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Abstract

Robinson (1951) showed that the learning process of Discrete Ficti-
tious Play converges to Nash equilibrium in two-player zero-sum games for
any initial condition. In several earlier works, Brown (1949, 1951) makes
some heuristic arguments for a similar convergence result for the case of
Continuous Fictitious Play (CFP). The standard reference for a formal
proof is Harris (1998); his argument requires several technical lemmas,
and moreover, involves the advanced machinery of Lyapunov functions.
In this note we present a simple alternative proof. In particular, we show
that Brown’s convergence result follows easily from a result obtained by
Monderer et al. (1997).

JEL-Classification: C72, D83

Keywords: Fictitious play; Zero-sum games.

1 Introduction

Fictitious Play is a procedure in which at each instance, players of a game my-
opically play their best replies against the opponents’ past play. The origins of
Fictitious Play lie in a series of papers by Brown (1949, 1951) and Robinson
(1951). While today, the algorithm is usually interpreted as a myopic learning
process, the initial objective of these studies was to develop an easy method to
find the value of zero-sum games. In his 1949 article, Brown already argued
heuristically that the continuous version of the procedure – Continuous Ficti-
tious Play (CFP) – must converge at a linear speed to the set of Nash equilibria,
and thus, the value of the game. This result is again mentioned – without proof
– in Brown (1951). Brown’s to a large extent heuristic approach towards CFP
may be explained by the fact that he was primarily interested in a discrete
algorithm, and thus, only considered convergence of CFP in zero-sum games
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as support for his conjecture that Discrete Fictitious Play (DFP) in zero-sum
games converges to equilibrium.

The proof of this conjecture was obtained by Robinson (1951) in the early
fifties. However, it was not until Hofbauer (1994) and Harris (1998) that the
result for CFP was rigorously proven. Today, Harris’ proof has become the
standard reference. Essentially, he shows that the sum of players’ instantaneous
improvement steps in a zero-sum game, is a Lyapunov function. While this
argument appears to be quite simple at first glance, it requires several rather
technical lemmas1. Moreover, it makes use of non-trivial results on dynamical
systems. Different versions of Harris’ proof – often in a simplified form – have
appeared in the literature. See a.o. Krishna and Sjöström (1997), Shamma and
Arslan (2004), and Hofbauer and Sorin (2006).

In this note we provide a simple alternative argument. We show that the
convergence of CFP in two-player zero-sum games follows trivially from a re-
sult obtained by Monderer et al. (1997) that says that for CFP in any game,
each player’s instantaneous expected payoff will in the long run coincide with
the average payoff that player has realized so far. Using the same approach,
convergence of DFP is established up to the condition of infrequent switching
(Fudenberg and Levine, 1994; Monderer et al. 1997). That is, if for DFP in
a zero-sum game players play each pure strategy profile for increasingly long
periods of time, then the DFP converges to equilibrium. Simulations lead us
to conjecture that infrequent switching is the engine behind Robinson’s result2.
Whether DFP in zero-sum games satisfies the condition of infrequent switching
in general, remains an open question.

2 Preliminaries

2.1 Zero-sum Games

A zero-sum game is represented as an m × n matrix A. There are two players
– 1 and 2. Player 1 [2] has a pure strategy set I [J ] of cardinality m [n]. If
player 1 plays strategy i and 2 plays j, then player 1 receives a payoff of aij

and 2 of −aij. Let ∆m and ∆n be the sets of probability distributions over sets
of respectively m and n alternatives; ∆m and ∆n are players’ respective sets of
mixed strategies over I and J . A pure strategy i ∈ I is also denoted as the unit
vector ei ∈ ∆m; we write Ĩ := {ei | i ∈ I}. Analogously, we denote player 2’s
j-th pure strategy also as the j-th unit vector f j ∈ ∆n, and J̃ := {f j | j ∈ J}.
Let β1 : ∆n → ∆m be player 1’s best-reply correspondence. That is,

β1(q̂) := {p ∈ ∆m | pAq̂ ≥ p′Aq̂ for all p′ ∈ ∆m}.

Player 2’s best-reply correspondence, β2 : ∆m → ∆n is defined as

β2(p̂) := {q ∈ ∆n | p̂Aq ≤ p̂Aq′ for all q′ ∈ ∆n}.

1See also Hofbauer and Sorin (2006).
2Note that convergence of CFP implies convergence of DFP for a class of games that

includes zero-sum games. See Harris (1998) and Hofbauer and Sorin (2006).
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Define β : ∆m × ∆n → ∆m × ∆n as β(p, q) := (β1(q), β2(p)). The set of Nash
equilibria of a game A is defined as

NE(A) := {(p, q) ∈ ∆m × ∆n | (p, q) ∈ β(p, q)}.

That is, NE(A) is the set of fixed points of the best-reply correspondence β.
Define the function W : ∆m × ∆n → R as

W (p̂, q̂) := H(q̂) − L(p̂),

where H(q̂) := maxp∈∆m pAq̂ and L(p̂) := minq∈∆n p̂Aq.

Theorem 2.1 W (p, q) ≥ 0, with equality if and only if (p, q) ∈ NE(A).

This is a classic result that follows from von Neumann’s (1928) maximin
theorem. For an exact proof, see a.o. Myerson (1991).

2.2 Continuous Fictitious Play

A Continuous Fictitious Play (CFP) in A is a pair (x(t), y(t)) of Lebesgue
measurable functions x : [0,∞) → Ĩ and y : [0,∞) → J̃ , such that for almost
all t ≥ 1, we have

(x(t), y(t)) ∈ β

(

1

t

∫ t

0

x(τ)dτ,
1

t

∫ t

0

y(τ)dτ

)

.

Players’ beliefs (p(t), q(t)) are defined as functions

p(t) :=
1

t

∫ t

0

x(τ)dτ, and q(t) :=
1

t

∫ t

0

y(τ)dτ

on the domain [1,∞). Furthermore, we define the set Ω of limit points of
(p(t), q(t)) as

Ω :=
⋂

T≥1

cl ({(p(t), q(t)) | t ≥ T }) ,

where cl denotes the topological closure. We say (p, q) converges to Nash equilib-
rium if Ω ⊆ NE(A, B). Expected and average payoffs are defined for t ∈ [1,∞)
as

E1(t) := x(t)Aq(t), and E2(t) := −p(t)Ay(t),

and

P1(t) :=
1

t

∫ t

0

x(τ)Ay(τ)dτ, and P2(t) := −P1(t).

Monderer et al. (1997) introduce the concept of belief affirmation; a CFP is
said to be belief affirming if

lim
t→∞

(Ei(t) − Pi(t)) = 0

for i = 1, 2. In a belief affirming process players’ expected payoffs and average
realized payoffs coincide in the long run.
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3 CFP Convergence in Zero-Sum Games

The aim of this note is to prove the following.

Theorem 3.1 CFP in zero-sum games converges to Nash equilibrium.

The proof is divided into three simple lemmas. The first is due to Monderer
et al. (1997). For completeness, we include the proof.

Lemma 3.2 (Monderer et al. 1997) Every CFP is belief affirming.

Proof. Each function fi : [1,∞) → R, i ∈ I, defined as

fi(t) :=

∫ t

0

eiAy(τ)dτ,

is continuous on [1,∞). Since tE1(t) = max{fi(t) | i ∈ I} for all t ≥ 1, also
tE1(t) is continuous on [1,∞). The function tP1(t) is also continuous on [1,∞);
it follows that tE1(t) − tP1(t) is continuous on [1,∞).

Suppose (x(·), y(·)) is continuous at t. Since x(·) and y(·) are by definition
pure strategies, there is an ε > 0 such that x(τ) and y(τ) are constant for all
τ ∈ (t − ε, t + ε). This implies that the derivatives of tE1(t) and tP1(t) at t

are both equal to x(t)Ay(t). It follows that tE1(t) − tP1(t) is constant on each
interval on which (x(·), y(·)) is continuous. Continuity of tE1(t) − tP1(t) on
[1,∞) then implies

tE1(t) − tP1(t) = K,

for all t ∈ [1,∞), where K := E1(1) − P1(1). Thus,

lim
t→∞

(E1(t) − P1(t)) = lim
t→∞

1

t
(tE1(t) − tP1(t)) = lim

t→∞

K

t
= 0. (1)

A similar argument applies to player 2.

Lemma 3.3 limt→∞ W (p(t), q(t)) = 0.

Proof. It follows from Lemma 3.2 that CFP is belief affirming. This implies

0 = lim
t→∞

(E1(t) − P1(t)) + lim
t→∞

(E2(t) − P2(t))

= lim
t→∞

(E1(t) − P1(t) + E2(t) − P2(t))

= lim
t→∞

(E1(t) + E2(t))

= lim
t→∞

W (p(t), q(t)),
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where the third equality follows from P1(t) = −P2(t) for all t, and the fourth
from W (p(t), q(t)) = E1(t) + E2(t) for all t.

Proof of Theorem 3.1 Take some (p∗, q∗) ∈ Ω and a sequence of times
(tk)∞k=1

such that limk→∞(p(tk), q(tk)) = (p∗, q∗). Note that the existence of
such a sequence is implied by (p∗, q∗) ∈ Ω. Since W is continuous in (p, q) we
have

lim
k→∞

W (p(tk), q(tk)) = W (p∗, q∗).

By Lemma 3.3 it follows that W (p∗, q∗) = 0, which by Theorem 2.1 implies
(p∗, q∗) ∈ NE(A). Hence, Ω ⊆ NE(A).

Remark 3.5 From Equation (1) it follows that (E1(t) − P1(t)) converges
at rate 1

t
; this also holds for player 2. It follows that (p(t), q(t)) converges to

equilibrium at a rate of 1

t
, confirming Harris’ (1998) result.

Remark 3.6 Our proof of Theorem 3.1 seems to be closer to Brown’s
heuristic argument than the one usually presented in the literature. For in-
stance, Brown (1951, pp. 375) says:3 “In the system of differential equations

the convergence rests on the fact that tV (t) and tV (t) maintain a constant dif-

ference between them.”

4 DFP in Zero-Sum Games

A Discrete Fictitious Play (DFP) in A is a sequence (x(t), y(t)) in Ĩ × J̃ , t ∈ N,
with (x(0), y(0)) ∈ Ĩ × J̃ and for all t ∈ N \ {0},

(x(t), y(t)) ∈ β

(

1

t

t−1
∑

τ=0

(x(τ), y(τ))

)

.

The sequence of beliefs (p(t), q(t)) : N \ {0} → ∆m × ∆n, is given by

1

t

t−1
∑

τ=0

(x(τ), y(τ)).

Like before, we define E1(t) := x(t)Aq(t), E2(t) := −p(t)Ay(t),

P1(t) :=
1

t

t−1
∑

τ=0

x(τ)Ay(τ), and P2(t) := −P1(t).

The following result was proven by Robinson (1951).

3Here, V (t) ≡ E1(t) and V (t) ≡ −E2(t).
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Theorem 4.1 (Robinson 1951) DFP in zero-sum games converges to Nash

equilibrium.

A DFP satisfies the condition of infrequent switching4 if

lim
t→∞

1

t

t
∑

τ=1

Mi(τ) = 0,

for i = 1, 2, where

M1(t) :=

{

1 if x(t) 6= x(t − 1)

0 otherwise.
and M2(t) :=

{

1 if y(t) 6= y(t − 1)

0 otherwise.

for all t ∈ N \ {0}. Monderer et al. (1997), and Fudenberg and Levine (1994)
established the following result.

Lemma 4.2 Every DFP satisfying infrequent switching is belief affirming.

Hence, if the DFP process satisfies infrequent switching, then its convergence
in zero-sum games follows along the lines of the previous section. Whether DFP
in zero-sum games satisfies infrequent switching remains an open question.
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