

the probability of a “Yes” response on the CV question.  Let pmin represent the minimum 

actual payment probability needed to generate a “Yes” response.  Conceptualized in this 

way, a “Yes” on the CV question does not guarantee the individual would actually pay if 

faced with an actual payment scenario, only that the probability of an actual payment is 

greater than pmin.  It would seem sensible to assume that pmin equals .5, in which case a 

respondent answers “Yes” if she judges the probability of a “Yes” in an actual payment 

situation to be greater than one-half.  Yet this assumption is not necessary and it is better, 

we would argue, to let the data speak to the issue by treating pmin as a model parameter 

to be estimated.   

If pj represents individual j’s probability of an actual payment of Dj, the 

probability that individual j will answer “Yes” to the CV question is given by, 

 

( )

( )

Pr( " " | ) Pr

1Pr 1
1

Pr ln
1

Pr ln
1

j j

j j j

D

j j

j j

CV Yes D p pmin

pmin
e

pmin D
pmin

pminD
pmin

α β μ

μ α β

α β μ

− +

= = ≥

⎛ ⎞= − ≥⎜ ⎟+⎝ ⎠
⎛ ⎞⎛ ⎞

= ≥ − −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞

= − + ≥⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

.       (6) 
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The last line of equation (6) clarifies the relationship between the respondent’s decision 

and her underlying utility.  In the case where pmin is .5, the respondent will answer 

“Yes” to the CV question if the expected (net) utility of doing so is greater than zero, 

which is analogous to the certain-respondent model (see the last line of  (2)).    

Figure 1 illustrates this response rule for three different individuals, i, j, and k.  

The functions graphed are the probability density functions of ε  for each of the 

individuals, with expected values of  μi,  μj, and μk, respectively.  For this illustration, 

pmin is specified to be 0.5, and so from (6) it is clear that for an offer amount D, the 

respondent gives a “Yes” response if her value of jμ  is greater than Dβ α− , the value 

indicated in Figure 1 by a solid vertical line. Individual i will answer “NO” to the CV 

question because  μi < Dβ α− .  Both  j and k will answer “Yes”.  The actual payment 

probability for j is shown by the shaded area in the figure.  This is the area under the pdf 

of μj and to the right of Dβ α− .  Because μk > μj, the actual payment probability of 

person k is greater than that of person jone would expect that on the follow-up certainty 

scale, respondent k would choose a higher value than respondent j.  Moreover, as D 

increases, the probability of an actual payment decreases—graphically, the solid vertical 

line in Figure 1 shifts right, whereas the probability functions are fixed characteristics of 

the individuals, and so the probability mass to the right of the vertical line decreases—

and we would expect the value chosen by respondents k and j on the follow-up certainty 

scale to decrease.  This relationship is examined next.   

 

Formalizing the relationship between respondent uncertainty and the certainty scale   
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In the Whooping Crane restoration survey described below, only respondents  

answering “Yes” to the CV question were asked to indicate how certain they were of 

their response on the 10-point certainty scale presented above.   Put another way, the 

certainty scale applies only to those respondents for whom the actual probability of 

payment exceeds pmin, jp pmin≥ .  Presumably, then, the certainty scale embodies a 

mapping of jp  into the integers 1-10, with a higher value on the scale indicating a higher 

probability of an actual payment, and pmin forming the lower bound of the mapping.  For 

instance, if pmin = .5, it could be that the probability range .5 to .55 is mapped into the 

value “1” on the certainty scale, the probability range .55 to .6  is mapped into the value 

“2”, and so on, terminating with the probability range .95  to 1.0 mapped into the value 

“10”.  This example is a linear mapping in which each certainty level captures a 

probability range of 0.05.  This mapping is one of many possibilities, and to avoid 

unnecessary assumptions we specify a general functional form for the mapping, using the 

responses to the uncertainty question to estimate specific parameters.  Let pl(c) and ph(c) 

represent the lower and upper bound on the actual payment probability associated with 

certainty level c=1,2,…10 .  A parsimonious yet general mapping of the certainty scale 

into probabilities is 

( )
110

1

if c = 1
( )

( 1) if c > 1

( ) ( ) , (1 )

l
h

h l

i

pmin
p c

p c

p c p c k c k pmin iλ λ
−

=

⎧
= ⎨

−⎩

⎛ ⎞= + ⋅ = − ⎜ ⎟
⎝ ⎠
∑

  , (7) 
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where λ and pmin are estimable parameters, and k is a scaling term that ensures that 

ph(10) equals one.  Setting λ equal to zero generates the linear mapping presented above.  

We assume that all individuals answering “Yes” to the CV question interpret the certainty 

scale in the same manner, though it is possible to depart from this assumption by, for 

instance, making pmin and λ functions of observable characteristics of respondents.  

Answering “No” to the CV question indicates that the probability of an actual payment 

falls in the range (-∞, pmin). 

 

The Likelihood Function 

Given respondent j chooses “Yes” on the CV question and level jc on the 

uncertainty question, the analyst can use equations (6) and (7) to infer upper and lower 

bounds of jμ , so that,  

 
( )

ln ,
1 ( )

s
js

j js
j

p c
D for s l h

p c
μ α β

⎛ ⎞
= − + =⎜ ⎟⎜ ⎟−⎝ ⎠

 . (8) 

Given the distribution of jμ , equations (6)-(8) provide the components of the likelihood 

function for survey responses. Assuming that jμ  is iid logistic with mean zero (the mean 

is otherwise embedded in the estimate of α ) and scale parameter η, from (6) we know 

that the likelihood that respondent j responds “No” to the CV question is, 

 ( ) ( ) ( )( )ln ln 1 /

1, , , ; | " "
1 j

j j j pmin pmin D
L pmin D CV No

e α β η
μ β η

− + − + −
= =

+
  .  (9) 

 
From (8) the likelihood that respondent j says “Yes” on the CV question with level cj on 

the uncertainty question is,   
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( )

( ) ( )( ) ( ) ( )( )ln ( ) ln 1 ( ) / ln ( ) ln 1 ( ) /
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1 1

1 1
h h l l

j j j j j j

j j j

p c p c D p c p c D

L pmin D CV Yes and Certainty c

e e
α β η α β η

μ β η λ

− + − + − − + − + −

= = =

−
+ +

, (10) 

where the functions ( )hp c  and ( )lp c  are defined in (7). The likelihood value for the 

observed responses of all respondents is the product of all likelihood values. Maximum 

likelihood estimation can be used to obtain estimates of parameters α , β, η, λ , and pmin.  

 

Calculating the Expected WTP 

Respondent uncertainty complicates the calculation of expected WTP.  In the 

conventional model each agent knows his value of ε and thus his WTP, and the 

expectation operator refers to the distribution of ε across the population.  When 

respondents indicate uncertainty about their CV response they implicitly indicate 

uncertainty about their actual WTP (Li and Mattsson 1995).  This implies two levels of 

expectations over WTP:  the expected WTP of an individual, which is the expectation of 

WTP conditional on jμ , E{WTP|μj}, and the (unconditional) expected WTP for the 

population, E(WTP).   The conditional expectation can be calculated using a modified 

version of equation (4). 

0 0

1{ | } Pr{ | } 1
1 jj j D

D D

E WTP WTP D dD dD
eα β μμ μ

∞ ∞

− +
= =

⎛ ⎞= > = −⎜ ⎟+⎝ ⎠∫ ∫   . (11) 

Recall that μ  is distributed logistically with mean 0 and scale parameter η.  

Letting g(μ) denote the pdf of μ, the unconditional expected WTP –the expected WTP 

taken across the population –is  
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4.  Use of Donation Vehicles in CV Research 

 The next section of this paper presents an empirical application of the uncertainty 

model developed above and compares the WTP estimates provided by this model to 

estimates resulting from the recoding technique that is frequently used in CV research.  

Our primary objective is to determine how to interpret contingent data to best reflect 

actual behavior.  Our application uses a donation mechanism to elicit payment data, a 

design element of which many are skeptical (Carson and Machina 1999; Hoehn and 

Randall 1987), primarily on the grounds that a donation mechanism presents a classic 

free-rider problem.  There are two practical advantages of using donation scenarios in CV 

research.  First, many environmental public goods such as open space, endangered 

species funds, and instream flows are provided via donations.  Therefore donation 

mechanisms are often appropriate and credible for provision of these types of goods 

(Byrnes et al 1999; Spencer et al 1998) and thus may be less vulnerable than alternative 

payments scenarios to biases associated with scenario rejection.  For example, in the first 

of the Champ et al. studies (1997), Wisconsin residents were asked about their values for 

removal of some old dirt roads on the north rim of the Grand Canyon so that a 

Wilderness Area could be established.  A scenario involving a referendum on the 
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questions would have seemed implausible to Wisconsinites, while a donation opportunity 

seems natural and plausible.  Incentive compatible mechanisms such as taxes are subject 

to protest responses due to the unpopularity of taxes and the skepticism that associated 

governmental entities will spend the tax revenue wisely. 

 Second, compared to other payment scenarios it is easier to find and fund 

opportunities for field experiments where actual and contingent donations for real public 

goods can be measured and compared.   It is much more difficult, for example, to 

construct a field experiment involving a referendum on the provision of a real public 

good, unless a natural experiment presents itself (Carson et al 1986; Champ and Brown 

1997; Vossler et al 2003; Vossler and Kerkvliet 2003), and even then the natural 

experiments can be hard to interpret with confidence as responses to a referendum vote 

are only reported in aggregate and cannot be combined with information about the voters 

as it is not known if a particular voter actually submitted a vote on a particular 

referendum. 

 Given these practical advantages, the next logical question is whether contingent 

donation data provide useful information.  We argue that they could, and that together 

with the relative inexpensiveness of comparing actual and contingent donation data, this 

possibility compels research on the question.  Our argument for the usefulness of 

contingent donation data begins with the understanding that due to free riding, the 

expected actual donation for an improvement in a particular environmental good is a 
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lower bound on the true value of the improvement.3  One can further offer for empirical 

evaluation the hypothesis that in the right setting—one where a donation mechanism is a 

“natural” elicitation format—the hypothetical bias associated with contingent donation 

surveys arises mostly—perhaps entirely—because survey respondents do not account for 

their free-riding behavior in an actual donation situation.  That is, in situations where the 

donation scenario is realistic and familiar, sources of hypothetical bias are minimized 

except for that arising because people tend to understate their own tendency to free-ride.  

It follows that the “conventional” estimate of the value of the improvement derived from 

contingent donation responses is an upper bound on the lower bound on the true WTP.  

This is not altogether helpful, and it indicates the need to frame the contingent donation 

question in a manner that encourages respondents to account for their free-riding 

behavior.    The certainty scale provides respondents with the opportunity for more 

nuanced evaluation of their own behavior, including the tendency to free-ride.  If research 

studies comparing contingent and actual donation data for environmental improvements 

consistently find that CV donation surveys that properly account for respondent 

uncertainty generate estimates of the value of improvements that are not significantly 

different from those obtained from actual donation data, then we might fairly judge such 

contingent donation surveys to generally provide a lower bound on true WTP.  This 

                                                 
3 For a discussion of true values see Bishop (2003).  To us, arguments for free riding are compelling.  For 
example, could one infer from the fact that if only 10% of the viewers of the public television programming 
are contributors, the other 90% are getting no value from what they are watching?  The theoretical 
arguments that might counterbalance the notion that free riding leads to value underestimation are those 
associated with nonuse values and whether altruism is paternalistic.  See Flores (2002) and McConnell 
(1997).  There is limited empirical evidence of this.  Chilton and Hutchinson (1998) argue that actual 
donations are not necessarily a lower bound on consumer surplus if the government is providing the good, 
but our application is not one of government provision.     
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lower bound is often sufficient information for many management decisions and policy 

analyses.    

5.  Willingness to Donate for Whooping Crane Reintroduction 

To examine empirically the CV/uncertainty model, we use data from a mail 

survey designed to value a program to establish a wild flock of whooping cranes.  

Whooping cranes are the most endangered crane species in the world. They are 

threatened primarily by the conversion of their wetland habitat into agricultural and 

residential lands.  Though once widespread, since the 1950’s only one migratory flock of 

whooping cranes has survived worldwide, spending its summers in Canada and winters in 

Texas.  The International Whooping Crane Recovery Team—a group of crane biologists 

and U.S. and Canadian officials—has been orchestrating efforts to ensure the survival of 

the species.  As part of these efforts, a second migrating flock of whooping cranes is 

being bred and introduced into the wild.  Each year, whooping crane chicks are hatched 

in captivity and taught behaviors crucial to their survival in the wild.  An important 

aspect of this program is teaching the young cranes how to make the annual 1,250 mile 

journey from central Wisconsin to Florida.  After being led to Florida by an ultralight 

aircraft their first year, the cranes are able to make the return trip to Wisconsin unassisted 

the next spring.  They continue the migration annually as a flock, without the assistance 

of an aircraft.  However, to ensure the success of the program, radio transmitters are 

placed on the leg of each crane in the flock to monitor the birds during migration and 

throughout the year.  If a bird is in danger or sick, project personnel intervene and rescue 

the bird.  The first class of cranes, 18 birds, was hatched in the spring of 2001.  The 
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project will continue until the flock has grown to 125 cranes (approximately 10-15 years).  

At the time of the study, funding was needed to purchase radio transmitters for whooping 

crane chicks who were to be hatched in the spring of 2004.  The transmitters cost around 

$300 each, and while survey respondents were not told the cost of the transmitters, they 

were told that the transmitters could only be provided if there was sufficient support in 

the form of donations. 

The survey was mailed to a sample of Madison, WI residents in January 2004 

using a split sample design to elicit hypothetical donation responses from some and 

actual donation responses from others4.  All respondents were presented with identical 

descriptions of the whooping crane reintroduction project.  Following this description, 

one group was asked a dichotomous choice contingent donation question and a follow up 

certainty question similar to the example given in section 4.  We will refer to the data 

from this group as CV data.  The other group was asked a similar dichotomous choice 

question, but in the context of an actual donation, and we refer to this data as the AD 

data.  For this group, respondents answering “Yes” to the donation question were asked 

to include a check for the bid amount when they returned their survey.  A total of $1510 

in donations was collected from this treatment group.  Table I presents the sample size, 

response rate, and percentage of respondents answering “Yes” to the donation question 

for each offer amount in both treatments.  Response rates are fairly consistent across offer 

amounts and overall response rates are 33% for the CV group and 24% for the AD group.   

                                                 
4 There were actually three treatment groups in this survey.  The third group was given a contingent 
donation question preceded by a “cheap talk” script and is not discussed here.  Details of this aspect of the 
survey can be found in Champ et al (2002). 
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We analyze the survey data with both the conventional CV model (CV) and our 

model incorporating respondent uncertainty (CV/uncertainty).  As an additional point of 

comparison, we also present the results from estimating the conventional model with 

“recoded” CV data.  This CV/recoded model is the same as the CV model, but with 

“Yes” responses for which the respondent’s certainty level was 7 or less recoded as “No”.  

This particular recoding was previously identified as most closely calibrating the WTP to 

that of actual donations (Champ et al 2002).  The final column of Table I indicates the 

percentage of “Yes” respondents identified by this calibrated data.  Figure 2 shows the 

frequency of responses to the follow-up certainty question.  Though the most common 

certainty response was 10, the median response was 8, indicating that over half of the 

“Yes” respondents are at least somewhat uncertain of their behavior in an actual donation 

scenario, and highlighting the need for a modeling approach that incorporates this 

uncertainty.  The mean certainty was 7.72. 

Estimating the CV and CV/Uncertainty Models 

The first three columns of Table II report parameter estimates and standard errors 

of the utility parameters α and β and a point estimate of the expected willingness to pay 

(E{WTP}) as derived from equation (4), for actual donations, the conventional CV model 

and the CV/recoded model.  Several techniques are available to estimate the distribution 

of E{WTP} (Cooper 1994; Kling 1991).  For this study we rely on the Krinsky and Robb 

procedure to estimate a 90% confidence interval for E{WTP}.  These results clearly 

show a hypothetical bias in the data.  The expected WTP of the CV group ($69.38) is 



 23

over three times larger than that of the AD group ($21.21).  The recoding successfully 

lowers the E{WTP} estimate to values not significantly different from the AD results.  

At this juncture it is important to remember that the recoding model is ad hoc 

unless there exists actual donations data to provide a calibration reference.  The 

CV/uncertainty model, on the other hand, is estimated independently of the actual 

donation data.  Results for the CV/uncertainty model are presented in the final column of 

Table II.  This model includes three additional parameters: η, λ , and pmin.  Recalling that 

λ=0 generates a linear mapping of probability mass into the certainty scale, the point 

estimate λ=2.51 generates a highly nonlinear mapping with more mass in the upper end 

of the scale, as reported in Table III.  The point estimate pmin=.16 indicates that 

respondents are likely to say “Yes” to the CV question even when they are quite unlikely 

to make the requested donation in an actual donation scenario.   

     

Comparing the Estimation Results 

Several interesting conclusions can be drawn from the results in Table II.  First, 

the CV/recoded model produced a lower E{WTP} than the conventional CV model, and 

the confidence intervals of the CV/recoded and AD models overlap.  These results are 

consistent with previous studies (Champ et al 1997; Champ and Bishop 2001).  Second, 

the CV/uncertainty model generated an E{WTP} between that of the conventional CV 

and AD models.  This is intuitive, considering that the estimated value of pmin is well 

below .5, and indicates that many respondents answer “Yes” to the dichotomous choice 

question even though they do not expect to donate the specified amount.  This idea is 
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illustrated in Figure 4.  Individual j is presented with a hypothetical donation question 

with bid amount Dj.  Because their value of pj is .17, which is greater than pmin, this 

individual will answer “Yes” to the CV question.  The conventional CV model interprets 

a “Yes” response as an indication that εj is greater than -(α – βD); see the first line of 

equation (3).   With the CV/uncertainty model, individual j’s expected value of ε is 

significantly less than -(α – βD) and yet the individual will still give a “Yes” response to 

the CV question.  In fact, all respondents whose value of μ lies between μj and -(α – βD) 

have a conditional E{WTP|μ} less than the offer amount, D, but will respond “Yes” to 

the CV question.  Our results imply that explicitly allowing for this type of “inconsistent” 

response will produce an E{WTP} estimate closer to that implied by the actual donation 

data, reducing the hypothetical bias.  

 So far in the discussion we have not considered the impact of covariates in the 

decision model, which can significantly increase the predictive power of the model.  The 

inclusion of additional explanatory variables is straightforward in both the CV and 

CV/uncertainty models; these variables enter as part of the deterministic portion of the 

utility function.  E{WTP} estimates are then conditional on particular values of these 

additional variables.  For this paper, we are not particularly concerned with the impact of 

these variables on E{WTP}, but it is still instructive to look at the additional information 

these variables provide.  It is particularly enlightening to divide the respondents 

answering “Yes” to the CV question into two groups: those who likely would donate the 

amount requested if actually asked to do so, and those who likely would not.  We label 

the first group the “Consistent” respondents, because their CV response is consistent with 
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their expected AD response.  This is the group of individuals whose conditional 

E{WTP|μ} is greater than the bid amount.  In other words, their values of μ are greater 

than -(α – βD).  The other group contains the “Inconsistent” respondents, for whom 

E{WTP|μ} < D, but who still answer “Yes” to the CV question.  Table III compares the 

reported attitudes of the individuals in these two groups.  As expected, the consistent 

respondents report a greater desire to support the whooping crane reintroduction project 

specifically (“The whooping crane program would be worth that much to me”), while the 

inconsistent respondents are more likely to value broader environmental ideals (“Animals 

have a right to exist”).  The consistent respondents are also more likely to have donated 

time or money to environmental causes in the past, providing them with additional 

experience on which to base their expectation. 

6.  Conclusion 

 This study makes two basic contributions to the contingent valuation literature.  

First, it provides the theoretical foundation for directly incorporating information on 

respondent choice uncertainty—as expressed on a Likert certainty scale that survey 

respondents seem to be comfortable with—into an econometric model of choice 

behavior.  Importantly, there is no recoding of data, and thus no need for actual payment 

data on which to calibrate a recoding. 

 Second, the results of the analysis provide evidence of the potential merit of the 

modeling approach when used in conjunction with a contingent donation scenario to elicit 

willingness to pay.  For many goods, donation scenarios are the most “natural” way to 

elicit payment for an environmental good.  Due to free-riding, actual donation data are 
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likely to underestimate the true value of an environmental improvement, and yet CV 

studies find that in the conventional modeling approach a donation scenario produces 

WTP estimates that are significantly higher than derived from comparable actual 

donation data.  The results of the empirical application in this paper suggest that properly 

accounting for respondent uncertainty when analyzing contingent donation data produces 

WTP estimates that are lower than those of the conventional model, and closer to those 

from actual donation model.  If this result is consistently found in future analyses—

analyses that perhaps refine the format and modeling to further close the gap between 

WTP for actual and contingent donation data—it would support the use of contingent 

donation data as a means of providing cheap estimates of the lower bound of the value of 

improvements for a wide variety of environmental goods.  Such a lower bound is likely 

sufficient in many policy applications. 

Refinements in the modeling can take many forms, including changes in two key 

assumptions of the model.  The first is the parametric form for mapping choice 

probabilities into the certainty scale.  Though our chosen functional form is quite flexible, 

we have not tested the robustness of our results to changes in this mapping.  One could 

avoid the mapping altogether by directly asking respondents for their payment 

probability: “What is the probability that you would say ‘Yes’ to a request for a donation 

of the amount $D?”  Though some researchers have pushed for a version of this response 

format, there appears to be a general concern about the ability (or willingness) of 

respondents to explicitly state their choice probabilities. 
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The second assumption worth further investigation is that μ is distributed 

logistically around zero.  A truncated distribution of μ could be used to impose 

restrictions on the range of WTP.  With a donation payment vehicle, it is reasonable to 

assume that WTP is bounded below by zero and above by income.  Imposing this 

restriction post-estimation is acceptable in certain cases, but it would be better to impose 

the restriction in the estimation itself.  Methods of imposing bounds in the estimation of 

the conventional model have been suggested, but they are complex and not always well 

behaved (Haab and McConnel 2003).  Our formulation of respondent uncertainty might 

be more amenable to imposing these bounds. 

In summary, this paper describes an approach to modeling the decision of the 

uncertain respondent in a contingent valuation study.  The practical advantage of this 

approach is that the resulting WTP estimates appear to resemble that from actual payment 

data, but the CV/uncertainty estimates themselves were derived without the need to 

collect actual payment data.  Further applications of this and other theoretical models of 

respondent uncertainty are needed before larger conclusions can be drawn regarding the 

link between uncertainty and hypothetical bias.  Particularly, applications with other 

types of goods, different elicitation methods, and different payment vehicles are needed.  

It is important to continue to improve the current methods of collecting and analyzing CV 

data due to their potentially large role in cost-benefit analysis, a decision-making tool 

used frequency by both public and private groups. 
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Figure 1.  The individual’s decision rule if pmin = 0.5. 
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Figure 3.  CV responses and E{WTP} 
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Table I.  Response rates and percentage of "Yes" responses, by treatment and offer 
amount. 

 Number of Surveys mailed Response Rate Percent of respondents with CVj = 
“Yes” 

 Actual 
Donation 

Contingent 
Donation 

Actual 
Donation 

Contingent 
Donation 

Actual 
Donation 

Contingent 
Donation CV/calibrated

$10 139 114 27% 34% 47% 77% 51% 

$15 220 160 24% 33% 31% 67% 46% 

$25 229 156 20% 34% 33% 57% 32% 

$50 188 167 30% 33% 14% 40% 15% 

$100 157 110 21% 33% 6% 36% 19% 

total 933 707 24% 33% 26% 55% 25% 

 

Table II.  Parameter estimates and expected willingness to pay. 

 
Actual 

Donation 
(AD) 

Conventional 
Contingent 
Donation 

Model 
(CV) 

Calibrated 
Contingent 

Donation Model 
(CV/calibrated) 

Uncertain 
Respondent 

Model 
(CV/uncertainty) 

α 
(std. error) 

-0.082 
(0.261) 

0.953** 
(0.226) 

0.051 
(0.233) 

-0.403 
(0.636) 

β 
(std. error) 

0.030** 
(0.008) 

0.018** 
(0.005) 

.021** 
(0.006) 

.024** 
(.007) 

η 
(std. error) - - - 1.31** 

(0.260) 
λ 
(std. error) - - - 2.51** 

(0.708) 

pmin 
(std. error) - - - 0.160 

(0.109) 

E{WTP} $21.21 $69.38 $33.86 $39.71 
90% CI for 
E{WTP}1 [16.84, 30.86] [54.96, 103.33] [26.39, 52.08] [26.83, 70.36] 
1 Calculated using the Krinsky and Robb Procedure [Error! Reference source not found.] with 10,000 
draws of β. 
**Significant at 5% level  *Significant at 10% level 
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Table III.  Actual donation probability indicated by certainty response, with λ = 2.51 and 
pmin = 0.16 

 
Actual Donation Probability Certainty, c 

Lower bound, pl Upper bound, ph 
1 0.160 0.161 
2 0.161 0.165 
3 0.165 0.177 
4 0.177 0.202 
5 0.202 0.246 
6 0.246 0.315 
7 0.315 0.417 
8 0.417 0.559 
9 0.559 0.751 
10 0.751 1 
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Table IV.  Attitudinal characteristics of consistent and inconsistent Respondents to the 
CV question as identified with the CV/uncertainty model. 
 “Inconsistent” CV 

Respondents 
( )l

j jDμ α β< − −  

“Consistent” CV 
Respondents 

( )l
j jDμ α β> − −  

The whooping crane reintroduction 
program would be worth that much to me. 
(% agree) 
 

44.4% a 78.7% a 

I wanted to show my support for whooping 
crane reintroduction.  (% agree) 
 

53.1% a 72.3% a 

I can’t afford to make a donation to help 
pay for the transmitters.  (% agree) 
 

11.0% a 0% a 

I think fitting the whooping cranes with the 
radio transmitters will have a positive 
impact on the ability of researchers to save 
the whooping cranes. 
(% agree) 
 

77.8% b 91.3% b 

Animals have a right to exist independent 
of human needs.  (% agree) 
 

88.9% b 76.6% b 

I donate money to environmental causes. 
(% answering “Frequently”) 
 

58.0% a 80.4% a 

I volunteer my time to environmental 
causes. 
(% answering “Frequently”) 
 

19.8%b 32.6% b 

a Significant difference at 5% level 
b Significant difference at 10% level 
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