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Abstract

Two new methods for dealing with missing values in generalized canon-
ical correlation analysis are introduced. The first approach, which does not
require iterations, is a generalization of the Test Equating method available
for principal component analysis. In the second approach, missing values
are imputed in such a way that the generalized canonical correlation anal-
ysis objective function does not increase in subsequent steps. Convergence
is achieved when the value of the objective function remains constant. By
means of a simulation study, we assess the performance of the new methods.
We compare the results with those of two available methods; the missing-data
passive method, introduced Gifi’s homogeneity analysis framework, and the
GENCOM algorithm developed by Green and Carroll.
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1 Introduction

In canonical correlation analysis (Hotelling, 1936) linear combinations of two sets of
variables are obtained in such a way that the correlation between the linear combina-
tions is a maximum. Generalizations to a similar approach for more sets of variables
have been the topic of several studies (Horst, 1961; Carroll, 1968; Kettenring, 1971).
Consequently, several different approaches have been proposed. Kettenring (1971)
provides an overview of four different generalizations. In the framework of homo-
geneity analysis Van der Burg et al. (1988) and Gifi (1990) introduced nonlinear
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canonical correlation analysis, also referred to by the algorithm name OVERALS,
which takes Carroll’s generalized canonical correlation analysis as a special case.
Here, we will also use the generalization proposed by Carroll (1968). An excellent
description of his method, in a similar notation as we employ in this paper, can be
found in Steenkamp et al. (1994) who consider the method for marketing applica-
tions. An important advantage of Carroll’s approach is its computational ease and
the fact that the method takes ordinary canonical correlation analysis as a special
case.

In generalized canonical correlation analysis several sets of variables are ana-
lyzed simultaneously. This makes the method suited for the analysis of various
types of data. For example, in marketing research, subjects may be asked to rate
a set of objects on a set of attributes. For each individual, a data matrix can
then be constructed where the objects are represented row-wise and the attributes
column-wise. Using generalized canonical correlation analysis a graphical represen-
tation, sometimes referred to as a perceptual map, can be made on the basis of the
individuals’ observation matrices.

Generalized canonical correlation analysis does not require the objects to be eval-
uated on the same set of attributes. That is, each individual can use attributes that
he/she finds appropriate. Steenkamp et al. (1994) focussed on this flexibility in their
analysis of idiosyncratic sets of attributes. Another type of application, considered
by Green and Carroll (1988) concerns the derivation of a composite configuration
from a set of configurations. For example, multidimensional scaling solutions (per-
ceptual maps) for the same objects from different countries can be used as input
data. Generalized canonical correlation analysis can then be applied to the coor-
dinate matrices to obtain a composite configuration. Finally, generalized canonical
correlation analysis can be used when, for the same set of subjects, we have data on
sets of variables. For example, consumers may be asked to evaluate several aspects
of a certain product separately. One set of variables corresponds, for example, to
the product’s appearance, another set corresponds to the product’s functionality
and yet another one concerns variables related to the product’s price. Hence, data
on three sets of variables are obtained that are to be analyzed simultaneously.

Since generalized canonical correlation analysis deals with possibly large sets
of data, the possibility of the occurrence of missing values is significant. Some
procedures to deal with missings in generalized canonical correlation analysis have
been proposed, however, no attempt has been made to compare and evaluate the
alternatives. In this paper, we will review two existing procedures and propose two
alternative methods. Furthermore, by means of a simulation study, the performance
of the methods will be assessed.

Van der Burg et al. (1988) and Gifi (1990) suggested a method for dealing with
missing values in nonlinear generalized canonical correlation analysis in which se-
lection matrices are used to discard complete rows containing at least one missing
value. Hence, if one element is missing in a row, the complete row is discarded.
This method is often applied in the homogeneity analysis framework as set forth
in Gifi (1990). It is referred to as the missing-data-passive approach to missing
values. Van de Velden and Bijmolt (2006) used an equivalent method for the case
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where complete rows were missing. An advantage of the missing-data-passive ap-
proach is its computational ease. The solution can be obtained directly by means of
an eigenequation. However, discarding complete rows if only one value is missing,
clearly implies a considerable loss of information. Moreover, as the data are cen-
tered with respect to the fully observed rows, bias may be introduced. For this latter
problem, we propose an alternative approach in which a constant term is estimated
separately. The proposed method is a generalization of a method first proposed by
Shibayama (1995).

The treatment of missing values in generalized canonical correlation analysis was
also studied by Green and Carroll (1988). They proposed an iterative procedure in
which missing values are imputed by using linear regression. Although the algorithm
in practice appears to converge, there is no guarantee that such will always happen.
In this paper, we propose an alternative algorithm in which missing values are
imputed in such a way that their contribution to the objective becomes as small
as posible. The proposed algorithm is designed in such a way that the generalized
canonical correlation objective function monotonically decreases. Hence, the new
algorithm always converges.

In a simulation study we compare our methods to those proposed by Green and
Carroll (1988) and the missing-data-passive approach proposed by Van der Burg
et al. (1988) and Gifi (1990).

The paper is organized as follows. In the next section, we briefly introduce gener-
alized canonical correlation analysis. In Section 3, we briefly summarize the missing-
data-passive approach and Green and Carroll’s method for the treatment of miss-
ing values using notation that will later facilitate easy comparison of the methods.
Then, in Section 4, we propose two alternatives to the existing methods. A sim-
ulation study in which the methods are compared is presented in Section 5. We
conclude the paper with a brief summary of our results.

2 Generalized Canonical Correlation Analysis

In generalized canonical correlation analysis linear combinations are obtained in
such a way that the sum of squared correlations of the linear combinations of the
variables with a so-called group configuration is a maximum. Let Y denote the
unknown group configuration. The order of Y is m× k, where m is the number of
rows for each observation matrix Xi (i.e. the ith data set) and k is the dimensionality
of the solution. The data matrices Xi are first centered. Sometimes, if the variables
are for example measured on different scales, they are also standardized. Note that
the sizes of the observation matrices Xi are m×pi for i = 1, ..., n. The dimensionality
of the solution, k, must be chosen by the researcher.

We can formulate as objective

minφ (Y,Ai) = min trace
n∑

i=1

(Y −XiAi)
′ (Y −XiAi) (1)
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subject to the restriction
Y′Y = Ik. (2)

It is known, e.g. Carroll (1968), that for observed Xi matrices, the group configu-
ration Y can be obtained from the eigenequation(

n∑
i=1

Xi (X′iXi)
−1

X′i

)
Y = YΛ, (3)

where Λ is a diagonal matrix with as elements the k largest eigenvalues of∑n
i=1 Xi (X′iXi)

−1 X′i (where we have assumed that the X′is are of full column rank)
and the matrices Ai can be calculated as

Ai = (X′iXi)
−1

X′iY. (4)

An interesting feature of the method is the fact that the sets of variables Xi may
contain different variables. Hence, the.number of variables in each set does not need
to be the same. Steenkamp et al. (1994) used this freedom to analyze object evalu-
ations where each individual used there own set of attributes to evaluate objects.

3 Existing methods for dealing with missing val-

ues in generalized canonical correlation analysis

There exist two methods specifically designed for dealing with missing values in
generalized canonical correlation analysis. Before proposing two new methods, we
briefly describe the two existing methods. The notation and formulation that we
employ will facilitate comparison of all methods.

3.1 The missing-data-passive approach

In the missing-data-passive approach proposed in the context of nonlinear canonical
correlation analysis, rows of the data matrices are removed if they contain one
or more missing elements. The generalized canonical correlation approach is then
applied by only using the observed rows. This method can easily be implemented by
introducing a so-called selection matrix. Let Ki denote a diagonal matrix with its
diagonals either ones or zeros. The ones correspond to rows for which there are no
missings in the ith observation matrix and the zeros correspond to rows of Xi, for
which at least one value is missing. Obviously, the resulting selection matrices Ki

are symmetric idempotent, that is, Ki = K′i = KiKi. In the missing-data-passive
approach, the data are first centered with respected to the fully observed rows. This
centering can be achieved by defining:

Qi =
(
I− (1′Ki1)

−1
11′
)

Ki. (5)

4



Inserting the centering and selection matrices into equation (1), we get

minφ (Y,Ai) = min trace
n∑

i=1

(Y −QiXiAi)
′Ki (Y −QiXiAi) (6)

which we minimize subject to the restriction

Y′KY = Ik, (7)

where
K =

∑
Ki.

It is not difficult to see that the resulting group configuration can be obtained from
the eigenequation:

K−
1
2

(
n∑

i=1

KiQiXi (X′iQ
′
iKiQiXi)

−1
X′iQ

′
iKi

)
K−

1
2 Ys= YsΛ,

where Λ is the diagonal matrix with as elements the k largest eigenvalues and we
have assumed that the X′is are of full column rank, and Ys is an n × k matrix
of corresponding orthonormal eigenvectors. Hence, the appropriately standardized
groupconfiguration can be obtained as

Y = K−
1
2 Ys.

The matrices Ai can be calculated as

Ai = (X′iQ
′
iKiQiXi)

−1
X′iQ

′
iKiY.

3.2 Green and Carroll’s GENCOM algorithm

Green and Carroll (1988) proposed an iterative procedure for dealing with missing
elements in generalized canonical correlation analysis. For the sake of clarity we
will briefly reiterate their method here. The basic principle in their approach, which
they call GENCOM, is to estimate the missing values using linear regressions of the
variables on the group space.

The GENCOM algorithm can be summarized as follows:

1. For each X∗i calculate X̂
(t)
i by replacing the missing values by the column

averages. Thus, for each column, the average is calculated by summing the
observed values and dividing this through the total number of observations in
a column.

2. Calculate Y(t) by applying generalized canonical correlation analysis to the
X̂

(t)
i matrices, and by then adding a column of ones to the configuration matrix.

This column of ones serves to estimate the constant in the linear regression
model carried out in the next step.
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3. For each column of Xi, use ordinary least squares to fit: x∗i(j) = Y(t)∗b
(t)
i , where

x∗i(j) is the jth column of the original data matrix Xi after removing the rows

corresponding to missing values for that column, and Y(t)∗ is the matrix of
corresponding rows of Y(t). Hence, the regression is based on observed values

only and b
(t)
i =

(
Y(t)∗′Y(t)∗)−1

Y(t)∗′x∗i(j).

4. Construct Bi =
[

b1 b2 bpi

]
and let X

(t)∗
i = Y(t)B

(t)
i .

5. Calculate X̂
(t+1)
i by replacing the missing values of the original X∗i matrix

with the corresponding elements of X
(t+1)∗
i , whilst keeping the observed values

unaltered.

6. Insert X̂
(t+1)
i in step 2, and repeat until the differences between two subsequent

Y(t) matrices becomes smaller than a certain convergence criterion.

Note that, like before, index i indicates different observation matrices, whereas
index t was used to indicate different iterations.

4 Alternative methods for the treatment of miss-

ing values in generalized canonical correlation

analysis

We now propose two alternative methods to deal with missing values in general-
ized canonical correlation analysis. The first approach is a generalization of the
Test Equating method proposed by Shibayama (1988, 1995) and later described
by Takane and Oshima-Takane (2003). As shown by Takane and Oshima-Takane
(2003), in the context of principal component analysis, the Test Equating method is
closely related to the missing-data-passive approach. However, unlike the missing-
data-passive approach, in the Test Equating method, means are approximated sep-
arately rather than calculated as the simple mean over observed values. In the gen-
eralized canonical correlations framework, this implies that mean vectors for each
data matrix are approximated (in a least-squares fashion) rather than calculated by
simply taking the means of rows after row-wise deletion.

The second approach that we propose, involves imputation of missing values.
Like Green and Carroll’s GENCOM algorithm, it requires iterations until conver-
gence has occurred. The missing values in this new approach, are imputed in such
a way that their influence on the solution becomes as small as possible.

4.1 Test Equating method

The Test Equating method, was proposed by Shibayama (1995) in a one-dimensional
setting. However, Takane (1995) showed that the method could easily be extended to
a k-dimensional solution similar to principal component analysis. Moreover, Takane
and Oshima-Takane (2003) showed that the Test Equating method is closely related
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to the missing-data-passive approach in homogeneity analysis (e.g., Meulman, 1982;
Gifi, 1990). The difference between the two methods lies in the estimation of a mean
term in the Test Equating method. Here, we further generalize the Test Equating
method to the generalized canonical correlation analysis case.

To apply the Test Equating method in generalized canonical correlation analysis,
we must employ row-wise deletion similar as was the case in the missing-data-passive
approach described in Section 3.1. Hence, if a row contains at least one missing
value, the complete row will be removed. However, instead of the centering step
employed in the missing-data-passive approach, the Test Equating method requires
the estimation of a constant term. Thus, in the Test Equating method, the group
configuration is approximated by a constant term plus k linear combinations of the
columns of Xi.We can formulate this as follows:

minφ (Y,Ai, ai0) = min trace
n∑

i=1

(Y −XiAi − 1a′i0)
′
Ki (Y −XiAi − 1a′i0) . (8)

We can solve this minimization problem sequentially. First, differentiation with
respect to ai0 yields as first order condition,

ai0 = (1′Ki1)
−1

1′Ki (Y −XiAi) .

Subsituting this into (8), yields, after some manipulations,

minφ (Y,Ai) = min trace
n∑

i=1

(Y −XiAi)
′Q′iKiQi (Y −XiAi) , (9)

where Qi is as defined in (5). Let

Pi = Q′iKiQi,

it is easily verified that Pi is symmetric idempotent, i.e. Pi = P′i = PiPi. Solving
(9) subject to the constraint

Y′PY = I (10)

where

P =
n∑

i=1

Pi,

yields, assuming for the moment that all inverses exist,

P−
1
2

(
n∑

i=1

PiXi (X′iPiXi)
−1

X′iPi

)
P−

1
2 Ys= YsΛ,

where Ys is an orthonormal matrix of eigenvectors and Λ is the corresponding diag-
onal matrix containing the k-largest eigenvalues in decreasing order. The solution
thus becomes:

Y = P
1
2 Ys
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Ai = (X′iPiXi)
−1

X′iPiY,

and
ai0 = (1′Ki1)

−1
1′Ki (Y −XiAi) .

Comparison with the results in Section 3.1 immediately shows the similarity between
the two methods. The only difference concerns the standardization with respect to
P rather than K. This computationally minor difference has considerable conse-
quences. In the missing-data-passive approach, the data are taken into deviation
from the mean over observed rows. Such a procedure may not be appropriate if
the missing values are not at random. If, for example, missing values are related
to certain aspects of a variable, certain values will be under– or over represented.
Hence, the mean over the observed values is a biased estimator of the constant term.
The Test Equating method does account for this problem. Finally, an additional
advantage of the Test Equating method is that the constraint (10), ensures that
the group configuration is centered. That is, Y′1 = 0. In the missing-data-passive
approach, this is not the case.

4.2 Minimized contribution approach

Green and Carroll (1988) do not give details on numerical properties of their algo-
rithm. There are, however, two important issues concerning the GENCOM algo-
rithm. First of all, although in each step Y and Bi are optimal with respect to the
imputed Xi matrices, there is no mechanism ensuring that subsequent Y

′
s become

more similar. That is, convergence is not guaranteed. Secondly, the value φ will
always be at a minimum for a given set of (imputed) Xi matrices. However, there
is no mechanism that ensures that this value will go down. Consequently, it may
occur that the sum of differences between the group configuration Y and the linear
combinations of the imputed Xi matrices is smaller in the first iteration than in the
last iteration. (Obviously, if in subsequent steps the change in the Xi matrices is
small it is plausible that the change in Y is also small. Hence, when the imputed
values do not change, i.e. when the regression estimates are ”stable” the group
configuration is likely to be stable as well.)

To resolve these issues we propose a new algorithm that imputes the missing
values of the Xi matrices in such a way that the value of the objective function does
not increase. Based on these imputed Xi matrices a new configuration is calculated
in the usual way. Thus, the value of the objective function cannot increase in
subsequent steps of the iteration process. The algorithm terminates when the value
of the objective function remains constant. Our algorithm resembles an algorithm
proposed by Ten Berge et al. (1993) for the treatment of missing values in generalized
Procrustes analysis.

The new algorithm that we propose is an alternating least-squares algorithm.
The imputed values will be chosen in such a way that their contribution to the
objective is minimized. To achieve this, we first solve the usual generalized canonical
correlation analysis problem with respect to Y and Ai whilst considering the Xi

matrices, in which the missing elements are replaced by some initial values, constant.
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Next, we will use the same objective function but this time we minimize with respect
to the missing values for Xi whilst considering Y and Ai constant. This process
is then repeated until the value of the objective function remains constant. As the
value of the objective function cannot increase in subsequent steps, convergence is
guaranteed.

Recall objective function (1), where the Xi matrices may contain missing ele-
ments. We will impute values for the missings in such a way that the value of the
objective function decreases in each step. Hence, while keeping Y and Ai fixed we
must minimize φ with respect to the missing (to be imputed) elements of Xi. This
problem has not been solved before.

We can formulate the problem in the following way. Let

Xi = Xo
i + Xm

i , (11)

where Xo
i is the m × pi matrix with the observed values and zeros for the non-

observed values. The values of Xo
i are constant whereas the entries in Xm

i that
correspond to missing values are the variables with respect to which we carry out
the minimization. The other entries, corresponding to observed values, of Xm

i will
be ignored. Using (11) we get

Y −XiAi = Y −X0
i Ai −Xm

i Ai = Y∗i −Xm
i Ai

so that we can express the objective as

minφ = min
n∑

i=1

trace (Y∗i −Xm
i Ai)

′ (Y∗i −Xm
i Ai) .

We want to minimize this function with respect to the variable elements of Xm
i .

Clearly

trace (Y∗i −Xm
i Ai)

′ (Y∗i −Xm
i Ai) = vec (Y∗i −Xm

i Ai)
′ vec (Y∗i −Xm

i Ai) ,

where the vec operator transforms a matrix to a vector by stacking the columns.
Using a well known relationship between the vec operator and the Kronecker product
(e.g. Magnus and Neudecker, 1999) we get

vec (Y∗i −Xm
i Ai) = vec (Y∗i )−

(
A

′

i ⊗ Im

)
vec Xm

i .

The matrix Xm
i , and hence its vectorization, contains several elements which corre-

spond to observed values. These elements are of no importance and should be kept
constant. By employing a selection matrix Ki we select only those elements in Xm

i

which correspond to the missing values. Let the number of missing values in the
original Xi matrix be qi. A qi ×mp matrix Ki, whose elements are zero or one, is
constructed in such a way that

Ki vec Xm
i = xi.
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Hence, xi is a qi×1 vector whose elements we want to determine in such a way that
φ is minimized. It is not difficult to see that K

′
iKi vec Xm

i = vec Xm
i , so that

vec (Y∗i −Xm
i Ai) = yi−Cixi,

where yi= vec (Y∗i ) and Ci=
(
A

′
i ⊗ Im

)
K

′
i and we can express the objective function

as

min
xi

φ =
n∑

i=1

(yi−Cixi)
′ (yi−Cixi) .

This problem can be solved using matrix differentiation. As first-order condition for
xi we get

C′iyi = C
′

iCixi. (12)

Hence, if
∣∣C′

iCi

∣∣ 6= 0,

xi =
(
C

′

iCi

)−1

C
′

iyi. (13)

Moreover, if
∣∣C′

iCi

∣∣ = 0, a vector xi satisfying the first-order condition (12) may be

obtained by replacing the inverse of C
′
iCi by its Moore-Penrose inverse.

The updated Xi matrices can be obtained by inserting the qi elements of xi in
the appropriate places.

The algorithm can be summarized as follows:

1. Replace the non-observed values in the original Xi matrices by some initial
values, for example, the column averages or zeros.

2. Center the imputed Xi matrices.

3. Calculate the generalized canonical correlation analysis solution, i.e. the group
configuration Y and the value of the objective function ψ, in the usual way
using the imputed Xi matrices.

4. Use (13) to calculate the vector with missing values xi, and update the Xi

matrices accordingly.

5. Go back to step 2 and repeat until the difference between two subsequent
values for the objective function ψ is negligible.

The new algorithm will always converge as the value of the objective function
(1) decreases monotonically. It may be possible that the attained minimum is an
accumulation point. To avoid this, random starts may be considered.
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5 Simulation study

To investigate the properties of the two existing, as well as the two new approaches,
we conduct a simulation study. In the simulation study, synthetic data are generated
for several parameter settings so that the methods can be evaluated under various
conditions. To assess the performance of the methods, we consider the measures
”variance accounted for” (VAF) and the alienation coefficient. In subsection 5.2 we
describe these measures and their functions.

5.1 Data generation process:

The data generation process can be summarized as follows:

1. For fixedm and k, anm×k group configuration Ytrue is constructed by drawing
from a standard normal distribution and then calculating an orthogonal base.

2. For each observation matrix we draw an m × k (standard normal) random
matrix multiplied by a factor r = 0.125, and add this matrix to Ytrue. The
resulting matrix is then post-multiplied by a k × pi (uniform) random matrix
to obtain the ith observation matrix Xi.

3. For each m × pi observation matrix Xi, we draw a matrix indicating which
elements are observed and which are missing.

4. We repeat this process n times leading to n ”observation” matrices Xi.

5.2 Evaluation criteria and analysis

After generation of the data sets, we apply the four methods described in this paper.
To assess the performance of the methods we consider how well the obtained group
configuration is able to describe the original data. Steenkamp et al. (1994), proposed
the following measure, which they called variance accounted for (VAF). Select the
jth column of Xi, say xi(j) and calculate the multiple squared correlation coefficient,
R2, from the linear regression x∗i(j) = Y∗bj +eij, where the superscripted * indicates

that the rows of Y and xi(j) corresponding to missing rows (i.e. elements) of xi(j)

have been removed. Repeat this for all columns of Xi and for all data matrices.
The VAF is defined as the average of all calculated multiple squared correlation
coefficients.

In addition, as the true configuration is known, we can also assess how well the
solutions ”recover” the true configuration. To do this we compare the Euclidean
distances between the rows of the true configuration, with the Euclidean distances
between the rows of the retrieved configuration. Let T denote the matrix with
as elements the Euclidean distances between the rows of the true configuration.

The ijth element of T is: tij =
√(

ytrue
i − ytrue

j

)′ (
ytrue

i − ytrue
j

)
, where ytrue

i is the

ith row of Ytrue written as a k × 1 column vector. Similarly, let O denote the
matrix with as elements the Euclidean distances between the rows of the derived
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configuration: oij =
√

(yi − yj)
′ (yi − yj), where yi is the ith row of the obtained

group configuration Y, written as a k × 1 column vector. A congruence coefficient,
which measures to which degree the Euclidean distances in the two configurations
are similar, may be defined as:

c =
trace(T′O)√

trace(T′T) trace(O′O)
.

The congruence coefficient lies between zero and one, where the maximum is attained
when the distances in the two configurations are equal. To allow easier discrimina-
tions, Borg and Leutner (1985) introduce the following alienation coefficient:

a =
√

(1− c2).

Similar to Bijmolt and Wedel (1999), we will use this alienation coefficient, which
may be interpreted as a measure of unexplained variance, to assess how well the
true configuration is recovered.

5.3 Experimental design

In generating the synthetic data sets, we fix the dimensionality of both the true and
approximated group configuration at two. We then vary a number of factors that
might affect the performance of the methods. Concerning the number of objects
(rows) per matrix we consider two cases: Relatively few rows for each set and
relatively many rows for each set. We will treat these two cases separately.

5.3.1 Relatively few rows for each set: m = 14

This corresponds, for example, to applications in which a set of objects (the rows)
are evaluated using a set of attributes (the columns). The number of attributes are
fixed to 4 for this case. (A previous simulation study by Van de Velden and Bijmolt,
2006, which considered the situation in which complete rows were missing, showed
little effect of the number of columns). For the number of sets we consider two cases:

1. Few (10) sets. This corresponds to the situation in which, for example, differ-
ent multidimensional scaling configurations are compared

2. Many (100) sets. This corresponds to the situation in which each data matrix
represents an observation matrix for an individual.

For the missing values we consider the following scenarios:

(a) Completely missing at random (CAR)

(b) Value dependent missings (VDM)

(c) Row dependent missings (RDM)
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In scenario (a), missings occur completely at random. We consider four such cases
with probabilities for missing values, in each observation matrix, equal to 5%, 10%,
20% and 40% respectively. Under scenario (b), the situation in which the probability
of values to be missing is directly related to the simulated values. This could, for
example, occur when certain true values are less desirable and hence reluctantly
reported. For this scenario we consider two cases: the elements corresponding to
the highest 3 (approximately 5%) or the highest 6 (approximately 10%) values are
missing in all observation matrices. Finally, in scenario (c), one set of objects is
more likely to generate missings than the other set regardless of the actual values.
From a practical point of view, this situation may be particularly interesting in the
setting where rows correspond to objects rather than individuals. For example, in
the evaluation of objects, it could occur that certain objects are very well known and
thus generate fewer missing values. Again we consider two cases: 1) For the elements
of the first 4 rows, the probability for a missing value is 20%, for the remaining 10
rows, this probability is 5%. 2) For the elements of the first 4 rows, the probability
for a missing value is 40%, for the remaining 10 rows, this probability is 10%.

Results: The results of the simulation study with few rows are presented in Tables
1 through 4. We see that, in general, increasing the number of missings, leads to a
decrease in fit. This decrease, however, appears to be stronger for the non-iterative
approaches. In particular, with many missing values there is a strong decrease. For
the situation in which there are many (100) observation matrices (see Tables 3 and
4) both of these methods remove the entire row if it contains a missing value. Several
matrices may therefore contain only few rows that are used to calculate the solution.
Furthermore, since the number of rows is small (14), for certain sets there will be
a missing value in each row, requiring the removal of the entire matrix If there
are 100 observation matrices, observations for all rows exist, making it possible to
calculate a solution. However, when there are only 10 sets, this may no longer be
the case and the missing-passive and Test Equating method fail to yield coordinates
for all rows. A comparison with the other methods is then no longer possible. For
the scenarios with 5%, 10% and 20% of the values missing at random, we ignored
those cases and calculated the average VAF and alienation coefficient based on the
simulations in which a full solution could be calculated. However, for the missing
at random scenario with 40% missings, the number of full solutions was too small
to obtain meaningful mean measures. We indicated such cases in Tables 1 and 2 by
”N.A.” (Not Available).

The simulation results for the case with few observation matrices on relatively
few observations are presented in Tables 1 and 2.

In Tables 1 and 3 we see that, with respect to the variance accounted for, the Test
Equating method outperforms the Missing Passive method in all cases. Furthermore,
as conjectured in Section 4.1, the Test Equating method clearly outperforms the
Missing Passive approach when the missings are not random. In particular, when
missings are related to the values, the fit of the Test Equating configurations is
higher. Moreover, for the value dependent missings, the Test Equating method also
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Table 1: Average variation accounted for (VAF). Number of rows 14. Number of
observation matrices n=10
Missings: Missing Passive Test Equating Gencom Min. Contribution
CAR 5% 0.74 0.77 0.77 0.84
CAR 10% 0.64 0.77 0.77 0.79
CAR 20% 0.49 0.68 0.77 0.68
CAR 40% N.A. N.A. 0.76 0.62
RDM: [0.2,0.05,0.05] 0.63 0.76 0.77 0.75
RDM: [0.4,0.1,0.1] 0.54 0.68 0.77 0.59
VDM, highest 3 0.71 0.74 0.70 0.67
VDM, highest 6 0.71 0.74 0.70 0.67

Table 2: Average alienation coeficients. Number of rows 14. Number of observation
matrices n=10
Missings: Missing Passive Test Equating Gencom Min. Contribution
CAR 5% 0.13 0.13 0.12 0.13
CAR 10% 0.15 0.15 0.14 0.15
CAR 20% 0.28 0.30 0.16 0.25
CAR 40% N.A. N.A. 0.29 0.45
RDM: [0.2,0.05,0.05] 0.18 0.18 0.15 0.22
RDM: [0.4,0.1,0.1] 0.30 0.38 0.21 0.53
VDM, highest 3 0.16 0.17 0.23 0.32
VDM, highest 6 0.16 0.17 0.24 0.32
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Table 3: Average variation accounted for (VAF). Number of rows 14. Number of
observation matrices n=100
Missings: Missing Passive Test Equating Gencom Min. Contribution
CAR 5% 0.72 0.76 0.76 0.82
CAR 10% 0.62 0.76 0.76 0.79
CAR 20% 0.48 0.76 0.77 0.70
CAR 40% 0.41 0.41 0.76 0.66
RDM: [0.2,0.05,0.05] 0.62 0.76 0.76 0.77
RDM: [0.4,0.1,0.1] 0.51 0.76 0.77 0.67
VDM, highest 3 0.69 0.74 0.70 0.68
VDM, highest 6 0.69 0.74 0.70 0.68

Table 4: Average alienation coeficient. Number of rows 14. Number of observation
matrices n=100
Missings: Missing Passive Test Equating Gencom Min. Contribution
CAR 5% 0.06 0.06 0.06 0.06
CAR 10% 0.07 0.07 0.06 0.06
CAR 20% 0.10 0.09 0.07 0.08
CAR 40% 0.38 0.57 0.19 0.27
RDM: [0.2,0.05,0.05] 0.08 0.09 0.07 0.10
RDM: [0.4,0.1,0.1] 0.14 0.17 0.10 0.25
VDM, highest 3 0.10 0.10 0.17 0.26
VDM, highest 6 0.10 0.10 0.17 0.26

performs better than both iterative procedures.
Comparison of Tables 1 and 3 reveal that, for all methods, the fit decreases

slightly when more sets are involved in the analysis. With fewer data, it becomes
easier to fit noise. On the other hand, Tables 2 and 4 show that recovery of the true
configuration improves (i.e. the alienation coefficients decrease) when more sets are
available.

Only for the completely at random case and few (5%-10%) missings, the Min-
imized contribution approach seems to work best, both in terms of fit as well as
recovery. However, the effect of having more missings, appears to be quite strong
for this method. Variance accounted for decreases considerably and alienation coef-
ficients tend to be much higher than those for the other methods.

When there are relatively many row dependent missings, the non-iterative pro-
cedures as well as the minimized contribution approach, are outperformed by the
GENCOM algorithm. This is especially the case when there are relatively few sets.
This is probably caused by the significant loss of information due to the row-wise
deletion.
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5.3.2 Relatively many rows for each set: m = 100

This setting corresponds to applications where the rows correspond to cases. The
columns represent variables. Each matrix has observations on sets of variables. In
a sense, this could be considered the conventional generalized canonical correlation
analysis case. For the number of sets we again consider two cases: 4 sets and 8 sets.
Furthermore, the number of columns (i.e. variables per set) is also varied in this
setting:

1. The number of columns for each set is obtained by drawing from a normal
distribution with mean 4 and standard deviation 2, and rounding the number
to the nearest integer, with a minimum value of 2. Hence, the expected value
for the number of columns is slightly higher than 4: E[p] > 4

2. The number of columns for each set is obtained by drawing from a normal
distribution with mean 8 and standard deviation 2, and rounding the number
to the nearest integer, with a minimum value of 2. Hence, the expected value
for the number of columns is slightly higher than 8: E[p] > 8

For the missing values in this setting we consider the following scenarios:

(a) Completely missing at random (CAR).

(b) Value dependent missings (VDM).

For the completly missing at random scenario we consider the same 4 cases as
before, i.e. , missings occur with probabilities 5%, 10%, 20% and 40% In the value
dependent missings we now consider four scenarios, the highest 1.25%, 2.5%, 5%
and 10% of the values are missing. The case where the missings are related to the
rows seems less appropriate in this setting and is therefore not studied.

Results: The results of the simulation study with sets of m = 100 rows, are
presented in Tables 5 through 8. As in the case with few rows, the Missing Passive
and Test Equating method, may yield sets that do not contain data on certain rows.
Hence, we cannot calculate a solution for the complete configuration. This occurs
quite frequently as we have relatively few sets. Again, we indicated this in the Tables
by writing ”N.A.”.

In Tables 5 through 8, we see that the variance accounted for in this scenario is
generally lower than the situation with few sets whereas the alienation coefficients are
quite a bit larger. The most striking difference with the results for the case with few
rows, however, is the performance of the minimized contribution approach. Except
for the situation in which there are few value dependent missings, this approach
yields poor results. Upon closer inspection of the Missing Passive approach, this
appears to be caused by a type of degeneracy in which the imputed values (in
absolute value) become extremely large. These values dominate the solution as they
lead to low values for the objective function. The resulting configurations, however,
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Table 5: Average variation accounted for (VAF). Number of rows 100. Number of
observation matrices n=4

Missing Passive Test Equating Gencom Min. Contribution
E[p] > 4 8 4 8 4 8 4 8

Missings:
CAR 5% 0.49 0.43 0.51 0.47 0.52 0.44 0.25 0.12
CAR 10% 0.45 0.39 0.48 0.40 0.52 0.46 0.21 0.07
CAR 20% N.A. N.A. N.A. N.A. 0.53 0.48 0.24 0.08
CAR 40% N.A. N.A. N.A. N.A. 0.55 0.49 0.14 0.35
VDM, highest 1.25% 0.51 0.50 0.52 0.51 0.49 0.47 0.44 0.35
VDM, highest 2.5% 0.51 0.49 0.52 0.50 0.49 0.47 0.43 0.35
VDM, highest 5% 0.48 0.46 0.48 0.47 0.47 0.30 0.27 0.10
VDM, highest 10% 0.48 0.46 0.48 0.46 0.47 0.29 0.27 0.10

Table 6: Average alienation coeffcients. Number of rows 100. Number of observation
matrices n=4

Missing Passive Test Equating Gencom Min. Contribution
E[p] > 4 8 4 8 4 8 4 8

Missings:
CAR 5% 0.39 0.43 0.39 0.43 0.41 0.49 0.78 0.87
CAR 10% 0.43 0.46 0.43 0.46 0.42 0.45 0.88 0.96
CAR 20% N.A. N.A. N.A. N.A. 0.44 0.45 0.95 0.84
CAR 40% N.A. N.A. N.A. N.A. 0.49 0.48 0.78 0.54
VDM, highest 1.25% 0.37 0.38 0.37 0.38 0.45 0.47 0.55 0.70
VDM, highest 2.5% 0.37 0.38 0.37 0.38 0.44 0.47 0.56 0.70
VDM, highest 5% 0.40 0.41 0.40 0.41 0.47 0.67 0.86 0.91
VDM, highest 10% 0.40 0.41 0.40 0.41 0.47 0.68 0.86 0.91
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Table 7: Average variation accounted for (VAF). Number of rows 100. Number of
observation matrices n=8

Missing Passive Test Equating Gencom Min. Contribution
E[p] > 4 8 4 8 4 8 4 8

Missings
CAR 5% 0.42 0.36 0.46 0.43 0.47 0.44 0.32 0.15
CAR 10% 0.37 0.28 0.44 0.37 0.47 0.44 0.21 0.10
CAR 20% 0.29 N.A. 0.37 N.A. 0.47 0.45 0.27 0.11
CAR 40% N.A. N.A. N.A. N.A. 0.48 0.45 0.16 0.27
VDM, highest 1.25% 0.43 0.42 0.45 0.44 0.44 0.43 0.37 0.29
VDM, highest 2.5% 0.43 0.42 0.45 0.44 0.44 0.43 0.37 0.29
VDM, highest 5% 0.39 0.38 0.39 0.41 0.42 0.30 0.24 0.10
VDM, highest 10% 0.39 0.38 0.39 0.41 0.42 0.31 0.24 0.10

Table 8: Average alienation coefficients. Number of rows 100. Number of observa-
tion matrices n=8

Missing Passive Test Equating Gencom Min. Contribution
E[p] > 4 8 4 8 4 8 4 8

Missings
CAR 5% 0.30 0.34 0.30 0.34 0.30 0.34 0.57 0.82
CAR 10% 0.34 0.42 0.34 0.42 0.32 0.34 0.82 0.94
CAR 20% 0.46 N.A. 0.45 N.A. 0.33 0.34 0.94 0.93
CAR 40% N.A. N.A. N.A. N.A. 0.40 0.38 0.90 0.53
VDM, highest 1.25% 0.29 0.30 0.29 0.30 0.34 0.35 0.50 0.69
VDM, highest 2.5% 0.29 0.30 0.29 0.30 0.34 0.36 0.51 0.69
VDM, highest 5% 0.32 0.33 0.32 0.33 0.35 0.57 0.86 0.91
VDM, highest 10% 0.32 0.33 0.32 0.33 0.36 0.56 0.86 0.91

are quite poor in terms of variance accounted for and recovery (as measured by the
alieanation coefficient).

In this setting, the Test Equation method does not appear to perform better
than the Missing-data-passive approach and both methods perform similar as the
GENCOM algorithm. The reason for this is that the mean of the observed rows
(as done in Missing Passive) may be a reasonable estimate as it is based on a fairly
large number of rows. Even when missings are value dependent, the overal effect
becomes small due to the relatively large remaining number of observed rows. On
the other hand, it should be noted that in this setting, where we typically only
consider relatively few sets, the Missing Passive and Test Equating method often
fail to yield a solution when the amount of missings increases.

6 Summary and conclusions

Generalized canonical correlation analysis is a mathematically simple, yet versatile
technique with potential applications in many fields of research. In generalized
canoncical correlation analysis, linear combinations of sets of variables are obtained
in such a way that the sum of squared distances between the linear combintation
and an overall group configuration becomes minimal. When the data sets contain
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missing values, two procedures exist: Missing-data-passive, in which rows for which
a missing value exists, are removed from the data, and GENCOM, an iterative
approach proposed by Green and Carroll (1988), where missing vaues are imputed
based on linear regression estimates. In this paper, we introduced two new methods
for dealing with missing values in generalized canonical correlation analysis. The first
approach, the Test Equating method, does not require iterations. Like the missing-
data-passive method, it removes rows that contain missing values. In the Test
Equating method, a constant term is estimated whereas the missing-data-passive
method considers the data by removing the mean of the observed rows. When
missings do not occur completely at random, the latter procedure yields biased
results.

In the second new approach, the minimized contribution approach, missing values
are imputed in a such a way that the generalized canonical correlation analysis
objective function is minimized. Unlike the missing-data-passive and Test Equating
method, no data is discarded in this method. Instead, an iterative procedure is
employed to obtain the optimal values.

For an appraisal of the existing and new methods, we conducted a simulation
study in which various parameters were varied. The simulation study was designed
to mimic two quite different types of data that can be analyzed by generalized canon-
ical correlation analysis: 1) Few cases per set. 2) Many cases per set (and relatively
few sets). It was found that, when there are few cases per set, performance of the
four methods is similar. However, when few values are missing completely at ran-
dom, the minimized contribution approach performs best. On the other hand, when
missings are related to the actual values, the Test Equating method performs best.
For applications with many rows and few sets, it was found that the imputation
methods are outperformed by the noniterative methods. Moreover, the new mini-
mized contribution method performed poorly. The poor performance appears to be
caused by a type of degeneracy in which extremely large (in absolute value) numbers
are imputed for the misings. These large imputed value dominate the solution and
lead to a ”low” value of the objective. However, the quality of such solutions, as
measured by variance accounted for (calculated using only the observed values) is
low and the fit with respect to the true underlying configuration, as measured by
the alieantion coefficient, is poor. In addition, in this setting with many rows and
few sets, differences between the Missing Passive and Test Equating methods are
rather small, with a slight advantage for the Test Equating method. The situation
does not change much when more sets are introduced.

In light of the outcomes of the simulation study as well as the computational
aspects of the methods, we conclude that the Test Equating method is perhaps the
best choice for dealing with missing values in generalized canonical correlaton anal-
ysis. Only when we have few cases, many sets and few (<5%) missings completely
at random, the minimized contribution approach should perhaps be considered as
alternative. Finally, it should be noted that in some cases, in particular those with
relatively many missings and few sets, the row-wise deletion used in the Missing-
data-passive and Test Equating method may prevent these methods from finding a
solution for all rows. Thus, a choice should be made between the minimized contri-
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bution approach and the Gencom algorithm. Given the generally poor performance
of the minimized contribution approach, we suggest using the GENCOM alogorithm
in such cases.
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