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Abstract

We consider a game Gn played by two players. There are n independent random variables
Z1; : : : ; Zn, each of which is uniformly distributed on [0; 1]. Both players know n, the inde-
pendence and the distribution of these random variables, but only player 1 knows the vector
of realizations z := (z1; : : : ; zn) of them. Player 1 begins by choosing an order zk1 ; : : : ; zknof
the realizations. Player 2, who does not know the realizations, faces a stopping problem. At
period 1, player 2 learns zk1 . If player 2 accepts, then player 1 pays zk1 euros to player 2 and
play ends. Otherwise, if player 2 rejects, play continues similarly at period 2 with player 1
o¤ering zk2 euros to player 2. Play continues until player 2 accepts an o¤er. If player 2 has
rejected n � 1 times, player 2 has to accept the last o¤er at period n. This model extends
Moser�s (1956) problem, which assumes a non-strategic player 1.
We examine di¤erent types of strategies for the players and determine their guarantee-

levels. Although we do not �nd the exact value vn of the game Gn in general, we provide an
interval In = [an; bn] containing vn such that the length of In is at most 0:07 and converges to
0 as n tends to in�nity. We also point out strategies, with a relatively simple structure, which
guarantee that player 1 has to pay at most bn and player 2 receives at least an. In addition,
we completely solve the special case G2 where there are only two random variables. We
mention a number of intriguing open questions and conjectures, which may initiate further
research on this subject.

Key words: Secretary problem, Moser�s problem, incomplete information, lack of informa-
tion on one side, optimal strategies.

1. Introduction

For many years, scientists from di¤erent disciplines have explored the well-known �secretary
problem�. This is a stopping problem in which n secretaries are invited, in a random order, for

�We thank Péter Csóka and Jérôme Renault for discussions on this subject. We are also grateful to Wolfram
Research, Inc., for program package Mathematica, which assisted us with some numerical approximations.

yAddress of both authors: Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200
MD Maastricht, The Netherlands. Email: J.Flesch@maastrichtuniversity.nl and A.Perea@maastrichtuniversity.nl.



an interview to �ll a secretarial position. The employer knows the number of secretaries, and
is aware that the order is random. After every interview, the employer can rank the secretaries
interviewed so far from best to worst without ties, and must decide whether or not to hire the last
candidate. His task is to �nd a stopping rule that maximizes the probability of hiring the best
secretary. The optimal stopping rule has the following form: Reject the �rst rn secretaries, and
then hire the �rst secretary who is better than all the preceding ones. If no such secretary arrives
after round rn; then the best candidate was among the �rst rn secretaries, and it therefore does
not make a di¤erence whether or not to hire the last secretary. For large n; the optimal choice of
rn is approximately n=e; and the probability of hiring the best secretary is approximately 1=e:
For a historical overview of this classical secretary problem the reader is referred to Ferguson
(1989).

The secretary problem has been extended in a number of important directions. In particular,
versions have been studied in which the payo¤ depends on the rank of the selected candidate,
even if he or she is not the best. This seems more realistic than the classical scenario, as hiring
the second best candidate is obviously better than hiring the third best. We can further extend
this situation by assuming that every secretary has a cardinal value distributed according to
some probability measure, but where the payo¤ solely depends on the rank of the selected
candidate (see Gnedin and Krengel (1995) and the references therein, and Bearden (2006)). In
this case, however, it is perhaps more natural to assume that the payo¤ is exactly equal to
the cardinal value of the selected candidate, instead of its relative rank. For instance, if there
are two secretaries with neigbouring ranks, then selecting the best amongst these two is less
relevant if their values are close, and more relevant if the di¤erence in values is high. This is
exactly the model as studied by Moser (1956), who assumes that the values are independently
and uniformly distributed on [0; 1]: In fact, Moser�s model is a variant of a problem considered
by Arthur Cayley in the nineteenth century. (See Ferguson (1989) for a description of Cayley�s
problem.)

In the present paper we take Moser�s model, but assume in addition that there is an adversary
who knows the values of the secretaries, and chooses the order of the secretaries strategically.
The employer, on the other hand, does not know these values, but only knows the number of
secretaries, and the distribution of their respective values. We thus obtain a zero-sum game with
incomplete information on the employer�s side. We are not the �rst to take a game theoretic
approach to the problem1. See, for instance, Gilbert and Mosteller (1966), Gnedin and Krengel
(1995), and de Carvalho, Chaves, de Abreu Silva (2008).

The adversary�s main problem is how to optimally exploit his private information. This is a
di¢ cult problem since the adversary, by using his private information, would make choices that
would reveal part of his private information to the employer. In our analysis, however, we mainly
focus on the employer, in line with the literature on the secretary problem. In particular, we

1Most of the models are interested in the relative rank of the chosen secretary, and not in the cardinal value as
we are. There is, however, a relationship between the two approaches. Bruss and Ferguson (1993) show, namely,
that there is a strong correlation between the cardinal values and their associated ranks. See also Bruss (2005).
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will be interested in his optimal strategies, that is, strategies for which the worst-case expected
payo¤ is as high as possible.

For the case of two secretaries, we show that the employer�s unique2 optimal strategy is to
hire the �rst secretary precisely when her value is at least 0.5. This strategy guarantees an
expected payo¤ of 7=12 to the employer. An optimal strategy for the adversary is to �rst send
the secretary whose value is closer to 0.5.

If there are more than two secretaries, we are not able to �nd exact optimal strategies for
the employer. However, we provide strategies with a simple structure that approach the value
within a distance of at most 0.07. The class of strategies we focus on are threshold strategies,
and they work as follows: For every period k choose a threshold ak, which may depend on the
values of the rejected secretaries, and hire the current secretary precisely when her value is at
least ak: Such a threshold strategy is called stationary if ak is constant throughout the game,
except for the last period where the employer must accept the last candidate. The strategy is a
Markov threshold strategy if ak depends on the period k; but not on the values of the rejected
secretaries.

We show that the best stationary threshold strategy is to choose the threshold equal to
(1=n)1=(n�1); where n is the number of secretaries. This threshold converges (slowly) to 1 if
n tends to in�nity. Interestingly, this is also the best stationary threshold strategy in Moser�s
model, where the order of the secretaries is not chosen strategically. We show that this stationary
threshold strategy performs relatively well in general, as it approximates the value by at most
0.08.

We then turn to Markov threshold strategies. We show that the best amongst these involves
thresholds that are non-increasing over time. For the case of two and three secretaries, this
strategy is in fact the best stationary threshold strategy discussed above. So, for these cases
choosing di¤erent thresholds over time does not yield higher payo¤s. We conjecture, supported
by numerical simulations, that this remains to be true for more than three secretaries as well.

However, for at least three secretaries, we show that the best threshold strategy must base its
thresholds not only on the period, but also on the values of the rejected secretaries. Nevertheless,
it remains true that the thresholds should be non-increasing over time. We prove that the
employer, by using such general threshold strategies, can approach the value by at most 0.07.

It turns out to be very di¢ cult to provide e¤ective strategies for the adversary. We do,
however, provide some suggestions at the end of the paper.

The outline of the paper is as follows: In Section 2 we introduce the model. In Section
3 we describe the optimal strategy for the employer if the order of secretaries is not chosen
strategically. After this section we will explore the situation where the adversary is strategic,
that is, chooses the order of secretaries to his own advantage. Section 4 covers the case of two
secretaries. In Section 5 we turn to the case of more than two secretaries, and examine stationary
threshold strategies for the employer. General threshold strategies are explored in Section 6.

2To be precise, unique up to behavior on a set of measure zero.
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Section 7 contains some concluding remarks, also on e¤ective strategies for the adversary. Some
technical proofs have been moved to the appendix.

2. The Model

The game. Consider the following game Gn, where n 2 N, played by two players. There
are n independent random variables Z1; : : : ; Zn, each of which is uniformly distributed on [0; 1].
We assume that both players know n, the independence and the distribution of these random
variables, but only player 1 knows the vector of realizations z := (z1; : : : ; zn) of them. The game
is played as follows. Let N = f1; : : : ; ng. At period 1, player 1 chooses one of fzigi2N , say zk1 ,
and o¤ers zk1 euros to player 2. If player 2 accepts, then player 1 pays zk1 euros to player 2 and
play ends. Otherwise, if player 2 rejects, play continues at period 2, where player 1 chooses one
of the remaining amounts fzigi2N�fk1g, say zk2 . Player 1 subsequently o¤ers zk2 euros to player
2, who either accepts or rejects. If player 2 accepts, then player 1 pays zk2 euros to player 2 and
play ends, whereas if player 2 rejects, then player 1 has to o¤er one of the remaining amounts
fzigi2N�fk1;k2g. This continues until player 2 accepts an o¤er. If player 2 has rejected n � 1
times, player 2 has to accept the last o¤er at period n.

In terms of the secretary problem as described in the introduction, player 1 corresponds
to the adversary whereas player 2 plays the role of employer. The realizations of the random
variables Z1; :::; Zn are the values of the n secretaries.

Strategies. Let �(N) denote the set of all permutations of N . Note that player 1�s pure
strategy is essentially the same as just chosing one permutation in �(N) in advance, instead of
choosing period by period, and to o¤er z�(k) at period k. A (mixed) strategy �1 for player 1
is a decision rule which speci�es a probability distribution on �(N) for each possible vector of
realizations z.3 A strategy �1 is called pure if, for any z; it prescribes one speci�c permutation
with probability 1.

At any decision point for player 2, the history observed by player 2 is the sequence consisting
of all amounts that player 1 has o¤ered before the current period. A (mixed) strategy �2 for
player 2 is a decision rule which assignes a probability distribution on fAccept, Rejectg to any
o¤er at the current period and to any history of player 2.4 A strategy �2 is called pure if,
for any current o¤er and any history of player 2, strategy �2 prescribes either Accept with
probability 1 or Reject with probability 1. Moreover, a pure strategy �2 for player 2 is called a
threshold strategy if, after any history h of player 2, there exists a threshold a(h) 2 [0; 1] such
that �2 prescribes to accept the current o¤er y when y � a(h) and prescribes to reject it when
y < a(h). If these thresholds only depend on the period, then �2 is called a Markov threshold

3We assume throughout that �1 satis�es a standard measurability requirement with respect to the Lebesgue
�-algebra on [0; 1]n:

4Again, we assume that �2 is measurable with respect to the Lebesgue �-algebra.
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strategy, whereas if there is just one threshold then �2 is called a stationary threshold strategy.5

Markov threshold strategies for player 2 are given and denoted by the sequence of thresholds
a := (a1; : : : ; an�1) for the �rst n� 1 periods, whereas a stationary threshold strategy of player
2 is simply a threshold a 2 [0; 1].

Utility. With respect to a pair of strategies (�1; �2), let U(�1; �2) denote the expected
amount that player 1 has to pay to player 2. We also refer to U(�1; �2) as the expected utility.
We evaluate every strategy �1 of player 1 by

 1(�1) = sup
�2

U(�1; �2);

which is the worst-case scenario for what player 1 has to pay in expectation. Similarly, for every
strategy �2 of player 2, let

 2(�2) = inf
�1
U(�1; �2):

A strategy �1 for player 1 is called a best reply to a strategy �2 of player 2, if U(�1; �2) =
 2(�2). Similarly, a strategy �2 for player 2 is called a best reply to a strategy �1 of player 1,
if U(�1; �2) =  1(�1). Best replies always exist in pure strategies.

The value. We always have

inf
�1
 1(�1) � sup

�2
 2(�2):

If they are equal, then this amount is called the value of the game, and is denoted by vn. If vn
exists, then a strategy �1 for player 1 is called optimal if  1(�1) = vn; whereas a strategy �2 for
player 2 is called optimal if  2(�2) = vn. Note that �1 and �2 are optimal if and only if they
are best replies to each other.

One can show the following theorem based on approximating the original game by a sequence
of �nite discretizations.

Theorem 2.1. (Existence of value and optimal strategies)
The value vn of the game Gn exists. Moreover, both players have an optimal strategy.

3. Playing Against a Non-Strategic Player 1

In this section, we examine the situation in which player 1 does not manipulate the order of
the realizations z1; : : : ; zn, and simply chooses zk for period k. For every n; let �1n denote this
strategy for player 1, and let evn denote the best utility player 2 can achieve against �1n, i.e.evn =  1(�1n):

5 In accordance with the literature on dynamic games, we use the term Markov to emphasize that the thresholds
only depend on the current period but not on the speci�c history. Similarly, we use stationary to emphasize the
time and history independence of the thresholds.
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The most important properties of this situation are summarized below. Most of these were
already proven by Moser (1956).

Theorem 3.1. (Non-strategic player 1)
(1) Player 2�s best reply to �1n; unique up to a set of measure zero, is the Markov threshold
strategy which, for period k 2 f1; : : : ; ng, prescribes threshold bk := evn�k. (Recall that evn�k is
player 2�s best utility against �1n�k).
(2) Player 2�s best utility evn satis�es the recursion ev1 = 1

2 ; and evn = 1
2 +

1
2(evn�1)2 for all n � 2.

(3) The sequence evn is strictly increasing and limn!1 evn = 1:
(4) Player 2�s best amongst the stationary threshold replies to �1n is a

�
n = ( 1n)

1
n�1 , i.e. for

any stationary threshold strategy a for player 2 we have U(�1n; a
�
n) � U(�1n; a). The strat-

egy a�n, while not being a best reply to �
1
n for any n � 3; is asymptotically a best reply, i.e.

limn!1 U(�1n; a
�
n) = limn!1 evn(= 1).

Proof. First, we show part 1. Consider period 1. If player 2 decides to reject, then n � 1
amounts will remain, yielding evn�1 in expectation at a best continuation. Hence, if player 2 is
o¤ered at least evn�1 at period 1, then he accepts, otherwise he rejects. This argument holds for
any later period, which proves part 1.

Next, we prove part 2. At period 1, with regard to the strategy prescribed in part 1, player
2 accepts with probability 1� evn�1, with conditional expected amount 12(evn�1 + 1), and rejects
with probability evn�1. Therefore,

evn = (1� evn�1) � 12(evn�1 + 1) + evn�1 � evn�1 = 1
2 +

1
2(evn�1)2: (3.1)

It is obvious that ev1 = 1
2 , so part 2 has been veri�ed.

Part 3 is simple and intuitive. Take some n � 2. Then, evn > evn�1 because by (3.1)
evn = (1� evn�1) � 12(1 + evn�1) + evn�1 � evn�1 > (1� evn�1) � evn�1 + evn�1 � evn�1 = evn�1:

Here we used that evn�1 2 (0; 1). Since the sequence evn is strictly increasing and evn � 1 for all
n, we may conclude that limn!1 evn exists. By part 2,

lim
n!1

evn = 1
2 +

1
2 limn!1

(evn)2;
yielding limn!1 evn = 1.

Finally, we show part 4. Take a stationary threshold strategy a for player 2. With probability
an�1, we have zi < a for all i 2 f1; : : : ; n� 1g, in which case player 2 rejects all z1; : : : ; zn�1 and
must accept zn, yielding a conditional expectation of 12 . On the other hand, with probability
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1� an�1, we have zi � a for at least one i 2 f1; : : : ; n� 1g, hence player 2 will accept the �rst
amount above a, yielding a conditional expectation of 12(a+ 1). Thus, strategy a gives

U(�1n; a) = an�1 � 12 + (1� a
n�1) � 12(a+ 1) =

1
2(1 + a� a

n):

By taking derivatives, it easily follows that U(�1n; a) has a unique maximum at a�n = ( 1n)
1

n�1 ;
which is in [0; 1]:

Note that
U(�1n; a

�
n) =

1
2(1 + a

�
n � 1

na
�
n);

which, in view of lemma 8.2, implies

lim
n!1

U(�1n; a
�
n) =

1
2(1 + lim

n!1
a�n) = 1:

Hence, a�n is an asymptotically best reply to �
1
n:

Finally, it is clear in view of parts 1 and 3 that a�n is not optimal when n � 3; since in this
case di¤erent thresholds must be used at periods 1 and 2. �

Remark: The following table shows an approximation of evn for some values of n:
n 2 3 4 5 10 20 50 100evn � 0:63 � 0:70 � 0:74 � 0:78 � 0:86 � 0:92 � 0:96 � 0:98

In fact, Moser (1956) and Gilbert and Mosteller (1966) showed that

evn � 1� 2

n+ ln(n) + b

if n is large. Here, b is a constant approximately equal to 1.7680.

4. The Special Case of Two Random Variables (The Game G2)

From now on, we will focus on the situation in which there is a strategic adversary. In this
section, we examine in detail the case when we have two random variables, that is, n = 2. So,
player 1 must choose an order for the realizations z1 and z2: In this game both players only have
to make a choice at period 1. Therefore, whenever we speak about a player�s choice we always
mean his choice at period 1. We show the following results.

Theorem 4.1. (Properties of the game G2)
(1) An optimal strategy for player 1 is to choose (in period 1) the amount closer to 1

2 , i.e. to
choose z1 if jz1 � 1

2 j � jz2 �
1
2 j, and to choose z2 otherwise.

(2) Player 2�s optimal strategy, unique up to a set of measure zero, is the stationary threshold
strategy a = 1

2 .
(3) The value is v2 = 7

12 :
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Proof. Let �1 and a denote the strategies described in part 1 and part 2, respectively. It is
su¢ cient to show that (1) �1 is a best reply to a; (2) a is a best reply to �1; unique up to a
set of measure zero, and (3) the induced expected utility is U(�1; a) = 7

12 . In the following, let
x1 := minfz1; z2g and x2 := maxfz1; z2g:

Step 1: We show that �1 is a best reply to a. We distinguish the following cases (we assume
that x1 6= x2, otherwise player 1�s strategy is surely a best reply):

Case 1: x1 < x2 <
1
2 . In this case, �

1 o¤ers x2, which a rejects, yielding x1 as the outcome,
which is the best possible amount for player 1.

Case 2: 12 � x1 < x2. In this case, �1 o¤ers x1, which a accepts, yielding x1 as the outcome,
which is the best possible amount for player 1.

Case 3: x1 < 1
2 � x2. In this case, �1 o¤ers either x1 or x2, depending on the exact values

of x1 and x2, but a is going to reject x1 and accept x2. Thus, the outcome is x2. Observe that
player 1 cannot achieve x1 given player 2�s threshold strategy a = 1

2 .
In conclusion, �1 is a best reply to a in all cases.

Step 2: We show that a is a best reply to �1: It will be clear from the proof that the best
reply is unique up to a set of measure zero. Suppose player 1 o¤ers some amount x (which is
either x1 or x2). Let y denote the other amount.

Assume �rst that x � 1
2 . Given player 1�s strategy, either y � 1 � x or y � x, otherwise

player 1 would o¤er y instead of x. Thus, given x is o¤ered, y is uniformly distributed over
[0; 1� x] [ [x; 1]; and therefore has conditional expectation 1

2 .
Assume now that x < 1

2 . Given x is o¤ered, we obtain similarly that y is uniformly distributed
over [0; x] [ [1� x; 1]; and therefore has conditional expectation 1

2 again.
Hence, we see that the conditional expectation of y is always 12 ; and therefore a best reply

for player 2 is to accept x if and only if x � 1
2 ; in accordance with a:

Step 3: We prove that U(�1; a) = 7
12 : We distinguish the following cases:

Case 1: z1 < 1
2 and z2 <

1
2 (cf. case 1 in step 1): This occurs with probability

1
4 ; and the

outcome is x1 = minfz1; z2g with conditional expectation 1
6 (cf. lemma 8.1 in appendix).

Case 2: z1 � 1
2 and z2 �

1
2 (cf. case 2 in step 1): This occurs with probability

1
4 ; and the

outcome is x1 = minfz1; z2g with conditional expectation 2
3 (cf. lemma 8.1 in appendix).

Case 3: z1 < 1
2 � z2 or z2 < 1

2 � z1 (cf. case 3 in step 1): This occurs with probability 1
2 ;

and the outcome is x2 = maxfz1; z2g with conditional expectation 3
4 .

Hence,

U(�1; a) =
1

4
� 1
6
+
1

4
� 2
3
+
1

2
� 3
4
=
7

12
;

completing the proof. �

Remark: In the game G2; player 1 in fact has many di¤erent optimal strategies, one of
which is described in the theorem above. All optimal strategies coincide, up to a set of measure
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zero, with �1 in Cases 1 and 2 of Step 1, but may show di¤erent behavior in Case 3. The reason
is that in Case 3 any behavior for player 1 is a best reply against a = 1

2 :

5. Stationary Threshold Strategies for Player 2

In this section, we identify the best strategy that player 2 has amongst all stationary threshold
strategies. It turns out that this strategy is exactly the same as the one we found in Section
3. This means that player 2, if he is restricted to stationary threshold strategies, will behave
identically irrespective of whether player 1 chooses strategically or not.

Theorem 5.1. (Best stationary threshold strategy) Consider the game Gn. Player 2�s best
stationary threshold strategy is a�n = ( 1n)

1
n�1 , i.e. for any stationary threshold strategy a of

player 2 we have  2(a�n) �  2(a). Moreover, a�n guarantees

 2(a�n) =
1

n+ 1
+ a�n � (a�n)n =

1

n+ 1
+
n� 1
n

a�n:

Proof. It is clear that a = 0 or a = 1 cannot be player 2�s best stationary threshold strategy.
Therefore, take an arbitrary a 2 (0; 1). In order to �nd  2(a), we identify a best reply for player
1. In the following, let x1; :::; xn be a permutation of z1; :::; zn such that x1 � x2 � ::: � xn: We
distinguish two cases:

Case 1: x1 � : : : � xn < a: This case occurs with probability an, and the outcome with best
play by player 1 is x1 (player 1 should keep x1 for the last period when it has to be accepted).
The conditional expectation of x1 is

n � 0 + a
n+ 1

=
a

n+ 1

(cf. lemma 8.1 in appendix).

Case 2: x1 � : : : � xk < a � xk+1 � : : : � xn with some k 2 f0; : : : ; n� 1g: This case occurs
with probability �

n

k

�
� ak � (1� a)n�k;

and the outcome with best play by player 1 is xk+1 (all x1; : : : ; xk are rejected by player 2, and
the lowest amount player 2 accepts is xk+1). The conditional expectation of xk+1 is

(n� k) � a+ 1
n� k + 1

(cf. lemma 8.1 in appendix).
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So the expected utility when player 1 uses a best reply �1 to a is

U(�1; a) = an � a

n+ 1
+

n�1X
k=0

�
n

k

�
� ak � (1� a)n�k � (n� k) � a+ 1

n� k + 1 :

Somewhat surprisingly, Lemma 8.3 guarantees that the above expression reduces to

U(�1; a) =
1

n+ 1
+ a� an:

By taking derivatives, it easily follows that U(�1; a) has a unique maximum at a�n = ( 1n)
1

n�1 ;
which is in [0; 1]: �

Remark: Lemma 8.2 shows that a�n = (
1
n)

1
n�1 converges to 1 when n tends to in�nity. Note

also that the probability of the maximal amount maxfz1; : : : ; zng being at least a�n is exactly

�n := 1� (a�n)n = 1�
1

n
a�n.

Hence, if player 2 uses the stationary threshold strategy a�n, then the probability that player
2 eventually accepts an amount above the threshold a�n is also exactly �n. Since �n converges
to 1 when n tends to in�nity, the strategy a�n will accept an amount above a

�
n with probability

close to 1, for large n. This, of course, also means that  2(a�n) converges to 1, although this also
follows directly from the expression for  2(a�n) in Theorem 5.1. The following table shows an
approximation of a�n and  

2(a�n) for some values of n:

n 2 3 4 5 10 20 50 100

a�n = 0:5 � 0:58 � 0:63 � 0:67 � 0:77 � 0:85 � 0:92 � 0:95
 2(a�n) � 0:58 � 0:63 � 0:67 � 0:70 � 0:79 � 0:86 � 0:92 � 0:95

Interestingly, a�n+1 = (
1
n+1)

1
n is a very good approximation of  2(a�n) for all n, i.e. a

�
n+1 �

 2(a�n) for all n � 2 and

max
n�2

(a�n+1 �  2(a�n)) = a�3 �  2(a�2) � 0:006:

Regarding the comparison between  2(a�n) and evn (cf. Section 3), we remark that evn �  2(a�n)
for all n � 2 and that

max
n�2

(evn �  2(a�n)) � 0:08: (5.1)

Since the value vn of the game Gn satis�es vn 2 [ 2(a�n); evn], the stationary threshold strategy
a�n is quite e¤ective for all n � 2.
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6. General Threshold Strategies for Player 2

In this section, we examine general threshold strategies for player 2. First we show that we may
restrict our investigation to threshold strategies �2 with the following property: if �2 prescribes
threshold bk at period k, and the o¤ered amount is below bk and gets rejected by �2, then the
new threshold bk+1 at period k + 1 satis�es bk � bk+1. Thus, the thresholds are non-increasing
during any play.

Theorem 6.1. (Thresholds are non-increasing) Consider an arbitrary threshold strategy �2 for
player 2. De�ne another threshold strategy e�2 for player 2 as follows: At period 1, the strategye�2 prescribes the same threshold as �2; i.e. e�2(;) := �2(;); where ; denotes the empty history at
period 1. At any period k � 2, if (y1; : : : ; yk�1) denotes the sequence of past rejected amounts,
then let e�2(y1; : : : ; yk�1) := min

`=1;:::;k
�2(y1; : : : ; y`�1):

Then, e�2 has the following properties:
1. The threshold strategy e�2 is at least as good as �2, i.e.  2(e�2) �  2(�2):

2. With respect to e�2, the thresholds are non-increasing during any play: at any period k � 2
and for any sequence (y1; : : : ; yk�1) of past amounts that e�2 has rejected, we havee�2(y1; : : : ; yk�2) � e�2(y1; : : : ; yk�1):

Proof. Property (2) is obvious, so we only have to show the property (1). Let �1 be a pure
best reply of player 1 to e�2. Take an arbitrary realization vector z = (z1; : : : ; zn), and suppose
that �1 prescribes the realizations in the order y1; : : : ; yn. Let m denote the period at whiche�2 accepts ym. Thus, ym = Uz(�

1; e�2) and ym � e�2(y1; : : : ; ym�1). If m > 1, we may assume
without loss of generality that ym < e�2(y1; : : : ; ym�2), because otherwise �1 could just as well
o¤er ym already at period m� 1 since e�2 would accept it. This meanse�2(y1; : : : ; ym�1) � ym < e�2(y1; : : : ; ym�2);
which implies e�2(y1; : : : ; ym�1) = �2(y1; : : : ; ym�1): (6.1)

We now show that Uz(�1; �2) = ym. Since the threshold prescribed by e�2 is never higher than
the threshold prescribed by �2, it is clear that �2 also rejects y1; : : : ; ym�1 up to period m� 1.
But then, at period m, the strategy �2 also accepts ym in view of (6.1). Thus, Uz(�1; �2) = ym
indeed.

Therefore, Uz(�1; e�2) = ym = Uz(�
1; �2), which implies

 2(e�2) = U(�1; e�2) = U(�1; �2) �  2(�2);

completing the proof of property (1). �
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Corollary 6.2. Let a = (a1; : : : ; an�1) be a Markov threshold strategy for player 2. Then,
there exists a Markov threshold strategy b = (b1; : : : ; bn�1) for player 2 such that bk � bk+1 for
all k 2 f1; : : : ; n� 2g and for which  2(b) �  2(a). Consequently, a best strategy amongst the
Markov threshold strategies for player 2 consists of a non-increasing sequence of thresholds.6

The above corollary can also be shown in a more direct way. First, one can prove the following
statement about transpositions of neighboring thresholds. Let a = (a1; : : : ; an�1) be a Markov
threshold strategy for which ak < ak+1 holds for some k 2 f1; : : : ; n�2g. Let b = (b1; : : : ; bn�1)
denote the Markov threshold strategy obtained by bk = ak+1 and bk+1 = ak, while bm = am for
all m 2 f1; : : : ; k � 1; k + 2; : : : ; n� 1g. Then, it can be shown that  2(b) �  2(a). Given this
result, the corollary above follows by the well known theorem in algebra that any permutation
can be written as a product of transpositions of two neighboring elements.

Theorem 6.3. (Stationary threshold strategies are not optimal) When n � 3, player 2 has a
threshold strategy which is strictly better than all stationary threshold strategies.

Proof. Let n � 3. In view of Theorem 5.1, it su¢ ces to construct a threshold strategy for
player 2 which is strictly better than the stationary threshold strategy a = ( 1n)

1
n�1 : Let b 2 (0; a)

be arbitrary. Let �2b be the threshold strategy for player 2 which prescribes threshold a at every
period, except in the following case: at period n� 1 (which is the last period when player 2 has
a choice), if all n� 2 previously rejected amounts are in the interval [b; a), then use threshold b
at period n� 1.

Now we show that �2b is strictly better than strategy a for player 2, if b is su¢ ciently close
to threshold a. Let (z1; : : : ; zn) denote the realizations of the amounts. We distinguish the
following cases:

Case 1: Less than n � 2 amounts in z1; : : : ; zn are in the interval [b; a). In this case, �2b is
the same as a.

Case 2: Precisely n� 2 amounts in z1; : : : ; zn are in the interval [b; a). In this case, �2b can
only prescribe threshold b at period n � 1 if player 1 o¤ers precisely these n � 2 amounts in
[b; a) at periods up to n� 2. But then, for periods n� 1 and n, there is no amount left in [b; a).
Hence, in this case, �2b is equally good as a.

Case 3: Precisely n � 1 amounts in z1; : : : ; zn are in the interval [b; a). Let z denote the
minimum of these n� 1 amounts in [b; a) and let w denote the amount outside [b; a). We show
that, with best play by player 1, strategy �2b yields outcome z and a yields outcome w.

Case 3i: w < b. In this case, with best play by player 1, strategy �2b yields outcome z.
Indeed, if player 1 o¤ers all amounts in [b; a) except z at periods up to n � 2 and o¤ers z at
period n � 1, strategy �2b will accept z as z� b. On the other hand, w cannot be the outcome
for the following reason. Player 2 would only accept w at the last period, as w < b. Thus, to

6 It can be shown, also by the argument after the corollary, that all best Markov threshold strategies have
non-increasing thresholds.
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achieve w, player 1 would have to o¤er the n� 1 amounts in [b; a) at periods up to n� 1. But
then, �2b accepts the amount at period n � 1. The strategy a, on the other hand, yields w as
outcome, because player 1 can reserve w for the last period, when it has to be accepted.

Case 3ii: w � a. In this case, with best play by player 1, strategy �2b yields outcome z.
Indeed, if player 1 o¤ers all amounts in [b; a) except z at periods up to n � 2 and o¤ers z at
period n� 1, strategy �2b will accept z as z� b. The strategy a, on the other hand, yields w, as
a rejects all other amounts.

Case 4: All n amounts in z1; : : : ; zn are in the interval [b; a). In this case, with best play
by player 1, strategy �2b yields minfz1; : : : ; zng as outcome, since player 1 can o¤er the minimal
amount at period n� 1. The strategy a also yields minfz1; : : : ; zng as outcome, because player
1 can reserve the minimal amount for the last period, when it has to be accepted. Hence, in
this case, �2b is equally good as a.

In conclusion, �2b is equally good as a in all cases except for case 3. On condition that case
3 occurs, we obtain the following. Recall that, with best play by player 1, strategy �2b yields
outcome z and strategy a yields outcome w. Let Ez(b) denote the conditional expected value
of z and let Ew(b) denote the conditional expected value of w in case 3. In order to show that
strategy �2b is strictly better than strategy a, for b su¢ ciently close to a, we need to show that

lim
b"a

Ez(b) > lim
b"a

Ew(b).

Since z 2 [b; a) in case 3, we have

lim
b"a

Ez(b) = a:

We calculate limb"aEw(b) in the following way. Subcase 3i appears with conditional probability

pb =
b

b+ (1� a) ;

and the conditional expectation of w is b
2 . Subcase 3ii appears with conditional probability

1� pb, and the conditional expectation of w is

a+ 1

2
:

Hence,

Ew(b) = pb �
b

2
+ (1� pb) �

a+ 1

2
:

By taking the limit, we obtain

lim
b"a

Ew(b) =
a2

2
+
1� a2
2

=
1

2
:
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In conclusion,

lim
b"a

Ez(b) = a >
1

2
= lim

b"a
Ew(b);

which completes the proof. �

Theorem 6.4. (Markov threshold strategies are not optimal) When n � 3, player 2 has a
threshold strategy which is strictly better than all Markov threshold strategies.

Proof. Let n � 3. Take a best Markov threshold strategy a = (a1; : : : ; an�1) for player 2.
We construct a threshold strategy �2 for player 2 which is strictly better than a. In view of
Corollary 6.2 and Theorem 6.3, we may assume that a1 � : : : � ak > ak+1 � : : : � an�1. It can
easily be veri�ed that a1 = 1 or an�1 = 0 can never yield a best strategy amongst all Markov
threshold strategies, and hence we assume that a1 < 1 and an�1 > 0:

Consider the threshold strategy �2 for player 2 which prescribes the same thresholds as a
except in the following case: at period k + 1, if the rejected amount at period k was in the
interval [0; ak+1), then use threshold ak at period k+1. We show that, with best play by player
1, the strategy �2 is strictly better than a for player 2.

Step 1: We show that, for every vector of realizations z = (z1; : : : ; zn), the strategy �2 is at
least as good as a for player 2.

Let z = (z1; : : : ; zn) be a vector of realizations. Let �1 denote a pure best reply for player 1
to �2, and suppose that �1 o¤ers these amounts in the order (y1; : : : ; yn). Let �1 be the strategy
for player 1 which also uses the order (y1; : : : ; yn), except in the following case: if yk < ak+1 and
yk+1 2 [ak+1; ak), then use the order

(y1; : : : ; yk�1; yk+1; yk; yk+2; : : : ; yn):

We show that Uz(�1; �2) = Uz(�
1;a), which will imply that  2(�2) �  2(a): We may assume

that all y1 < a1; : : : ; yk�1 < ak�1 (i.e. they are all rejected) and that yk < ak+1, otherwise
(�1; �2) and (�1;a) lead to the same outcome. We distinguish the following cases:

Case 1: If yk+1 � ak. In this case, Uz(�1; �2) = Uz(�
1;a) = yk+1.

Case 2: If yk+1 2 [ak+1; ak). In this case, �2 will use threshold ak at period k+1: Thus, both
(�1; �2) and (�1;a) lead to rejections at periods k and k + 1, and hence Uz(�1; �2) = Uz(�

1;a).
Case 3. If yk+1 < ak+1: Also in this case, both (�1; �2) and (�1;a) lead to rejections at

periods k and k + 1, and hence Uz(�1; �2) = Uz(�
1;a).

Step 2: We show that there exists a set W of realization vectors such that W has a positive
probability and that, for every realization vector in W , the strategy �2 is strictly better than a
for player 2.

Let W denote the set of realization vectors in which exactly k amounts are in the interval
[0; an�1); exactly 1 amount is in the interval [ak+1; ak); and exactly n � k � 1 amounts are in
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the interval [a1; 1]. Of course, W has a positive probability, since a1 < 1 and an�1 > 0: Take
an arbitrary realization vector in W . Notice that, against a, it is a best reply for player 1 to
o¤er the k amounts in [0; an�1) at periods up to k, which all get rejected, and then at period
k + 1 to o¤er the amount in [ak+1; ak), which is accepted. This does not work against �2, since
in this case, �2 uses threshold ak at period k + 1. It is easy to see that �2 leads to an outcome
in [a1; 1], regardless player 1�s strategy. �

Two important questions arise:

Question (1): Which are the best threshold strategies for player 2?

Question (2): Does player 2 have better strategies than threshold strategies, i.e. are there
optimal strategies in threshold strategies for player 2?

Question (1) is already challenging for n = 3. The best threshold strategy for player 2 that
we could �nd is the following. Let a 2 (0; 1) and b 2 (0; a) be arbitrary. Let �2ab be the threshold
strategy for player 2 which prescribes threshold a at period 1, and prescribes threshold a at
period 2 if the rejected amount was in interval [0; b) and threshold b at period 2 if the rejected
amount was in interval [b; a). (This is very similar to strategy �2b in the proof of Theorem 6.3,
with the only di¤erence being that a here is also a variable.) Let a� and b� denote optimal values
for a and b. According to a numerical approximation by the program package Mathematica,
a� � 0:5838 and b� � 0:4975. The strategy �2a�b� guarantees  

2(�2a�b�) � 0:6354 (the best
stationary threshold strategy found in Theorem 5.1 yields 0:6349, which is just �slightly�less).
We did not manage to �nd an improvement on �2a�b� for player 2. It seems natural to try to �nd an
improvement by splitting [0; a) into more than 2 subintervals. Thus, instead of a and b only, now
player 2 can choose a; b; c; d 2 (0; 1), with d � c � b � a, and a map � : fa; b; c; dg ! fa; b; c; dg.
Then, player 2 will use the following threshold strategy: At period 1, use threshold a. If the
o¤ered amount y1 is rejected, then the new threshold at period 2 will depend on which of the
subintervals [0; d); [d; c); [c; b); [b; a) contains y1. More precisely, if y1 is contained in subinterval
[u;w); then the new threshold is �(w). With the help of the program package Mathematica,
with a numerical precision of 10�10, we found the surprising conclusion that �2a�b� is still a best
amongst these strategies, i.e. one of the optimal choices is a = a�, b = c = d = b� and �(a) = b,
�(b) = a. We do not see now how one could improve upon �2a�b� . It is not even really clear to
us why �2a�b� is so e¤ective, although the proof of Theorem 6.3 provides some ideas.

We do not know the answer to Question (2). We only know that an optimal threshold
strategy exists for player 2 in G2, cf. Section 4.
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7. Concluding Remarks

7.1. Are Markov threshold strategies really better for player 2 than stationary
threshold strategies?

Notice that corollary 6.2 does not exclude the possibility that the best Markov threshold strategy
is the stationary threshold strategy which we derived in Section 5. In fact, we conjecture that
this holds true for all n. For n = 1 and n = 2, this is trivial, since player 2 uses at most
one threshold. For n = 3, we veri�ed this conjecture in the following way. For an arbitrary
Markov threshold strategy �2 = (a1; a2) for player 2 with non-increasing thresholds a1 � a2, we
determined a best response for player 1, and calculated the corresponding expected outcome,
as a function of a1 and a2. Then, we checked that this expected outcome is indeed maximal
when a1 = a2 = (13)

1
2 . For n = 4 and n = 5, the program package Mathematica con�rms

this conjecture (with a numerical precision of 10-5). For a general n, it is di¢ cult to prove this
conjecture. First of all, the proof we used for n = 3 produces huge polynomials when n is large.
It seems more natural to try a proof based on induction. Perhaps, the best candidate is to try to
show the following statement: if a = (a1; a2; : : : ; an�1) is a Markov threshold strategy for player
2 with thresholds

a1 � : : : � ak > ak+1 = : : : = an�1;

then there is a strictly better Markov threshold strategy of the form ea = (a1; : : : ; ak; b; : : : ; b)
with an appropriate threshold b 2 [ak+1; ak].

7.2. E¤ective strategies for player 1

In this section, we focus on player 1. The main di¤erence is that here we have to deal with more
complex strategies, as player 1 can base his decisions on the realization vector. In general for
n � 3, we have not been able to �nd an optimal strategy for player 1. Nevertheless, we provide
some insight, and present e¤ective strategies for player 1 with a simple structure (although just
o¤ering amount zk at period k for every k, as in Section 3, is already quite e¤ective, especially
for large n).

Recall that, for any n � 3, the value vn of the game satis�es vn 2 [ 2(a�n); evn]; where  2(a�n)
and evn are determined in Sections 5 and 3, respectively. We reiterate the approximations:

n 2 3 4 5 10 20 50 100evn � 0:63 � 0:70 � 0:74 � 0:78 � 0:86 � 0:92 � 0:96 � 0:98
 2(a�n) � 0:58 � 0:63 � 0:67 � 0:70 � 0:79 � 0:86 � 0:92 � 0:95

As pointed out in (5.1),
max
n�2

(evn �  2(a�n)) � 0:08;
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which means that the strategy for player 1 in which he o¤ers every realization zk at period k;
is already 0:08-optimal. Nevertheless, player 1 can do better than evn. Below we provide some
possible improvements.

Improvement 1: Based on the results for n = 2 in Section 4, there is one simple improve-
ment for player 1 for all n � 3. Let �1n be the strategy for player 1 which, for any realization
vector z = (z1; : : : ; zn), prescribes the following: At any period k � n � 2, o¤er zk to player 2.
At the last two periods, i.e. at periods n�1 and n, play the strategy found in Section 4 with the
two remaining amounts zn�1 and zn. Now we determine un :=  1(�1n). We have u2 = v2 =

7
12

according to Theorem 4.1. We proceed by calculating u3. Just as in the proof of Theorem 3.1,
player 2 should accept the o¤ered amount y at period 1 if y � v2 =

7
12 , and reject it otherwise.

Thus, player 2 accepts y with probability 1�v2 and with conditional expected amount 12(v2+1),
and rejects with probability v2. Therefore,

u3 = (1� v2) �
1

2
(v2 + 1) + v2 � v2 =

1

2
+
1

2
(v2)

2:

Using this argument inductively, we obtain for all n � 3 that

un =
1

2
+
1

2
(un�1)

2:

We obtained a similar recursion for evn in Theorem 3.1. As ev2 = 5
8 >

7
12 = u2, we may concludeevn > un for all n � 2. The following table provides an approximation of un for some values of

n:

n 2 3 4 5 10 20 50 100

 1(�1n) = un � 0:58 � 0:67 � 0:72 � 0:76 � 0:86 � 0:92 � 0:96 � 0:98

Note that
max
n�2

( 1(�1n)�  2(a�n)) � 0:07; (7.1)

which means that �1n is 0:07-optimal for player 1.

Improvement 2: Recall from Section 4 that, for n = 2; it was optimal for player 1 to choose
the amount closer to 1

2 . We now try to generalize this strategy for n = 3. Take some w 2 [
1
2 ; 1].

Let �1w be the strategy for player 1 which, for realizations z1; z2; z3, prescribes the following: At
period 1, player 1 should o¤er the amount closest to w. If this amount is rejected, then at period
2, player 1 should o¤er the amount amongst the two remaining amounts which is closer to w.

Suppose that, against �1w, player 2 uses a pure threshold strategy �
2
w. (One can show, based

on the discussion below, that player 2 has a best reply in threshold strategies.) Let aw denote
the threshold prescribed by �2w at period 1. If �

2
w rejects amount y1 2 [0; aw) at period 1, it is
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relatively easy to determine the best threshold for period 2. Let y2 and y3 denote the amounts
chosen by �1w for periods 2 and 3. We distinguish the following cases.

Case 1 : If y2 � w. In this case, since y3 is not closer to w than y2, we have either y3 2 [y2; 1]
or y3 2 [0; 2w � y2]. This gives a conditional expectation of y3 equal to

d3 =
(1� y2) � y2+12 + (2w � y2) � 2w�y22

(1� y2) + (2w � y2)
:

As w � 1
2 , we have 1� y2 � 2w � y2. Moreover, y2 � w implies that

y2 + 1

2
� 2w � y2

2
:

Hence,

d3 �
1

2

�
y2 + 1

2
+
2w � y2
2

�
=
1

4
(2w + 1) � w � y2:

This means that player 2 should accept y2.
Case 2 : If y2 < w. In this case, since y3 is not closer to w than y2, we have either y3 2 [0; y2]

or y3 2 [2w � y2; 1] (with the latter interval being empty when 2w � y2 > 1).
Case 2.1 : If 2w � y2 > 1. In this case, y3 2 [0; y2] and player 2 should accept y2.
Case 2.2 : If 2w � y2 � 1. In this case, the conditional expectation of y3 is equal to

d3 =
y2 � y22 + (1� 2w + y2) �

2w�y2+1
2

y2 + (1� 2w + y2)
: (7.2)

Here, player 2 should accept y2 exactly when y2 � d3, which is a quadratic inequality.
By backwards induction, it would be possible to calculate the best threshold aw for pe-

riod 1. We have found the following, with the help of a simulation with the program package
Mathematica:

1. Regarding �1w: The best value of w for player 1 is about w = 0:59.
2. Regarding �2w: Against �

1
0:59, the best value of threshold a0:59 is about a0:59 = 0:59. (This

implies for case 2.2, in view of (7.2), that player 2 should accept y2 exactly when y2 � 0:21 or
y2 � 0:47, approximately.)

3. Regarding the expected outcome: we have  1(�10:59) � U(�10:59; �
2
0:59) � 0:639.

This numerical simulation indicates that the strategy �10:59 is very e¤ective, as v3 �  2(a�3) �
0:6349 (or even v3 �  2(�2a�b�) � 0:6354 where �2a�b� is the strategy given at the end of Section
6).

This also yields a possible improvement for player 1 for all n � 4, just as above. Let �1n
be the strategy for player 1 which, for any realization vector z = (z1; : : : ; zn), prescribes the
following: At any period k � n� 3, o¤er amount zk to player 2. At the last three periods, play
the strategy �10:59 with amounts zn�2; zn�1 and zn. With a similar calculation as before we �nd
the following approximate values of  1(�1n) for di¤erent values values of n:
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n 3 4 5 10 20 50 100

 1(�1n) � 0:64 � 0:70 � 0:75 � 0:85 � 0:92 � 0:96 � 0:98

with
max
n�2

( 1(�1n)�  2(a�n)) � 0:065:

We do not know whether, for n > 3, a strategy similar to �1w would be e¤ective for player 1.

7.3. The value vn and optimal strategies

Except for n = 2 in Section 4, we have not been able to determine the exact value vn of the
game Gn and to �nd optimal strategies for the players. Nevertheless, we know that v2 = 7

12 and
that vn is strictly increasing in n and converges to 1 as n tends to in�nity. For an estimation of
vn, we may use the interval In = [ 2(a�n);  

1(�1n)]. The length of In is at most 0:07, in view of
(7.1), and converges to 0 as n tends to in�nity. Consequently, the stationary threshold strategy
a�n is 0:07-optimal for player 2 and the strategy �

1
n is also 0:07-optimal for player 1. Note that,

at the end of Sections 6 and 7.2, we provided possible improvements on these strategies (i.e.
�2a�b� for n = 3 and �

1
n for n � 3), which also yield in turn a better estimate for the value vn.

We remark that, when n = 1 (i.e. the case of countably in�nite random variables), the value
equals v1 = 1 and any strategy of player 1 is optimal, whereas player 2 has only near-optimal
strategies.

8. Appendix

Lemma 8.1. Let W1; : : : ;Wm denote independent random variables, each of which having a
uniform distribution on some interval [c; d]. Then

E(minfW1; : : : ;Wmg) =
m � c+ d
m+ 1

and

E(maxfW1; : : : ;Wmg) =
c+m � d
m+ 1

:

Proof. Let W � = minfW1; : : : ;Wmg. We will show for the interval [c; d] = [0; 1] that

E(W �) =
1

m+ 1
:

Since maxfW1; : : : ;Wmg = 1 � minf1 �W1; : : : ; 1 �Wmg; we obtain part 2 for interval [0; 1].
It is easy to check, by using the linearity of the expectation, that the results hold for a general
interval [c; d] as well.
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So, take [c; d] = [0; 1]. Let W denote a random variable having a uniform distribution on
interval [0; 1]. Then, its density fW (t) is given by fW (t) = 1 for t 2 [0; 1] and fW (t) = 0
otherwise. Also, its cumulative distribution FW (t) = P(W � t) is given by FW (t) = 0 if t < 0;
and FW (t) = t if t 2 [0; 1] and FW (t) = 1 if t > 1.

As for W �, we clearly have FW �(t) = 0 if t < 0 and FW �(t) = 1 if t > 1, whereas for t 2 [0; 1]

FW �(t) = P(W � � t) = 1� P(W � > t) = 1� P(fWi > t 8i 2 f1; : : : ;mgg)
= 1� (P(W > t))m = 1� (1� FW (t))m = 1� (1� t)m :

Hence, fW �(t) = 0 if t < 0 or t > 1, while for t 2 [0; 1]

fW �(t) =
d

dt
FW �(t) = m � (1� t)m�1 :

So,

E(W �) =

1Z
�1

t � fW �(t) dt =

1Z
0

t �m � (1� t)m�1 dt

= m �
1Z
0

(1� u) � um�1 du = m �
�
1

m
um � 1

m+ 1
um+1

�u=1
u=0

= m �
�
1

m
� 1

m+ 1

�
=

1

m+ 1
;

where we used the substitution u = 1� t. �

Lemma 8.2. limn!1( 1n)
1

n�1 = 1:

Proof. By using the rule of L�Hospital, we have

lim
n!1

ln(n)

n� 1 = lim
n!1

1

n
= 0:

Hence,

lim
n!1

(
1

n
)

1
n�1 = lim

n!1
n�

1
n�1 = lim

n!1
eln(n

� 1
n�1 ) = lim

n!1
e�

1
n�1 �ln(n) = e0 = 1: �

Lemma 8.3. For every a 2 R� f0; 1g and every n 2 N it holds that

an+1

n+ 1
+

n�1X
k=0

�
n

k

�
� ak � (1� a)n�k � (n� k) � a+ 1

n� k + 1 =
1

n+ 1
+ a� an: (8.1)
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Proof. Let Dn be equal to the lefthandside of (8.1). Then,

Dn =
an+1

n+ 1
+

n�1X
k=0

n!

k! � (n� k + 1)! � a
k � (1� a)n�k � ((n� k + 1) � a+ (1� a))

=
an+1

n+ 1
+
n+1X
k=0

n!

k! � (n� k + 1)! � a
k � (1� a)n�k � ((n� k + 1) � a+ (1� a))� an � an+1

n+ 1

=

n+1X
k=0

n!

k! � (n� k + 1)! � a
k � (1� a)n�k � ((n� k + 1) � a+ (1� a))� an

=
n+1X
k=0

n! � (n+ 1� k)
k! � (n+ 1� k)! � a

k+1 � (1� a)n�k +
n+1X
k=0

n!

k! � (n� k + 1)! � a
k � (1� a)n+1�k � an:

Notice that

n+1X
k=0

n! � (n+ 1� k)
k! � (n+ 1� k)! � a

k+1 � (1� a)n�k = a �
nX
k=0

n!

k! � (n� k)! � a
k � (1� a)n�k

= a � (a+ (1� a))n = a

and

n+1X
k=0

n!

k! � (n� k + 1)! � a
k � (1� a)n+1�k =

1

n+ 1

n+1X
k=0

(n+ 1)!

k! � (n+ 1� k)! � a
k � (1� a)n+1�k

=
1

n+ 1
(a+ (1� a))n+1 = 1

n+ 1
:

Thus,

Dn = a+
1

n+ 1
� an;

completing the proof. �
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