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The Efficiency of Voluntary Incentive Policies for Preventing Biodiversity Loss 

Abstract: In this paper we analyze the efficiency of voluntary incentive-based land-use policies 

for biodiversity conservation.  Two factors combine to make it difficult to achieve an efficient 

result.  First, the spatial pattern of habitat across multiple landowners is important for determining 

biodiversity conservation results.  Second, the willingness of private landowners to accept a 

payment in exchange for enrolling in a conservation program is private information.  Therefore, a 

conservation agency cannot easily control the spatial pattern of voluntary enrollment in 

conservation programs.  We begin by showing how the distribution of a landowner’s willingness-

to-accept a conservation payment can be derived from a parcel-scale land-use change model.  Next 

we combine the econometric land-use model with spatial data and ecological models to simulate 

the effects of various conservation program designs on biodiversity conservation outcomes.  We 

compare these results to an estimate of the efficiency frontier that maximizes biodiversity 

conservation at each level of cost.  The frontier mimics the regulator’s solution to the biodiversity 

conservation problem when she has perfect information on landowner willingness-to-accept.  

Results indicate that there are substantial differences in biodiversity conservation scores generated 

by the incentive-based policies and efficient solutions.  The performance of incentive-based 

policies is particularly poor at low levels of the conservation budget where spatial fragmentation of 

conserved parcels is a large concern.  Performance can be improved by encouraging agglomeration 

of conserved habitat and by incorporating basic biological information, such as that on rare 

habitats, into the selection criteria. 

 
Keywords: biodiversity, land use, conservation, spatial modeling, wildlife. 
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The Efficiency of Voluntary Incentive Policies for Preventing Biodiversity Loss 
 
1. Introduction  

Preventing the loss of biodiversity in the face of an expanding human population and 

growing economy is a formidable challenge, but failure to do so could have dramatic 

consequences (Levin 1999, Wilson 1988).  In terrestrial ecosystems, land-use change is the leading 

driver of biodiversity loss, and is expected to remain so in the future (Millenium Ecosystem 

Assessment 2005, Sala et al. 2000, Wilcove et al. 2000).  Much of the habitat important for 

biodiversity conservation occurs on privately-owned land.  One study found that 70% of species 

listed under the U.S. Endangered Species Act (ESA) depend on non-federal land, most of which is 

privately-owned, for the majority of their habitat (Natural Heritage Data Center Network 1993).  

On privately-owned lands, voluntary incentives are the most common mechanism used to 

encourage the provision of species habitat.  For example, the Conservation Reserve Program 

(CRP) and the Wildlife Habitat Incentives Program (WHIP) provide payments to private 

landowners in exchange for dedicating their land to habitat conservation.  Conservation easements 

are the dominant mechanism used by land trusts and conservation organizations for habitat 

preservation (Kiesecker et al. 2007, Plantinga 2007, Rissman et al. 2007).  Further, while the ESA 

still operates much like a traditional regulatory policy, conservation banking was adopted to give 

private landowners greater flexibility in managing wildlife habitat (U.S. Fish and Wildlife Service 

2003).   

In this paper, we examine the efficiency of policies for species conservation using 

voluntary agreements with private landowners.  We combine econometric models of landowner 

decisions with biological models that predict species persistence as a function of the spatial pattern 

of land use.  We use observed land-use decisions to specify an econometric model of land-use 

choice and develop a method to recover the distribution of a landowner’s willingness-to-accept 
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(WTA) a conservation payment for each parcel on the landscape. The method is generally 

applicable when parcel-level land-use decisions are observed, but information on the net returns to 

alternative land uses is only available at a higher spatial scale. 

We then use estimated landowner WTA to simulate landowner responses to a range of 

incentive-based habitat conservation policies.  In each case, we assume asymmetric information 

between landowners and the regulator.  Landowners know their own WTA, but regulators know 

only the distribution of WTA.  Simulated land-use patterns are used as inputs into a spatially-

explicit biological model to generate persistence probabilities for a set of terrestrial species of 

conservation concern.  We compare outcomes under incentive-based policies with an estimate of 

the efficiency frontier that maximizes the biodiversity score at each level of cost.  The efficiency 

frontier mimics the solution of a fully-informed regulator whose goal is to maximize social welfare 

given a range of values for biodiversity conservation.  The difference in biodiversity scores 

between the incentive-based policies and the optimal policy indicates the potential gains from 

gathering information on landowner-specific WTA.  

Our analysis connects two strands of literature on habitat conservation policy.  Systematic 

conservation planning (SCP; Margules and Pressey 2000) considers the optimal choice of habitats 

to preserve for species conservation subject to a constraint on the total area conserved or total 

budget allotted (e.g., Camm et al. 1996, Church et al. 1996, Csuti et al. 1997, Kirkpatrick 1983, 

Vane-Wright et al. 1991).1  Extensions of the basic optimization problem incorporate land costs 

(e.g., Ando et al. 1998, Balmford et al. 2000, Polasky et al. 2001), considerations of compactness 

or contiguity (e.g., Fischer and Church 2003, Onal and Briers 2003), and dynamics (e.g., Costello 

and Polasky 2004, Meir et al. 2004, Newburn et al. 2006, Strange et al. 2006).  As it has matured, 

the SCP literature has incorporated more complex analysis of spatial patterns that affect species 

persistence, including habitat fragmentation and dispersal ability (e.g., Cabeza and Moilanen 2003, 
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Moilanen et al. 2005, Jiang et al. 2007, Nalle et al. 2004, Nicholson et al. 2006, Polasky et al. 

2005, 2008).  Significantly, the SCP literature has not addressed issues of conservation plan 

implementation with asymmetric information.  In theory, an optimal solution could be successfully 

implemented by a conservation agency that had complete information and the power to dictate 

land-use decisions.  This description may be a reasonable characterization of the problem faced by 

public land managers, but it is unrealistic when applied to a landscape with a significant number of 

private landowners.   

The second strand of literature examines the use of incentive-based policies for voluntary 

habitat conservation on privately-owned land.  Unlike the SCP literature, asymmetric information 

is a central element in these studies.  The literature includes analyses of payments under fixed 

price contracts, conservation auctions, and regulatory approaches (Connor et al. 2008, Feng 2007, 

Ferraro 2008, Innes et al. 1998, Latacz-Lohmann and Van der Hamsvoort 1997, Polasky 2001, 

Polasky and Doremus 1998, Smith and Shogren 2002, Stoneman et al. 2003, Kirwan et al. 2005, 

Wu and Babcock 1995, 1996).  Regulatory approaches to habitat conservation tend to work poorly 

when landowners have the ability to act on private information (Polasky and Doremus 1998).  

Among voluntary approaches in which landowners are paid for enrolling in conservation 

programs, evidence from experiments reveals that conservation auctions tend to be more efficient 

than fixed price contracts when regulators lack full information about landowner payoffs (Cason 

and Gangadharan 2004, Schillizzi and Latacz-Lohmann 2007). 

One component of the SCP literature that the voluntary habitat conservation literature has 

only just begun to consider explicitly is the role of habitat pattern in biodiversity conservation.  

Because effective biodiversity conservation often requires large amounts of habitat, it is important 

to coordinate conservation decisions across multiple landowners.  Several papers have investigated 

policies that make payments to landowners a function of the decisions of neighboring landowners 
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(e.g., Parkhurst et al. 2002, Parkhurst and Shogren 2007).  In work closer to the present paper, 

Lewis and Plantinga (2007) combine an econometric model of landowner decisions with GIS-

based landscape simulations to examine the ability of simple incentive policies to reduce habitat 

fragmentation in South Carolina.  Using a biological model that considers habitat pattern and 

species’ ability to disperse across patches of habitat, Nelson et al. (2008) compare species 

conservation outcomes under five simple policy alternatives with efficient solutions.   

In this paper, we bring together the strength of the SCP literature—spatially-explicit 

models of biological benefits—with the strength of the literature on incentive-based policies—

realistic informational and political constraints—to analyze the relative efficiency of various 

incentive-based policies for conservation.  We apply our methods using data from the Willamette 

Basin of Oregon.  We analyze how close voluntary incentive-based policies come to achieving 

efficient species conservation solutions when the spatial pattern of conservation matters and 

landowners have private information about WTA.  The answer to this question can help identify 

the most promising policies from among the set of alternative voluntary incentive approaches and 

shed light on what type of information, biological or economic, is most important in improving the 

design of policies.  We find that incentive-based policies tend to achieve only a small portion of 

the potential conservation gains when landowners have private information about WTA.  

However, the performance of incentive-based policies relative to the efficient result with full 

information tends to improve as the conservation budget increases.  In addition, we find that 

encouraging agglomeration of habitat and adding biological criteria to the policy design, 

particularly the targeting of rare habitat types, can yield large improvements in performance.   

2. Simulating Responses to Conservation Incentives 

In this section, we describe the development of an econometric land-use model and its use 

in a simulation of responses by private landowners to incentive-based conservation policies.  A 
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random parameters logit (RPL) model is estimated with panel data from Oregon and Washington 

on private land-use decisions, net revenues from alternative uses, and parcel characteristics.  In the 

non-market valuation literature, random utility models are commonly used to measure 

compensating surplus for changes in environmental quality (Freeman 2003).  We adapt this 

approach to recover the distribution of maximum net revenue for each parcel on the landscape.  A 

parcel’s maximum net revenue is assumed to represent the landowner’s WTA a conservation 

payment in exchange for restoring their land to its native pre-Euro-American settlement land 

cover.  A landscape simulation is used to determine the response to conservation incentives on 

each parcel.  The simulation algorithm integrates the WTA distributions from the econometric 

analysis with spatially-explicit data on land parcels in the Willamette Basin of Oregon. 

2.1 Econometric Model 

Landowners are assumed to allocate a land parcel of uniform quality to the use that 

maximizes the present discounted value of expected net revenues minus conversion costs.  

Landowners consider current and historic values of net revenues to form static expectations of 

future returns.  The assumption of static expectations yields a simple decision rule under which the 

use generating the greatest annualized net revenues net of conversion costs is chosen (Plantinga 

1996).  The annualized net revenue from each use is specified as a function of deterministic and 

random factors.2  For parcel i that begins period t in use j and ends period t in use k, real 

annualized net revenues (Rikt) less annualized conversion costs (rCijkt) are: 

 1 1 ( ) 2 2 0 ( ) 1 ( )ikt ijkt jk jk c i jk jk ijk jk c i kt jk i c i kt ijktR rC R LCC Rα σ ϖ σ ϖ β β ε− = + + + + + , (1) 

for all uses k=1,…,K and time periods t=1,…,T, where 1 2 0 1( , , , , )jk jk jk jk jkα σ σ β β  are parameters, 

( )( , )c i kt iR LCC  are observable explanatory variables, and 1 ( ) 2( , , )ijkt c i jk ijkε ϖ ϖ  are random variables.  

( )c i ktR  is the average net revenue from use k at time t in the county ( )c i  where parcel i is located 
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and iLCC  indicates the productivity, as measured by the Land Capability Class (LCC) rating, of 

parcel i.3  The interaction of ( )c i ktR  and iLCC  allows the net revenue for parcel i to deviate from 

the county average net revenue.  Real annualized conversion costs ( ijktrC ) are assumed to be 

constant across parcels and time and are measured implicitly in the estimates of the constant terms 

jkα . 

As in a standard logit model, the random terms ijktε  are assumed to have a type I extreme 

value distribution with a common scale parameter jξ  for all k uses.  The terms 1 ( )c i jkϖ  and 2ijkϖ  

are standard normal random variables specific to county ( )c i  and parcel i, respectively.  Thus, 

1 1 ( )jk c i jkσ ϖ  and 2 2jk ijkσ ϖ  are error components that allow correlation of net revenues in the spatial 

dimension (all parcels within a county share a common 1 ( )c i jkϖ  term) and the temporal dimension 

(each parcel has a common 2ijkϖ  term across periods). 

The RPL model is estimated with maximum simulated likelihood using data for Oregon 

and Washington west of the crest of the Cascade Mountains.  We include data from areas outside 

of the Willamette Basin to increase variation and the number of observations.  The main data 

source is the National Resources Inventory (NRI), which provides 15,356 repeated plot-level 

observations of land use for 1982, 1987, 1992, and 1997, as well as the LCC rating of each plot.  

We focus on the major private land uses within the region: cropland, pasture, forest, and urban.  

These private land uses account for approximately two-thirds of the total land area in the 

Willamette Basin (most of the remaining land is owned by the federal government).  County-level 

estimates of annual net revenues from these uses are taken from Lubowski (2002) and discussed in 

greater detail in Lubowski et al. (2006).  The net revenues from forest are measured as annualized 

revenues from timber production less management costs.  Agricultural net revenues equal the 
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annual revenue from crop and pasture production less costs and plus government payments.  The 

forest and agricultural net revenues are county averages reflecting the existing mix of timber types 

and crops and their associated yields.  Net revenues from urban land are measured as the 

annualized median value of a recently-developed parcel used for a single-family home, less the 

value of structures.  Landowners are assumed to form expectations of future net revenues by 

computing the average of annual net revenues over the preceding five-year period. 

The NRI data reveal that no plots leave urban use and a very small percentage leave forest 

use between 1982 and 1997.  Thus, we focus on modeling the parcels that begin the periods 1982-

1987, 1987-1992, or 1992-1997 in crop and pasture uses.  Separate models are estimated for each 

starting use with a total of 3,504 pooled observations for crops and 4,637 pooled observations for 

pasture.  We have too few observations within the LCC categories to estimate the full set of 

interaction terms in (1) and, therefore, must place restrictions on 1 jkβ  parameters.  For the models 

that describe cropland and pasture conversion to use k we collapse the eight LCC categories into 

three categories:  LCC 1,2, LCC 3,4, and LCC 5,6,7,8.  We estimate interaction terms for net 

revenues and the combined LCC 3,4 and LCC 5,6,7,8 (LCC 1,2 is the omitted category).   

A well-known property of logit models is that the scale of random utilities (in our case, 

random net revenues) does not affect the decision maker’s choice (Train 2003).  While the scale of 

utilities is arbitrary in most applications, we want net revenues to reflect a landowner’s foregone 

returns so that the model produces meaningful WTA measures.  We accomplish this by setting the 

parameter on average net revenues for the starting use to one in each model (i.e., 0 1jjβ = ).  For 

starting use j, (1) can then be written: 

 ( ) 1 ( ) 1 1 ( ) 2 2( ) ( )ijt c i jt jj jj i c i jt jj c i jj jj ijj ijjtR R LCC Rα β σ ϖ σ ϖ ε= + + + + + ,  (2) 
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where 0ijjtrC = .  In (2), the net revenue for parcel i is equal to the county average net revenue 

from use j plus two types of adjustment factors.  The first term in parentheses measures the 

deviation from the county average net revenue due to parcel-level land quality ( jjα  measures the 

effect of the omitted LCC category).4  The second term includes spatial and temporal random 

adjustments to the county average net revenue.  The normalization in (2) scales the random net 

revenues for all uses to the average net revenue from the starting use, ensures that all net revenues 

are expressed in money-metric terms, and identifies the scale parameter jξ .  When the model is 

estimated, all of the coefficients are normalized on the scale parameter and so the estimated 

coefficient on ( )c i jtR  equals ˆ1/ jξ . 

A final estimation issue is that one of the alternative-specific constants ( jkα ) must be set to 

zero.  We impose the restriction 0jjα =  in both models, which implies that the estimated constant 

terms for all other ending uses k are ˆ ˆjk jjα α− .  As above, this restriction affects the level of net 

revenues, but not their ordinal ranking.  Below, we discuss a procedure for recovering ˆ jjα .  We 

then use ˆ
jξ  and ˆ jjα  to restore equation (2) for the starting use and equation (1) for the non-starting 

uses, thereby preserving the desired scale for net revenues.  

All parameters in (1) are estimated using maximum simulated likelihood and results are 

presented in Table 1.  The reported coefficient estimates correspond to the unnormalized 

parameters (i.e., the estimated coefficients have been multiplied by ˆ
jξ , and the standard errors 

have been adjusted with the Delta Method).  The model estimated for parcels beginning in 

cropland conforms closely to expectations.  All coefficients on net revenues are expected to be 

positive, as this indicates that landowners are more likely to choose a use if its net revenues 

increase (all else equal).  The coefficients on pasture, forest, and urban net revenues are positive 
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and, with the exception of forests, are significantly different from zero.  For cropland, the results 

indicate that the marginal effect of net revenues decreases as land quality falls.  Because LCC 1,2 

is the omitted category, the coefficient for LCC 3,4 is 0.49 (=1-0.51).  The coefficient for LCC 

5,6,7,8 lands is lower by about 0.09, but this difference is not statistically significant.  The 

coefficients 1 jkσ  and 2 jkσ  measure the standard deviation of the error component terms.  All four 

coefficients for the county effects are significantly different from zero and three of the four for the 

parcel effects are significantly different from zero, indicating unobserved heterogeneity at the 

county and parcel level. 

The results for the model that describes pasture conversion to use k are mixed.  Pasture net 

revenues have the expected positive effect on the pasture choice on higher quality lands (LCC 1,2 

and 3,4) but a negative coefficient is estimated for low quality lands (LCC 5,6,7,8).  The 

coefficient for cropland net revenues is positive on the high quality lands (LCC 1,2) but turns 

negative for LCC 3,4 and LCC 5,6,7,8.  The coefficient on urban net revenues is positive and 

significantly different from zero with a one-tailed test and a 10% level of significance.  Finally, the 

coefficient on forest net revenues is negative but not significantly different from zero.  The 

coefficients for the county- and parcel-level error components are significantly different from zero 

in all cases, with the exception of the parcel effect for urban use, again indicating unobserved 

heterogeneity at the county and parcel level.  

2.2 Willingness to Accept Conservation Payments 

 Given the starting use j, and K possible land-use choices, the maximum net revenue 

derived from parcel i in time t is:  

 { }*
1 1 ( ) 2 2 0 ( ) 1 ( ) 1

max
K

ijt jk jk c i jk jk ijk jk c i kt jk i c i kt ijkt k
R R LCC Rα σ ϖ σ ϖ β β ε

=
= + + + + + . (3) 

Under the stated distributional assumptions for ijktε , (3) can be re-written: 
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 ( )*
1 1 ( ) 2 2 0 ( ) 1 ( )

1 ln exp( )ijt jk jk c i jk jk ijk jk c i kt jk i c i kt ijtk
j

R R LCC Rα σ ϖ σ ϖ β β γ ν
ξ

⎡ ⎤= + + + + − +⎣ ⎦∑ , (4) 

where γ is Euler’s constant and ijtν  is distributed type I extreme value with location parameter 

equal to zero and scale parameter jξ  (Ben-Akiva and Lerman 1985).  Equation (4) is used to 

estimate a WTA distribution for each parcel i under the assumption that landowners are indifferent 

between receiving the maximum net revenue from the K uses and an equivalent payment for 

returning their land to its original cover. 

 Before we can apply (4), we must recover the parameter jjα , which we restricted to zero in 

the estimation.  Because the NRI provides a large random sample of parcels, we can exploit the 

relationship between parcel-level net revenues and the county average net revenue for the starting 

use: 

 
1

1 cjtN
c

cjt ijt
icjt

R R
N =

= ∑ ,     (5) 

where cjtN  is the number of parcels in county c in use j at time t and the c
ijtR  are net revenues for 

parcels in county c.  Substitute ijtR  in (2) into the right-hand side of (5).  Equation (5) holds 

provided that: 

 1 1 2 2 1
1 1 1

1 1 1 0
cjt cjt cjtN N N

c c
jj jj cjj jj ijj jj i cjt ijjt

i i icjt cjt cjt

LCC R
N N N

α σ ϖ σ ϖ β ε
= = =

+ + + + =∑ ∑ ∑ ,  (6) 

where c
iLCC  and c

ijjtε  are corresponding values for parcels in county c.  We assume that our 

sample of parcels is sufficiently large so that the mean of 2 2jj ijjσ ϖ  is zero.  Further, the mean of 

the random terms c
ijjtε  is zero because we include alternative-specific constants (Train 2003, p. 24).  

Thus, (6) is satisfied when: 
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    1 1 1
1

1 cjtN
c

jj jj cjj jj i cjt
icjt

LCC R
N

α σ ϖ β
=

+ = − ∑    (7) 

We compute the right-hand side of (7) for each county at four points in time, and regress these 

values on a complete set of county fixed effects with no intercept.  Because 1 1jj cjjσ ϖ  is zero on 

average, the mean of the estimated coefficients is ˆ jjα . 

The estimate ˆ jjα  is added to each of the alternative specific constants in (4) in order to 

restore the original scale of net revenues.  To simplify the notation, we denote the WTA for parcel 

i as ( )i ijWTA Ω  where 1 ( ) 2( , , , , , )ij c i j ij j j j ijtν=Ω ϖ ϖ α β σ  is a vector of all of the random variables on 

the right-hand side of (4) associated with parcel i in starting use j.  Annual per-acre WTA 

distributions can be obtained by repeated sampling of the elements of Ω .5  We show average 

distributions for crop and pasture parcels in the Willamette Basin in Fig. 1.6   

2.3 Matching Land Parcels to WTA Distributions and Land-Use Transition Probabilities 

We conduct a spatially-explicit simulation of conservation incentives in the Willamette 

Basin (Fig. 2).  The Willamette Basin is a large watershed consisting of 2.93 million hectares in 

western Oregon.  The Basin includes the urban areas of Portland, Salem, Albany, Corvallis, and 

Eugene-Springfield, as well as significant areas of agricultural land on the valley floor and forests 

in the surrounding mountains.  To develop the simulation algorithm, we must match WTA 

distributions and land-use transition probabilities from the econometric analysis to land parcels in 

a GIS.  

We use a parcel map constructed from a 30-meter grid cell land cover map for 1990 

(ORNHIC 2000).  To create a parcel map we combined adjacent cells of similar land cover to form 

10,372 parcels, ranging in size from 0.09 to 750 hectares.  Parcels in industrial, commercial, and 

dense urban uses were excluded.  The parcel map is described in detail in Polasky et al. (2008).  
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Given our emphasis on the conservation of private land, we eliminate parcels that are publicly 

owned, permanently covered in water, and within urban growth boundaries.7  This leaves 4,940 

privately-owned parcels, of which 2,319 are in crop and pasture use.  The remaining private 

parcels are in forest uses, rural-residential use, and private conservation.  While the 2,319 cropland 

and pasture parcels are the focus of the conservation policy, existing private and public 

conservation lands contribute to the biodiversity benefits generated by the landscape.     

The original parcel map has fourteen land use or land cover categories.  These categories 

are combined to match the four land uses in the econometric model.  For example, the categories 

row crops, grass seed, and orchards/vineyards are combined to form a cropland category.  Spatial 

data layers for LCC and county boundaries (Oregon Department of Land Conservation and 

Development [n.d.]) are overlaid on the parcel map, thus associating each parcel n with an initial 

land use, a county, and an LCC category.  Each parcel can now be matched to a WTA expression, 

( )nWTA Ω , based on equation (4).8   

In order to determine baseline land-use changes, each crop and pasture parcel is also 

matched to a set of land-use transition probabilities derived from the econometric results.  

According to our model, the probability that parcel i changes from use j (cropland or pasture) to k 

(cropland, pasture, forest, or urban) during the time period beginning in t is given by (modify 

based on notation above): 

 ( ) 1 ( ) 2( , , , ; , , )ijkt c i t i c i j ij j j jP F LCC= R ϖ ϖ α β σ ,   (8) 

where F is a logistic function, and ( )c i tR  is a vector of all of the net revenue variables and 

1 ( ) 2, , ,c i j ij j jϖ ϖ α β  and jσ  denote vectors of random terms associated with starting use j.  For 

given values of these random terms, (8) is used to compute transition probabilities for each of the 

eight possible land-use changes from starting uses (cropland, pasture) to ending uses (cropland, 
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pasture, forest, urban). Other initial land uses change according to sample transition probabilities 

computed with the NRI data (private forests) or are assumed to remain in their initial use with 

probability one.  As with the WTA values, each set of transition probabilities differs by initial use, 

county, and LCC category and is matched accordingly to the parcels on the initial land-use map.  

The set of 5-year transition probabilities for parcel n is a 1×8 vector denoted Pn5.  

2.4 Simulating the Spatial Pattern of Conservation Lands 

We consider policies that convert cropland and pasture parcels to natural land cover.  The 

type of natural land cover a conserved parcel adopts is given by the parcel’s pre-Euro-American 

settlement vegetation cover and includes the covers of prairie, emergent marsh, scrub/shrub, oak 

and other hardwoods, old-growth conifer, or riparian forest (Christy et al. 1998).  Due to a lack of 

data, we do not explicitly account for costs of converting crops and pasture to native cover.  Our 

econometric model does implicitly measure the costs of conversion to non-agricultural uses (e.g., 

forest) and these costs are reflected in the WTA values. 

We simulate a range of different policies, described in detail below, that differ in terms of 

the subset of cropland and pasture owners that are eligible for a per-acre conservation payment.  

For each policy, eligible landowners are offered a payment, and landowners who have a WTA less 

than the payment offered are assumed to enroll their parcels.  Enrollment continues until a budget 

constraint is met.  Because of our interest in the relative efficiency of policies, our budget is 

expressed in terms of landowners’ opportunity costs, equal to the sum of WTA for conserved 

parcels.  We do not consider the cost of the policy to the government, which also includes transfer 

payments to landowners.9  If there were no subsidies or other distortions to market prices, and no 

externalities from land-use choices, total WTA would be an accurate measure of the social cost of 

conservation.  In our application, however, there are subsidies to agricultural producer and other 

market distortions in addition to externalities (e.g., actions that affect water quality, air quality, 
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aesthetics, and other environmental benefits).  Here total WTA is used to represent cost, 

recognizing that is an imperfect measure of true social cost because of market and policy 

imperfections.  We evaluate cost budgets of $5, $10, $20, and $30 million dollars per year. 

The simulations use Monte Carlo methods to characterize the range of potential landscape 

patterns.  For a given policy that offers conservation payment Z, we randomly generate the value 

( )nWTA Ω  to determine if the parcel n is enrolled in the conservation program.  If not, then parcel 

n either remains in its current use or switches to one of the alternative uses according to the 

transition probabilities Pn5.  As in Lewis and Plantinga (2007), the transition probabilities and 

WTA distributions can be interpreted as a set of rules that govern changes in a parcel’s use.  The 

landscape simulations work as follows: 

1) Values of the random variables in Ω  are drawn from their estimated distributions (Krinsky 

and Robb 1986) for each parcel n on the landscape and used to compute ( )nWTA Ω . 

2) The period 0 conservation decision for each parcel eligible for a conservation payment is 

determined by comparing ( )nWTA Ω  to Z.  If ( )nWTA Z≤Ω , then parcel n is returned to its 

native cover and remains in this state for all future periods. 

3) If a parcel is not conserved in period 0, equation (8) is used to derive a vector of 50-year 

transition probabilities Pn50.10.  The 50-year land-use choice for each parcel is determined 

by drawing a random variable r from a U(0,1) distribution.  The resulting land-use choice 

is determined by comparing r to the set Pn50.11 

Using these steps we simulate a landscape of private land-use and conservation decisions that 

would exist fifty years after the policy is enacted.  Each time we repeat these steps, we produce a 

simulated future landscape that is consistent with the underlying decision rules from the 

econometric model and incentives created by the conservation policy.  We conduct 500 rounds of 
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the simulation for each policy and budget level, including a baseline with no conservation policy 

(i.e., Z = 0), in order to characterize the spatial distribution of conservation and working lands.12       

3. Biological Model and Optimal Landscape  

 We evaluate the outcomes of landscape conservation by computing a biodiversity score for 

each simulated landscape pattern.  In addition, we use a large-scale integer programming 

algorithm to search over the set of feasible landscape patterns to maximize the biodiversity score 

for a given opportunity cost of conservation.  The combination of the biological model and the 

optimal landscape algorithm allows us to evaluate the efficiency of incentive-based policies. 

3.1 Biological Model 

The biological model uses land-use patterns from the simulation along with information on 

species and habitats to evaluate the likelihood that species will be sustained in the future (Polasky 

et al. 2005, 2008). The biological model uses three species-specific traits to predict species 

persistence as a function of the land-cover pattern: a) species-habitat compatibility (i.e., what land 

covers are considered habitat for the species), b) the amount of habitat required for a breeding pair, 

and c) the ability of the species to move between patches of habitat.  The biological model uses 

information on each species’ geographic range, habitat compatibility and land cover to generate a 

map of habitat for the species.  Total habitat area is divided by the amount of habitat required for a 

breeding pair to estimate the maximum number of breeding pairs the landscape could support.  An 

estimate for the minimum number of breeding pairs on the landscape uses only the number of 

breeding pairs in habitat patches large enough to support viable populations within the patch 

assuming no migration from other patches.  Information on the pattern of habitat patches and 

species’ dispersal ability is then used to generate a connectivity score between 0 and 1 to weight 

the landscape score between the maximum and minimum estimates.  Habitat that is fully 

connected in a single large habitat patch gets a connectivity score of one and the landscape score 
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equals the maximum number of breeding pairs.  With fragmented habitat patches and species with 

less than perfect dispersal ability, the connectivity score is less than one and the landscape score is 

a weighted average of the maximum and minimum number of breeding pairs.  We convert the 

landscape score for the number of breeding pairs into a probability that the species will be 

sustained on the landscape using a saturating function with parameters set so that 500 breeding 

pairs generates a probability of 0.50 and 1000 breeding pairs generates a probability of 0.95.13  

Finally, we aggregate species survival probabilities across all species and divide by the number of 

species to generate a biodiversity score for the simulated landscape.  A complete description of the 

biological model can be found in Polasky et al. (2008).    

3.2 Optimal Landscape 

 To gain a sense of the relative efficiency of various incentive-based policies, we compare 

outcomes under these policies to the optimal land-use patterns that maximize the biodiversity 

score for a given cost.  As above, costs are measured as the sum of annual WTA over all 

conserved parcels.  However, in contrast to the voluntary incentive mechanisms discussed above, 

in solving for the optimal solution we assume the regulator knows the WTA for each parcel (not 

just the distribution of WTA) and can freely choose parcels to conserve.  Solving for the optimal 

land-use patterns in the Willamette Basin application is a large-scale integer programming 

problem that involves choosing among five land-use alternatives (crops, pasture, forest, urban or 

conservation) on over 2,000 parcels.  This optimization problem is particularly challenging 

because of the non-linear spatial considerations in the biological model.  Instead of optimizing, 

which is extremely difficult in this application, we use heuristic methods to find good – though not 

necessarily optimal – solutions.  The approach used was developed in Nelson et al. (2008) and 

Polasky et al. (2008) and details can be found there.  Here, we discuss its key features. 
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The heuristic methods involve finding land-use patterns that maximize the biodiversity 

score for three simpler versions of the biology model.  These simpler biological models are linear 

in land-use pattern, which allows us to find optimal solution for these models.  The first linear 

biological model considers the amount of habitat area on the landscape but not the spatial pattern 

of habitat.  The second biological model maximizes the total number of breeding pairs as a 

function of total habitat area, but not spatial pattern, up to an upper limit on breeding pairs for each 

species.  This model has the advantage of assigning no further credit for additional habitat to 

species with sufficient adequate existing habitat to support a viable population.  The third 

biological model modifies the second model by penalizing breeding pair counts as habitat becomes 

less connected on the landscape.  We solve for optimal solutions for all three biological models at 

various budget levels.  We then evaluate each of these solutions with the full biological model 

described in section 3.1. The particular land-use pattern that produces the highest biological score 

for a given budget level is used to approximate the optimal land-use pattern for that budget level.14     

4. The Application 

4.1 Terrestrial Species Included 

 The data needed to evaluate the full biological model (and the simpler linear versions) are 

available for a set of 267 terrestrial vertebrate species native to the Willamette Basin (Polasky et 

al. 2008).  Many conservation agencies specifically target funding to species of conservation 

concern.  In this application we included only those species whose conservation status can 

potentially be improved by land-use change in the Willamette Basin.  We included a species if its 

population is predicted to substantially decline over the 50-year period under a baseline of no 

conservation policy, or if the initial population of the species is low but could be substantially 

improved with habitat restoration.   We included species with low initial populations if we could 

find at least one land-use pattern generating a survival probability of 0.5 or higher using the 
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approach in Polasky et al. (2008).15  Of the 267 original terrestrial species evaluated, we find 24 

species that satisfy the above criteria for being of “conservation concern”.16 

4.2 Incentive-Based Policies Analyzed 

 We examine a wide range of alternative incentive-based policies, some of which are 

modeled on existing federal programs (e.g., the CRP and the WHIP).  We have two main 

objectives in analyzing alternative policies.  First, we wish to assess the relative performance of 

realistic policies to find what types of policy approaches are likely to be most efficient.  Second, 

we wish to assess the value of including more information about the economic and biological 

environment into policy design.  In analyzing incentive-based policies, we assume the regulator 

knows the probability density function for WTA (i.e., ( )nWTA Ω  for each parcel n) but does not 

know the realization of WTA for any individual parcel.  Comparing the solutions for incentive-

based policy alternatives with the approximated optimal solutions illustrates the potential gains 

from obtaining information on parcel-specific WTA combined with perfect control of conservation 

decisions.   

We designed several of the incentive-based policies based on insights we gathered by 

examining the approximately optimal solutions (Table 2).  Four insights relevant for designing 

incentive-based policies emerge.  First, the biodiversity score is sensitive to increasing the 

conservation of relatively rare habitat types, particularly oak savanna, prairie, and emergent marsh.  

These habitats comprise approximately 95% of conserved parcels under the approximately optimal 

solutions.  Second, it is important to target locations that contain large numbers of species.  

Approximately 60% of the parcels chosen under the approximately optimal solutions are within 

the range of fourteen or more of the species under consideration.  Third, targeting conservation to 

create large contiguous conserved habitat has a large impact on species persistence.  Under the 

approximately optimal solutions, conserved parcels tend to have large size and between 70% and 
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80% of these parcels are adjacent to conserved parcels (either parcels selected for conservation or 

existing conserved parcels).  Finally, efficient solutions tend to target parcels with a relatively low 

WTA when the conservation budget is low.  Selection shifts towards parcels with high biological 

benefits as the budget increases.  Enrolling low cost land is particularly important at low budget 

levels. 

 We evaluate twelve policies described in Table 3.  The policies fall into two basic groups.  

First, we consider least-cost policies under which a uniform per-acre payment is offered to all 

landowners who meet specified eligibility requirements.17  For some of these policies, the 

eligibility constraints incorporate basic biological principles and draw on insights from Table 2, 

including the importance of specific habitat types and large contiguous blocks of habitat.  Second, 

we consider policies that target payments according to their estimated benefit-cost ratios.  Benefit 

indices are derived using the same basic biological principles used to define eligibility constraints.  

Cost is the parcel-specific expected per-acre cost as derived from the estimated distributions of 

WTA.  The benefit-cost policies target those parcels with the highest benefit-cost ratio, where the 

regulator is assumed to offer sufficiently high payments to induce enrollment.  Costs for all 

policies are calculated using the actual WTA for parcels that enroll in the conservation program.     

5. Results  

The relative performances of the approximately efficient solutions and incentive-based 

policies are presented in Table 4.  For each policy and budget combination, we report the change 

in the biodiversity score relative to the baseline land use map, averaged over the 500 simulated 

landscapes.  Also shown is the mean change in the biodiversity score for each incentive-based 

policy relative to the mean change in the biodiversity score under the approximately optimal 

solution.18   
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The approximately efficient solution displays increasing returns at low levels of budget (up 

to $10 million), as shown by the more than doubling of the change in the biodiversity score in 

going from $5 to $10 million annual budget, and decreasing returns at high levels of budget (above 

$10 million) .19  In this application, many of the species of conservation concern begin with little 

conserved habitat.  These species need significant amounts of habitat conserved before they 

exhibit much increase in estimated survival probability.  For low budget levels, not much land can 

be conserved and this land adds little to survival probabilities.  At a budget of $10 million, a 

sufficient amount of land, which is suitably compact, is conserved to achieve critical levels of 

habitat protection.  Beyond this point further habitat conservation has a progressively lower 

marginal benefit.  The incentive-based policies also exhibit increasing returns.  With few 

exceptions, the incentive-based policies exhibit increasing returns through the $20 million budget 

level and some policies show increasing returns throughout.  Increasing returns occurs especially 

for incentive-based policies that do not take special account of spatial patterns.  For such policies, 

initially conserved lands tend to be highly fragmented.  As more land is conserved, fragmentation 

decreases leading to improved conservation outcomes (Lewis et al. 2009).20     

None of the incentive-based policies do particularly well at low budget levels.  At a budget 

of $5 million, the best incentive-based policy (Agglomeration – Rare Habitat) achieves only 24% 

of the maximum attainable increase in the biodiversity score.  Somewhat surprisingly, the benefit-

cost policies do particularly poorly at the budget of $5 million.  All of the benefit-cost policies 

achieve less than 10% of the increase in biodiversity score as compared to the estimated efficient 

solution.  It was our expectation that benefit-cost policies would generally outperform least-cost 

policies because they incorporate information about both biological benefits and cost in choosing 

priority sites.  The least-cost policies enroll the cheapest land, a desirable property at low budget 

levels especially when combined with eligibility constraints that reflect basic biological principles.   
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Incorporating biological benefits via simple rules like only choosing sites with rare habitat types 

and that adjoin to other conserved sites, as in the Agglomeration – Rare Habitat policy, proves to 

be the best of the policies we analyzed at a budget of $5 million.  

The Agglomeration – Rare Habitat policy consistently performs best amongst the least-

cost policies.  It is also worthwhile to note that the difference between each of the least-cost 

policies is generally small compared to the difference between the least-cost policies and the 

approximately optimal solution.  Adding the Large or Rare Habitat eligibility constraints is 

generally more efficient than the Simple Uniform policy, although not by a large magnitude.  

Further, the simple Agglomeration design – which gives incentive for adjacent conserved parcels – 

improves efficiency relative to all other least-cost policies, especially when combined with the 

Rare Habitat eligibility constraint.   

As the budget increases, the performance of benefit-cost policies improves vis-à-vis the 

least-cost policies and the estimated efficient result.  At a budget of $10 million the performance 

of one of the benefit-cost policies, Lot Size Agglomeration, improves dramatically with a 10-fold 

increase in the change in biodiversity score at the $10 million budget relative to the $5 million 

budget.  The other benefit-cost policies continue to do poorly at the $10 million budget level.  

Beyond the $10 million budget level, however, all of the benefit-cost policies, with the exception 

of the WHIP policy, generally outperform their least-cost counterparts.  The benefit-cost policy 

Rare Habitat – Large – Range has the best performance of all policies we analyzed at both the $20 

and $30 million budgets.  At the $30 million budget, Rare Habitat – Large – Range achieves 

87.2% of the change in biodiversity score of the approximated efficient result.  The WHIP policy 

most closely mimics current conservation policy in the region.  That it does so poorly gives 

considerable room for policy reform to improve conservation performance.                    
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In Table 4 we report the average change for the 500 simulations, but there is considerable 

variation in results across simulations.  In Figure 4 we show the entire distribution of the 

biodiversity scores for each incentive-based policy.  There are two general findings. First, the 

variance of the biodiversity score always increases as the budget gets larger.  Increasing budgets 

result in more conserved land, implying an increasing number of patterns in which the landscape 

could be arranged, and a wider array of biodiversity outcomes. Second, the variance in the 

biodiversity score resulting from the least-cost policies is always larger than the variance resulting 

from the benefit-cost policies.  Successful biodiversity conservation with least-cost policies is 

heavily dependent on the somewhat random location of low cost land, while a well-defined 

benefit-cost policy is more tightly focused on achieving particular landscape patterns.  This 

difference in variance between the two basic policy approaches could be important to policy 

makers concerned with minimizing the potential for undesirable outcomes. 

The results illustrate the degree to which adding biological and economic information 

improves the efficiency of policy.  The policies with the most information, in particular policies 

that incorporate features to include rare habitat types and minimize fragmentation, tend to yield the 

largest gains in biodiversity for a given cost.  In addition, results in Table 4 provide striking 

evidence that there is room for large efficiency gains as most of the incentive-based policies yield 

well under 50% of the potential biodiversity improvement, as represented by the approximately 

optimal solution. 

6. Conclusion 

This paper addresses an unresolved question for policies aimed at conserving biological 

diversity, namely how well can voluntary incentive-based policies achieve efficient solutions?  To 

answer this question, we develop a methodology that integrates an econometric model of private 

land-use decisions, landscape simulations, spatially-explicit data, a biological model that estimates 
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species persistence, and an algorithm that approximates the set of efficient solutions.  Of particular 

interest for future analyses of land conservation, we also develop a novel method for deriving 

distributions of a landowner’s willingness-to-accept a conservation payment from an econometric 

land-use change model.  The method is applicable to the common situation where land-use data 

sets consist of parcel-specific data on land-use change, and aggregate data on the net returns to 

alternative land uses. Given the importance of the spatial pattern of habitat for many species, a 

central feature of the overall methodology is the ability to simulate the effects of voluntary 

incentives on both the aggregate amount and the spatial distribution of habitat for a diverse set of 

species whose conservation status is significantly affected by private land-use decisions.   

We find that simple voluntary incentive-based policies are often inefficient in achieving 

conservation objectives.  There can be substantial differences between the biodiversity changes 

achieved with voluntary incentive-based policies compared to those that are theoretically possible 

through the direct control of landscape pattern.  The inefficiency of incentives in improving 

biodiversity arises primarily from the inability of regulators to control the spatial pattern of 

landscapes with a voluntary payment mechanism.  The decision of any particular landowner to 

convert their land to conservation depends on their willingness to accept a payment for such 

action.  Since the willingness to accept a conservation payment is private information, a regulator 

is uncertain ex-ante of the spatial landscape pattern that will result from a given set of payments 

offered to a group of landowners.  Future development of auction mechanisms to elicit 

landowners’ willingness-to-accept a conservation payment—combined with an explicit attention 

to habitat fragmentation—appears to be a necessary step to achieving efficient conservation. 

The results presented in this paper are influenced by the landscape context and the species 

we include in our analysis.  Therefore, while our results represent the first explicit empirical 

estimates of the inefficiency of incentive-based policies in conserving biodiversity, it is difficult to 
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extrapolate our findings to other landscapes to make general conclusions.  Nevertheless, our 

results suggest the following testable hypotheses: a) incentive-based policies tend to achieve only 

a small portion of the potential conservation gains when landowners have private information 

about willingness-to-accept, b) the performance of incentive-based policies relative to the efficient 

result with full information tends to improve as the conservation budget increases, c) adding 

biological criteria to policy design (e.g., including rare habitat types or minimizing fragmentation) 

can yield large improvements in performance, d) least-cost policies are more cost-effective than 

benefit-cost policies when budgets are low but the reverse is true when budgets are high, and e) 

policies that explicitly target conservation based on benefit-cost ratios are likely to achieve 

biodiversity outcomes with lower variance than least-cost policies.  The accumulation of other 

case-studies, or the scaling up of our methodology to larger landscapes, would be a fruitful 

approach to testing the generality of our findings. 
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Fig. 1 – Frequency of estimated annual per-acre WTA for a typical parcel in the Willamette 
Basin  
 
a. Land starting in cropland  
 

 
 
b. Land starting in pasture 
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Fig. 2 –The Willamette Basin  
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Fig. 3 - Frequency distributions of performance of alternative voluntary policies 
 
a. Least-cost policies 

 
b Benefit-cost policies 
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Table 1 -- Estimation Results for Random Parameters Models 
Parameter Estimate St. Error t-statistic
   
Starting use is crops (n=3,504)     
1/scale 1.204 0.267 4.510
Crop Returns 1.000 NA NA
Crop Returns * LCC34 -0.511 0.210 -2.429
Crop Returns * LCC5678 -0.094 0.563 -0.166
Pasture Intercept -2.095 0.528 -3.969
Pasture Returns 0.326 0.142 2.292
Forest Intercept -7.799 2.116 -3.686
Forest Returns 0.242 0.964 0.251
Urban Intercept -4.788 1.137 -4.210
Urban Returns 0.013 0.005 2.560
Random Parameters - county effects    
Crop St. Dev. 0.372 0.144 2.591
Pasture St. Dev. 0.381 0.119 3.189
Forest St. Dev. 1.112 0.433 2.567
Urban St. Dev. 0.761 0.274 2.778
Random Parameters - parcel effects    
Crop St. Dev. 0.524 0.141 3.705
Pasture St. Dev. 0.140 0.139 1.005
Forest St. Dev. 2.017 0.605 3.334
Urban St. Dev. 0.494 0.193 2.563
      
Starting use is pasture (n=4,637)    
1/scale 0.693 0.201 3.457
Pasture Returns 1.000 NA NA
Pasture Returns * LCC34 -0.662 0.263 -2.515
Pasture Returns * LCC5678 -1.782 0.551 -3.233
Const Crop -4.886 1.382 -3.534
Crop Returns 0.339 0.358 0.946
Crop Returns * LCC34 -2.427 0.919 -2.641
Crop Returns * LCC5678 -1.478 0.843 -1.753
Const Forest -6.310 1.852 -3.407
Forest Returns -0.117 0.573 -0.205
Const Urban -8.135 2.506 -3.246
Urban Returns 0.001 0.001 1.225
Random Parameters - county effects    
Pasture St. Dev. 1.944 0.690 2.817
Crop St. Dev. 0.940 0.332 2.835
Forest St. Dev. 0.720 0.352 2.044
Urban St. Dev. 1.305 0.711 1.834
Random Parameters - parcel effects    
Pasture St. Dev. 0.603 0.222 2.723
Crop St. Dev. 0.762 0.262 2.905
Forest St. Dev. 1.656 0.506 3.271
Urban St. Dev. 0.133 0.307 0.435
      
Crop starting use:  Log likelihood function = -837.93   
Pasture starting use:  Log likelihood function=-1191.45   
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Table 2 – Characteristics of Conserved Parcels in the Solution for the Estimated Efficiency 
Frontier at Different Levels of Cost 
 

Cost 
(Million $) 

Average 
Size 

(Acres) 

Percentage of 
Conserved 

Parcels 
Containing  

Rare Habitat* 

Percentage of 
Conserved 

Parcels within 
the Range of 
Fourteen or 

more Species 

Percentage of 
Conserved 

Parcels Adjacent 
to a Conserved 

Parcel 

Average 
WTA Per 

Acre 

Maximum 
WTA Per 

Acre 

 5 899 93.16% 59.72% 79.21% $53.26 $164.16 
10 933 94.96% 63.88% 79.32% $72.52 $232.81 
20 895 94.70% 60.98% 78.48% $90.30 $358.43 
30 913 96.34% 61.49% 79.83% $99.96 $414.44 

*Rare habitat types include oak savanna, prairie, old growth forest, and emergent marsh. 
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Table 3 – Incentive-based policies evaluated 
 
 Eligible parcels Benefit index 
Least-cost policies   
Simple uniform All NA 
Large Parcels with greater than 800 

acres 
NA 

Rare Habitat Parcels whose native habitat is 
oak savanna, prairie, old 
growth forest, or emergent 
marsh 

NA 

Agglomeration  Parcels whose immediate 
neighbor also accepts a 
conservation payment 

NA 

Agglomeration - Rare Habitat   Parcels satisfying both the 
Agglomeration and Rare 
Habitat criteria 

NA 

Oregon’s Wildlife Habitat 
Incentives Program (WHIP) 

Parcels with at least 100 
points based on 
implementation of Oregon’s 
WHIP program 

NA 

Rare Habitat – Large – Range 
(RHLR) 

Parcels with at least three of 
the following: 

i) ≥ 400 acres 
ii) ≥ 800 acres 
iii) Rare Habitat  
iv) w/in range of at 

least 14 species 

NA 

   
Benefit-cost policies   
Lot Size All The size of the parcel 
Lot Size - Rare Habitat Parcels satisfying the Rare 

Habitat criteria 
The size of the parcel 

Lot Size - Agglomeration Parcels satisfying the 
Agglomeration criteria 

The combined size of two 
adjacent conserved parcels 

Oregon’s Wildlife Habitat 
Incentives Program (WHIP) 

All Assigned points based on 
Oregon’s WHIP program 

Rare Habitat – Large – Range 
(RHLR) 

All One point for each: 
v) ≥ 400 acres 
vi) ≥ 800 acres 
vii) Rare Habitat  
viii) w/in range of at 

least 14 species 
Note: Least-cost policies offer uniform payments and enroll the least-cost parcels subject to 
eligibility constraints. Benefit-cost policies rank parcels according to the ratio of benefits to 
expected costs, where expected costs are derived from estimated WTA distributions.
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Table 4 – Estimated Mean Change in Biodiversity Score Relative to Baseline 
 
  $5m  $10m   $20m   $30m  
Approximate Optimal Policy 0.0840  0.2377  0.3289  0.3493  
     
Uniform Policies     

Simple Uniform 0.0100 0.0224 0.0603 0.1061 
 (11.92%) (9.43%) (18.35%) (30.37%) 

Large 0.0112 0.0267 0.0759 0.1242 
 (13.29%) (11.23%) (23.08%) (35.57%) 

Rare Habitat 0.0112 0.0271 0.0781 0.1300 
 (13.33%) (11.40%) (23.75%) (37.22%) 

Agglomeration  0.0165 0.0435 0.1091 0.1650 
 (19.65%) (18.32%) (33.17%) (47.23%) 

Agglomeration - Rare Habitat  0.0203 0.0545 0.1314 0.1899 
 (24.22%) (22.94%) (39.95%) (54.36%) 

WHIP 0.0113 0.0264 0.0732 0.1228 
 (13.52%) (11.12%) (22.26%) (35.15%) 

Rare Habitat – Large – Range  0.0124 0.0323 0.0900 0.1450 
 (14.81%) (13.59%) (27.38%) (41.51%) 
     
Benefit-Cost Policies     

Lot Size 0.0019 0.0082 0.0644 0.1181 
 (2.29%) (3.43%) (19.59%) (33.82%) 

Lot Size - Rare Habitat 0.0027 0.0105 0.0822 0.1274 
 (3.22%) (4.42%) (24.99%) (36.48%) 

Lot Size Agglomeration 0.0060 0.0686 0.1278 0.2254 
 (7.14%) (28.86%) (38.85%) (64.52%) 

WHIP 0.0032 0.0050 0.0116 0.0291 
 (3.76%) (2.12%) (3.54%) (8.34%) 

Rare Habitat – Large – Range 0.0067 0.0309 0.2112 0.3046 
 (7.94%) (13.00%) (64.23%) (87.20%) 
Note: Numbers in parentheses represent the average change in the biodiversity score relative to the 
baseline as a percentage of the average change in the biodiversity score on the estimated efficiency 
frontier relative to the baseline. Bold indicates the incentive-based policy with the highest 
estimated change in the biodiversity score. 
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Endnotes 
                                                 
1 This literature is also known as the reserve-site selection literature. 

2 A similar specification is used in Lubowski et al. (2006) and Lewis and Plantinga (2007).  One 

important difference is the inclusion of random parameters in the present model.  Oregon has a 

well-known land-use planning system that largely prohibits urban development outside of 

designated growth areas.  Because we do not know the exact location of the plots used in 

estimation, we cannot control explicitly for influences of land-use regulations.  The RPL model 

allows us to measure implicitly these and other unobservable parcel-level effects.   

3 iLCC  is defined as a vector of dummy variables for the eight LCC categories 1-8, where lower 

numbers indicate higher quality (U.S. Department of Agriculture 1973).  1 jkβ  is similarly defined 

as a conformable vector of parameters corresponding to each of the LCC categories. 

4 The term jjα  plays an important role here.  If the coefficient on 1 jjβ  is negative (positive) then 

jjα  allows for upward (downward) adjustments in the average net revenue due to observable 

parcel-specific land quality.  Without jjα , equation (2) could not be interpreted as a deviation from 

the county average net revenue. 

5 Fixed and random parameters are drawn using the Krinsky-Robb (1986) method, which accounts 

for correlations across parameters through the use of the estimated variance-covariance matrix. 

6 Since vijt in equation (4) is unbounded, it is possible to have a negative WTA. For parcels starting 

in crop (pasture), the probability of a negative WTA is, on average, 5% (12%). Given the low 

probabilities of a negative WTA, truncating the WTA distribution at zero is of small consequence 

(Haab and McConnell 2003 p. 97). 

7 In Oregon each city and town is required to designate an urban growth boundary, within which 

high-density development is permitted.      
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8 If a parcel has more than one LCC rating or is within more than one county, we construct an 

area-weighted average of WTA values (the same procedure is used for the transition probabilities 

discussed below). 

9 In practice, the cost to the government is likely to be the relevant constraint on the conservation 

of land parcels.  Our policies could, alternatively, be constrained by budgets defined in these 

terms, as in Nelson et al. (2008).  However, in this case, the opportunity costs would vary across 

policies and budget levels, making efficiency comparisons difficult. 

10 The transition probabilities in (8) correspond to land-use changes over a five-year period.  If M 

is a matrix of five-year transition probabilities, M10 is the matrix of 50-year probabilities.  

Elements of the 50-year matrix give the probability that a parcel in use j in year 0 is in use k by 

year 50, accounting for all possible paths from use j to k that can be taken. 

11 For example, suppose that a crop parcel has a 75% probability of remaining in crops, and 

converts to pasture, forest, and urban use with probabilities of 15%, 5%, and 5%, respectively. For 

this example, if 0 0.75r≤ ≤ , the parcel remains in crops.  If 0.75 0.90r< ≤ , the parcel switches to 

pasture, and so on. 

12 Generating two independent sets of 500 simulated landscapes reveals that all statistics presented 

in this paper do not differ across the two sets of simulations.   

13 The saturating function generates low probabilities of survival and small change with increased 

habitat for low numbers of breeding pairs, rapidly increasing probability of survival with increased 

habitat around a survival probability of 0.5, and high probability of survival and small change with 

increased habitat for high numbers of breeding pairs. 

14 Because the optimization process is computationally costly, we apply it using the WTA values 

from the baseline simulations that produce the 1st, 25th, 50th, 75th, and the 99th percentile 
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biodiversity scores from among all 500 baselines.  The maximum biodiversity scores obtained 

with each set of WTA values are then averaged.   

15 Polasky et al. (2008) includes land-use patterns where conservation decisions on public as well 

as private land can be changed and the opportunity cost of conservation can reach as high as $25 

billion in net present value. across the whole Basin. 

16 The 24 species are: American Bittern, Canada Goose, Green-Winged Teal, Cinnamon Teal, 

Ruddy Duck, White-Tailed Kite, Bald Eagle, Osprey, Northern Goshawk, Red-Shouldered Hawk, 

Marbled Murrelet, Spotted Owl, Belted Kingfisher, Short-Eared Owl, Grasshopper Sparrow, 

Common Muskrat, Wolverine, White-Tailed Deer, Painted Turtle, Western Pond Turtle, Northern 

Harrier, Acorn Woodpecker, Western Meadowlark, and Fisher. 

17 We refer to these as least-cost policies because a uniform per-acre payment will create a desired 

amount of habitat at least cost. 

18 We use all 500 simulations for the incentive-based policies when comparing the result with the 

estimated efficiency frontier, though we only have five simulated landscapes for the latter.   Using 

only the five simulated landscapes for which we have efficiency frontier results yields virtually 

identical results to those presented in table 4. 

19 Although not presented in table 4, we also estimated the biodiversity score for all policies with a 

total cost of $1 million.  Very little change in the biodiversity score was achieved with this low 

budget level under either the incentive-based policies or the approximately optimal solution. 

20 In the limiting case where all private land is conserved, the incentive-based policies and the 

efficient solutions will be identical. 
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