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1 Introduction

Many problems in economics are complicated by the presence of non-convexities. Scarf

(1994) mentions the omnipresence of non-divisibilities in production as an important source

of non-convexities in economics. Another example of a non-convexities in production is

the existence of production technologies with increasing returns to scale. Other important

cases of non-convexities result from non-convexities in preferences, even in the presence of

lotteries when agents are not expect utility maximizers as is for instance the case in prospect

theory, see Kahneman and Tversky (1979), or when randomization is not possible, and

non-convexities in the consumption set, for instance caused by the presence of indivisible

commodities. Although non-convexities are regarded important, most of the economic

literature assumes them away for reasons of intractability.

Non-convexities are frequently studied in the n-person cooperative bargaining litera-

ture. There is for instance an extensive literature on the extension of the Nash bargaining

solution to non-convex environments (Kaneko (1980), Conley and Wilkie (1996), Mariotti

(1997), Zhou (1997), and Xu and Yoshihara (2006)). On the contrary, the literature on

strategic bargaining has not paid much attention to non-convexities and non-convexities

are only treated for the two-player case. Rubinstein (1982) allows for modest forms of

non-convexities. Under his hypothesis there is typically a unique equilibrium. Herrero

(1989) considers general non-convexities for the two-player case and obtains the existence

of a subgame perfect equilibrium in stationary strategies when the set of feasible payoffs

is strictly comprehensive. Conley and Wilkie (1995) also consider a strictly comprehensive

set of feasible payoffs and introduce a bargaining protocol that implements their extension

of the Nash bargaining solution.

Existence of a pure equilibrium in the canonical multilateral bargaining model has been

shown only when the set of feasible payoffs is convex. The existence of such an equilibrium

has been shown in Banks and Duggan (2000). Merlo and Wilson (1995) consider the

n-person cake division problem and obtain the existence of a unique subgame perfect

equilibrium in stationary strategies when the set of feasible payoffs is convex and the

proposer selection protocol is deterministic.

We consider the following canonical multilateral bargaining procedure. In each time

period, nature randomly selects a player that is allowed to make a proposal. All players

respond sequentially to the proposal and either vote in favor or against. As soon as a

responder votes against the proposal, the procedure continues in the next period. If all

responders vote in favor of the proposal, it is accepted, and the procedure ends.

The bargaining game is fully characterized by the set of players, their discount factors,

the set of feasible payoffs, and the probability according to which nature selects a particular

proposer. The only assumptions we make regarding the set of feasible alternatives are non-
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substantial technical ones. It is assumed to be closed, comprehensive from below, and

the set of individually rational payoffs is assumed bounded from above. To make the

bargaining problem non-trivial, it is assumed that there is an alternative that gives all

players a strictly positive payoff.

We show that this entire class of bargaining games has stationary subgame perfect

equilibria in pure strategies that ensure immediate agreement. This result is surprising as

the usual way to deal with non-convexities is to introduce lotteries. For that reason, one

might have expected that non-convex bargaining games possess mixed strategy equilibria

rather than pure ones. Similarly, one might have expected that non-convexities are a

potential source for delay.

We also address the reverse question. Under what conditions are all stationary subgame

perfect equilibria of a bargaining game in pure strategies without delay? The answer

is that an extremely mild additional assumption assures this: When the set of weakly

Pareto optimal alternatives coincides with the set of Pareto optimal ones, all stationary

subgame perfect equilibria involve no randomization on the equilibrium path. Equilibria

are characterized by the absence of delay.

To derive the first main result, the existence result, we deviate from the usual proof

strategy that basically exploits continuity of the best-response correspondences. In our

non-convex setting, this correspondence may not be continuous. Instead, we construct

an excess utility function that resembles the excess demand function as used in general

equilibrium theory. Let some profile of ex ante utilities be given and consider for each

player i the (potentially infeasible) proposal player i has to make in order to be consistent

with this profile of ex ante utilities. Coordinate i of the excess utility function is the degree

of feasibility of this proposal. The excess utility function is shown to have a zero point by

showing that it is not outward pointing. Next, a zero point is shown to induce a subgame

perfect equilibrium in stationary strategies of the bargaining game.

To prove the second main result, roughly stating that all stationary subgame perfect

equilibria are in pure strategies, we proceed in several steps. One of the main steps is

to show in an equilibrium in mixed strategies, proposals offering strictly more than the

continuation utility to all players are accepted with probability one, whereas proposals

offering at least one player strictly less than the continuation utility are accepted with

probability zero. The next main step is to argue that for every player there is a unique

proposal which maximizes his utility subject to being accepted with probability one and

that every mixed equilibrium puts probability one on such a proposal.

Equilibria are efficient in the sense that in equilibrium every proposer selects a Pareto

optimal alternative. However, the fact that all equilibria are in pure strategies implies that

equilibria may be inefficient in a weaker sense. It is not difficult to construct examples and
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mixed strategy profiles with associated utilities strictly Pareto dominating the equilibrium

utilities.

This paper is organized as follows. Section 2 introduces the model and Section 3

provides the existence result. Section 4 proves the converse result and Section 5 concludes.

2 The Bargaining Game

We consider the bargaining game Γ = (N, V, δ, θ). There is a set N of n individuals that

have to select a single payoff vector in the set of feasible payoffs V, a non-empty subset

of R
N . We denote the set of non-negative feasible payoffs by V+ = V ∩ R

N
+ . The vector

δ = (δi)i∈N consists of the players’ discount factors and θ = (θi)i∈N denotes the probability

according to which players are selected as a proposer. Individuals negotiate about the

alternative to be selected using a procedure defined as follows.

In every time period t, starting with t = 0, nature selects player i to be the proposer

with probability θi. After history h, player i makes a proposal σi(h). In Sections 2 and

3 we restrict ourselves to pure strategies, in which case σi(h) corresponds to an element

in V+. After observing σi(h), all players (including the proposer) vote sequentially on the

proposal, the order of their responses being history independent. Each player can either

accept or reject the proposal. If the proposal is unanimously accepted, the proposal σi(h)

is implemented. As soon as the first rejection occurs, the period t+ 1 begins, with nature

selecting a new proposer, and so on.

The utility to player i of agreement on v ∈ V in time period t is given by δt
ivi. The

utility of perpetual disagreement is equal to 0 for all players. Players have von Neumann-

Morgenstern utility functions.

Our assumptions are as follows.

(A) The set V is closed and comprehensive from below. The set V+ is bounded and contains

0 in its interior.

(B) The discount factor δi belongs to [0, 1) for all i.

We analyze the stationary subgame perfect equilibria (SSPE) of Γ. A stationary strategy

of individual i specifies a proposal xi and an individual acceptance set Ai. At every history

h where player i is selected as a proposer, he makes the proposal σi(h) = xi and at every

history h where player i has to respond, he accepts the proposal currently on the table if

and only if it belongs to Ai. A strategy profile is a stationary subgame perfect equilibrium

if it is stationary and if it induces a Nash equilibrium in every subgame.

The main existence result for this model is Theorem 2 in Banks and Duggan (2000).

This theorem states that when the set of feasible payoffs is convex, then there exists a pure
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strategy no-delay stationary equilibrium. Moreover, they have the converse result that

every no-delay stationary equilibrium is in pure strategies when the set of feasible payoffs

is strictly convex. We show that for an existence result, it suffices to make assumptions

(A) and (B). It follows in particular that convexity assumptions are not needed. Under the

modest additional assumption that weakly Pareto efficient and Pareto efficient points co-

incide, we obtain the converse result that every stationary equilibrium uses pure strategies

on the equilibrium path and does not involve delay.

3 Existence of Stationary Subgame Perfect Equilibria

in Pure Strategies

In this section we present a system of equations which is such that a solution to the system

induces an SSPE in pure strategies. Let g : R
N → R be a transformation function, i.e. a

function such that v ∈ V if and only if g(v) ≥ 0, with v ∈ ∂V if and only if g(v) = 0.

Assumption A1 can be rephrased in terms of g. It is evident that A1 is equivalent to

the existence of a transformation function g satisfying the following conditions:

• g is continuous,

• g(0N) > 0,

• g(v̂) ≥ 0 and v ≤ v̂ implies g(v) ≥ 0,

• g−1(R+) ∩ R
N
+ is bounded.

Let u ∈ R
N be a vector of ex ante expected utilities for the players. Consider the case

where for every player i his proposal xi is immediately accepted and satisfies g(xi) = 0 and

xi
j = δjuj for j �= i. Player i is the proposer with probability θi and is a responder with

probability 1− θi, so consistency with ex ante expected utility imposes

ui = θix
i
i + (1− θi)δiui.

By rearranging terms we obtain that

xi
i =

1− δi + θiδi

θi
ui.

For i ∈ N, we define αi = (1− δi + θiδi)/θi and we define the function pi : R
N → R

N by

pi
j(u) =

{
αiui, if j = i,

δjuj, if j ∈ N \ {i}.
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The function pi specifies the proposals that are consistent with ex ante expected utilities

u.

Let v̄ ∈ R
N
++ be a strict upper bound on V+, so every v ∈ V+ satisfies v ≤ v̄.

We define the function z : [0N , v̄]→ R
N as follows:

zi(u) = g(pi(u)), i ∈ N.

If zi(u) < 0, then there is no payoff vector in the set of feasible payoffs that gives player i

a payoff of αiui and players j �= i a payoff of δjuj. Consistency with ex ante utilities would

impose that ui be lowered. If zi(u) > 0, then there is a payoff vector in V that gives player

i a payoff of strictly more than αiui and players j �= i a payoff of δjuj. In this case it is

possible to increase ui.

The function z is related to an excess demand function as used in general equilibrium

theory and we can think of z as an excess utility function. To find equilibria in pure

strategies, we are looking for solutions to the system of equations z(u) = 0N . Notice that

the system of equations z(u) = 0N is different from the usual one (see Merlo and Wilson

(1995), Banks and Duggan (2000), Kalandrakis (2004, 2006)), where typically each player

is maximizing his utility subject to meeting the reservation values. Our assumptions do

not imply that the system of equations employed in the usual approach is continuous.

A function is outward pointing at a point if the function value is a non-zero element of

the normal cone at the point. A function is outward pointing if it is outward pointing at

some point. When applied to a function f : [a, ā]→ R
m, where [a, ā] is the m-dimensional

unit interval with a � ā, we obtain the following definition.

Definition 3.1 Let a, ā in R
m be such that a � ā. The function f : [a, ā] → R

m is

outward pointing at a ∈ [a, ā] if f(a) �= 0 and, for k = 1, . . . , m, ak = ak implies fk(a) ≤ 0,

ak < ak < āk implies fk(a) = 0, and ak = āk implies fk(a) ≥ 0.

We show next that the excess utility function z is not outward pointing.

Lemma 3.2 The excess utility function z is not outward pointing.

Proof: Clearly, z is not outward pointing at any u in the interior of [0N , v̄].

Consider u in the boundary of [0N , v̄] and i ∈ N such that ui = v̄i. Then, since

pi(u) ∈ R
N
+ and there is no v ∈ V+ with vi = αiv̄i > v̄i, we have that

zi(u) = g(pi(u)) < 0.

Therefore z is not outward pointing at such a point u.

Consider u in the boundary of [0N , v̄] such that u � v̄ and ui = 0 for at least

one i ∈ N. Suppose that z is outward pointing at u. Clearly u �= 0N , since z(0N ) =
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(g(0N), . . . , g(0N)) 	 0N . Let j be such that 0 < uj < v̄j. Then, since z is outward

pointing at u,

0 = zj(u) = g(pj(u)),

so pj(u) ∈ V. Since pj(u) > pi(u) for any i ∈ N such that ui = 0, we have pi(u) ∈ V, so

zi(u) = g(pi(u)) ≥ 0. Since z is outward pointing at u it follows that zi(u) = 0 for every i

such that ui = 0. We find that z(u) = 0, a contradiction to z being outward pointing at u.

Q.E.D.

Functions that are not outward pointing have a zero point.

Lemma 3.3 Let a, ā in R
m be such that a � ā and let the function f 0 : [a, ā]→ R

m be

not outward pointing. Then f 0 has a zero point.

Proof: We define the function f 1 : [a− 1m, ā+ 1m]→ R
m by

f 1(a) = λ(a)(π[a,ā](a)− a) + (1− λ(a))f 0(π[a,ā](a)), a ∈ [a− 1m, ā+ 1m],

where π[a,ā] is the orthogonal projection function on [a, ā] and

λ(a) = ‖π[a,ā](a)− a‖∞, a ∈ [a− 1m, ā+ 1m],

so the function λ : [a − 1m, ā + 1m] → [0, 1] measures the distance in infinity norm from

the point a to its projection. The function λ is continuous and has the property that it is

equal to 1 on the boundary of [a− 1m, ā+1m], equal to 0 on [a, ā], and strictly in between

0 and 1 everywhere else. We define the function f 2 : [a− 1m, ā+1m]→ [a− 1m, ā+1m] by

f 2(a) = π[a−1m,ā+1m](a+ f 1(a)), a ∈ [a− 1m, ā+ 1m].

The function f 2 has a fixed point, say a∗, by Brouwer’s fixed point theorem.

Suppose a∗ belongs to the boundary of [a− 1m, ā+ 1m], i.e. λ(a∗) = 1. Then

a∗ = f 2(a∗) = π[a−1m,ā+1m](a
∗+f 1(a∗)) = π[a−1m,ā+1m](a

∗+π[a,ā](a
∗)−a∗) = π[a,ā](a

∗) �= a∗,

a contradiction. It follows that a∗ is not in the boundary of the set [a− 1m, ā+1m], i.e. it

belongs to its relative interior. From this it follows that

a∗ = π[a−1m,ā+1m](a
∗ + f 1(a∗)) = a∗ + f 1(a∗),

so f 1(a∗) = 0m. Using the definition of f 1 it then follows that

f 0(π[a,ā](a
∗)) = − λ(a∗)

1− λ(a∗)
(π[a,ā](a

∗)− a∗).
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Now if a∗ is not an element of the set [a, ā], then 0 < λ(a∗) < 1 and the vector a∗−π[a,ā](a
∗)

is a non–zero element of the normal cone of [a, ā] at the point π[a,ā](a
∗). But this means

that f 0 is outward pointing at π[a,ā](a
∗), a contradiction. We conclude that a∗ ∈ [a, ā].

Thus λ(a∗) = 0 and π[a,ā](a
∗) = a∗, so a∗ is a zero point of the function f 0. Q.E.D.

Corollary 3.4 The excess utility function z has a zero point.

A zero point u∗ of z induces a subgame perfect equilibrium in stationary strategies of

Γ as follows. For i ∈ N, we define

x∗i = pi(u∗),

and

A∗i = {v ∈ V | vi > δiu
∗
i} ∪ {v ∈ V | vi = δiu

∗
i and ∀j �= i, vj ≤ αju

∗
j)}.

Whenever a player i has to propose, he makes the proposal x∗i. Whenever a player i has to

respond, he accepts proposals that offer him strictly more utility than δiu
∗
i or that offer him

exactly δiu
∗
i and do not offer more than αju

∗
j for other players j. In this construction we

exploit the degree of freedom that we have in case a player is indifferent between accepting

and rejecting a proposal. This freedom is needed in particular when the set V contains

points that are only weakly Pareto optimal as Example 3.6 illustrates. Indeed, it may well

be that a proposal that maximizes the proposer’s utility subject to offering the other play-

ers their reservation values is not compatible with an equilibrium. Equilibrium play may

require a proposer to settle for a weakly Pareto optimal proposal that is not Pareto optimal.

Theorem 3.5 The strategy profile (x∗, A∗) is an SSPE of Γ.

Proof: It is well-known that the game Γ has the one-shot deviation property, meaning

that if there is a subgame where a player has some profitable deviation from a stationary

strategy profile, then there must also be a subgame where this player has a profitable one-

shot deviation, i.e. a single deviation by this player at the root of the subgame. A minor

extension of the arguments in Fudenberg and Tirole (1991) would prove this point.

We verify that no player has a profitable one-shot deviation. Suppose at some history h

at time period t, player i is proposer and makes proposal xi, potentially different from x∗i.

Notice that x∗i is accepted leading to expected utility δt
iαiu

∗
i for player i. If xi �∈ ∩i∈NA∗i,

then it will be rejected, leading to an expected utility of δt+1
i u∗i < δt

iαiu
∗
i . If xi ∈ ∩i∈NA∗i

it will be accepted, leading to a utility of δt
ix

i
i. Since xi ∈ A∗j for j �= i, it follows that

xi
i ≤ αiu

∗
i , so the expected utility to player i of proposing xi is less than or equal to the

expected utility of proposing x∗i.
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Suppose at some history h at time period t, player i is responder to a proposal v ∈ A∗i.

In equilibrium, player i accepts. The expect utility to player i is δt
ivi if the other players

accept and δt+1
i u∗i if some other player rejects, so expected utility weakly exceeds δt+1

i u∗i
in any case. Would player i deviate to a rejection, then his expected utility equals δt+1

i u∗i .

Consider a proposal v �∈ A∗i , so in particular vi ≤ δiu
∗
i . In equilibrium, player i rejects,

leading to expected utility δt+1
i u∗i . A deviation to acceptance leads to expected utility δt

ivi

if others accept and δt+1
i u∗i if some other player rejects. In either case, expected utility is

bounded above by δt+1
i u∗i . Q.E.D.

Example 3.6 Consider the set of feasible payoffs

V = {v ∈ R
2 | v1 ≤ 2, v2 ≤ 2, max{v1, v2} ≤ 1},

which is depicted in Figure 1. An upper bound on V+ is given by v̄ = (2, 2).

�

�

0 1 2
v10

1

2

v2

V

Figure 1: The set of feasible payoffs

Players are selected as proposer with equal probability, so θ1 = θ2 = 1/2. It follows

that αi = 2− δi. The excess utility function z is then defined by

z1(u) = g(p1(u)) = g((2− δ1)u1, δ2u2), u ∈ [0, v̄]
z2(u) = g(p2(u)) = g(δ1u1, (2− δ2)u2), u ∈ [0, v̄].

The boundary of V consists of four types of line segments, characterized by v1 ≤ 1 and

v2 = 2, v1 = 1 and 1 ≤ v2 ≤ 2, 1 ≤ v1 ≤ 2 and v2 = 1, and v1 = 2 and 0 ≤ v2 ≤ 1. Since in

equilibrium both p1(u) and p2(u) belong to such a line segment, there are potentially sixteen

types of equilibria, where a type of equilibrium corresponds to a particular combination

of line segments to which the proposal belongs. When we solve for z(u) = 0 for each of

the sixteen resulting systems of equations, and taking into account that 0 ≤ δ1, δ2 < 1, we

find ex ante equilibrium utility levels u∗1 and u∗2. From these, we can derive the equilibrium
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proposals x∗1 and x∗2 and the equilibrium acceptance sets A∗1 and A∗2. The equilibrium

proposals are displayed in Table 3. We distinguish six types of equilibrium, labeled by A

to F. The conditions on the discount factors that lead to a particular equilibrium type are

displayed in Table 3 and depicted in Figure 3.

Discount factors x∗1 x∗2

A 0 ≤ δ1 < 1, 2
3

< δ2 < 1 (1, 2δ2
2−δ2

) ( δ1
2−δ1

, 2)

B 0 ≤ δ1 < 1, δ2 =
2
3

((2− δ1)u
∗
1, 1) (δ1u

∗
1, 2)

1
2−δ1

≤ u∗1 ≤ min{ 2
2−δ1

, 1
δ1
}

C 0 ≤ δ1 < 2
3
, 0 ≤ δ2 < 2

3
(2, 2δ2

2−δ2
) ( 2δ1

2−δ1
, 2)

D δ1 > 2
3
, δ2 > 2

3
(2−δ1

δ1
, 1) (1, 2−δ2

δ2
)

E δ1 =
2
3
, 0 ≤ δ2 < 1 (2, δ2u

∗
2) (1, (2− δ2)u

∗
2)

1
2−δ2

≤ u∗2 ≤ min{ 2
2−δ2

, 1
δ2
}

F 2
3

< δ1 < 1, 0 ≤ δ2 < 1 (2, δ2
2−δ2

) ( 2δ1
2−δ1

, 1)

Table 1: A summary of the possible equilibrium proposals.

�

�

0 2
3 1

δ10

2
3

1

δ2

A A D F

B B

C E

E

F

Figure 2: Equilibrium regions

Table 1 in conjunction with Figure 3 shows that equilibria are unique for discount factors

in Regions A, C, and F in case at least one player has a discount factor below 2/3 and no

player has a discount factor equal to 2/3. When the discount factor of at least one player is

exactly equal to 2/3, we are in Regions B or E, and there are infinitely many equilibria and

infinitely many possible equilibrium utilities. Finally, when both players have a discount

factor above 2/3, equilibria of type A, D, and F co-exist. Figure 3 illustrates a typical

combination of proposals for the various types of equilibria. Figure 4 illustrates the three

possible equilibria when δ1 = δ2 = 5/6.

A striking feature of Example 3.6 is that the equilibrium proposals are typically not

Pareto optimal, but only weakly so. The only exception are cases where δ1 = 2/3 or δ2 =
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1
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2
3

x∗2

x∗1
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V

B: δ1 =
5
6
, δ2 =

2
3

x∗2

x∗1
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1
3
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1
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Figure 3: Equilibrium proposals
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2/3, when there is a continuum of equilibria, and only one equilibrium in the continuum

involves Pareto optimal proposals.

The most extreme equilibrium proposals for player 1 are x∗1 = (2, 0), which occurs

when δ2 = 0 and 0 ≤ δ1 < 2/3, and x∗1 = (1, 2 − ε) when δ2 = (4 − 2ε)/(4 − ε) and

0 ≤ δ1 < 1. Notice that in the latter equilibrium, player 1 may offer more to player 2 than

to himself, even if player 1 is more patient than player 2.

Another interesting feature of this example is that comparative statics may be coun-

terintuitive. Consider the symmetric equilibrium corresponding to Region D when both

players have discount rates exceeding 2/3. In this region it holds that increasing patience

worsens the bargaining position of a player. When discount rates converge to 1, the equi-

librium proposals of both players converge to (1, 1), a payoff that is weakly dominated for

both players by alternative payoffs.

The example also demonstrates that equilibrium proposals are not even weakly Pareto

optimal when compared to lotteries over feasible payoffs. When players become sufficiently

patient, their equilibrium proposals become arbitrarily close to (1, 1). A lottery that selects

the payoff (2, 1) with probability 1/2 and the payoff (1, 2) with probability 1/2 gives strictly

higher utility to both players than both equilibrium proposals.

4 A Characterization of All Stationary Subgame Per-

fect Equilibria

In this section we employ the additional assumption that each weakly Pareto–efficient point

of V+ is Pareto efficient. Under this assumption we show that in any stationary subgame

perfect equilibria of the game Γ each player chooses a pure strategy on the equilibrium

path, leading to a proposal which is immediately accepted by all the players. Furthermore,

the vector of ex ante expected utilities in any stationary subgame perfect equilibrium of Γ

is a zero of the function z as defined in Section 3.

Recall that a point v ∈ V is said to be weakly Pareto–efficient if there is no point x ∈ V

such that xi > vi for each i ∈ N . It is Pareto–efficient if there is no point x ∈ V such

that xi ≥ vi for each i ∈ N with one strict inequality. We employ the following additional

assumption:

(C) Each weakly Pareto–efficient point of V+ is Pareto efficient.

Assumption (C) is widely used in the literature and is often referred to as the condition of

“non–levelness” of the relevant part of the boundary of the set V.

Let B be the set of Borel subsets of V . A stationary strategy for player i can be

summarized by a pair (μi, τ i) where μi : B → [0, 1] is a probability measure and τ i : V →

11



[0, 1] is a B–measurable function. The number μi(B) is the probability for player i to

choose a proposal from the Borel set B, and τ i(v) is the probability for player i to accept

a proposal v. Given a strategy profile (μ1, . . . , μn, τ 1, . . . , τn), let τ(v) = τ 1(v)×· · ·× τn(v)

denote the probability that the point v is unanimously accepted. Then the ex ante expected

utility ui to player i satisfies the following equation:

ui =

n∑
j=1

θj

∫
V

[τ(v)vi + (1− τ(v))δiui]dμj(v). (4.1)

Theorem 4.1 Let the strategy profile σ = (μ1, . . . , μn, τ 1, . . . , τn) be an SSPE of Γ.

Then for each i ∈ N there exists a proposal xi in V such that μi({xi}) = 1 and τ j(xi) = 1

for all j ∈ N . Furthermore, the ex ante expected utilities u induced by σ satisfy z(u) = 0.

Proof: For i ∈ N, let ri = δiui. Define the sets A and B by

A =
⋂
i∈N

{v ∈ V | vi ≥ ri} and B =
⋂
i∈N

{v ∈ V | vi > ri}.

Step 0: ui ≥ 0 for each i ∈ N . Indeed, rejecting any proposal yields a player a utility of

zero irrespective of the strategies of other players. Thus, in any Nash equilibrium of the

game Γ the utility to any player is at least zero.

Step 1: If v ∈ V is such that τ(v) > 0, then v ∈ A.

Suppose τ(v) > 0 and consider a history h at time period 0 after which player i has

to respond to the proposal v. Notice that according to the strategy profile σ all players

accept v with strictly positive probability. A rejection of v by player i yields him a utility

of ri, while accepting it yields a utility of vi with some positive probability and ri with the

complementary probability. Since, according to the subgame perfect equilibrium strategy

σ, player i accepts v with positive probability, we must have the inequality vi ≥ ri.

Step 2: If v ∈ B, then τ(v) = 1.

Suppose without loss of generality that the players respond in the sequence 1, . . . , n.

Consider a history h at time period 0 after which player n has to respond to the proposal

v. All players preceding player n have accepted the proposal v, because otherwise player

n is not requested to cast his vote by definition of the game Γ. Accepting v by player n

yields him a utility of vn, while rejecting it leads to a utility of δnun = rn. Thus player n

has to accept v with probability 1. We conclude that that τn(v) = 1.

Suppose that τi+1(v) = · · · = τn(v) = 1 for some i. Consider a history h at time period

0 after which player i has to respond to the proposal v. According to the definition of the

game Γ, the players preceding i in the response sequence have all accepted the proposal

v. The players i+ 1, . . . , n will accept the proposal v with probability 1 by the induction

hypothesis, if player i accepts it. Thus accepting v by player i yields a utility of vi, while

rejecting it gives a utility of δiui = ri. We conclude that τi(v) = 1.

12



Step 3: The set B is non–empty.

Suppose B is an empty set. We show next that then A ⊂ {r}. For suppose the

set A contains a point v other than r. Then the point r is not Pareto–efficient and, by

Assumption (C), it is not weakly Pareto–efficient. It follows that there is a point v ∈ V

such that vi > ri for each i ∈ N . But such a point v is an element of the set B, a

contradiction. This establishes that the set A is either empty or it contains the point r

alone.

For each i ∈ N and each v ∈ V, it holds that τ(v)vi+(1−τ(v))δiui = δiui, since it follows

from Step 1 that if τ(v) > 0, then v = r, whereas the equality is trivial when τ(v) = 0.

Using Equation 4.1 we find that ui = δiui for each i ∈ N . We conclude that u = 0. But 0

belongs to the interior of V by Assumption (A), which implies that B = ∩{v ∈ V | vi > 0}
is a non–empty set, a contradiction.

Step 4: The set A equals the closure of B.

Take v ∈ A and an open neighborhood O of v. We must show that the intersection

O∩B is non–empty. Consider the point y = (1−λ)v+λr for some λ ∈ (0, 1) chosen small
enough such that y lies in the set O. Since ri ≤ yi ≤ vi for each i ∈ N and since V is

comprehensive from below by Assumption (A), y ∈ A. The point y is not Pareto–efficient.

Indeed, if y = v, then y = r, which is not Pareto–efficient because the set B is non–empty.

And if y is not equal to v, it is dominated by v. Hence, by Assumption (C), the point y is

not weakly Pareto–efficient. Thus there is a point x ∈ V such that yi < xi for all i ∈ N .

Consider the point x(ε) = εx + (1− ε)y for 0 < ε < 1. Since ri ≤ yi < xi(ε) ≤ xi for each

i ∈ N and since V is comprehensive from below, x(ε) ∈ B. And since y ∈ O, one can

choose ε small enough so that x(ε) ∈ O.

Step 5: The set X i = argmaxv∈A vi contains a single element, say xi. The point xi lies

on the boundary of V and xi
j = rj for each j ∈ N \ {i}.

The set X i is non–empty, because A is a compact set. Take any point x ∈ X i and

suppose rj < xj for some j ∈ N \ {i}. Define the point v by the equation

vk =

⎧⎨
⎩xk, if k ∈ N \ {j},

rj , if k = j.

Thus vk ≤ xk with strict inequality for k = j. Since V is comprehensive from below by

Assumption (A), v ∈ V . Furthermore, the point v is not Pareto–efficient being dominated

by x. Hence by Assumption (C) it is not weakly Pareto–efficient. Therefore, there exists a

point y ∈ V such that vk < yk for each k ∈ N . Since rk ≤ xk = vk < yk for each k ∈ N \{j}
and rj = vj < yj, the point y is an element of A. Furthermore xi < yi, contradicting the

choice of x in X i.
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We have thus shown that, for each x ∈ X i, for each j ∈ N \ {i}, xj = rj . It now follows

at once that X i contains a single element.

Finally, if xi were not a boundary point of V , there would be a point y ∈ V such that

xk < yk for all k ∈ N . Such a point y would then be in the set A, contradicting the fact

that xi is an element of X i.

Step 6: It holds that μi({xi}) = 1 and τ(xi) = 1.

Consider a history h at time period 0 after which player i has to make a proposal and

let qi denote the utility of player i in the corresponding subgame of Γ. By Step 2, any point

v of B is accepted with probability 1. Hence, qi ≥ vi for each v ∈ B. Since by Step 4 the

set A is a closure of B, we must have qi ≥ vi for each v ∈ A, and therefore qi ≥ xi
i.

For a natural number m, let Am = {v ∈ A | vi ≥ xi
i − 1/m}. Notice that ri < vi ≤ xi

i

for each v ∈ B, so in particular ri < xi
i. Take an m large enough so that ri < xi

i − 1/m.

Let qi(v) = τ(v)vi + (1− τ(v))ri be the utility to player i from proposing the point v ∈ V .

If v ∈ V \ A, it is rejected with probability one by Step 1, so qi(v) = ri < xi
i − 1/m. If

v ∈ A \ Am, then qi(v) < xi
i − 1/m, because in this case both vi and ri are smaller than

xi
i − 1/m. And if v ∈ Am, then qi(v) ≤ xi

i, because vi ≤ xi
i. Thus

qi =

∫
V

qi(v)dμi(v) ≤ μ(V \ Am)(x
i
i −

1

m
) + μ(Am)x

i
i ≤ xi

i − μ(V \ Am)
1

m
.

But since xi
i ≤ qi, we conclude that μ(V \Am) = 0. It follows by continuity of a probability

measure that μ({xi}) = μ(∩m∈NAm) = limm→∞ μ(Am) = 1.

Finally, for m large enough so that ri < xi
i − 1/m,

xi
i ≤ qi = τ(xi)xi

i + (1− τ(xi))ri

≤ τ(xi)xi
i + (1− τ(xi))(xi

i −
1

m
) = xi

i − (1− τ(xi))
1

m
,

which shows that τ(xi) = 1.

Step 7: The vector of ex ante expected utilities u satisfies z(u) = 0.

By Step 5 we have xi
j = δjuj for each j �= i. Equation 4.1 now reads

ui =

n∑
j=1

θjx
j
i = θix

i
i + (1− θi)δiui.

We thus obtain xi
i = αiui, where αi is as defined in Section 3. Therefore xi = pi(u). And,

also by Step 5, the point xi lies in the boundary of the set V , so z(pi(u)) = 0, as desired.

Q.E.D.
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5 Conclusion

The presence of non-convexities poses many problems in economic modeling. Such prob-

lems are usually resolved by the use of lotteries, which convexify the problem. In this

paper we argue that the canonical model of non-cooperative bargaining does not involve

such difficulties. Even when the set of feasible payoffs is not convex, there exists a subgame

perfect equilibrium in pure stationary strategies. At such an equilibrium, there is no delay.

The only assumptions on the set of feasible payoffs that are needed for this result are that

the set of feasible payoffs is closed, comprehensive from below, and that its restriction to

the individually rational payoffs is bounded.

When we impose the mild additional requirement that the weak Pareto optimal payoffs

in the set of feasible payoffs coincide with the Pareto optimal ones, we also obtain the

reverse result that all subgame perfect equilibria in stationary strategies use pure strategies

on the equilibrium path and lead to absence of delay. When players bargaining in a non-

convex environment, it is not only the case that equilibria without randomization exist,

but even stronger, there are no equilibria where randomization is used. Nevertheless, it is

easy to construct example where stationary mixed strategy profiles would lead to Pareto

improvements of the equilibrium utilities.

Here we have restricted ourselves to the canonical model of non-cooperative bargaining.

It is natural to examine to what extent our main results are also valid in extensions of this

basic model, allowing for more general proposer selection and cake processes as studied for

instance in Merlo and Wilson (1995). We have studied the classical case with unanimous

acceptance of proposals. A generalization of our results to the case with a general set of

decisive coalitions as in Banks and Duggan (2000) will fail to hold, since in such a setting

pure strategy equilibria may fail to exist even when sets of feasible payoffs are convex. The

assumption of unanimous approval seems therefore to be crucial for the existence of pure

strategy equilibria and the absence of randomization in general environments.
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