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Abstract. Factor modelling of a large time series panel has widely proven useful
to reduce its cross-sectional dimensionality. This is done by explaining common
co-movements in the panel through the existence of a small number of common
components, up to some idiosyncratic behaviour of each individual series. To cap-
ture serial correlation in the common components, a dynamic structure is used as
in traditional (uni- or multivariate) time series analysis of second order structure,
i.e. allowing for infinite-length filtering of the factors via dynamic loadings. In
this paper, motivated from economic data observed over long time periods which
show smooth transitions over time in their covariance structure, we allow the dy-
namic structure of the factor model to be non-stationary over time, by proposing
a deterministic time variation of its loadings. In this respect we generalise ex-
isting recent work on static factor models with time-varying loadings as well as
the classical, i.e. stationary, dynamic approximate factor model. Motivated from
the stationary case, we estimate the common components of our dynamic factor
model by the eigenvectors of a consistent estimator of the now time-varying spec-
tral density matrix of the underlying data-generating process. This can be seen as
time-varying principal components approach in the frequency domain. We derive
consistency of this estimator in a ”double-asymptotic” framework of both cross-
section and time dimension tending to infinity. A simulation study illustrates the
performance of our estimators.

Keywords: Approximate Factor Models, Local Stationarity, Principal Compo-
nents
JEL Classification: C14, C32

1. Introduction

Factor modelling plays an important role in the analysis of high-dimensional mul-
tivariate time series. This is based on a clear empirical observation made for many
applications, foremost in economics and finance, but also in various other fields such
as psychometrics or biomedical signal processing. It can be observed that often only
a small number of (latent, i.e. unobservable) factors is sufficient to explain a certain
common behaviour of the second-order structure of a large time series panel, up to
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an idiosyncratic behaviour of each individual series to be cross-sectional uncorre-
lated with the rest. Moreover, from a statistical, or even a data processing point
of view, in view of the nowadays really high-dimensional data sets available in the
aforementioned applications, there is an obvious need to reduce the cross-section
dimension to a much smaller factor space dimension to overcome the estimation
curse of dimensionality.

Furthermore in many of the given applications where data are observed over long
time periods (or on a sufficiently fine time resolution), it appears that these data
exhibit some time variation in their serial variance-covariance structure. This is
plausible if one wants to model, for example, macroeconomic data, in the presence
of transitions between economic recessions and booms or external events such as
the impact of political crises or changes in the monetary policy of central banks.
Consequently, it seems certainly restrictive to assume that the common structure
explained by fitting a latent factor model to the data remains constant over time.

These observations have motivated us to develop a fairly general dynamic factor
model which takes the time evolution of the underlying serial second-order structure
of the data into account by allowing for time-varying factor loadings: the common
components are dynamic and non-stationary at the same time through a model that
let the filters become (smooth) functions of time.

With this approrach, we provide for a true generalisation of two classes of existing
factor models in the literature: static factors with time-varying loadings recently
developed by Motta et al. (2006), where no serial correlation has been allowed in
the common components; and stationary, i.e. time-constant, dynamic factor models
with a dynamic structure using (possibly infinite-length) filters of the factors via
dynamic loadings, such as in Forni et al. (2000).

In the existing yet rather recent literature on non-stationary factor modelling,
there exist a variety of different approaches: random, deterministic or a combination
of both. Molenaar et al. (1992) just treat non-stationarity in the mean by a linear
time dependent trend function. Del Negro and Otrok (2008) developed a dynamic
factor model with time-varying factor loadings following a random walk and with
stochastic volatility in both the latent factors and idiosyncratic components. The
situation where breaks occur at random time points has already been covered by
Fancourt and Principe (1998) with a model based on piecewise constant loadings.
A recent approach of Stock and Watson (2008) investigates the effect of structural
instabilities on the forecasting ability of a dynamic factor model with a possible
abruptly changing parameter in an autoregressive factor specification. Pan and Yao
(2008), finally, choose again a different approach on estimating the factor loading
space by a stepwise optimisation algorithm on expanding the ”white noise space”:
this allows for a generalisation of the traditional factor approach without specifying
any (parametric our non-parametric) structure on the departure from stationarity in
the autocorrelation structure between the observations and the unobserved factors.

In contrast, in this paper we consider smooth evolutions of the dynamics of the
process with a non-stationarity which is purely deterministic, and which allows to
include the stationary model as a true submodel of our more general model: the
factor loadings would then simply become functions which are constant over time.
Our main motivation comes from the empirical evidence in economic data observed
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over long time periods, which show smooth transitions over time in the covariance
structure of an observed multivariate time series.

To formalise now a bit more what is behind a factor model let us state the main
idea that a very large number N of series can be explained by a small number r of
factors. The behavior of the observed N–dimensional stochastic process Y is driven
by two components: the common component X describes the co-movements of all
the series, the idiosyncratic component Z is specific to each particular series

Y N(t) = ΛNF (t) + ZN(t) = XN(t) + ZN(t) (1.1)

where X and Z are both unobserved. The N–dimensional common component
XN(t) is a linear combination of the latent r–dimensional vector of factors F (t),
which drives the joint behavior of all the series and is ‘loaded’ by the N × r matrix
of loadings ΛN . Model (1.1) is static in the sense that Y at time t depends only on
the value at time t of F .

The main task in factor analysis is separating the common components from the
specific ones. Chamberlain and Rothschild (1983) defined the class of approximate
factor models as a sequence of factor models where the covariance matrix ΣZ

N of
the idiosyncratic components is a sequence of non-diagonal matrices with uniformly
bounded eigenvalues. Principal components regression (PCR) is a consistent esti-
mation technique for approximate factor models under the assumption that only the
largest r of the N eigenvalues of the covariance matrix ΣN of the observations are
unbounded as N →∞. A sufficient condition for such a behavior of the eigenvalues
of ΣN is that the eigenvalues of ΣZ

N are uniformly bounded, i.e. the eigenvalues of
ΣZ

N stay bounded as N →∞ for all N ∈ Z.
Under this assumption on the behavior of the eigenvalues and very mild conditions

on the loadings, the factors, and the idiosyncratic components of a static factor
model, Bai (2003) derived the convergence of the estimated common components

X̂N(t) to the common components XN(t) of model (1.1), where the estimator X̂N(t)
is based on the N×r matrix containing the eigenvectors corresponding to the largest
r eigenvalues of the sample covariance matrix of XN(t).

If the true data generating process is dynamic, i.e. in the presence of serial
correlation in the common driving force, a shortcoming of static factor analysis is
that one can end-up with a very high number of static principal components. This
motivated Forni et al. (2000) to generalize model (1.1) to the dynamic case

Y N (t) = ΨN (B) F (t) + ZN(t) = XN (t) + ZN(t), (1.2)

where the filters Ψij (B) have square summable coefficients and the factors F (t) are
orthonormal white noise. Again, no mutual orthogonality of the idiosyncratic com-
ponents is assumed, and the separation from the common components is achieved
by assuming that only r of the eigenvalues of the spectral density ΣN(ω) of Y N(t)
diverge as N → ∞. The authors of Forni et al. (2000) use PCR in the frequency
domain to construct weakly consistent estimators of the common components for
which the spectral density matrix of the data-generating process needs to be con-
sistently estimated. For the statistical properties of dynamic principal components,
see also Brillinger (1981).

In this paper now, we generalise further the approach of Forni et al. (2000) by
allowing for a smooth time-variation of the serial correlation in the dynamics of the
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factor model:

Y N (t) = ΨN (t, B) F (t) + ZN(t) = XN (t) + ZN(t) . (1.3)

This model allows for second order non-stationarity: on the one hand because the
loadings, dynamic filters as in Forni et al. (2000), are now assumed to be functions
of time ΨN (t, B), and on the other hand because the idiosynchratic components
ZN(t) are also allowed to be non-stationary with time-varying dynamics. Conse-
quently the spectral density matrix ΣN(t, ω) of {Y N} becomes dependent on time,
and in order to estimate it, we use a time-localised empirical spectrum (a localized
periodogram over time). Our contribution is a practical and theoretical treatment
of this localised PCR in the frequency domain. We show that, under simultaneous
asymptotics (both N →∞ and T →∞), the PCR based on a consistent estimator
of ΣN is consistent for the (dynamic and) non-stationary common components. As
such, the development of a rigorous asymptotic theory for consistently estimating
the time-varying loadings has been possible by embedding this model into the frame-
work of locally stationary processes as derived by a series of papers by Dahlhaus
(1996, 1997, 2000). Compare also with the time-varying static approach of Motta
et al. (2006) which generalizes the static factor model of Bai (2003). For further
explanations of this framework for theoretical consistency treatment, including a rig-
orous statement of our model replacing the slightly simplified equation (1.3) above,
we refer to section 3.1.

Our paper is organized as follows. In section 2 we introduce a general non-
stationary dynamic factor model and explain the proposed methods to estimate the
non-stationary common components. In section 3 we show that for an increasing
panel size the principal components of the time-varying spectral matrix converge to
the true common components (see section 3.3). Furthermore we show the consis-
tency of the estimated common components, that is the convergence of the principal
components of the estimated time-varying spectral matrix to the principal compo-
nents of the true time-varying spectral matrix (see section 3.5). The finite sample
behaviour of our method is investigated with a simulation study in section 4, while
section 5 concludes.

Throughout the paper we use bold-unslanted letters for matrices, bold-slanted
letters for vectors and unbold (normal) letters for scalars. For a real number x, [x]
denotes the largest integer smaller or equal to x. For a matrix A, the trace and the
conjugate transpose are denoted by tr(A) and A∗, respectively, ‖A‖ =

√
tr(AA∗)

is the Euclidean norm, and In is the identity matrix of dimension n. Furthermore,
we denote by ⊥ orthogonality in the Hilbert space of real-valued square integrable
random variables.

One important tool will be the convolution of time-varying linear filters. For a
given value of u in rescaled time, let Φ(u,B) and Ψ(u,B) be two time-varying filters

(B is the backshift operator). Then the convolution
(
Φ�Ψ

)
(u,B) of the two filters

is defined by

(Φ �Ψ)(u,B) =
∞∑

k=0

[ ∞∑
j=0

Φj(u)Ψk−j(u)

]
Bk.

The obtained filter (Φ �Ψ)(u,B) has the transfer function

(Φ �Ψ)(u, ω) = Φ(u, ω)Ψ(u, ω),
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where, for ease of notation, we use Φ(u,B) and Φ(u, ω) to denote, respectively, the
filter in the time-domain and the transfer function in the frequency domain, while
Φk(u) denote the the filter coefficients.

2. A non-stationary dynamic factor model

Let Yi(t), i ∈ N, be a panel of non-stationary time series at time points 1 ≤ t ≤ T
that are driven by a few common factors. Following Forni et al. (2000), we assume
that the time series can be described by an approximate dynamic factor model, that
is, the idiosyncratic compents are allowed to be correlated to some extent. Thus we
consider the model

Y (t) = X(t) + Z(t) = Ψ(t, B) F (t) + Z(t), 1 ≤ t ≤ T, (2.1)

where X(t) is the common component originating from the common factors F (t)
while Z(t) is the idiosyncratic component. We assume that the model satisfies the
following conditions:

(i) F (t) is an r–dimensional stationary white noise process with �
(
F (t)

)
= 0 and

�
(
F (t)F (t)′

)
= Ir;

(ii) Ψ(t, B) =
(
ψij(t, B)

)
i∈N,j=1,...,r

is a time-varying one-sided linear filter of di-

mension N× r;

(iii) Z(t) =
(
Zi(t)

)
i∈N

is uncorrelated to the factor process F (t).

Non-stationarity enters the model in two ways: Firstly, the loadings Ψ(t, B), which
determine the influence of the factor process F (t) on the given process, are time-
varying, that is, the influence of the factors may change over time. Secondly, the
idiosyncratic component Z(t) may also be non-stationary with time-varying dynam-
ics. Here, we call a process Z(t) idiosyncratic if

lim
N→∞

�
∥∥AN(B)Z(t)

∥∥2
= 0

for 1 ≤ t ≤ T and all sequences of filters AN(B), N ∈ N, such that

lim
N→∞

∫ π

−π

∥∥AN(ω)
∥∥2
dω = 0.

Notice that in contrast to the stationary case in Forni and Lippi (2001) Z(t) is
non-stationary and only defined over the period 1 ≤ t ≤ T . For the above definition
of idiosyncratic processes, we therefore set Z(t) = 0 for t < 1 or t > T .

The factor process F (t) is assumed to be an stationary orthonormal white noise
process as in Forni et al. (2000). This is, however, not a serious constraint since,
for example, if F (t) is a non-stationary factor process with time-varying moving
average representation F (t) = ΞT (t, B)η(t), where η(t) is a stationary orthonormal
white noise process, the common component X(T ) can be rewritten as

X(t) = Ψ(t, B)Ξ(t, B) η(t) = Ψ̃(t, B) η(t).

Thus the process can be represented as in (2.1) with factor process F̃ (t) = η(t)
satisfying the above assumptions.
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For the idiosyncratic component Z(t), we assume further that for any N ∈ N the

subprocess ZN(t) =
(
Z1(t), . . . , ZN(t)

)′
has a time-varying moving average repre-

sentation of the form
ZN(t) = ΥN(t, B) εN(t),

where εN(t) is a stationary white noise process with mean �
(
εN(t)

)
= 0 and co-

variance matrix �
(
εN(t)εN(t)′

)
= IN . Then Y N(t) is obtained from the r + N–

dimensional stationary process (F (t), εN(t)) by application of the time-varying lin-
ear filter

(
ΨN(t, B),ΥN(t, B)

)
and thus has time-varying spectral representation

Y N(t) =

∫ π

−π

eiωt ΨN(t, ω) dξF (ω) +

∫ π

−π

eiωt ΥN(t, ω) dξε
N(ω),

where ξF (ω) and ξε
N(ω) are the orthogonal increment processes associated with the

stationary processes F (t) and εN(t), respectively. The corresponding time-varying
spectral density is given by

ΣN(t, ω) = ΨN(t, ω)ΨN(t, ω)∗ + ΥN(t, ω)ΥN(t, ω)∗.

Assuming that the factor loadings and thus the dynamics of the process change
slowly over time, we can treat the process as if it were stationary over small time
intervals and estimate the spectral matrix locally. Then we can proceed for each

time-point t as in the stationary case. More precisely, let Σ̂N(t, ω) be a consistent
estimator of the time-varying spectral matrix ΣN(t, ω); for details on the estimation

of time-varying spectral matrices we refer to the appendix A. Then Σ̂N(t, ω) has a
spectral decompostion

Σ̂N(t, ω) = P̂N(t, ω)∗Λ̂N(t, ω)P̂N(t, ω),

where Λ̂N(t, ω) = diag
(
λ̂N1(t, ω), . . . , λ̂NN(t, ω)

)
is the diagonal matrix containing

the eigenvalues of Σ̂N(t, ω) in descending order of magnitude and P̂N(t, ω) is the

unitary N × N matrix whose i–th row is the row eigenvector of Σ̂N(t, ω) corre-

sponding to the i–th eigenvalue λ̂Ni(t, ω). As in the stationary case of Forni et al.
(2000), we estimate the factor space or, equivalently, the space spanned by the com-
mon components by the space spanned by the eigenvectors corresponding to the r

largest eigenvalues of Σ̂N(t, ω). In the frequency domain this is accomplished by the
projection

Φ̂N(t, ω) = P̂N(t, ω)∗Qr
N P̂N(t, ω),

where Qr
N is the block matrix given by

Qr
N =

(
Ir 0

0 0

)
.

By inverse Fourier transformation, we obtain the corresponding projection filter in
the time-domain,

Φ̂
(∞)
N (t, B) =

∞∑
k=−∞

Φ̂N,k B
k,

where the filter coefficients Φ̂N,k are given by

Φ̂N,k(t) =

∫ π

−π

Φ̂N(t, ω) eiωk dω.
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Since this is a two-sided filter of infinite length, it needs to be truncated before it
can be applied to the data. Let

Φ̂NT (t, B) = Φ̂
(MT )
N (t, B) =

MT∑
k=−MT

Φ̂N,k B
k

be the truncated filter. Then the common components XN(t) are estimated by

X̂N(t) = Φ̂NT (t, B)Y N(t).

The estimation method is a localized version of the method proposed by Forni
et al. (2000). However, the non-stationarity gives rise to some questions. Firstly,
while working in the frequency domain, we could restrict ourselves to quantities at
some point in time. However, the estimated spectral matrix is obtained from data
that are only close to this time point and thus have different dynamics. Secondly, the
filter is applied in the time domain and thus again to data within some time range
about t. Thus, although the estimation method for the common component XN(t)
is a straightforward extension of the estimation method in the stationary case, its
proporties are unclear and it is not obvious that the theoretical results from Forni
et al. (2000, 2004, 2005) carry over easily. In the next section we introduce an ap-
propriate asymptotic framework and show that the estimated common components
are indeed consistent. Furthermore, in section 4, we investigate the finite sample
behaviour of the common component estimator by simulation.

3. Asymptotic behaviour of the estimated common components

In this section, we prove consistency of the estimated common components. Since
we are dealing with non-stationary processes, we have to specify what is meant by
asymptotic behaviour. To this end, we first define an evolutionary dynamic factor
model, which provides a theoretical framework for the asymptotics.

3.1. An asymptotic model

In contrast to the non-stationary factor model in the previous section, we study
now a family of non-stationary panel time series Y NT (t) =

(
Y1T (t), . . . , YNT (t)

)′
,

1 ≤ t ≤ T , which is indexed by the number of observations T and the number of
cross-sectional variables N . Instead of defining a dynamic factor model for each T
simply by (2.1), which would correspond to ordinary asymptotics where the same
process is observed over longer time periods, we assume that the processes Y NT (t),
T ∈ N, are derived all from the same filter functions for the factor loadings and the
idiosyncratic components. Thus, we assume that for T,N ∈ � the process Y NT (t)
is given by

Y NT (t) = ΨN

(
t
T
, B

)
F (t) + ZNT (t), 1 ≤ t ≤ T, (3.1a)

with idiosyncratic component

ZNT (t) = ΥN

(
t
T
, B

)
εN(t), 1 ≤ t ≤ T. (3.1b)

For fixed T , the model in (2.1) can be embedded into the above evolutionary model
by setting ΨN(t, B) = ΨN

(
t
T
, B

)
and ΥN(t, B) = ΥN

(
t
T
, B

)
. As the number

of observations T increases, we obtain locally more and more observations with
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approximately the same dynamics provided that, e.g., the linear filters ΨN

(
t
T
, ω
)

and ΥN

(
t
T
, ω
)

are slowly varying.
We note that in practice we observe Y NT (t) only for one given T . Thus the above

evolutionary model represents a purely theoretical device for evaluating large-sample
properties of estimator for non-stationary processes. Furthermore, we note that the
evolutionary form of the model does not include processes with non-stationary factor
processes. Such processes could be covered by considering dynamic factor models
based on locally stationary processes (Dahlhaus 1996). For ease of notation, we
consider in this paper only evolutionary processes but all results can be similarly
derived for the general case.

We now give the main assumptions on our asymptotic model.

Assumption 1 (Evolutionary dynamic factor model). Y NT (t), 1 ≤ t ≤ T ,
with T,N ∈ � is a family of stochastic processes given by (3.1) and satisfying the
following conditions:

(i) the factor process F (t) is an r–dimensional stationary white noise process with
�
(
F (t)

)
= 0 and �

(
F (t)F (t)′

)
= Ir;

(ii) the coefficients ΨN,k(u) and ΥN,k(u) of the time-varying linear filters ΨN(u,B)
and ΥN(u,B), respectively, are square summable uniformly in u ∈ [0, 1]

sup
u∈[0,1]

∞∑
k=−∞

∥∥ΨN,k(u)
∥∥2
<∞ and sup

u∈[0,1]

∞∑
k=−∞

∥∥ΥN,k(u)
∥∥2
<∞; (3.2)

(iii) the factor process F (t) and the idiosyncratic errors εN(t) are orthogonal at
all leads and lags, that is, �

[
εN(t)F (t− k)′

]
= 0 for all N ∈ N and t, k ∈ Z.

The common components XNT (t) and the idiosyncratic components ZNT (t) are
evolutionary processes in the sense that they admit moving average representations
with time-varying coefficients ΨN,k

(
t
T

)
and ΥN,k

(
t
T

)
, respectively, that are func-

tions of rescaled time t
T
∈ [0, 1]. As in the previous section, this leads to spectral

representations

XNT (t) =

∫ π

−π

ΨN

(
t
T
, ω
)
eiωt dξF (ω)

and

ZNT (t) =

∫ π

−π

ΥN

(
t
T
, ω
)
eiωt dξε

N(ω),

where ξF (ω) and ξε
N(ω) are the orthogonal increment processes associated with

the stationary processes F (t) and εN(t), respectively. Then XNT (t) has the time-
varying spectral density matrix

ΣX
N

(
t
T
, ω
)

= ΨN

(
t
T
, ω
)
ΨN

(
t
T
, ω
)∗
, (3.3)

where ΨN(u, ω) is the time-varying transfer function

ΨN(u, ω) = 1
2π

∞∑
k=−∞

ΨN,k(u) e
−iωk. (3.4)

Similarly, the idiosyncratic component ZN(t) has the time-varying spectral density
matrix

ΣZ
N

(
t
T
, ω
)

= ΥN

(
t
T
, ω
)
ΥN

(
t
T
, ω
)∗
, (3.5)
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where ΥN(u, ω) is the time-varying transfer function associated with the filter
ΥN(u,B). It follows that the process Y NT (t) has time-varying spectral matrix

ΣN(u, ω) = ΣX
N (u, ω) + ΣZ

N(u, ω)

= ΨN(u, ω)ΨN(u, ω)∗ + ΥN(u, ω)ΥN(u, ω)∗. (3.6)

We note that unlike for the non-asymptotic model (2.1), the spectral matrix ΣN(u, ω)
for fixed N ∈ N is uniquely determined by the family Y NT (t), T ∈ N. Finally, we
remark that although evolutionary processes are special cases of locally stationary
processes (Dahlhaus 2000, Remark 2.2) the process Y NT (t) as defined above is not
locally stationary in the strict sense of Dahlhaus (1996, 2000) as it does not have
a time-varying moving average represenation in terms of an N–dimensional white
noise process ε̃N(t). Nevertheless, most results on locally stationary processes can
be simply extended also to the above class of processes (see Appendix A.4).

Assumption 1 (ii) on the filter coefficients implies that the diagonal entries of the
spectral matrix ΣN(u, ω) =

(
σij(u, ω)

)
i,j=1,...,N

are uniformly bounded for u ∈ [0, 1]

and ω ∈ [−π, π], that is, for all n ∈ �, there exists a constant σi > 0 such that

sup
u∈[0,1]

sup
ω∈[−π,π]

σii(u, ω) ≤ σi. (3.7)

In order to obtain sensible estimates for spectral density matrix ΣN(u, ω), we
require that the dynamics of the process change only slowly over time and that
accordingly the process can be viewed as approximately stationary over short time
intervals. This can be achieved by a suitable degree of smoothness of the time-
varying spectral matrix. This is formalized in the next assumption.

Assumption 2 (Smoothness of spectral matrix and transfer functions).

(i) The time-varying spectral density ΣN(u, ω) is two times continuously differ-
entiable for all u ∈ [0, 1] and ω ∈ [−π, π].

(ii) The time-varying transfer functions ΨN(u, ω) and ΥN(u, ω) are Lipschitz con-
tinuous in u ∈ (0, 1).

Next, we note that Assumption 1 (iii) implies that the factors F (t) and the id-
iosyncratic components ZNT (t) are orthogonal. The orthogonality is important to
ensure the identifiability of the common and the idiosyncratic components. Note
that, since XNT (t) and ZNT (t) are latent processes, a representation with orthog-
onal components can always achieved by considering appropriate projections.

For the separation of the common component XNT (t) and the idiosyncratic com-
ponent ZNT (t), we also require the following assumption on the behaviour of the
eigenvalues of the spectral matrices ΣX

N (u, ω) and ΣZ
N(u, ω).

Assumption 3 (Common and idiosyncratic dynamic eigenvalues). Let
λX

Nj(u, ω) and λZ
Nj(u, ω), 1 ≤ j ≤ N , be the time-varying eigenvalues of ΣX

N (u, ω)

and ΣZ
N(u, ω), respectively, ordered in descending order of magnitude.

(i) The first r common time-varying dynamic eigenvalues λX
Nj(u, ω), j = 1, . . . , r,

diverge uniformly in u ∈ [0, 1] as N increases: for j = 1, . . . , r

lim
N→∞

inf
u∈[0,1]

λX
Nj(u, ω) = ∞ a.e. in [−π, π].



10 M. EICHLER ET AL.

(ii) The first idiosyncratic time-varying dynamic eigenvalue λZ
N1(u, ω) is uniformly

bounded, that is, there exists a positive constant λZ such that λZ
N1(u, ω) ≤ λZ

for all u ∈ [0, 1], ω ∈ [−π, π], and N ∈ N.

The following proposition shows that, under these made assumptions on the pro-
cess, the time-varying spectrum, and the eigenvalues, only r eigenvalues of the spec-
tral density matrix of the observations diverge as N increases while the remaining
N − r stay bounded. Thus the proposition generalizes Proposition 1 of Forni et al.
(2000) to the non-stationary case.

Proposition 1. Under Assumptions 1 to 3, the first r time-varying dynamic eigen-
values of ΣN (u, ω) diverge, as N → ∞, uniformly over u ∈ [0, 1], that is, for
j = 1, . . . , r

lim
N→∞

inf
u∈[0,1]

λNj(u, ω) = ∞ a.e. in [−π, π].

The remaining eigenvalues are uniformly bounded by λZ, that is, for j > r

lim sup
N→∞

sup
ω∈[−π,π]

sup
u∈[0,1]

λNj(u, ω) ≤ λZ.

Proof. See Appendix B.1. �
The assumption is in line with empirical evidence that for many panel time series

only few eigenvalues diverge as the cross-sectional dimension increases while the
others seem to be bounded. This fact could be, for example, exploited for selecting
the dimension r of the factor process (Hallin and Lĭska 2007).

An important consequence of the previous proposition is that the processes ZNT (t)
are indeed idiosyncratic, that is, for all sequences of filters AN(B) with

∫ π

−π
‖AN(ω)‖2dω →

0 as N →∞ the filtered process AN(B)ZNT (t) converge to zero in mean square.

Corollary 2. Under the assumptions of the proposition, the processes ZNT (t), T ∈
�, are idiosyncratic.

Proof. See Appendix B.2. �

3.2. Decompostion of the overall estimation error

Let Σ̂N(u, ω) be a consistent estimator of the spectral matrix ΣN(u, ω), and let

Σ̂N(u, ω) = P̂N(u, ω)∗Λ̂N(u, ω)P̂N(u, ω)

its spectral decomposition. Then, as described in the previous section the common
component XNT (t) can be estimated by

X̂NT,N(t) = Φ̂NT

(
t
T
, B

)
Y NT (t), (3.8)

where for u ∈ [0, 1]

Φ̂NT (u,B) =
MT∑

k=−MT

Φ̂N,k(u)B
k

is the truncated time domain filter obtained from the transfer function

Φ̂N(u, ω) = P̂N(u, ω)∗Q(r)
N P̂N(u, ω).

The main objective of this section is to prove the consistency of the common compo-

nent estimator X̂NT,N(t). As in Forni et al. (2000), the proof of consistency is based
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on a decomposition of the overall estimation error
∣∣X̂NT,N(t) −XNT (t)

∣∣. Whereas
in the stationary case covered by Forni et al. (2000) it is sufficient to decompose the
error in an approximation and an estimation error, the non-stationary case discussed
in this paper imposes additional problems, which lead to a decomposition into four
separate errors: approximation, truncation, filtering, and estimation error.

In order to motivate the decomposition, we note that the estimation of the com-
mon components is based on a principal component analysis in the frequency do-
main. Since in contrast to the stationary case the spectral decomposition and thus
the dynamic principal components vary over time, the resulting projection onto the
space spanned by the first r principal components must be applied to the process
at time t, which can be accomplished in the frequency domain but not in the time
domain.

More precisely, let

ΣN(u, ω) = PN(u, ω)∗ΛN(u, ω)PN(u, ω) (3.9)

be the spectral decomposition of the true spectral matrix ΣN(u, ω). Here ΛN(u, ω) =
diag {λN1(u, ω), . . . , λNN(u, ω)} is the diagonal matrix containing the eigenvalues of
ΣN(u, ω) and PN(u, ω) is the N ×N matrix whose j–th row

P Nj(u, ω) =
[
pNj,1(u, ω), pNj,2(u, ω), . . . , pNj,N(u, ω)

]
(3.10)

equals the row eigenvector of ΣN(u, ω) corresponding to λNj(u, ω). of PN(u, ω).
The vectors P Nj(u, ω) are called the time-varying dynamic eigenvectors of ΣN(u, ω).
Then the transfer function

ΦN(u, ω) = PN(u, ω)∗Q(r)
N PN(u, ω)

can be viewed as a projection operator projecting the frequency components onto
the space spanned by the largest r eigenvectors of ΣN(u, ω). Applying this operator
in the frequency domain, we obtain the following approximation XNT,N(t) of the
true common component XNT (t),

XNT,N(t) =

∫ π

−π

eiωt ΦN

(
t
T
, ω
)
ΨN

(
t
T
, ω
)
dξF (ω)

+

∫ π

−π

eiωt ΦN

(
t
T
, ω
)
ΥN

(
t
T
, ω
)
dξε

N(ω).

To find an expression in terms of linear filters, let
(
PN�ΨN

)
(u,B) be the convolution

of the two filters PN(u,B) and ΥN(u,B),(
PN �ΨN

)
(u,B) =

∞∑
k=0

[ ∞∑
j=−∞

ΦN,j(u)ΨN,k−j(u)
]
Bk;(

ΦN �ΥN

)
(u,B) is similarly defined. Then XNT,N(t) can be also written as

XNT,N(t) =
(
ΦN �ΨN

)(
t
T
, ω
)
F (t) +

(
ΦN �ΥN

)(
t
T
, ω
)
εN(t). (3.11)

The approximation XNT,N(t) of the common component XNT,N(t) is of purely
theoretical interest as it cannot be computed from ΣN

(
t
T
, ω
)

for two reasons: firstly,

the filter ΦN

(
t
T
, ω
)

cannot be applied pointwise as suggested above since this would
require knowledge of the filters ΨN(u,B) and ΥN(u,B) and of the latent stationary
processes F (t) and εN(t). Instead the filter needs to be applied to the observed data
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Y NT (t) in the time domain. Unlike for stationary processes, application of filters
in the time and in the frequency domain differs for non-stationary processes as will
be shown in section 3.4, Secondly, the involved filters are of infinite length and thus
must be truncated before they can be applied to the the data.

This suggests to decompose the overall estimation error
∣∣X̂NT,N(t)−XNT (t)

∣∣ as
follows:

(i) approximation error:
∣∣XNT,N(t)−XNT (t)

∣∣, where XNT,N(t) is given by (3.11);

(ii) truncation error:
∣∣XNT,N(t)−XNT,N(t)

∣∣, where

XNT,N(t) =
(
ΦNT �ΨN

)(
t
T
, ω
)
F (t) +

(
ΦNT �ΥN

)(
t
T
, ω
)
εN(t) (3.12)

is obtained from the truncated filter

ΦNT (u,B) =
MT∑

k=−MT

ΦN,k(u)B
k;

(iii) filtering error:
∣∣X̃NT,N(t)−XNT,N(t)

∣∣, where

X̃NT,N(t) = ΦNT

(
t
T
, ω
)
ΨN

(
t
T
, ω
)
F (t) + ΦNT

(
t
T
, ω
)
ΥN

(
t
T
, ω
)
εN(t)

= ΦNT

(
t
T
, ω
)
Y NT (t); (3.13)

is obtained by application of the filter ΦNT (·, B) in the time domain;

(iv) estimation error:
∣∣X̂NT,N(t) − X̃NT,N(t)

∣∣, where X̂NT,N(t) is the common
component estimator in (3.8).

3.3. Approximation error

We start our discussion of the approximation error
∣∣XNT,N(t) −XNT (t)

∣∣ defined
in the previous section by giving a more detailed account on how XNT,N(t) ap-
proximates the true common component XNT (t). This will also show how the
non-stationary case differs from the stationary case. As noted before, a key role in
the recovering of the common components is played by the dynamic principal com-
ponents. In analogy to Forni et al. (2000), one might consider to define time-varying
principal components by

F NT (t) = PN

(
t
T
, B

)
Y NT (t), t = 1, . . . , T. (3.14)

There are, however, two problems with this approach. Firstly, since the eigenvec-
tors are time-varying, it is not guaranteed that the time-varying dynamic principal
components thus defined are orthogonal at all leads and lags. Secondly, application
of the filter PN

(
t
T
, B

)
will mix the time-varying dynamics of Y NT (t) at different

points in time. The problems can be avoided by applying the filter PN

(
t
T
, B

)
in the

frequency domain. Thus, we define the time-varying dynamic principal components
process at rescaled time u ∈ [0, 1] by

F N(u, s) =
(
PN �ΨN

)
(u,B) F (s) +

(
PN �ΥN

)
(u,B)εN(s), s ∈ Z. (3.15)

Notice that the whole process depends on some fixed u ∈ [0, 1]. From the process
F N(u, s), we obtain the closed linear subspace of L2 (Ω,F , P ) spanned by the first
r components of the process F N(u, s) by

F r
N(u) = sp {FNj(u, s), j = 1, . . . , r, s ∈ Z} , (3.16)
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where FNj(u, s) is the j–th element of the N–dimensional vector F N(u, s). Since
the dynamic principal components process F N(u, s) is generated from the spec-
tral matrix ΣN(u, ω) at a single point u in (rescaled) time, the dynamic principal
components are orthogonal at all leads and lags. Then the true common component
XNT (t) can be approximated by the orthogonal projection of Y NT (t) onto F r

NT

(
t
T

)
,

that is, we have

XNT,N(t) = proj
(
Y NT (t)

∣∣F r
NT

(
t
T

))
. (3.17)

To see that XNT,N(t) equals the approximated common component defined in the
previous section, we note that the process Y NT (t) can be decomposed as

Y NT (t) = XNT,N(t) + ZNT,N(t). (3.18)

where

XNT,N(t) =
(
P′N �

(
Qr

N PN

)
�ΨN

)(
t
T
, B

)
F (t)

+
(
P′N �

(
Qr

N PN

)
�ΥN

)(
t
T
, B

)
εN(t)

and

ZNT,N(t) =
(
P′N �

[(
IN −Qr

N

)
PN

]
�ΨN

)(
t
T
, B

)
F (t)

+
(
P′N �

[(
IN −Qr

N

)
PN

]
�ΥN

)(
t
T
, B

)
εN(t).

.

From the definitions of XNT,N(t) and ZNT,N(t), it immediately follows that

XNT,N(t) =
[
P′N(u,B)Qr

N F N(u, t)
]
u=

t
T

is in the subspace F r
N( t

T
) whereas ZNT,N(t) is orthogonal to F r

N( t
T
). Therefore,

XNT,N(t) = proj
(
Y NT (t)|F r

NT ( t
T
)
)

as required.
The decomposition in (3.18) separates the dominant part XNT,N(t) from the

residual one ZNT,N(t). The approximate common component XiT,N(t) reproduces
the r–factor structure of the process, and it is given by a (filtered) projection of the
data on the eigenvectors corresponding to the largest r eigenvalues of ΣN(u, ω)

XiT,N(t) = (φNi �ΨN)
(

t
T
, B

)
F (t) +

(
φNi �ΥN

) (
t
T
, B

)
εN(t) (3.19)

where the filter φ in time domain is given by

φNi(u,B) =
(
P ∗

Ni �
(
Qr

NPN

))
(u,B) (3.20)

and where the notation emphasizes that the population common componentsXiT,N(t)
depends on N . The following theorem shows that such a projection is able to recover
the common components of the process when N →∞.

Proposition 3. Suppose that Assumptions 1 to 3 hold. For all i ∈ N, the popula-
tion approximate common component XiT,N(t) converges in mean square to the true
common component XiT (t) uniformly over 1 ≤ t ≤ T as N tends to infinity:

lim
N→∞

sup
T∈N

sup
1≤t≤T

�

[
XiT,N(t)−XiT (t)

]2

= 0.

Proof. The proof is given in Appendix B.3. �
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3.4. Truncation and filtering error

Next, we show the mean square convergence to zero of the filtering error and the
truncation error defined in section 3.2. We start with the truncation error. Let
φNTi(u, ω) be the transfer function of the truncated filter

φNTi(u,B) =
MT∑

k=−MT

φNi,k(u)B
k.

Noting that F (t) and εN(t) are orthonormal processes, we obtain for the trunctation
error by Parseval’s identity

�
∣∣XiT,N(t)−XiT,N(t)

∣∣2
≤
∫ π

−π

∥∥φNTi

(
t
T
, ω
)− φNi

(
t
T
, ω
)∥∥2

[∥∥ΨN

(
t
T
, ω
)∥∥2

+
∥∥ΥN

(
t
T
, ω
)∥∥2

]
dω.

(3.21)

By Assumption 1 (ii) the factors
∥∥ΨN

(
t
T
, ω
)∥∥2

and
∥∥ΥN

(
t
T
, ω
)∥∥2

are uniformly

bounded in ω and u. Furthermore, since
∥∥φNTi(u, ω)

∥∥2 ≤ 1 as noted before, we
have

sup
u∈[ut,1−ut]

∫ π

−π

∥∥φNTi(u, ω)− φNi(u, ω)
∥∥2
dω → 0

as N →∞, which shows that the truncation error converges to zero in mean square.
For the discussion of the filtering error, let

ϕΨ
Ni

(
t
T
, B

)
=
(
φNTi �ΨN

)(
t
T
, B

)
=

1
2π

∞∑
k=0

[
MT∑

j=−MT

φNi,j

(
t
T

)
ΨN,k−j

(
t
T

)]
Bk,

and

ϕ̃Ψ
NTi

(
t
T
, B

)
= φNTi

(
t
T
, B

)
ΨN

(
t
T
, B

)
=

1
2π

∞∑
k=−0

[
MT∑

j=−MT

φNi,j

(
t
T

)
ΨN,k−j

(
t−j
T

)]
Bk,

and define the filters ϕ̃Υ
NTi(t, B) and ϕΥ

Ni(t, B) analogously with ΨN replaced by
ΥN . Then the filtering error can be written as

X̃iT,N(t)−XiT,N(t) =
[
ϕ̃Ψ

NTi(t, B)−ϕΨ
Ni(t, B)

]
F (t)

+
[
ϕ̃Υ

NTi(t, B)−ϕΥ
Ni(t, B)

]
εN(t).

(3.22)

Notice that the filtering error vanishes if the two filters ΨN(u,B) and ΥN(u,B)
do not depend on u, in which case the common and the idiosyncratic components
are both stationary. Otherwise, the expression for filter coefficients of the second
filter shows that the sequential application of time-varying linear filters in the time
domain mixes the dynamics of different time points whereas application of filters in
the frequency domain retains the pure dynamics at any specific point in time.

Since the filter φNTi

(
u,B

)
has finite width MT , it will shrink asymptotically to

the point u as T → ∞ provided that MT is of order o(T ). Therefore, the filtering
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error will vanish for large T given that the filters ΨN(u,B) and ΥN(u,B) are smooth
enough. This is formalized in the following proposition.

Proposition 4. Suppose that Assumptions 1 to 3 hold. For fixed N and for all
i = 1, . . . , N , thefiltering error tends to zero in mean square uniformly over MT ≤
t ≤ T −MT as T tends to infinity:

lim
T→∞

sup
MT≤t≤T−MT

�
∣∣X̃iT,N(t)−XiT,N(t)

∣∣2 = 0,

where

MT →∞ and
M

3/2
T

T
→ 0 as T →∞.

Proof. It remains to show mean square convergence to zero of the filtering error.
Since the processes F (t) and εN(t) are uncorrelated, we have

�

[
X̃iT,N(t)−XiT,N(t)

]2

=

∫ π

−π

∥∥ϕ̃Ψ
NTi(t, ω)−ϕΨ

Ni

(
t
T
, ω
)∥∥2

dω

+

∫ π

−π

∥∥ϕ̃Υ
NTi(t, ω)−ϕΥ

Ni

(
t
T
, ω
)∥∥2

dω.

(3.23)

We show that the first term converges to zero uniformly in MT ≤ t ≤ T −MT as
T → ∞; for the second term, convergence to zero follows by the same arguments.
We have for MT ≤ t ≤ T −MT∥∥ϕ̃Ψ

NTi

(
t
T
, ω
)−ϕΨ

Ni

(
t
T
, ω
)∥∥

=
1
2π

∥∥∥ MT∑
j=−MT

φNi,j

(
t
T

)
e−iωj

[
ΨN

(
t−j
T
, ω
)−ΨN

(
t
T
, ω
) ]∥∥∥

≤ 1
2π

MT∑
j=−MT

∥∥∥φNi,j

(
t
T

)∥∥∥ ∥∥∥ΨN

(
t−j
T
, ω
)−ΨN

(
t
T
, ω
) ∥∥∥.

Here, the second factor can be bounded by∥∥ΨN

(
t−j
T
, ω
)−ΨN

(
t
T
, ω
)∥∥ ≤ C

|j|
T

due to Lipschitz continuity of ΨN in its first component on [0, 1]. With this we
obtain the upper bound∥∥ϕ̃NTi

(
t
T
, ω
)−ϕNi

(
t
T
, ω
)∥∥ ≤ C

2π

MT

T

MT∑
j=−MT

∥∥φNi,j

(
t
T

)∥∥.
By Cauchy Schwarz inequality, Parseval’s identity, and

∥∥φNTi(u, ω)
∥∥2 ≤ 1, we have

MT∑
j=−MT

∥∥φNi,j

(
t
T

)∥∥ ≤√
MT

[ ∫ π

−π

∥∥φNi

(
t
T
, ω
)∥∥2

dω
]1

2 ≤ C
√
MT ,

which implies ∥∥ϕ̃Ψ
NTi

(
t
T
, ω
)−ϕΨ

Ni

(
t
T
, ω
)∥∥ ≤ C

M
3/2
T

T
. (3.24)
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Thus, we have shown that the first term in (3.23) converges to zero as T tends to
infinity. Since the second term can be treated similarly, this proves (3.25). �

The upper bound in (3.24) suffices also to show that the expectation

�

[(
X̃iT,N(t)−XiT,N(t)

)(
XiT,N(t)−XiT,N(t)

)]
converges to zero as T → infty. Thus, under the conditions of the proposition, we
also obtain the mean square convergence of the combined error due to filtering and
truncation, that is,

lim
T→∞

sup
MT≤t≤T−MT

�
∣∣X̃iT,N(t)−XiT,N(t)

∣∣2 = 0, (3.25)

where MT satisfies the condition in the above proposition.

3.5. Estimation error

In this section we establish the mean square convergence to zero of the estimation
error (see Proposition 5). The first step in the estimation of the common components
is the estimation of the time-varying spectral density ΣN(u, ω). Since our method
for estimating the common components does not depend on the particular form of
the spectral matrix estimator, we do not discuss the estimation in detail but simply

impose the following condition on the spectral estimator Σ̂N(u, ω). For further
details on the estimation of ΣN(u, ω) we refer to the appendix A.

Assumption 4 (Spectral matrix estimator). There exists a sequence uT with

uT → 0 and T uT →∞ as T →∞ such that the estimator Σ̂N(u, ω) of the spectral
matrix ΣN(u, ω) is uniformly consistent in u ∈ [uT , 1− uT ] and ω ∈ [−π, π], that is,
for all (fixed) N ∈ N

sup
u∈[uT ,1−uT ]

sup
ω∈[−π,π]

∥∥Σ̂N(u, ω)−ΣN(u, ω)
∥∥ = Op(r

−1
T )

for some sequence rT →∞ as T →∞.

Assumption 4, which is fulfilled, for example, for the two spectral estimators

Σ̂N(u, ω) discussed in Appendix A, implies that also the matrix P̂NT (u, ω) of esti-

mated eigenvectors and thus the estimated transfer functions φ̂N(u, v) of the projec-
tion filters are uniformly consistent. Based on this uniform convergence, we show in
the next proposition that the estimation error converges to zero in probability. Note
that for this result to hold, an arbitrary slow rate rT is sufficient in Assumption 4
as we do not aim at giving a rate of convergence for the estimation error. We also
emphasize that for this result we keep N fixed while T tends to infinity.

Proposition 5. Suppose that Assumptions 1 to 4 hold. In addition assume for the

truncation parameter MT of the estimated filters Φ̂NT that MT →∞ and MT/rT →
0 as T →∞. Then, for all δ > 0, 1 ≤ i ≤ N , and all N ∈ N, the estimation error
satisfies

lim
T→∞

sup
M∗

T≤t≤T−M∗
T

�

[∣∣X̂iT,N(t)− X̃iT,N(t)
∣∣ > δ

]
= 0 .

where M∗
T = max{uT T,MT}.

Proof. See Appendix B.4. �
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Remark 1. The proof of Proposition 5 does actually include how Assumption 4
implies derivation of a rate of uniform convergence to zero of the estimated eigen-

vectors and estimated transfer functions of the projection filters Φ̂NT . For more
details, we refer to Appendix B.4.

3.6. Consistency of the estimated common components

With the results of the previous three sections 3.3, 3.4, and 3.5, we can now show
the main result of this paper. The following theorem establishes the convergence

in probability of the common components estimator X̂NT,N(t) to the true common
components XNT (t).

Theorem 6. Suppose that Assumptions 1 to 4 hold. Then, for all ε > 0 and η > 0,
there exists N∗ ∈ N and T ∗N ∈ N, N ≥ N∗, such that for all N ≥ N∗ and T ≥ T ∗N

sup
M∗

T≤t≤T−M∗
T

�

[∣∣∣φ̂MT

Ni

(
t
T
, B

)
Y NT (t)−XiT (t)

∣∣∣ > ε
]
≤ η,

where M∗
T = max{uT T,MT} with uT and MT obeying the same conditions as in

Assumption 4 and Proposition 5, respectively.

Proof. In order to prove consistency of the estimated common components we de-
compose the overall estimation error as in section 3.2, and for all t ∈ (M∗

T , T −M∗
T )

we consider the following time-varying probability

�
[∣∣X̂iT,N(t)−XiT (t)

∣∣ > ε
]

≤ �[∣∣X̂iT,N(t)− X̃iT,N(t)
∣∣ > ε

3

]
+�

[∣∣X̃iT,N(t)−XiT,N(t)
∣∣ > ε

3

]
+�

[∣∣XiT,N(t)−XiT (t)
∣∣ > ε

3

]
.

In Proposition 3, we have shown that the approximation error
∣∣XiT,N(t)−XiT (t)

∣∣
vanishes as N →∞ uniformly over T ∈ N and 1 ≤ t ≤ T . This implies that for all
ε > 0 and η > 0 there exists an N∗ such that

�
[∣∣X̂iT,N(t)− X̃iT,N(t)

∣∣ > ε
3

] ≤ η
3

for all N ≥ N∗ uniformly over 1 ≤ t ≤ T and T ∈ N. Next, we have shown in section

3.4 that the combined error due to filtering and trunctation,
∣∣X̃iT,N(t) − XiT,N(t)

∣∣
vanishes as T → ∞ uniformly over 1 ≤ t ≤ T for all N ∈ N. Then the uniform
convergence in (3.25) implies that for all N ∈ N, ε > 0, and η > 0 there exists a
T1,N such that

�
[∣∣X̃iT,N(t)−XiT,N(t)

∣∣ > ε
3

] ≤ η
3

for all T > T1,N . Finally, we have shown in section 3.5 that for fixedN the estimation
error tends to zero in probability as T tends to infinity. More precisely, it follows
from Proposition 5 that for all ε > 0, η > 0, and N > N∗ there exists T2,N ∈ N such
that for all T > T2,N

�
[∣∣XiT,N(t)−XiT (t)

∣∣ > ε
3

] ≤ η
3
.

Altogether, we find that for all N > N∗ and all T > max{T1,N , T2,N}
�
[∣∣X̂iT,N(t)−XiT (t)

∣∣ > ε
]
< η,

which concludes the proof. �



18 M. EICHLER ET AL.

4. Simulation Results

We simulate an r−factor model

YiT (t) =
r∑

j=1

XiT,j(t) + Zi(t), i = 1, . . . , N, t = 1, . . . , T, (4.1)

with locally stationary AR(p) common components, as in (4.1) of Dahlhaus (1997)

XiT,j(t) =

p∑
k=1

aij,k

(
t

T

)
XiT,j(t−k)+Fj(t) i = 1, . . . , N, j = 1, . . . , r, t = 1, . . . , T,

(4.2)
where aij,0

(
t
T

) ≡ 1 for all i, j and t, with stationary factors as well as idiosyncratic

errors: F (t)
iid∼ N (0, Ir) and ZN(t)

iid∼ N (0, IN). For simulation purposes we restrict
to the class of AR(2) locally stationary two-factor models (i.e. r = p = 2) with the
following specifications for the parameters

aij1(u) = ∓ 2
α

cos (θij(u)) u ∈ [0, 1]

aij2(u) = ± 1
α2 ∀ u ∈ [0, 1] and ∀ i, j = 1 . . . , N

with θij(u) = φij − cos (νiju), i, j = 1, . . . , N and |α| > 1. For u fixed, the roots of
the characteristics polynomial are

ρij(u) = αe±iθij(u)

and thus |ρij(u)| = |α| > 1 for all u ∈ [0, 1] and for all i, j = 1 . . . , N . The wave
θ(u) depends on three parameters: α controls the amplitude, φ is the phase and ν
is the velocity.

The spectral estimator implemented in the simulations is the smoothed segmented
periodogram (see Appendix A.2). This estimator depends on two ”smoothing”
parameters: first, the parameter bT , the bandwidth in the frequency direction.
Dahlhaus (1996, Theorem 2.3) showed that the optimal value bopt

T for this param-

eter is of the order T−
1
6 , where bopt

T is optimal in the sense that it minimizes the
relative mean squared error of the estimator of the time-varying spectrum. The
bandwidth bT used in our simulations is bT = 1

3
T−

1
6 . Second, this estimator depends

on the length L of each segment, which is akin a smoothing parameter in time.
We also note that for convenience we choose the truncation parameter M of the

filters φ̂NT,i

(
t
T
, B

)
to be equal to L/2. Finally, as in Dahlhaus (1996), we allow

our estimator to be based on shifted segments with a shift S from segment to seg-
ment, resulting into P segments (such that T = S(P − 1) +L), and with midpoints
tj = S(j − 1) + L/2, j = 1, . . . , P .

We consider two numerical scenarios, both based on N = 10, 20, 30, 40, 50 cross-
section dimensions. In the first one T = L2 with L = 16, 32, 48, 64, 80, P = L + 1
and S = L− 1. In the second one T = 8L with L = 32, 64, 96, 128, 160, P = L+ 1
and S = 7.

The consistency result in Theorem 6 ensures the consistency of the estimated

common components X̂iT (t) elementwise, that is for all i and all t. This is con-
firmed by the simulated example in Figure 4.1, where we report the estimation of
the common components for N = 10 and T = 2304 (this is the parametrization
corresponding to our first scenario with L = 48 and N = 10). The quality of the
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Figure 4.1. True common components XiT (t) (black) and estimated ones X̂iT (t)
(grey), i = 1, . . . , 4.
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fit is remarkable, even for a relatively small cross-section size. In this figure we just
consider the first four (among 10) common components XiT (t) and (a realization

of) its estimator X̂1T (t), t = 1, . . . , T . Our estimator is able to capture the time-
varying variance (nonstationarity) as well as the time-varying dynamics (changes in
the autocorrelation).

To evaluate the global performance of the estimator we consider the rescaled
norm of the difference between the matrix of estimated common components and
that containing the true ones. Let XN,T−2L be the N×(T−2L+1) matrix containing
the N × 1 vectors of common components XNT (t), t = L, . . . , T − L

XN,T−2L := [XNT (L), . . . ,XNT (T − L)]

and X̂N,T−2L the corresponding estimator

X̂N,T−2L :=
[
X̂NT (L), . . . , X̂NT (T − L)

]
.

We now report simulations of XN,T−2L based on Q replications. Let X
(q)
iT (t) be the

(i, t) entry of XN,T−2L (i = 1, . . . , N , t = L, . . . , T − L) obtained from the q-th
realization of the common component XiT (t) simulated from the locally stationary
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AR(p) model in (4.1)-(4.2), with r = p = 2, and define X̂
(q)
iT (t) as the estimator of

X
(q)
iT (t) based on (3.8). For q = 1, . . . , Q, define the following loss function

Δ
(q)
NT (β) =

[
(T − 2L+ 1)

]−β
∥∥∥X̂(q)

N,T−2L −X
(q)
N,T−2L

∥∥∥
=
[
(T − 2L+ 1)

]−β

√√√√ N∑
i=1

T−L∑
t=L

(
X̂

(q)
iT (t)−X

(q)
iT (t)

)2 (4.3)

depending on N , T and β. In Tables 4.1 and 4.2 we consider, for both scenarios and
for different values of β, the average

ΔNTQ(β) =
1

Q

Q∑
q=1

Δ
(q)
NT (β)

and the standard deviation

SΔ
NTQ(β) =

√√√√ 1

Q− 1

Q∑
q=1

[
Δ

(q)
NT (β)−ΔNTQ(β)

]2

of the loss in (4.3) over Q experiments.
In the case of mean-square convergence (of the estimated common components

to the true ones), the loss function in (4.3) with β = 1
2

can be interpreted as the

sample counterpart of the (square root of the) mean squared error of the estimator X̂
with respect to X. However, Theorem 6 guarantees only consistency in probability
(of the estimated common components to the true ones). This explains why we
cannot expect ΔNTQ(0.5) in generality to be decreasing with increasing N and/or
T . We expect however, on the other hand, that ΔNTQ(0.5) should not increase with
these parameters, or to phrase it differently that once β becomes larger than 0.5
the loss ΔNTQ(β) should begin to decrease. Hence we add a small investigation to
confirm this conjecture. Whereas for β = 0.6, the values of ΔNTQ(0.6) begin to
decrease w.r.t. T (starting from N = 20), the values ΔNTQ(0.7) can be observed to
monotonically decrease in both N and T .

5. Conclusions

With this paper we have delivered an important generalisation of factor mod-
elling as it is currently available in the literature. We allow for a second-order
non-stationarity of our data-generating process in order to cope with the empirical
observation that - being observed over long time periods (or on a sufficiently fine
time resolution) - macro economical or financial data can exhibit some time vari-
ation in their serial variance-covariance structure. Furthermore we do not content
ourselves to work with a static factor model in order to avoid taking a potentially
large number of factors into account. In this respect we generalise both the work
by Motta et al. (2006) on time-varying static factors and by Forni et al. (2000) on
stationary dynamic factor modelling. With our approach we contribute to the yet
recent literature on dimension-reduction of multivariate time series with possibly
time-varying correlation, where the latter one will allow to work with a considerably
smaller number of factors (common components) to explain the co-movements in a
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Table 4.1. First scenario. Average and standard deviation (in brackets) of the
loss defined in (4.3) over Q = 100 experiments for different values of β

β = 0.5 T = 256 T = 1024 T = 2304 T = 4096 T = 6400

N = 10 3.3208 3.3127 3.3696 3.2455 3.3220

(0.3810) (0.2899) (0.2841) (0.2117) (0.1845)

N = 20 3.6029 3.7409 3.6789 3.7103 3.6548

(0.5169) (0.3238) (0.2352) (0.2177) (0.2414)

N = 30 3.6423 3.8204 3.8148 3.7878 3.7324

(0.2589) (0.2272) (0.2180) (0.1896) (0.1803)

N = 40 3.6112 3.8746 3.8280 3.9015 3.8897

(0.2706) (0.2338) (0.2159) (0.1892) (0.1875)

N = 50 3.5562 3.8887 3.8896 3.9669 3.9551

(0.2586) (0.1827) (0.1814) (0.1847) (0.1655)

β = 0.6 T = 256 T = 1024 T = 2304 T = 4096 T = 6400

N = 10 1.5347 1.3241 1.2393 1.1257 1.1012

(0.1761) (0.1159) (0.1045) (0.0734) (0.0612)

N = 20 1.5536 1.3951 1.2624 1.2007 1.1304

(0.2229) (0.1207) (0.0807) (0.0705) (0.0747)

N = 30 1.5081 1.3681 1.2570 1.1771 1.1086

(0.1072) (0.0814) (0.0718) (0.0589) (0.0536)

N = 40 1.4529 1.3482 1.2256 1.1780 1.1225

(0.1089) (0.0813) (0.0691) (0.0571) (0.0541)

N = 50 1.3992 1.3232 1.2178 1.1714 1.1162

(0.1017) (0.0622) (0.0568) (0.0545) (0.0467)

β = 0.7 T = 256 T = 1024 T = 2304 T = 4096 T = 6400

N = 10 0.7093 0.5292 0.4558 0.3904 0.3650

(0.0814) (0.0463) (0.0384) (0.0255) (0.0203)

N = 20 0.6699 0.5203 0.4332 0.3886 0.3496

(0.0961) (0.0450) (0.0277) (0.0228) (0.0231)

N = 30 0.6245 0.4899 0.4142 0.3658 0.3292

(0.0444) (0.0291) (0.0237) (0.0183) (0.0159)

N = 40 0.5845 0.4691 0.3924 0.3557 0.3239

(0.0438) (0.0283) (0.0221) (0.0173) (0.0156)

N = 50 0.5505 0.4503 0.3813 0.3459 0.3150

(0.0400) (0.0212) (0.0178) (0.0161) (0.0132)
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Table 4.2. Second scenario. Average and standard deviation (in brackets) of the
loss defined in (4.3) over Q = 100 experiments for different values of β

β = 0.5 T = 256 T = 512 T = 768 T = 1024 T = 1280

N = 10 2.9580 3.3043 3.2508 3.4686 3.5640

(0.2251) (0.3142) (0.2313) (0.2303) (0.2790)

N = 20 3.3768 3.5524 3.6772 3.7479 3.7753

(0.2428) (0.1892) (0.2897) (0.2485) (0.2561)

N = 30 3.5409 3.7406 3.8534 3.7542 3.8762

(0.2428) (0.2390) (0.2426) (0.1886) (0.2924)

N = 40 3.5707 3.8851 3.9483 3.9142 3.8172

(0.1669) (0.1989) (0.2926) (0.2432) (0.2462)

N = 50 3.7174 3.9705 3.9183 3.8137 3.8464

(0.2334) (0.2692) (0.2127) (0.2236) (0.2599)

β = 0.6 T = 256 T = 512 T = 768 T = 1024 T = 1280

N = 10 1.3882 1.4472 1.3673 1.4176 1.4245

(0.1056) (0.1376) (0.0973) (0.0941) (0.1115)

N = 20 1.4786 1.4517 1.4431 1.4292 1.4079

(0.1063) (0.0773) (0.1137) (0.0947) (0.0955)

N = 30 1.4888 1.4678 1.4521 1.3747 1.3881

(0.1021) (0.0938) (0.0914) (0.0691) (0.1047)

N = 40 1.4588 1.4813 1.4457 1.3927 1.3282

(0.0682) (0.0758) (0.1071) (0.0865) (0.0857)

N = 50 1.4852 1.4805 1.4031 1.3270 1.3088

(0.0933) (0.1004) (0.0762) (0.0778) (0.0884)

β = 0.7 T = 256 T = 512 T = 768 T = 1024 T = 1280

N = 10 0.6515 0.6339 0.5751 0.5794 0.5694

(0.0496) (0.0603) (0.0409) (0.0385) (0.0446)

N = 20 0.6474 0.5932 0.5663 0.5450 0.5250

(0.0465) (0.0316) (0.0446) (0.0361) (0.0356)

N = 30 0.6260 0.5760 0.5472 0.5034 0.4971

(0.0429) (0.0368) (0.0345) (0.0253) (0.0375)

N = 40 0.5960 0.5648 0.5294 0.4955 0.4622

(0.0279) (0.0289) (0.0392) (0.0308) (0.0298)

N = 50 0.5934 0.5520 0.5024 0.4617 0.4454

(0.0373) (0.0374) (0.0273) (0.0271) (0.0301)
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large panel of observed time series: it is obvious that allowing the dynamics of a few
common components to slowly change over time will allow for very sparse modelling.

From a statistical point of view we enlarge the domain of applicability of Principal
Components Regression (PCR) in the frequency domain, one of the main tools in
estimating dynamic factor models. The PCR technique is based on the spectral
decomposition of the matrix describing the dynamics of the underlying process. We
allow for non-stationarity of these dynamics by working with time-varying filters, and
using the by now standard approach of letting both sample size and cross-sectional
dimension tend to infinity, we derive weakly consistent estimators of the common
components via the spectral decomposition of a localized smoothed periodogram,
as, for example, defined in (A.3).

The main theoretical contribution of the paper is provided by the treatment of
non-stationarity, both in the time-varying dynamical factor loadings and in the
idiosynchratic components. To develop our asymptotic theory of consistency, the
approximation error is based on the new definition of time-varying dynamic principal
components given in (3.15), the estimation error is based on the new definition in
(3.20) of the filter applied to data. In order to localize (at rescaled time u) the
corresponding definitions in the stationary case properly, these definitions are based
on the convolution of the eigenvectors. As a result, we have an additional source of
error, the representation error: this is due to the problem of time-varying filtering of
a non-stationary process, which is novel with respect to the dynamic factor model
of Forni et al. (2000).

With our paper we do not touch upon the important problem of using dynamic
factor models for the purpose of prediction. Having used two-sided filters in our
approach, merely for the comfort of reducing technical complexity when deriving
our consistency results, would need to be given up, and some generalisation is called
for to be able to adapt our methodology to one-sided filters or alike. Another
open problem is the question of how to determine the factor space dimensionality
automatically from the data - we believe that recent work in the static and dynamic
PCR-based factor modelling, e.g. by Bai and Ng (2002) and by Hallin and Lĭska
(2007) can be generalised, but this is left for future research as well.
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Appendix A. Estimation of time-varying spectral density matrices

The methods presented in the main part of this chapter are based on estimators
of the time-varying spectral density matrix. As the approximate factor model leaves
the dependence structure of the idiosyncratic components unspecified, the spectral
matrix is estimated nonparametrically. In this section, we review two common
approaches for estimating time-varying spectral densities and cite relevant results

to achive uniform consistency of the spectral matrix estimator Σ̂N(u, ω).
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A.1. Smoothed pre-periodogram

Neumann and von Sachs (1997) proposed estimation of time-varying spectral den-
sities based on the pre-periodogram

S̃N

(
t
T
, ω
)

=
1
2π

∑
k:1≤[t+ 1

2
± k

2
]≤T

Y NT

([
t+ 1+k

2

])
Y NT

([
t+ 1−k

2

])
e−iωk,

where [x] denotes the largest integer smaller than x. The product Y NT

([
t +

1+k
2

])
Y NT

([
t+ 1−k

2

])
can be regarded as a raw estimator of the local autocovariance

ΓN

(
t
T
, k
)

given by

ΓN (u, k) =

∫ π

−π

ΣN (u, ω) eiωkdω.

Similarly, S̃N

(
t
T
, ω
)

is a raw estimate of the time-varying spectral matrix ΣN

(
t
T
, ω
)
.

Like the periodogram in the stationary case, the pre-periodogram S̃N

(
t
T
, ω
)

is not
consistent and thus needs to be smoothed in time and frequency direction. This
leads to kernel estimators of the form

Σ̂NT (u, ω) =
2π

T 2

T∑
s,j=1

1
hT bT

Kτ
(u− s

T

hT

)
Kφ

(
ω − ωj

bT

)
S̃N

(
t
T
, ωj

)
, (A.1)

where ωj = 2πj/T are the Fourier frequencies, Kτ and Kφ are two kernels and hT

and bT are the corresponding bandwidths in time and frequency direction, respec-
tively. We assume that the kernels Kτ and Kφ have compact support on

[−1
2

1
2

]
and are of bounded variation with

∫ 1/2

−1/2
xK(x) dx = 0 and

∫ 1/2

−1/2
K(x) dx = 1.

A.2. Smoothed segmented periodogram

An alternative common approach for estimating time-varying spectral densities is
based on the idea that a process with slowly varying spectral matrix ΣN(u, ω) can
be treated as stationary over short time intervals. This suggests to use of ordinary
kernel estimators applied locally to the time series to obtain a time-varying estimate
for the spectral density. More precisely, let

DL
NT (u, ω) =

L−1∑
s=0

h
(

s

L

)
Y NT ([uT ]− L/2 + s+ 1) e−iωs

be the localized Fourier transform of the process over the segment
{
[uT ] − L/2 +

1, [uT ] + L/2
}
, where h : R → R is a data taper with h(x) = 0 for x /∈ [0, 1] and

Fourier transform

HL
k (ω) =

L−1∑
s=0

h
(

s
L

)k
e−iωs.

The the localized or segmented periodogram is defined as

ŜL
NT (u, ω) =

1
2πHL

2 (0)
DL

NT (u, ω) DL
NT (u, ω)∗. (A.2)

Thus the periodogram estimator of the time-varying spectrum ΣN(u, ω) is obtained
from a segment of length L with midpoint [uT ]. Since the periodogram is not a con-
sistent estimator, the segmented periodogram needs to be smoothed (see Dahlhaus
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1996), which leads to the kernel estimator

Σ̂L
NT (u, ω) =

1
bT

∫ π

−π

Kf
(

ω − μ

bT

)
ŜL

NT (u, ω) dμ, (A.3)

where Kf is a kernel with compact support [−1
2
, 1

2
] satisfying Kf (x) = Kf (−x) and∫

Kf (x)dx = 1, and bT is the bandwidth in frequency direction. Usual assumptions
on the parameters L = LT and bT to achieve consistency are LT →∞, LT/T → 0,
bT → 0 and bT T →∞.

A.3. Uniform consistency

In Assumption 4, we require that the used estimator of the spectral matrix is uni-
formly consistent. For the smoothed pre-periodogram and the smoothed segmented
periodogram, the uniform consistency has been showed by Dahlhaus (2008). Since
this paper is a yet unpublished manuscript, we repeat here the assumptions and the
statement. For simplicity, we treat only the case of evolutionary processes, which is
sufficient for the purpose of this paper.

The proof by Dahlhaus (2008) requires a number of technical assumptions. Let

V (g) = sup
m∈N

sup
0≤x0<···<xm≤1

m∑
k=1

|g(xk)− g(xk−1)|

be the total variation of a function g : [0, 1] → �. Furthermore, we set lq(k) =
max

{|k| log1+q |k| , 1} for q > 0.

Assumption 5. XNT (t), 1 ≤ t ≤ T , is an N -dimensional stochastic process satis-
fying the following conditions:

(i) XNT (t) has a representation

XNT (t) =
∞∑

k=0

ΦN,k

(
t
T

)
εN(t− k), (A.4)

where the errors εN(t), t ∈ �, are independent and identically distributed with
mean �(εN(t)) = 0 and covariance matrix �

(
εN(t)εN(t)′

)
= IN ;

(ii) there exists a positive constant Cε,N such that �|εi(t)|k ≤ Ck
ε,N for all i =

1, . . . , N , t ∈ Z, and k ∈ N;

(iii) the coefficients ΦN,k(u) =
(
φij,k(u)

)
i,j=1,...,N

satisfy

sup
u∈[0,1]

|φij,k(u)| ≤ Cφ

lq(k)
and V (φij,k) ≤ Cφ

lq(k)
(A.5)

for all i = 1, . . . , N , j = 1, . . . , r, and k ∈ Z, where Cφ is a positive finite
constant not depending on T ;

(iv) the time-varying spectral density ΣN(u, ω) is twice differentiable with respect
to u ∈ [0, 1] and ω ∈ [−π, π].

Under these conditions, Dahlhaus (2008) showed that the above kernel estimators
of the spectral density matrix are uniformly consistent in u ∈ [0, 1] and ω ∈ [−π, π].
More precisely, we have the following result.
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Theorem 7 (Dahlhaus 2008, Thm 3.1). Suppose that XNT (t), 1 ≤ t ≤ T , is
an N-dimensional evolutionary process satisfying Assumption 5. Furthermore, let

Σ̂NT (u, ω) be the smoothed pre-periodogram estimator in (A.1) with bandwidth hT

and bT such that hT , bT → 0 and T hT bT → ∞ as T → ∞. Then for T hT bT 

log2 T

sup
u∈

h
hT
2

, 1−hT
2

i sup
ω∈(−π,π]

∥∥Σ̂NT (u, ω)−ΣN(u, ω)
∥∥ = Op

(
(hT bTT )−1/2 + h2

T + b2T
)
. (A.6)

A similar result holds for the kernel estimator based on the segmented peri-
odogram (Dahlhaus 2008, Remark 3.2) where then hT = LT/T .

A.4. Application to evolutionary dynamic factor processes

As remarked in section 3, the evolutionary dynamic factor model in (3.1) is not
locally stationary according to the definition of Dahlhaus nor has it an evolutionary
representation as in (A.4). Thus Theorem 7 is not directly applicable. However,
Y NT (t) can be written as a linear combination of two evolutionary and thus locally
stationary process; applying Theorem 7 to this process, we can establish uniform

consistency also for the spectral estimator Σ̂N(u, ω).
More precisely, let V N(t) be the 2N -dimensional processes consisting of the com-

mon and the idiosyncratic components of Y N(t), that is,

V NT (t) =

(
XNT (t)

ZNT (t)

)
.

Then V NT (t) is an evolutionary process in the sense of (A.4) and has a time-varying
spectral matrix given by

ΣV
N (u, ω) =

(
ΣX

N (u, ω) 0

0 ΣZ
NT (u, ω)

)
,

where ΣX
N

(
t
T
, ω
)

and ΣZ
N(u, ω) are the time-varying spectral density matrices of

XNT (t) and ZNT (t), respectively, and where the off-diagonal zero matrices are due
to the orthogonality between XNT (t) and ZNT (t). Now suppose that Assumption

5 holds for XNT (t) and ZNT (t). Then, by Theorem 7, an estimator Σ̂V
N (u, ω) based

on XNT (t) and ZNT (t) would be uniformly consistent; note that such an estimator
is hypothetical since XNT (t) and ZNT (t) are unobserved. Nevertheless, since the
observed process Y NT (T ) is given by

Y NT (t) =
(
IN IN

)
V NT (t),

its spectral matrix ΣN(u, ω) can be written as

ΣN(u, ω) =
(
IN IN

)
ΣU

N (u, ω)
(
IN IN

)′
,

and Σ̂N(u, ω) is related to Σ̂V
N (u, ω) analogously. Consequently, the uniform consis-

tency of Σ̂N(u, ω) follows immediately from that of Σ̂V
N (u, ω).

We note that Assumption 5 applied to the common component XNT (t) and the
idiosyncratic component ZNT (t) provides a sufficient set of conditions for Assump-
tion 4 to hold. We think that these technical conditions are not necessary to establish
uniform consistency but are due to the method of proof in Dahlhaus (2008).
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Appendix B. Proofs

B.1. Proof of Proposition 1

The matrices ΣX
N(u, ω) and ΣZ

N(u, ω) are spectral matrices and thus Hermitian. By
Weyl’s Theorem (Lütkepohl 1996, p. 75)

λX
Nj(u, ω) + λZ

NN(u, ω) ≤ λNj(u, ω) ≤ λX
Nj(u, ω) + λZ

N1(u, ω), j = 1, . . . , N.

On the one hand, Assumption 3 (i) implies for j = 1, . . . , r that λNj(u, ω) ≥
λX

Nj(u, ω) tends to infinity a.e. in [−π, π] and uniformly in u ∈ [0, 1] as N → ∞.

On the other hand, if j > r, we have λX
Nj(u, ω) = 0 and thus by Assumption 3 (ii)

λNj(u, ω) ≤ λZ
N1(u, ω) ≤ λZ uniformly in ω ∈ [−π, π] and u ∈ [0, 1] for all N > r.

�

B.2. Proof of Corollary 2

Since ZNT (t) is set to zero for t < 1 and t > T , we have for linear filters AN(B)

AN(B) ZNT (t) = AN,t−1 ZNT (1) + . . .+ AN,T−t ZNT (T ).

Since T is fixed, it therefore suffices to show that the cross-sectional averages
AN ZNT (t) converge to zero in mean square for all sequences of vectors AN with
‖AN‖ → 0 as N →∞.

The assumptions on the spectral matrix ΣZ
N(u, ω) imply that for fixed u ∈ [0, 1]

the stationary process Z̃NT (u, t), t ∈ Z, given by

Z̃NT (u, t) = ΥN(u,B)εN(t)

is idiosyncratic according to the original definition of Forni and Lippi (2001). In
particular, it follows that

AN ZNT (t) = AN ΥN

(
t
T
, B

)
εN(t)

converges to zero in mean square for all AN with ‖AN‖ → 0 as N →∞. �

B.3. Proof of Proposition 3

From (3.1) and (3.18) we have the following decompositions

YiT (t) = XiT (t) + ZiT (t) = XiT,N(t) + ZiT,N(t), (B.1)

which gives for the approximation error∥∥XiT (t)−XiT,N(t)
∥∥2

=
∥∥ZiT (t)− ZiT,N(t)

∥∥2
. (B.2)

Recalling the definition of the approximate common component

XiT,N(t) =
(
φNi �ΨN

) (
t
T
, B

)
F (t) +

(
φNi �ΥN

) (
t
T
, B

)
εN(t),

as well as the definition of the filter φ in (3.20),

φNi

(
t
T
, B

)
=
[
P ′

Ni �
(
Qr

NPN

)](
t
T
, B

)
,

we find

�
∥∥(φNi �ΥN

)(
t
T
, B

)
εN(t)

∥∥2
= �

∥∥riT (t)
∥∥2

+�
∥∥ZiT (t)− ZiT,N(t)

∥∥2

+�
[
riT (t)

(
ZiT (t)− ZiT,N(t)

)]
,

(B.3)
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where we have set riT (t) = XiT (t)− (
φNi �ΨNi

)(
t
T
, B

)
F (t). In view of (B.2), the

stated mean square convergence follows if we show that the term on the left hand
side and the third term on the right hand side both converge to zero as N tends to
infinity.

We start with the term on the left side.

Lemma 8. For N ∈ N, let ϕN(u,B) be an N–dimensional two-sided square-
summable filter, and assume that

lim
N→∞

sup
u∈[0,1]

∫ π

−π

∥∥ϕN(u, ω)
∥∥2
dω = 0.

Then

lim
N→∞

sup
T∈N

sup
1≤t≤T

�

∥∥∥(ϕN �ΥN

)(
t
T
, B

)
εN(t)

∥∥∥2

= 0.

Proof. Since ZN(t) has mean zero, it follows that

sup
T∈N

sup
1≤t≤T

�

∥∥∥(ϕN �ΥN

)(
t
T
, B

)
εN(t)

∥∥∥2

≤ sup
u∈[0,1]

∫ π

−π

ϕN (u, ω)ΣZ
N(u, ω)ϕN (u, ω)∗ dω

≤ sup
u∈[0,1]

∫ π

−π

λZ
N1(u, ω)

∥∥ϕN (u, ω)
∥∥2
dω.

Assumption 3 (ii) gives the result. �
Thus it suffices to show that the conditions of the lemma hold for ϕN(u, ω) =

φNi(u, ω), that is,

lim
N→∞

sup
u∈[0,1]

∫ π

−π

∥∥φNi(u, ω)
∥∥2
dω = 0. (B.4)

We observe that∥∥φNi(u, ω)
∥∥2

= φNi(u, ω)φNi(u, ω)∗ =
r∑

j=1

|pNi,j(u, ω)|2 . (B.5)

By (3.9), (3.10), and Assumption 2, the terms in the sum on the right hand side
satisfy

|pNi,j(u, ω)|2 ≤ σi

infv∈[0,1] λNj(v, ω)
, j = 1, . . . , r, (B.6)

uniformly in u ∈ [0, 1] for almost all ω ∈ [−π, π]. Since by Proposition 1 the
denominator on the right hand side diverges as N →∞, we have

lim
N→∞

sup
u∈[0,1]

∣∣pNi,j(u, ω)
∣∣ = 0

for almost all ω ∈ [−π, π]. Consequently, (B.5) converges to zero uniformly in
u ∈ [0, 1]. As it is also bounded by 1, condition (B.4) now follows from application
of Lebesgue’s dominated convergence theorem.

Next, we have to show that the mixed term on the right hand side of (B.3)
converges to zero. The proof is based on the next Lemma 9, for which we may
assume without loss of generality that

λNj(u, ω) ≥ 1 for all j = 1, . . . , N, N ∈ N, u ∈ [0, 1], ω ∈ [−π, π]. (B.7)
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Indeed, let UN(t) be an N–dimensional orthonormal white noise process that is
orthogonal to the factors F (t) and the idiosyncratic component ZNT (t) at all leads
and lags, and define

Z̃NT (t) = ZNT (t) + UN(t) = ΥN

(
t
T
, B

)
εN(t) + UN(t) = Υ̃N

(
t
T
, B

)
ε̃N(t)

with Υ̃N

(
u,B

)
=
(
ΥN

(
t
T
, B

)
, IN

)
and ε̃N(t) =

(
εN(t)′,UN(t)′

)′
. Then, setting

Ỹ NT (t) = XNT (t) + Z̃NT (t), (B.8)

we find that the process Ỹ NT (t) in (B.8) fulfills Assumptions 1, 2, and 3 with

Σ
eZ
N(u, ω) = ΣZ

N(u, ω) + IN and Σ
eY
N (u, ω) = ΣN(u, ω) + IN

and thus λ
eZ
Nj(u, ω) = λZ

Nj(u, ω) + 1 and λ
eY
Nj(u, ω) = λNj(u, ω) + 1. Furthermore,

P
eY
Nj = P Nj and thus also φ

eY
Nj = φNj for all 1 ≤ j ≤ N and N ∈ �. Consequently,

if Theorem 3 holds for the process Ỹ NT (t), that is,

�
∥∥(φNi �ΨN

)(
t
T
, B

)
F (t) +

(
φNi � Υ̃

)(
t
T
, B

)
ε̃N(t)

∥∥2 → 0 as N →∞,

then the same result also holds for the original process Y NT (t) since the process
UN(t) is orthogonal to the factors and idiosyncratic components and satisfies by
Lemma 8

�
∥∥φNi

(
t
T
, B

)
UN(t)

∥∥2 → 0

as N tends to infinity.

Under condition (B.7), the function μNj(u, ω) = [λNj(u, ω)]−1/2 is well defined for
all ω ∈ [−π, π] and is bounded. Therefore it has a mean-square convergent Fourier
representation. Denote by μNj (u,B) the corresponding square-summable filter and
for a fixed value of u ∈ (0, 1) consider the vector process {W N (u, s) , s ∈ Z} of the
first r normalized principal components

W N (u, s) =
(
WN1 (u, s) , . . . ,WNr (u, s)

)′
=
(
Mr

N �Pr
N �ΨN

)
(u,B)F (s) +

(
Mr

N �Pr
N �ΥN

)
(u,B)εN (s)

= Mr
N(u,B)F r

N(u, s),

where F r
N(u, s) is the r–dimensional vector containing the first r elements of the

vector F N(u, s) defined in (3.15),

Mr
N (u, ω) = diag {μN1(u, ω), . . . , μNr(u, ω)} =

[
Λr

N(u, ω)
]− 1

2
(B.9)

Λr
N(u, ω) = diag {λN1(u, ω), . . . , λNr(u, ω)}

are r–dimensional diagonal matrices and Pr
N (u, ω) =

[
P N1(u, ω)′, . . . ,P r

N(u, ω)′
]′

is the r×N matrix containing the first r rows of the N×N matrix PN (u, ω). Using
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(3.6), (3.9), and (B.9), we find

Mr
N(u, ω)

[
Pr

N(u, ω)ΣX
N(u, ω)Pr

N(u, ω)∗
]
Mr

N(u, ω)∗

+Mr
N(u, ω)

[
Pr

N(u, ω)ΣZ
N(u, ω)Pr

N(u, ω)∗
]
Mr

N(u, ω)∗

= Mr
N(u, ω)

[
Pr

N(u, ω)ΣN(u, ω)Pr
N(u, ω)∗

]
Mr

N(u, ω)∗

= Mr
N(u, ω)Λr

N(u, ω)Mr
N(u, ω)∗

= Ir,

Thus the process W NT (u, s) is an orthonormal r–dimensional white noise since its
spectrum is the identity matrix for all u and for all ω.

Remark 2. Analogously to the (rescaled) time-varying principal components pro-
cess F N (u, s) defined in (3.15), the process W NT (u, s) fixes the dynamics at rescaled
time point u and generates the whole process for all s ∈ Z.

The following Lemma shows that the space spanned by the normalized principal
components W N (u, s), which is identical to the space spanned by the principal
components F N (u, s) themselves, i.e. F r

N(u) defined in (3.16), converges to the
space spanned by the true factors, F .

Lemma 9. Consider the orthogonal projection of W N (u, s) on the factor space F
spanned by the factors Fj(s), j = 1, . . . , r, s ∈ Z,

W N (u, s) = GN (u,B) F (s) + RN (u, s) (B.10)

and the orthogonal projection of F (s) on the space spanned by the normalized prin-
cipal components

F (s) = GN

(
u,B−1

)∗
W N (u, s) + SN (u, s) , (B.11)

where GN(u,B) =
(
MN � Pr

N �ΨN

)
(u,B) is an r × r two-sided square-summable

filter, and where RN(u, s) =
(
MN �P

r
N �ΥN

)
(u,B)εN(s) is orthogonal to F . Then,

as N →∞,

(i) sup
u∈[0,1]

�
∥∥RN(u, s)

∥∥2
= o(1);

(ii) sup
u∈[0,1]

�
∥∥SN(u, s)

∥∥2
= o(1).

Proof. Noting that

WNj (u, s) =
(
μNj �P Nj �ΨN

)
(u,B)F (s)+

(
μNj �P Nj �ΥN

)
(u,B)εN(s) (B.12)

we find for the time-varying spectral density of the j−th element of RN(u, s), j =
1, . . . , r,

σR
Nj(u, ω) = μ2

Nj(u, ω)P Nj(u, ω)ΣZ
N(ω)P Nj(u, ω)∗

≤ λZ μ
2
Nj(u, ω)

∣∣P Nj(u, ω)
∣∣2 ≤ λZ λ

−1
Nj(u, ω).

It follows from Proposition 1 that supu∈[0,1] σ
R
Nj(u, ω) → 0 for all ω as N →∞. Since

by (B.7) the supremum is also bounded by λZ, we get by Lebesgue’s dominated
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convergence theorem

sup
u∈[0,1]

∫ π

−π

σR
Nj(u, ω)dω → 0

and the proof of (i) is completed. For the second part, we note that the spectral
density of W N (u, s) as well as that of F (s) is the identity matrix for all u and for
all s and thus, by (B.10) and (B.11) we have

Ir = GN(u, ω)GN(u, ω)∗ + ΣR
N

(
u, ω

)
= GN(u, ω)∗GN(u, ω) + ΣS

N(u, ω)

for all u ∈ [0, 1] and ω ∈ [−π, π], where GN(u, ω) is the transfer function of the
filter GN(u,B), and ΣR

N(u, s) and ΣS
N(u, s) are the spectral densities of RN(u, s)

and SN(u, s), respectively. This implies tr
(
ΣS

N(u, ω)
)

= tr
(
ΣR

N(u, ω)
)
, and (ii) is

proved. �
In order to show that �

[
riT (t)

(
ZiT (t) − ZiT,N(t)

)]
tends to zero, it suffices to

show that the cross-spectrum between riT (t) and ZiT,N(t), f 12
Ni(u, ω) say, tends to

zero uniformly in u ∈ [0, 1] and almost everywhere in [−π, π] since ZiT (t) is orthog-
onal to F (t) and thus to riT (t) at all leads and lags. Since |f 12

Ni(u, ω)| is bounded
by an integrable function, Lebesgue’s dominated convergence theorem implies that∫ π

−π
f 12

Ni(u, ω) dω converges to zero uniformly in u ∈ [0, 1], which proves the desired
mean square convergence.

Recall that

ZiT,N(t) =
(
P ∗

Ni �
[
(IN −Qr

N)PN

]
�ΨN

)
( t

T
, B) F (t)

+
(
P ∗

Ni �
[
(IN −Qr

N) PN

]
�ΥNi

)
( t

T
, B) εN(t).

First we study the cross spectrum between ZiT,N(t) and XiT (t), and then we study
the cross spectrum between ZiT,N(t) and (φNi �ΨN)

(
t
T
, B

)
F (t).

The cross spectrum between ZiT,N(t) and XiT (t) is equal to the cross spectrum
between ZiT,N(t) and ψi

(
t
T
, B

)
SN

(
t
T
, t
)

because, by (B.11), XiT (t) can be written
as

XiT (t) = ψi

(
t
T
, B

)
F (t) = ψi

(
t
T
, B

)
G
(

t
T
, B−1

)∗
W N

(
t
T
, t
)

+ ψi

(
t
T
, B

)
SN

(
t
T
, t
)
.

As explained in section 3.3, ZiT,N(t) is orthogonal to the terms

FNj

(
t
T
, t
)

=
[(

P Nj �ΨN

)(
t
T
, B

)
F (t) +

(
P Nj �ΥN

)(
t
T
, B

)
εN(t)

]
,

for j = 1, . . . , r at any lead and lag; then by (B.12) it is also orthogonal at any lead
and lag to the terms WNj

(
t
T
, t
)
. Let g12

Ni

(
t
T
, ω
)

be the time-varying cross-spectrum

between ZiT,N(t) and ψi

(
t
T
, B

)
SN

(
t
T
, t
)
, and let σZ

i,N

(
t
T
, ω
)

be the time-varying
spectrum of ZiT,N(t). We have∣∣g12

Ni(u, ω)
∣∣2 ≤ σZ

i,N (u, ω) ψi (u, ω)ΣS
N(u, ω)ψi (u, ω)∗ .

By (3.7) σZ
i,N(u, ω) ≤ σi(u, ω) ≤ CΣ,N uniformly in u and ω. Furthermore,

sup
u∈[0,1]

∥∥ψi (u, ω)ΣS
N(u, ω)ψi (u, ω)∗

∥∥ ≤ sup
u∈[0,1]

∥∥ψi (u, ω)
∥∥2

sup
u∈[0,1]

∥∥ΣS
N(u, ω)

∥∥,
which converges to 0 a.e. in [−π, π] by the assumption on the coefficients ψi in
Assumption 1 (ii) and by Lemma 9 .
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By the same arguments, the time-varying cross-spectrum between ZiT,N(t) and
(φNi �ΨN)

(
t
T
, B

)
F (t) equals that between ZiT,N(t) and (φNi �ΨN)

(
t
T
, B

)
SN

(
t
T
, t
)
.

Denoting it by h12
Ni(u, ω), we have∣∣h12

Ni(u, ω)
∣∣2 = σZ

i,NφNi(u, ω)ΨN (u, ω)ΣS
N(u, ω)ΨN (u, ω)∗φNi(u, ω)∗

≤ σZ
i,Nλ

S
N1(u, ω)φNi(u, ω)ΨN (u, ω)ΨN (u, ω)∗φNi(u, ω)∗.

Since ΣX
N(u, ω) = ΨN (u, ω)ΨN (u, ω)∗ and ΣN(u, ω) = ΣX

N(u, ω) + ΣZ
N(ω), we

obtain ∣∣h12
Ni(u, ω)

∣∣2 ≤ σZ
i,Nλ

S
N1(u, ω)φNi(u, ω)ΣN(u, ω)φNi(u, ω)∗

= σZ
i,Nλ

S
N1(u, ω)

r∑
j=1

|pNi,j(u, ω)|2 λNj(u, ω).

By Lemma 9, λS
N1(u, ω) tends to zero for almost all ω ∈ [−π, π] uniformly in

u ∈ [0, 1]. Furthermore, by (B.6), the sum is bounded by the constant σi. Thus
supu∈[0,1] |h12

Ni(u, ω)| tends to zero almost everywhere, and the proof of Proposition 3
is complete. �

B.4. Proof of Proposition 5

We need to show that for all N ∈ N the estimation error

X̂iT,N(t)− X̃iT,N(t) =
[
φ̂NT,i

(
t
T
, B

)− φN,i

(
t
T
, B

)]
Y NT (t)

satisfies

lim
T→∞

sup
TuT <t<T−TuT

�
[∣∣X̂iT,N(t)− X̃iT,N(t)

∣∣ > ε
]

= 0 (B.13)

for all ε > 0. Recall that

φNi

(
t
T
, B

)
=

MT∑
h=−MT

φNi,h

(
t
T

)
Bh

and

φ̂NT,i

(
t
T
, B

)
=

MT∑
h=−MT

φ̂Ni,h

(
t
T

)
Bh.

By Chebyshev’s inequality we obtain for the probability in (B.13)

�
[∣∣X̂iT,N(t)− X̃iT,N(t)

∣∣ > ε
]

= �

[∣∣∣ MT∑
h=−MT

Δφ̂Ni,h

(
t
T

)
Bh Y NT (t)

∣∣∣ > ε
]

≤ 1
ε2
�

[∣∣∣ MT∑
h=−MT

Δφ̂Ni,h

(
t
T

)
Bh Y NT (t)

∣∣∣2]
where we have set Δφ̂Ni,h

(
t
T

)
=

(
φ̂Ni,h

(
t
T

) − φNi,h

(
t
T

))
. Analogously, let in the

sequel, Δφ̂Ni(u, ω) =
(
φ̂Ni(u, ω) − φNi(u, ω)

)
. In order to bound the expectation

on the right hand side,

�

[∣∣∣ MT∑
h=−MT

Δφ̂Ni,h

(
t
T

)
BhY NT (t)

∣∣∣2 ] = �

[∣∣∣ N∑
m=1

MT∑
k=−MT

Δφ̂Nim,k

(
t
T

)
YmT (t− k)

∣∣∣2],
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we apply Cauchy’s inequality on
∑

k Δφ̂Nim,k

(
t
T

)
YmT (t− k) to get as upper bound

�

[∣∣∣ N∑
m=1

( MT∑
k=−MT

(
Δφ̂Nim,k

(
t
T

))2
MT∑

k=−MT

(
YmT (t− k)

)2
)1/2∣∣∣2],

which then can simply be bounded by

N2 sup
1≤m≤N

�

[
MT∑

k=−MT

(
Δφ̂Nim,k

(
t
T

))2
MT∑

k=−MT

(
YmT (t− k)

)2
]
. (B.14)

To bound, for fixed N , the expectation we apply again Cauchy’s inequality and will
show that

�

[( MT∑
k=−MT

(
Δφ̂Nim,k

(
t
T

))2
)2
]

= O
(
(rT )−2

)
(B.15)

and that

�

[( MT∑
k=−MT

(
YmT (t− k)

)2
)2
]

= O
(
M2

T

)
, (B.16)

which is sufficient to finish the proof because by assumption, MT/rT → 0 as T →∞.
We will later show that Assumption 4 implies the following uniform rate of con-

vergence of the estimated filters φ̂Ni(u, ω) to the true filters φNi(u, ω): for fixed
N ∈ N

sup
u∈[uT ,1−uT ]

sup
ω∈[−π,π]

∥∥Δφ̂Ni(u, ω)
∥∥ = Op

(
(rT )−1

)
, (B.17)

and, in particular, for each 1 ≤ m ≤ N ,

sup
u∈[uT ,1−uT ]

sup
ω∈[−π,π]

�

[
Δφ̂Ni,m(u, ω)

]
= O

(
(rT )−1

)
, (B.18)

and
sup

u∈[uT ,1−uT ]

sup
ω∈[−π,π]

Var
(
Δφ̂Ni,m(u, ω)

)
= O

(
(rT )−2

)
. (B.19)

Further note that
MT∑

k=−MT

(
Δφ̂Nim,k

(
t
T

))2 ≤
∫ ∣∣Δφ̂Ni,m(t/T, ω)

∣∣2 dω ,

and that this random variable is stochastically bounded from above because Δφ̂Nim,k

is a difference of (a function of) eigenvectors of empirical and true spectral matrix
of fixed dimension N . Hence we obtain, using (B.18) and (B.19), that

�

[( MT∑
k=−MT

(
Δφ̂Nim,k

(
t
T

))2
)2
]
≤ C �

[
MT∑

k=−MT

(
Δφ̂Nim,k

(
t
T

))2
]

= O
(
(rT )−2

)
,

and hence (B.15).
Next, the expectation in (B.16) is simply bounded by CM2

T �
(
YmT (t)4

)
, which

is of order O
(
M2

T

)
since Y NT (t) has uniformly bounded fourth moments. Conse-

quently, the upper bound in (B.14) converges to zero as T → ∞, which completes
the proof.

It remains to show that equations (B.17)-(B.19) are a consequence of Assump-
tion 4. The proof parellels parts of Lemma 4.2 of Forni et al. (2004) which is
essentially built on the following Taylor expansions to be found in the proof of
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Brillinger (1981), Theorem 9.2.4. The idea is to derive rates of convergence of eigen-

values λ̂j(u, ω) and eigenvectors P̂j(u, ω) of Σ̂NT (u, ω) to the limiting ones λj(u, ω)
and Pj(u, ω) of ΣN(u, ω) by relating their difference in first order to the difference

Σ̂NT (u, ω) − ΣN(u, ω). (Note that this is done for fixed N , so most of the double
asymptotic considerations of Lemma 4.2 of Forni et al. (2004) can be ignored.)

λ̂j(u, ω)− λj(u, ω) = Pj(u, ω)∗(Σ̂NT (u, ω)−ΣN(u, ω))Pj(u, ω) + . . .

and

P̂j(u, ω)−Pj(u, ω) =
∑
i�=j

[Pi(u, ω)∗(Σ̂NT (u, ω)−ΣN(u, ω))Pj(u, ω)] Pi(u, ω)/(λj(u, ω)−λi(u, ω))+. . .

(In both expansions the . . . denote terms of higher order in the difference of Σ̂NT (u, ω)−
ΣN(u, ω).) For details on the derivation of these Taylor expansions see Wilkinson
(1965), Ch. 2, but note that essentially they can be derived from a first order Tay-
lor expansion of the ”symbolic” eigenvalue-eigenvector equation Zfj = Ψjfj about
Z = ΣN which gives:

(Σ̂NT −ΣN)Pj + ΣN(P̂j − Pj) = (λ̂j − λj)Pj + λj(P̂j − Pj) ,

and after multiplication of this equation from left by any other P ∗i , with i �= j, a
system of equations of the type

P ∗i (Σ̂NT −ΣN) Pj = (λj − λi) P
∗
i (P̂j − Pj) .

Note that in the cited sources, no multiplicity of the eigenvalues has been consid-
ered. However, there exists some techniques to group those multiple eigenvalue-
eigenvectors pairs into blocks and repeat the same technique over blocks. To avoid
lengthy technicalities we just refer to, e.g., Anderson (1963), and, more generally, to
Wilkinson (1965, Chap. 2), which essentially suggests that a result of the same type
as in (B.17) can be derived, with a rate of consistency which is possibly only a frac-
tional power of the rate (rT )−1 derived for the case of simple eigenvalues. However,
note that any arbitrarily slow rate will be sufficient for the purpose of our proof.

To finally give some insights into the principles of this proof, details of which
we omit here, we note that as in Forni et al. (2004), Lemma 4.2, we proceed via
three steps, which in our situation, again, need to be studied only for a fixed N .
W.l.o.g., we formulate a sketch of these constructive steps for the case of using one
of our proposed spectral estimator, the smoothed preperiodogram defined in (A.1),
fulfilling Assumption 4, with a rate rT = (hT bTT )1/2 delivered by Theorem 7.

(i) controlling the “smoothing” bias: Let Σcc
NT (u, ω) := Kτ

hK
Φ
b ∗ΣN(u, ω) denote

the convolution of ΣN with the product kernel in time Kτ
h(u) and frequency

KΦ
b (ω) (see, e.g., also (A.1)), and let P cc

j,T (u, ω) denote its j-th eigenvector.
Then we have (paralleling Forni et al. (2004), Lemma 4.2(ii)) that uniformly
in u and ω, for all j,∥∥P cc

j,T (u, ω)− Pj(u, ω)
∥∥ = O

(
h2

T

)
+O

(
b2T
)
,

a result that is based on the classical Taylor expansion of order 2 of the kernel
convolution (in time and in frequency).
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(ii) controlling the variance, uniformly in u and ω, for all j,

Var(P̂j(u, ω)) = O
(
(hT bTT )−1

)
,

essentially paralleling Forni et al. (2004), Lemma 4.2(iii) and equation (9.4.17)
in Brillinger (1981). Obviously, here we use that the asymptotic variance of

Σ̂NT −Σcc
NT is of the same given order, see (A.6).

(iii) controlling uniformly the bias∥∥�P̂j(u, ω)− P cc
j,T (u, ω)

∥∥ = O
(
(hT bTT )−1

)
,

because it is essentially bounded by the bias of �Σ̂NT − Σcc
NT which is also

of order O ((hT bTT )−1) (paralleling Brillinger (1981), Theorem 7.4.1 and the
proof of Forni et al. (2004), Lemma 4.2(iv)).

Note that, in order to have these results on controlling separately bias and variance

of P̂j − Pj, uniformly over time u and frequency ω, we observe that the following
conditions on the second (partial) derivatives of ΣN(u, ω) with respect to ω and u
are indeed fulfilled in our situation:

sup
u

sup
ω

∥∥Pi(u, ω)∗(d2
uΣN(u, ω))Pj(u, ω) Pi(u, ω)

∥∥ ≤ Cu(N)

and
sup

u
sup

ω

∥∥Pi(u, ω)∗(d2
ωΣN(u, ω))Pj(u, ω) Pi(u, ω)

∥∥ ≤ Cω(N)

with constants Cu(N) and Cω(N) which remain bounded over T , for each fixed N .
For further details on this proof we refer to the given references to avoid lengthy

technicalities. �
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