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Abstract. We consider the univariate two-scale re�nement equation '(x) =P
N

k=0
ck'(2x� k), where c0; � � � ; cN are complex values and

P
ck = 2.

This paper analysis the correlation between the existence of smooth com-

pactly supported solutions of this equation and the convergence of the cor-

responding cascade algorithm/subdivision scheme. In the work [P2] we have

introduced a criterion that expresses this correlation in terms of mask of the

equation. It was shown that the convergence of subdivision scheme depends

on values that the mask takes at the points of its generalized cycles. In this

paper we show that the criterion is sharp in the sense that an arbitrary gener-

alized cycle causes the divergence of a suitable subdivision scheme. To do this

we construct a general method to produce divergent subdivision schemes hav-

ing smooth re�nable functions. The criterion therefore establishes a complete

classi�cation of divergent subdivision schemes.

Key words. re�nement equations, cascade algorithm, subdivision process, rate

of convergence, cycles.
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I. Introduction.

Re�nement equations have been studied by many authors in great detail in

connection with their role in the theory of wavelets and of subdivision schemes in

approximation theory and design of curves and surfaces (see References). In this

paper we study a criterion of convergence of subdivision processes having smooth

re�nable functions. This criterion was presented in the work [P2]. In particular we
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show that the criterion is sharp in the sense that each if its cases is realized. To do

this we provide a general procedure for constructing divergent subdivision schemes

(or cascade algorithms) corresponding to smooth re�nable functions.

We restrict ourselves to univariate equations with compactly supported mask.

Throughout the paper we denote by T = R=2�Z the unit circle, by H the space

of entire functions on C , by Cl the space of l times continuously di�erentiable

functions on R, by C0 = C the space of continuous functions, by Cl0 the space of

compactly supported functions from Cl, and by C0 the space of compactly supported

continuous functions on R. A sequence ffkg converges to zero in Cl0 if it converges
to zero in Cl and the supports of fk; k 2 N are uniformly bounded.

Consider a re�nement equation

'(x) =

NX
k=0

ck'(2x� k); (1)

where ck 2 C ;
P

k ck = 2: The trigonometric polynomial m(�) = 1
2

PN
k=0 cke

�ik�

is the mask of this equation. It is well known that a C0-solution of this equation

(re�nable function), if it exists at all, is unique up to normalization and has its sup-

port on the segment [0; N ]. For a given maskm we denote by [m] the corresponding

re�nement equation. Let us also de�ne the following subspaces of the space C0:

Ml = ff 2 C0 j bf(�)(1� e�i�)�l�1 2 Hg; Ll = ff 2 Cl0 jdf (l) 2Mlg; l � 0:

In other words the Fourier transform of a function from Ml has zeros of order

� l + 1 at all the points 2�k; k 2 Z. The Fourier transform of a function from

Ll has zero at the point � = 0 and has zeros of order � l + 1 at all the points

2�k; k 2 Zn f0g.
Let us also denote L = L0 =M0.

The cascade algorithm for re�nement equations is the construction of the se-

quence fn = Tfn�1 for some initial function f0 2 C0, where Tf(x) =
P

k ckf(2x� k)
is the subdivision operator associated to equation (1). This operator is de�ned on

the space C0 and preserves all the subspaces Cl; Ll. If fn converges in the space

Cl0 to a function ' 2 Cl0 (l � 0), then obviously it converges in Cl0 and ' is the

solution of (1). Moreover, in that case the function g = f0 � ' necessarily belongs

to Ll (see [CDM], [Du]). Thus we say that the cascade algorithm converges in Cl
if Tng ! 0; n ! 1 for any g 2 Ll. Properties of the cascade algorithms have

been studied by many authors in various contexts. This algorithm gives a simple

way for approximation of re�nable functions and wavelets. On the other hand the

convergence of the cascade algorithm is equivalent to the convergence of the cor-

responding subdivision scheme ([DL2]). For a given mask m(�) we say that the

subdivision process fmg converges in Cl if the corresponding cascade algorithm or

the corresponding subdivision scheme converges in that space.

It is clear that if a subdivision process converges in Cl, then the correspond-

ing re�nement equation has a Cl0-solution. In general the converse is not true,

corresponding examples are well-known (see [CDM], [CH], [W], [RS] for general

discussions of this aspect). A natural question arises under which extra conditions

the solvability of a re�nement equation implies the convergence of the subdivision

process ?

1) A necessary condition (�rst introduced in [DGL]):
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If a subdivision process fmg converges in Cl, then its mask can be factored as

m(�) =
�1 + e�i�

2

�l+1
a(�) (2)

for some trigonometric polynomial a(�). In particular the condition

m(�) =
�1 + e�i�

2

�
a(�) ,

X
k

c2k =
X
k

c2k+1 = 1 (3)

is necessary for the convergence of the subdivision process in C. Let us remember

that for the existence of smooth solutions of re�nement equation this condition is

not necessary (there is a weaker condition for this, see [P1]).

For a given mask m denote by l(m) the maximal integer l such that condition

(2) is satis�ed. So if a subdivision process fmg converges in Ck, then k � l(m).

2) A suÆcient condition (introduced in [CDM], developed in [JW],[Z],[He],[N]):

Suppose a mask m satisfying (2) for some l � 0 has neither symmetric roots nor

cycles; then if the equation [m] has a Cl0-solution, then the process fmg converges

in Cl.
Let us recall the notation used in this statement. If for a trigonometric polyno-

mial p(�) and for some � 2 T we have p(�=2) = p(�+�=2) = 0, then f�=2; �+�=2g
is a pair of symmetric roots for p(�). In order to be de�ned we set that for any

� 2 T the element �=2 2 T has the corresponding real value from the half-interval

[0; �). Further, a given set b = f�1; � � � ; �ng � T, where n � 2, is called cyclic if

2b = b, i.e., 2�j = �j+1 for j = 1; � � � ; n (we set �n+1 = �1). We consider only

irreducible cyclic sets, for which all the elements are di�erent. Note that if two

cyclic sets do not coincide, then they are disjoint. A cyclic set b is called a cycle of

a trigonometric polynomial p if p(b+ �) = 0, i.e., p(� + �) = 0 for all � 2 b.
It is well known that suÆcient condition 2) for a mask m is equivalent to the

stability of the corresponding re�nable function (i.e., integer translates of the re-

�nable function possess Riesz basis property in L2(R)). It is also equivalent to say

that the mask satis�es Cohen's criterion (see for example [V, proposition 2.4]).

Actually condition 2) was formulated for the case l = 0 only, but it can be easily

extended to general l. It is seen, for instance, from Theorem 1 of this paper.

Thus we have one necessary and one suÆcient condition for the convergence of

subdivision processes having smooth re�nable functions. It was a natural problem

to ful�ll this gap and to elaborate a criterion in terms \if and only if". In 1998 two

attempts were made independently from each other and almost simultaneously.

They were the work [N] by M.Neamtu and my work [P2]. Those two criteria

were very similar, but di�erent. Moreover, it turned out that our results actually

incompatible. We will discuss this aspect after formulating the main result of the

work [P2].

II. A criterion of convergence.

We give a criterion of convergence of a subdivision process under the condition

that the corresponding re�nement equation has a smooth solution. We will see that

symmetric roots of mask do not in
uence the convergence of subdivision processes.

This means in particular that the stability of solutions is not necessary for the
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convergence. The convergence entirely depends on values of the mask at the points

of so-called generalized cycles.

Everywhere below we consider trigonometric polynomials without positive pow-

ers, i.e., polynomials of the form p(�) =
PN

k=0 ake
�ik� . Us usual we set deg p = N

(assuming a0aN 6= 0). To a given value � 2 T we assign a binary tree denoted in

the sequel by T�. To every vertex of this tree we associate a value from T as follows:

put � at the root, then put �=2 and � + �=2 at the vertices of the �rst level (the

level of the vertex is the distance from this vertex to the root. The root has level

0). If a value 
 is associated to a vertex on the n-th level, then the values 
=2 and

� + 
=2 are associated to its neighbors on the (n+ 1)-st level. Thus there are the

values �
2n

+ 2k�
2n

; k = 0; � � � ; 2n�1 on the n-th level of the tree T�. A set of vertices

A of the tree T� is called a minimal cut set if every in�nite path (all the paths are

without backtracking) starting at the root includes exactly one element of A. For
instance the one-element set A = frootg is a minimal cut set. Every minimal cut

set is �nite.

De�nition 1. A set f�1; � � � ; �ng � T is called a generalized cycle of a polynomial

p(�) if this set is cyclic and for any j = 1; � � � ; n the tree T�j+� possesses a minimal

cut set Aj such that p(Aj) = 0.

The family fA1; � � � ;Ang is said to be sets of zeros of the generalized cycle b. Let

us remark that for a given generalized cycle the set of zeros may not be de�ned

in a unique way. Any (regular) cycle of p(�) is also a generalized cycle, in this

simplest case each minimal cut set Aj is the root of the corresponding tree T�j+�.
On the other hand, not any generalized cycle is a regular cycle. For example, the

polynomial p(�) =
�
e�i� � e�

�i

3

��
e�2i� � e

�i

3

�
has no regular cycles, but is has a

generalized cycle b = f�1; �2g =
�
2�
3
; 4�
3

	
. Indeed, this polynomial has three zeros

on the period: �
3
; ��

6
; 5�
6
2 T. The set A1 =

���
6
; 5�
6

	
is a minimal cut set for the

point �1 + �; A2 =
�
�
3

	
is a minimal cut set for �2 + �, and p(A1) = p(A2) = 0:

Roughly speaking, each cyclic set f�1; : : : ; �ng has a unique corresponding cycle

(the family of zeros is f�1+�; : : : ; �n+ �g) and a variety of generalized cycles (all

possible sets of zeros fA1; : : : ;Ang, where Aj is an arbitrary minimal cut set of

the tree T�j+�; j = 1; : : : ; n:) Note, that if at least one set Aj di�ers from the root

�j +�, then it necessarily contains a pair of symmetric roots of p. Therefore, if the
polynomial p has no symmetric roots, then all its generalized cycles, if there are

any, are regular cycles.

For any trigonometric polynomial p and any �nite subset Y = f�1; � � � ; �ng � T

we denote �p(Y ) = (
Qn

q=1 jp(�q)j)1=n. This is a multiplicative function on the set

of trigonometric polynomials.

Now we formulate the criterion of stability of subdivision process.

Theorem 1. Suppose a re�nement equation [m] has a Cl0-solution for some l � 0;

then the process fmg converges in Cl if and only if the mask m satis�es (2) and for

any generalized cycle b of the mask m we have �m(b) < 2�l.

In particular, for l = 0, this means that a subdivision process fmg, whose re�ne-
ment equation has a continuous solution, converges if and only if �m(b) < 1 for

every generalized cycle b of the mask. Another corollary is condition 2) from the

Introduction. Indeed, if a mask has neither symmetric roots nor cycles, then it has

no generalized cycles either. Hence, by Theorem 1, the subdivision process must

converge.
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Example 1. Consider a mask

m(�) =
�
0:2 + 0:5e�i� + 0:3e�2i�

��
e�i� � e�

�i

3

�2�
e�2i� � e

�i

3

�2
(4)

The corresponding equation [m] has a C0-solution, this is shown in Example 2.

The polynomial m has a unique generalized cycle b =
�
2�
3
; 4�
3

	
, the same as in

the previous example, with the same sets of zeros A1 =
���

6
; 5�
6

	
; A2 =

�
�
3

	
.

Actually this is not one, but two coinciding generalized cycles, if we count roots

with multiplicity. We have
�
�m(b)

�2
=

���m(
2�

3
)

�������m(
4�

3
)

��� = ���(�0:2�0:1p3i)�1�1�������(�0:2+0:1p3i)�4e 4�i

3 �4e� 4�i

3

��� = 1:12 > 1:

Hence the subdivision process fmg diverges.

III. A historical remark

Theorem 1 was obtained in 1998, then I presented this result in several confer-

ences and seminars. By Spring 1999 the paper was ready and submitted to the

SIAM J. Math Anal. Several months later I became aware that a newly published

issue of The East Journal Approximation (the date of issue is Summer 1999) pre-

sented the paper [N] by M.Neamtu devoted to the same problem and containing

a very similar result. M.Neamtu used a di�erent approach, and his line of reason-

ing seems to me nicer than one in my paper. But unfortunately his result turned

out to be not correct. Namely, the main theorem of Neamtu's work claims that

the convergence of a subdivision process (having continuous re�nable function) in

the space C is equivalent to the the condition �m(b) < 1 for all regular cycles of

the mask. In Theorem 1 this condition must be satis�ed for all generalized cycles.

The di�erence between these two statements is seen immediately. These theorems

actually contradict each other. There exist masks that have generalized cycles and

have no (regular) cycles. Moreover, there are masks, which should converge by

the criterion from [N] and should diverge by Theorem 1. In reality the family of

convergent subdivision schemes is wider, than that determined by the criterion of

M.Neamtu. For instance, mask (4) from Example 1 has no regular cycles at all,

but nevertheless the corresponding subdivision process diverges. This gap is caused

by a mistake in the proof in the work [N], and that mistake is hardly removable.

Nevertheless the general method developed by M.Neamtu seems to me correct and

very interesting. His proof can be modi�ed in order to deliver Theorem 1 as well.

IV. Statement of the problem.

Most examples of divergent subdivision schemes (having smooth re�nable func-

tions) are constructed for some special class of masks. These are either \unload"

masks of the form m(�) = p(n�) for some polynomial p and an odd integer n, or, at
least, masks whose associated matrix B = fc2i�jgi;j2f0;::: ;Ng have a multiple eigen-
value 1. The divergence of such schemes is well known and does not require any

special criterion. A natural question arises whether one really needs the criterion
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of Theorem 1 to determine divergent processes ? May be the family of generalized

cycles is too wide to describe unstable subdivision schemes? In general there is no

evidence that the condition �m(b) > 1 can be combined with the existence of a

smooth solution for the mask m. In this paper we are going to show that Theorem

1 indeed characterizes the family of unstable subdivision processes properly. We

show that each generalized cycle can cause the divergence of a suitable scheme.

On the other hand, we will see that every converging subdivision scheme can be

\spoiled" by some generalized cycle.

V. Preliminary results. Reductions of masks.

To construct examples of divergent processes we need some auxiliary results.

The �rst of them establishes two properties of cyclic sets. The proof of this Lemma

is an easy exercise to the reader.

Lemma 1. a) Let b be a cyclic set and � 2 T. Then for the polynomials p1(�) =
e�i� � e�i� and p2(�) = e�2i� � e�i� we have �p1(b) = �p2(b).

b) Let b1 and b2 be cyclic sets and p(�) =
Q

�2b1
(e�i� + e�i�). Then we have:

�p(b2) = 1 if b1 6= b2, and �p(b2) = 2 if b1 = b2.

Now turn back to the subdivision schemes.

(A measure of the rate of convergence). For a given integer l � 0, a mask m, and

a function f 2 Ll denote

�l(m; f) = � lim
n!1

log2 kTn[f (l)]kC
n

;

where T is the subdivision operator associated to m (we set log2 0 = �1). The

value �l(m) = inff2Ll �l(m; f) is the degree of convergence of the process fmg in

the space Cl.
For every mask m we have �l(m) � l+1 (see [DL1]). Furthermore, it was shown

in [DL1] and [CH] that a process fmg converges in Cl if and only if �l(m) > l.
In particular, the inequality �0(m) > 0 means that fmg converges in C. Let L be

the maximal integer such that fmg converges in CL (if the process fmg does not

converge in C, then we nevertheless set L = 0). The value �L(m) is said to be the

degree of convergence of the process fmg and denoted in the sequel by �(m). If

�(m1) = �(m2), then �l(m1) = �l(m2) for any l � 0.

(A measure of smoothness of solutions). For a given re�nement equation [m] denote

by L(m) the maximal integer L such that the corresponding re�nable function '
belongs to CL0 . If this equation has no continuous compactly-supported solution,

we set L(m) = �1. The smoothness of the re�nable function ' is the value s(m) =

L+ h, where h is the Holder exponent of the Lth derivative '(L) on R. It is well

known that a re�nable function belongs to Cl if and only if s(m) > l (the equality
s(m) = l is impossible). In particular, a re�nement equation has a C0-solution if

and only if s(m) > 0.

Now we can describe the procedure of reduction of subdivision schemes intro-

duced in [P2]. This reduction makes it possible to get rid of both symmetric roots

and cycles.
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Eliminating of symmetric roots. Let p(�) be a given trigonometric polynomial

(let us remember that we consider polynomials without positive powers). Assume

that p possesses a pair of symmetric roots f�=2; � + �=2g. The transfer from p(�)

to the polynomial p�(�) =
p(�)(e�i��e�i�)

e�2i��e�i�
is said to be a transfer to the previous

level. The inverse transfer from p� to p is a transfer to the next level. So a transfer

to the previous level reduces a pair of symmetric roots f�=2; � + �=2g to the one

root �.

Proposition 1. Let a mask ~m be obtained from a mask m by a transfer to the pre-

vious level. Then s( ~m) = s(m). Moreover, �( ~m) = �(m), whenever l( ~m) = l(m).

(The constant l(m) responsible for condition (2) was de�ned in the Introduction).

This implies, in particular, that the reduced equation [ ~m] possesses a smooth com-

pactly supported solution if and only if the initial equation [m] does; and the same

true for the convergence of the corresponding subdivision schemes. Thus, a transfer

to the next (previous) level does not change the smoothness of solutions. It also

respects the rate of convergence of subdivision processes, unless this transfer does

not violate condition (2) (a transfer to the previous level may increase the value

l(m)). Using this Proposition one can consequently eliminate all symmetric roots

of a given mask.

Eliminating of regular cycles. Let a polynomial p possess a cycle b. The

transfer from p(�) to the polynomial ~p(�) = p(�)=
Q

�2b(e
�i� + e�i�) is called an

eliminating of a cycle.

Proposition 2. Let a mask ~m be obtained from a mask m by eliminating of a cycle

b. Then s( ~m) = s(m) and �(m) = maxf�( ~m); �m(b)g.
Thus the equation [m] possesses a smooth compactly supported solution if and

only if the equation [ ~m] does. Moreover, the process fmg converges in Cl if and
only if the process f ~mg does and in addition �m(b) < 2�l.

See [P2] for the proofs of Propositions 1 and 2. Now it becomes clear how to

establish Theorem 1. First we consequently eliminate all symmetric roots. By

Proposition 1 it does not change neither the smoothness of solution nor the rate

of convergence (if the initial mask satis�ed condition (2)). Moreover, by Lemma 1

this process respects the constants �m(b) for all cyclic sets b. The �nal mask has

no symmetric roots, hence it can have only regular cycles. Then we eliminate all

regular cycles (refereeing to Proposition 1) and obtain a mask satisfying Cohen's

criterion, whose subdivision process does converge. This line of reasoning also allow

us to eliminate directly all generalized cycles as follows:

Eliminating of generalized cycles. Let a polynomial p possess a generalized

cycle b with corresponding sets of zeros A1; : : : ;An. The transfer from p(�) to the
polynomial ~p(�) = p(�)=

Q
�2Aj ;j=1;::: ;n

(e�i� � e�i�) is called an eliminating of a

generalized cycle.

Proposition 3. Let a mask ~m be obtained from a mask m by eliminating of a

generalized cycle b. Then s( ~m) = s(m) and �(m) = maxf�( ~m); �m(b)g.
Proof. After a suitable sequence of transfers to the previous level all the sets

of zeros A1; : : : ;An drop to the corresponding roots �1 + �; : : : ; �n + �, and b

becomes a regular cycle. By Lemma 1 this does not change the value �m(b). Now
it remains to apply Proposition 2.
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Example 2. Consider again the maskm(�) from Example 1. After eliminating the

generalized cycle b =
�
2�
3
; 4�
3

	
we obtain the mask ~m(�) = 0:2+0:5e�i�+0:3e�2i�.

Since all the coeÆcients of ~m are positive, it follows that the equation [ ~m] has a C0-
solution and, moreover, the corresponding subdivision process f ~mg converges (see,
for instance [CDM]). Now applying Proposition 3 we see that the initial process fmg
diverges, since �m(b) =

p
1:12. Let us note, that the matrix B corresponding to the

mask m (B = fc2i�jgi;j2f0;::: ;8g) has the eigenvalue 1 with multiplicity one and has

no other eigenvalues on the unit circle. So the divergence of the subdivision scheme

in this case does not follow from the well-known argument of multiple eigenvalues.

VI. Unimprovability of the criterion. Examples of divergent schemes.

Now we are going to see that Theorem 1 gives a full description of divergent

subdivision schemes having smooth re�nable functions. This means that all possible

cases of the criterion of convergence are realized on suitable masks. For the sake of

simplicity we formulate this result for the convergence in the space C, i.e., for the
case l = 0.

Theorem 2. Let b = f�1; : : : ; �ng be a cyclic set and let A1; : : : ;An be arbitrary

minimal cut sets of the trees T�1+�; : : : ; T�n+� respectively. Then there exists a

mask m(�) such that

1) m(Aj) = 0; j = 1; : : : ; n, i.e., b is a generalized cycle of the mask m, and

Aj are its sets of zeros;

2) the equation [m] has a C0-solution, but the subdivision process fmg does not

converge in C;
3) after eliminating of the generalized cycle b this process becomes converg-

ing in C.

Proof. Consider a mask p(�) =
�
1+e�i�

2

�
a(�) such that deg a � 2, and the

subdivision process fpg converges in C. To obtain such a mask it suÆces to take

an arbitrary polynomial a(�) with positive coeÆcients such that a(0) = 1. Now

we use the fact that if the process fpg converges in C, then it will still converge

in this space after all suÆciently small perturbations of the coeÆcients of a(�)
preserving the condition a(0) = 1 (see [DL1]). Thus, with possible perturbation

of the coeÆcients, we assume that the trigonometric polynomial a has no real

roots and that the value �a(b) is irrational. Such a perturbation exists by the

mean value theorem, because �a(b) is a continuous function of the coeÆcients of

a(�). This implies, in particular, that �a(b) > 0 and hence �p(b) > 0. Now

take the polynomial q(�) =
Q

�2Aj ;j=1;::: ;n
(e�i� � e�i�). By Lemma 1 we have

�pqr (b) = 2r�p(b) for every r � 0. Consequently there exists a nonnegative integer

r such that �pqr (b) > 1. Take the smallest such integer r0 and denote ~a = aqr0�1

and ~p = pqr0�1 (if r0 = 0, then we put ~a = a; ~p = p). Let us remark that the case

�~p(b) = 1 is impossible, because this value is not rational, therefore �~p(b) < 1.

Since b is the only generalized cycle of the polynomial ~p, therefore, by Proposition

3, the subdivision process f~pg converges. Now make a small perturbation of the

coeÆcients of the polynomial ~a after which the process f~pg still converges, and the

value �~pq(b) is still bigger than 1, but the polynomial ~a does not have real roots.
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Then denote ~m = ~p;m = ~mq. We see that the mask m has a unique generalized

cycle b, and this cycle has sets of zeros A1; : : : ;An. Since �m(b) > 1, the process

fmg diverges, however removing this generalized cycle we obtain the converging

process f ~mg. This proves the Theorem.

Remark 1. One could take the initial polynomial in the form p(�) =
�
1+e�i�

2

�l+1
a(�)

and by the same argument construct a mask m that has a Cl- solution, but the cor-
responding subdivision algorithm diverges even in C. However in this case the mask

m must have at least l+1 generalized cycles, may be coinciding (i.e., a generalized

cycle with multiplicity l+1). In the last case this multiple cycle can be also given in

advance, as in Theorem 2. Why is it impossible to manage by just one generalized

cycle in this case ? The answer is given by Proposition 4 below.

Proposition 4. If the solution of a re�nement equation is in Cl and the corre-

sponding subdivision process diverges in C, then the mask of this equation possesses

at least l + 1 generalized cycles (counting with multiplicity).

The proof can be found in [P3].
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